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ABSTRACT 

Niako, Nicholas Effects of missing data imputation on univariate time series forecasting using 

ARIMA and LSTM. Master of Science (MS), May, 2023, 102 pp., 17 tables, 37 figures, 

references, 94 titles. 

Missing data are common in real-life studies and missing observations within the univariate 

time series cause analytical problems in the flow of the analysis. Imputation of missing values is 

an inevitable step in the analysis of every incomplete univariate time series data. The reviewed 

literature has shown that the focus of existing studies is on comparing the distribution of imputed 

data. There is a gap of knowledge on how different imputation methods for univariate time series 

data affect the fit and prediction performance of time series models. In this work, we evaluated the 

predictive performance of autoregressive integrated moving average (ARIMA) and long short-

term memory (LSTM) models on imputed time-series data using Kalman smoothing on ARIMA, 

Kalman smoothing on structural time series model, mean imputation, exponentially weighted 

moving average, simple moving average, linear, cubic spline, stine, and KNN interpolation 

techniques under missing completely at random (MCAR) mechanism. Missing values were 

generated at 10%, 15%, 25%, and 35% rates using complete data of 24-hour ambulatory diastolic 

blood pressure readings. The performance of models was compared on imputed and original data 

using mean absolute percentage error (MAPE) and root mean square error (RMSE). Kalman 

smoothing on structural time series, exponentially weighted moving average, and Kalman 

smoothing on ARIMA were the best missing data replacement techniques as the gap of the 
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missingness increased. The performance of mean imputation, cubic spline, KNN, and the other 

simple interpolation methods reduced significantly as the gap of missingness increased. The LSTM 

gave better predictions on the original training data, but the ARIMA predictions on imputed data 

gave consistent results across the four scenarios. 
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CHAPTER I 

INTRODUCTION 

1.1 Time series data 

Time series data comprise a collection of values of a given stochastic process or 

phenomenon monitored over regular sampling intervals for a certain period. Time series data 

presents useful historical data about any process by monitoring the sequential behavior of that 

process in the short or long term. This process (or dependent variable) can be anything that can be 

conceived as a unitary entity (Wei, 2006; Cowperthwait and Metcalfe, 2009). Due to its nature, 

time series data can be found in every field such as traffic control management (Li et al., 2015), 

healthcare (Zeger, Irizarry, & Peng, 2006; Penfold and Zhang, 2013), and economics (Granger and 

Newbold, 2014; Yang, 2012). In healthcare, several studies have discussed the role and 

significance of time series data generated from blood pressure and heart rate for exploring; the 

progression and prognosis of disease outcomes (Li-Wei et al, 2014; Wiens, Horvitz, and Guttag, 

2012; Li-Wei et al, 2013), Cardiac autonomic function in Psychiatry, panic disorders in 

neurological and Cardiovascular Research (Yeragani, 1995; Angelini et al., 2007; Rao and 

Yeragani, 2001; Yeragani et al., 2003, Chuah & Fu, 2007). 

1.2 Serial dependency 

Datasets recorded successively from single or multiple subjects over time exhibit serial 

dependency with their prior values. Thus, such observations cannot be assumed to be statistically 

independent of their prior or subsequent values (Shumway & Stoffer, 2019; Box et al., 2015). As 
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a result, standard regression inference procedures, which assume independence between subjects 

are invalid for the analysis of time series data. The statistical procedure used to analyze and model 

the nature of such dependencies within the data is called time series analysis. Often, time series 

analysis aims to understand the underlying stochastic behavior of the process by fitting an 

appropriate model, and to predict the likely future behavior of the process based on past and current 

data gathered from the process. This interest in time series data has led to the development several 

stochastic and dynamic models and methodologies in the statistical literature. Three model-based 

techniques have been used for forecasting in time series data (Hyndman & Athanasopoulos, 2021). 

The first model-based approach solely uses the historical data of the dependent variable to make 

forecasts. These include the Exponential smoothing-based techniques, and Autoregressive 

Integrated Moving Average (ARIMA) based models (Box et al., 2015). The exponential 

techniques make forecasts using the weighted averages of the previous values of the process, for 

this reason, more recent observations are assigned heavier weights. Consequentially, the weights 

decay in an exponential manner with time, hence the name. These techniques include Holt’s linear 

trend method and Holt-Winters’ seasonal method. See (Kalekar, 2004; Hyndman & 

Athanasopoulos, 2021) for a thorough overview. In the second model-based forecasting approach, 

a vector of predictors in the form of an explanatory model is used to forecast the likely values of a 

selected variable in a future time. These models include Vector autoregressive techniques (Box et 

al., 2015). The third approach includes Machine learning-based techniques like Recurrent Neural 

Network (RNN) models such as Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 

1997), which are capable of learning the behavior of the underlying stochastic process to predict 



3 

 

the likely future realizations of the process. These machine learning-based techniques unlike the 

other model-based forecasting techniques mentioned do not make any prior assumptions about the 

data. The method of analyzing time series data depends on the analyst, and often the type and 

nature of the data. Traditionally, for univariate time-series data, pure time-series models are 

preferred. Among traditional univariate modeling techniques, the Exponential smoothing models 

focus on the description of the trend and seasonality in the data, while ARIMA models aim to 

describe the serial dependencies within the series (Hyndman & Athanasopoulos, 2021).  

1.3 Missing data  

Missing data are common in real-life studies and missing observations within the series 

can cause analytical problems in the flow of the analysis. Missing data are unobserved values that, 

if observed, could be useful for statistical analysis (Little and Rubin, 2019). In practice, missing 

data are unavoidable in many data collection process. Particularly, when the values are taken from 

study unit(s) repeatedly over time (Laird, 1988; Yozgatligil et al., 2013) due to factors like human 

error or mechanical failure. For instance, when measurements of the blood pressure of an 

individual are monitored regularly over time, there is a high tendency to encounter poor internet 

connection for data transmission (in the case of mobile health where vitals can be monitored 

remotely and transmitted over the internet to a health professional), a hardware component failure, 

depleted batteries, cuff bladder leaks or low adherence to monitoring schedule by patients. These 

and other similar occurrences can lead to missing blood pressure readings which if observed would 

be useful for medical or clinical assessment.  
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Depending on the manner and reasons that lead to missing observations, missing 

observations are classified as being missing completely due to random phenomenon (missing 

completely at random, MCAR), missing at random (MAR) and missing not at random (MNAR). 

In MCAR, it is assumed that observations are missing due to pure chance. This assumption implies 

that the reason behind the missing values is unimportant because it is neither related to the values 

themselves nor the observed. The MAR assumption suggests that the reasons behind the missing 

values are not entirely due to a random phenomenon but can be tied to the observed values. For 

instance, if men are less likely than women to complete a survey on the severity of their depression, 

then a registry studying depression may have missing data that are MAR. In this scenario, the 

likelihood that they would complete the survey is connected to their gender (which is observed) 

but not the degree of their depression (Mack, Su & Westreich, 2018). Both the MCAR and MAR 

assumption makes it possible to estimate missing values using the observed data without violating 

the assumptions of missingness. In either case, the likelihood of missingness is not dependent on 

the missing data themselves (making the cause of missingness "ignorable"). On the other hand, the 

MNAR assumption suggests that the reason why the values get missing does not depend on the 

observed values but rather depends on the characteristics of the missing data itself (Rubin, 1976; 

Little & Rubin 2002, 2019).  

Missing data is ubiquitous in all forms of longitudinal data collection. Longitudinal data 

broadly refers to any data gathered over time on a certain variable(s) of interest. The primary 

objective of the most longitudinal analysis is to describe the mean response as a function of time, 

and perhaps other covariates associated with units or individual measurements (Diggle and 
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Kenward, 1994; Longford, 2007). The underlying concept of collecting data on the behavior or 

effect of a covariate on a process “over time” is shared by both time series and traditional 

longitudinal analysis. The distinction, however, is in the length of the data; the data used in 

conventional longitudinal designs typically comes from a small number of time points (i.e a short 

series of time points, for instance, a one-month follow-up followed by a six-month follow-up), that 

can be equally or unequally spaced, whereas time series often consist of a relatively larger number 

of observations. Other qualities such as coming from a single unit (i.e univariate time series) and 

having observations that are regularly spaced (fixed or regular sampling intervals) are frequently 

linked to time series. Furthermore, time series can be generated from multiple units (a multiple 

time series) and can accommodate variations in overtime periods, these are typical of time series 

rather than essential qualities (Diggle et al., 1994; Cowperthwait and Metcalfe, 2009).  

The consequences of missing values in cross-sectional and longitudinal data include biased 

estimates, reduced representativeness of a given sample (affects the sample size), and a loss of 

statistical power. The attrition in the longitudinal studies leads to different numbers of repeated 

measurements for subjects resulting in unbalanced data and to loss of information reducing the 

internal and external validity of the study. Internally the validity of the study is affected if, for 

example, in clinical-trial attrition is different between the treatment and control group which can 

lead to a treatment condition looking more effective than it is. The external validity of the study is 

affected if some participants have a higher probability of dropping than others; in this case, the 

generalizability of this group of participants is limited (Cox, 1972). Traditional approaches for 

handling missing values in statistical analysis of cross-sectional and longitudinal data are complete 
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case analysis (CC), available case analysis (AC), dummy variable adjustment, marginal 

(unconditional) mean imputation, and conditional mean imputation. More recent approaches to 

handling missing data are based on the maximum likelihood (ML) method, multiple imputations 

under normal model (MI), and Bayesian modeling with Markov chain Monte Carlo (MCMC) 

methods. Based on the assumptions of absence each of these methods has strengths and limitations. 

Poor management of missing values on the side of the analyst can result in inaccurate and 

misleading conclusions (Kang, 2013; van Buuren 2018; Enders, 2010; van Buuren & Groothuis-

Oudshoorn, 2011). 

1.3 Problems of missing data in time series 

In time series analysis, the analysis cannot begin even if the missing data is a single value 

occurring after non-missing ones within the dataset. This is because traditional time series models 

like ARIMA and other learning algorithms like Long Short-Term Memory (LSTM) Recurrent 

Neural Network models were built for analyzing autocorrelation and patterns in sequential data 

with no missing values. Thus, the missing values need to be handled first before the analysis can 

be done. Ad hoc solutions for missing data do not generalize across all different types of data, such 

as longitudinal and time series data. For instance, deletion is perhaps the simplest and most 

common method of dealing with missing values in literature (Harel et al., 2012; Westreich, 2012; 

Harel & Boyko, 2013). Pairwise deletion or complete case analysis are other forms of deletion. In 

complete case analysis, only the rows that have no missing observations (complete rows) are 

considered. Thus, any observation that has a missing value is automatically taken out to avoid 
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complications. Theoretically, this method can be justified by the MCAR assumption, because data 

that are MCAR can be effectively considered as a random subsample of complete data from the 

overall sample. Therefore, in such instances statistical results from Complete case analysis are 

unbiased (Little, 1992). This method of handling missing data is the default of most statistical 

software programs including SAS (Kuligowski and Gharibvand, 2020), Stata, SPSS, and R. For 

instance, when fitting a linear regression model, rows of data with missing values are automatically 

removed and the complete dataset will be used by the software to analyze the data. While this 

technique is straightforward to implement, not every missing data are completely due to a random 

phenomenon. Also, by removing participants with partial data, the complete-case analysis misses 

potentially useful observed information and subsequent loss of statistical power (Noor et al 2015; 

van Buuren, 2018, Graham, 2009). This technique of deleting incomplete rows of data can be 

likened to “throwing the baby out with the bath water”.  

Due to the inherent serial dependency in time series data, handling missing data by deletion 

is theoretically inappropriate. Because if deletion is applied to time series data, regardless of the 

data characteristics, it is highly likely to fail in modeling the time dependencies. Also, this 

technique violates the assumption of continuity (equal time interval) between observations, 

required for some of the statistical methods, by causing time truncations or irregularities in the 

data (Velicer and Colby, 2005). Thus, appropriate values must be first imputed before conventional 

time series analysis can be done.  
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1.4 Imputation of missing values in univariate time series 

Moritz et al (2015) provided an overview of several imputation techniques for univariate 

time series data. In their work, they evaluated imputation methods such as replacing missing values 

with the aggregated mean of the observed data, LOCF, and linear interpolation-based techniques. 

In their studies, an exponential distribution was used to replicate four distinct rates (0.1, 0.3, 0.5, 

and 0.7) of artificial missing values under the MCAR assumption in copies of the training data, 

and the above-listed techniques were used to impute the missing values. They showed that 

interpolation with seasonal Kalman filtering and Interpolation on seasonal loess decomposition 

yielded the best results. The LOCF and imputation with the mean of observed values had the best 

computational time but provided erroneous results. In the experiment, the performance of the 

imputation techniques was based on the root mean square error (RMSE) and mean absolute 

percentage error (MAPE) of the original and imputed data. The imputation technique which yields 

the smallest RMSE and MAPE was judged as the best. However, the study did not validate whether 

the best imputation techniques will translate into a successful time series analysis of the imputed 

data.  

(Walter et al, 2013) compared the imputation performance of two Box Jenkins models 

(ARIMA and SARIMA) with a direct linear regression on non-stationary seasonal time series data. 

Their work focused on instances in which missing observations are encountered towards the end 

of the series. By only considering missing values that occur at the end of the data, ample data 

would be available to fit an ARIMA model and subsequently use the fitted model to impute the 
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missing values through prediction. To evaluate the performance of the imputation methods, five 

different levels of missing data were generated (5%, 7%, 10%, 12%, and 15% respectively) within 

each of the four different datasets that were used in the study. The rationale was to determine the 

most consistent of the proposed techniques as the percentage of missing data increases. The results 

showed that the direct linear regression technique yielded more accurate estimates after removing 

the seasonality within the series. However, the study only focuses on the scenario when missing 

values occur at the very beginning and the very end of the data. The imputation methods used will 

fail if a single missing value occurs within the data other than the beginning or end of the time 

series data. This scenario is unlikely to occur in health data and real-world scenarios where several 

factors lead to missing data.  

Wijesekara and Liyanage (2020) aim to compare the performance of six imputation 

methods in univariate air quality data. The performance of these methods was evaluated across 

four (5%, 10%, 15%, and 20%) scenarios of missingness. The methods discussed in the study 

included mean imputation, spline interpolation, simple moving average, exponentially weighted 

moving average, Kalman smoothing on structural time series, and Kalman smoothing on ARIMA 

models. The study showed that Kalman smoothing on structural time series was the best method 

for replacing missing values that are MCAR in univariate time series data. The report showed that 

among the six methods, mean imputation was the worst-performing technique although it can 

perform considerably well when the rate of missingness is smaller. However, the study did not 



10 

 

examine the effects of these imputation techniques and how these changes can affect time series 

models.  

Several other studies have demonstrated various techniques that solely rely on the features 

of the univariate time series data such as the periodic patterns within the observed data to impute 

missing the missing ones (Chaudhry et al, 2019; Bokde et al, 2018; Albano, Rocca, and Perna, 

2017). Research has also been conducted to evaluate the performance of different methods of 

imputation techniques of missing data under different gap size scenarios. For example, (Caillault, 

Lefebvre, and Bigand, 2020; Albano, Rocca, and Perna, 2017) evaluated single value imputation 

techniques with methods for large gaps of missing data in univariate time series data. Based on the 

findings it is clear that different imputation methods are shown to be the best based on different 

scenarios of missing data patterns. Again, these large gap imputation techniques may provide a 

good fix for univariate time series data with large gaps of missing data. However, little is known 

about the reliability of the imputed data for time series modeling and prediction.  

Imputation of missing values is an inevitable step in the analysis of every incomplete time 

series data. The reviewed literature has shown that the focus of existing studies ison comparing 

the distribution of imputed data and does not provide further analysis of the imputed data. There 

is a gap of knowledge on how different imputation methods for univariate time series data affect 

the model fitting and prediction performance of the analysis. 
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1.5 Study objectives 

The objectives of our study were to investigate the effects of imputed data in univariate 

time series analysis on the data, modeling and prediction using ARIMA, and LSTM recurrent 

neural network model. Specifically, we studied the effects of mean imputation, Kalman filtering 

imputation, exponentially weighted moving average, simple moving average, interpolation, last 

observation carried forward (LOCF), and k-nearest neighbor interpolation imputation techniques, 

on the model fitting and prediction performance of ARIMA, and LSTM models, under Ignorable 

missingness (missing data satisfying either MCAR, MAR or both assumptions) at different 

scenarios of the rate of missingness using data points obtained from a 48-hour ambulatory blood 

pressure readings from the Maracaibo Aging Study. 
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CHAPTER II 

THEORETICAL BACKGROUND 

2.1 Time series 

Suppose 𝑦 = 𝑋𝛽 + 𝜀 is the underlying regression model of some dependent variable 𝑦,  

where 𝑋 is a vector of predictor variable(s) of 𝑦, 𝛽 and 𝜀 are the parameter(s) and associated errors 

of predicting 𝑦  respectively. If 𝑦𝑖 are observed sequentially over regular time intervals, then the 

series of observations, 𝑦1, 𝑦2, … . , 𝑦𝑡  for 𝑡 = 1,2,3,4, …. is called a time series data.  

Since 𝑦𝑡  values are taken successively, current realizations of the dependent variable will 

bear similarities to its prior values. This phenomenon is known as serial dependency and the 

measure of the strength of this dependency is known as autocorrelation. Thus, time series data 

cannot be assumed to be statistically independent of their previous or future observations 

(Shumway & Stoffer, 2019; Box et al., 2015). As a result, standard regression inference 

procedures, which assume independence between units the data units are invalid for the analysis 

of time series data. Serial dependency within time series data are important for modelling the 

stochastic behavior of the process. For instance if the previous observations of the dependent 

variable were high, then by intuition, we can assume that the subsequent values are more likely to 

be high and vice versa. The analysis of Time series data makes it possible to study and predict the 

future behavior of a dependent variable (without necessarily having to deal with its predictor 

variables). 
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2.2 Patterns in Time series data 

Often the components of time series are used interchangeably with the patterns exhibited 

by the series on a graph. For instance, we use terms like Seasonal, and Trend (increasing or 

decreasing trend), to describe the overall behavior of a given time series data on a time plot. These 

patterns may or may not coexist within a given time series data. We shall consider general 

definitions of these patterns exhibited by time series data. Trend is generally referred to as the 

direction of the time series, and when a trend shifts from an ascending to a descending direction. 

When there is a sustained rise or fall in the data, then the data is said to exhibit a trend. Trend may 

be linear, quadratic, parabolic etc. When seasonal elements like the time of year or the day of the 

week have an impact on a time series, a seasonal pattern develops in the series over time. Seasonal 

variations or patterns recurs at a fixed and known periods within the time frame of the 

data.  When there are increases and dips in the data that are not periodic (e.g., does not recur on 

regular time intervals), then the pattern exhibited by the time series is said to cyclic. Since the time 

between cycles are irregular, it is usually difficult to estimate the cyclical variation (Hyndman & 

Athanasopoulos, 2021).  

2.3 Decomposition of Time series data 

Usually the trend and cycles within time series data are combined into a single trend-

cycle component called the trend for simplicity when the data is decomposed into its constituent 

parts. We can conceptualize a time series as having three parts: a trend-cycle part, a seasonal 

part, and the remainder. The remainder is anything else other than the trend, and seasonal 

component of the time series data.  
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Figure 1. An illustration of Seasonal-Trend decomposition of time series data using Loess. 

The graph in Figure 1 shows the additive decomposition of the Diastolic blood pressure 

data into its components (trend, seasonal and remainder). This decomposition plot is known as the 

Seasonal and Trend decomposition using Loess (or simply, STL decomposition). The first section 

represents the time series data, the second section represents seasonal component (i.e patterns that 

recur at regular time points), and the third section shows the overall direction of the series, and the 

last section of the plot is the remainder. If we assume an additive decomposition of the time 

series data, then we can write the series as a linear equation of the form; 

𝑦𝑡 =  𝜇𝑡 + 𝛾𝑡 + 𝜀𝑡                                                                                                (1)  
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Where 𝑦𝑡  is the time series data, 𝛾𝑡 is the seasonal component,  𝜇𝑡 is the trend-cycle component of 

the series, and 𝜀𝑡 is the remainder or irregular component at period 𝑡. Similarly, if we assume a 

multiplicative decomposition, we write 

𝑦𝑡 = 𝜇𝑡 × 𝛾𝑡 × 𝜀𝑡                                                                                            (2) 

When the degree of variation around the trend-cycle does not change with the level of the time 

series, the additive decomposition is a good fit for the series. The multiplicative decomposition, 

on the other hand, is more appropriate when the seasonal variation within the trend-cycle appears 

to be commensurate to the level of the time series. (Hynman & Athanasopoulos, 2021).  

2.4 ARIMA models 

These models were created by George Box and Gwilym Jenkins to mathematically describe the 

serial dependencies in time series data (Box & Jenkins, 1970). Since their work was published in 

the 1970s, the theoretical properties of the Box-Jenkins procedure for modeling time series data 

has made it one of the most used approaches in time series literature. The model consists of three 

parts; the Autoregressive (AR (𝑝)), a differencing index (I), and the moving average (MA (𝑞)) part. 

The resulting model is a compound of these procedures called ARIMA (p, d, q), the p denotes the 

order of the autoregressive part, d is the number of differencing steps needed to make the series 

stationary and, q is the order of the moving average part of the model (Box et al., 2015). The 

ARIMA methodology assumes that the series is stationary and the error terms are uncorrelated 

(homoscedastic).  



16 

 

2.4.1 Autoregressive models 

Suppose… 𝑦𝑡−1, 𝑦𝑡, 𝑦𝑡+1, … are the observations from a given process (say, the number of 

diastolic blood pressure readings for an individual, live births in a hospital, annual Medicare costs 

over a number of years, etc.) recorded at equally spaced times … 𝑡 − 1, 𝑡, 𝑡 + 1, … (e.g. yesterday, 

today, tomorrow).  

Let 𝑎𝑡−1, 𝑎𝑡, 𝑎𝑡+1, …  represent a series of 'white noise' that are independent and identically 

distributed random variables. These white noises are approximately normally distributed with a 

mean of zero and variance 𝝈𝑎
2 . Suppose further that 𝐸(yt) = 0 (otherwise the 𝑦𝑡 may be considered 

as deviations from their mean). Where yt is the current observation from the series and it is linearly 

dependent on its prior realizations (i.e., 𝑦𝑖−1) and on the white noises (also known as random 

shocks) 𝑎𝑖 of the series. Let  

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−p + 𝑎𝑡       (3) 

Where 𝜙𝑖 in (3) is a parameter of the series, and since  𝑦𝑡 is regressed on its previous values 𝑦𝑡−1, 

thus, the resulting model becomes an autoregressive model with an order of p, abbreviated to AR 

(p) model.  The model yt in (3) can be expressed as a linear combination of the current and past 

random shocks of the series such that: 

yt = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞        (4) 

Then (4) above is called a moving average model of order 𝑞(MA (𝑞) model).  
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2.4.2 Mixed models (ARMA (p, q))  

It is occasionally helpful to incorporate the autoregressive and moving average elements 

into one model in order to achieve greater flexibility when fitting actual time series. Thus, by 

combining equation (3) and equation (4) above, an autoregressive moving average model of order 

𝑝 and 𝑞 (ARMA (𝑝, 𝑞) model) is obtained: 

yt = 𝜙1𝑦𝑡−1 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞     (5) 

2.4.3 Backward shift operator  

The above models expressed in Equations (3), (4) and (5) are can be written in a more 

concise manner using the backward shift operator 𝐵 such that 𝐵𝑦𝑡 = 𝑦𝑡−1, or 𝐵𝑘𝑦𝑡 = 𝑦𝑡−𝑘. 

Consider a special case of the AR (𝑝) model where p = 1. Then the model in (3) becomes: 

yt = 𝜙𝑦𝑡−1 + 𝑎𝑡,          (6) 

Called the AR (1) model: Then by using the backward shift operation, equation (6) can be written 

concisely as: 

    𝑦𝑡  = 𝜙𝑦𝑡−1 + 𝑎𝑡

𝑦𝑡 − 𝜙𝐵𝑦𝑡  = 𝑎𝑡

(1 − 𝜙𝐵)𝑦𝑡  = 𝑎𝑡

         (7) 

Similarly, the AR (𝑝) model becomes: 

(1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝)𝑦𝑡 = 𝑎𝑡         (8) 
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and the MA (𝑞) model: 

𝑦𝑡 = (1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞)𝑎𝑡.         (9) 

The AR (𝑝) and the MA (𝑞) can be combined to form a ARMA (𝑝, 𝑞) model: 

(1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝)𝑦𝑡  = (1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞)𝑎𝑡 or

𝜙(𝐵)𝑦𝑡  = 𝜃(𝐵)𝑎𝑡, where

𝜙(𝐵)  = 1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝 and 𝜃(𝐵) = 1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞 .

   (10) 

Then it follows that 𝜙(𝐵) is the operator of the autoregressive component, and 𝜃(𝐵) is operator 

of the moving average component. To obtain additional insight into the structure of the models, 

the AR (1) model mentioned earlier in (6), it can be expressed as: 

(1 − 𝜙𝐵)𝑦𝑡  = 𝑎𝑡

𝑦𝑡  = (1 − 𝜙𝐵)−1𝑎𝑡 or 𝑦𝑡 = (1 + 𝜙𝐵 + 𝜙2𝐵2 + ⋯ )𝑎𝑡 or

𝑦𝑡  = 𝑎𝑡 + 𝜙𝑎𝑡−1 + 𝜙2𝑎𝑡−2 + ⋯

    (11) 

As a result, the current observation, 𝑦𝑡, is given by the sum of random shocks that have 

been(exponentially) weighted. The relationship also demonstrates that an 𝑀𝐴(∞) model can be 

represented as an AR (1) model. This dichotomy between AR and MA models is constant. In 

particular, the white noise series is used to construct both the AR(1) and MA(1) models, although 

they have very different approaches to absorbing the random shocks. This distinction is reflected 

in the models' various predicting capabilities and diverse dependent structures. It can further be 

shown that the ARMA (𝑝, 𝑞) model can expressed as a weighted sum of random shocks: 
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𝑦𝑡 = 𝑎𝑡 + Ψ1𝑎𝑡−1 + Ψ2𝑎𝑡−2 + ⋯         (12) 

Finding an appropriate representation of the series that has the fewest number of parameters 

possible is a key component of the model-building process (the principle of parsimony). The 

ARMA (𝑝, 𝑞) model can usually be found using 𝑝 ≤ 2 and 𝑞 ≤ 2 in a suitable manner. 

2.4.4 Stationarity 

Time series are said to be stationary if their probability structure does not vary over time. 

As a result, a stationary time series has a constant mean and variance as well as a covariance 

structure that only depends on the difference between two time points. The stationary nature of an 

ARMA (𝑝, 𝑞) process may be demonstrated if the roots of the polynomial 𝜙(𝐵) fall outside the unit 

circle. However, in practice many time series data are not inherently stationary. Such series can 

usually be made stationary by taking the first difference of the series to achieve stationarity. . 

𝑤𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = ∇𝑦𝑡         (13) 

The symbol ∇= 1 − 𝐵 is known as the ordinary differencing operator. Whenever the series 

has to be differenced (say once) to achieve stationarity, then the corresponding model obtained on 

the series becomes an integrated autoregressive moving average model or ARMA model of order 

𝑝, 1, 𝑞 or an ARIMA (𝑝, 1, 𝑞) model. Suppose the series was differenced 𝑑 times to achieve 

stationarity, then the model obtained becomes ARIMA (𝑝, 𝑑, 𝑞).  
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2.5 Seasonal ARIMA models 

Box and Jenkins expanded the aforementioned ideas to accommodate seasonal time series. It 

takes two steps to get the model. Take monthly statistics, for instance. 

a) A single month's observation is correlated with a previous observation made 12 months earlier 

by

𝑦𝑡 − Φ1𝑦𝑡−12 − Φ2𝑦𝑡−24 − ⋯ − Φ𝑃𝑦𝑡−12𝑃  = 𝛼𝑡 − Θ1𝛼𝑡−12 − Θ2𝛼𝑡−24 − ⋯ − Θ𝑄𝛼𝑡−12 or

Φ(𝐵12)𝑦𝑡  = Θ(𝐵12)𝛼𝑡, where

Φ(𝐵12)  = (1 − Φ1𝐵12 − Φ2𝐵24 − ⋯ − Φ𝑃𝐵12𝑄)

Θ(𝐵12)  = (1 − Θ1𝐵12 − Θ2𝐵24 − ⋯ − Θ𝑄𝐵12𝑄)

(14)  

b) The error component 𝛼𝑡 for a particular month is related to that for the previous month by 

the usual ARMA model. 

𝜙(𝐵)𝛼𝑡 = 𝜃(𝐵)𝑎𝑡           (15) 

Joining the seasonal and the non-seasonal parts gives: 

𝜙(𝐵)Φ(𝐵12)𝑦𝑡 = 𝜃(𝐵)Θ(𝐵12)𝑎𝑡        (16) 

By creating seasonal differences, the idea of ordinary differencing is expanded to include seasonal 

differencing. 

𝑤𝑡 = 𝑦𝑡 − 𝑦𝑡−𝑠 = ∇𝑠𝑦𝑡,          (17) 

Where ∇𝑠= 1 − 𝐵𝑠 is the seasonal differencing operator and 𝑠 = 12 for monthly data, one obtains 

the seasonal ARIMA model: 
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𝜙(𝐵)Φ(𝐵𝑠)∇𝑑∇𝑠
𝐷𝑦𝑡 = 𝜃(𝐵)Θ(𝐵𝑠)𝑎𝑡        (18) 

Abbreviated to the ARIMA (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠 model. 

2.6 Forecasting  

To obtain forecasts �̂�𝑡+ℎ for ℎ time units (days, months, etc.) ahead from an ARIMA model 

one writes the corresponding model equation by. 

1. Replacing future values of the random shocks 𝑎 by zero and past values by observed 

residuals. 

2. Future values of 𝑦𝑡 by the corresponding forecasts; and  

3. Past values of 𝑦𝑡 by their observed values. 

The following example illustrates how to obtain forecasts for a 𝐴𝑅(1)  model: 

ℎ = 1:   𝑦𝑡+1  = 𝜙𝑦𝑡 + 𝑎𝑡+1

�̂�𝑡+1  = 𝜙𝑦𝑡

ℎ = 2:   𝑦𝑡+2  = 𝜙𝑦𝑡+1 + 𝑎𝑡+2

               (19) 

�̂�𝑡+2 = 𝜙�̂�𝑡+1 = 𝜙(𝜙𝑦𝑡) = 𝜙2𝑦𝑡, etc.  

By continuing this procedure, one may see that the forecasts corresponding to the 𝐴𝑅(1) model 

follow an exponential curve. 
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The autocorrelation function (ACF), the dependence structure of a stationary time series 

is characterized by the autocorrelation function (ACF). The ACF is defined as the correlation 

between 𝑦𝑡 and 𝑦𝑡+𝑘 : 

𝜌𝑘 = cor (𝑦𝑡, 𝑦𝑡+𝑘). 

𝑘 is called the time lag. The ACF is estimated by the empirical ACF: 

𝑟𝑘 =
𝑐𝑘

𝑐0
, 𝑘 = 0,1,2, … Where         

𝑐𝑘 =
1

𝑛
∑  𝑛−𝑘

𝑡=1 (𝑦𝑡 − 𝑦‾)(𝑦𝑡+𝑘 − 𝑦‾) and 𝑦‾ =
1

𝑛
∑  𝑛

𝑡=1 𝑦𝑡.     (20) 

𝑐𝑘 are the empirical autocovariance. 

2.7 Major steps in ARIMA modelling: 

Box and Jenkins recommend the following steps in order to get a good ARIMA model:  

Step 1: Plot the time series data for visual impression of the series. This includes examining 

the behavior of the ACF and PACF of the series. This is an important step to identify any 

nonstationary behavior such as trend or seasonal patterns within the data. Since ARIMA 

methodology assumes that the series in question is stationary, statistical tests like the Augmented 

Dickey-Fuller Test and KPSS Test for level stationarity can be used to ascertain whether the series 

is stationary or not.  
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Step 2: If the results from these tests show that the series is not stationary, then one may 

have to 'Make the series stationary', by differencing the data and then repeat Step 1 again until the 

test results show that the series has become stationary. 

Step 3: By examining the ACF and PACF of the differenced data, one may be able to 

choose a provisional model for the data, by looking at the behavior of the empirical ACF and 

PACF (Box et al, 2015; Helfenstein, 1996). For instance, suppose the data achieved stationarity 

after taking the first difference. Then one may choose an Autoregressive process of order 1, if the 

ACF either decays exponentially or in a damped sinusoidal manner. The corresponding PACF may 

have nonsignificant spikes after lag 1. In Such scenario, the tentative model would be 

ARIMA(1,1,0). Similarly, one may choose a Moving average process of order 1, if the ACF of the 

series cuts of after lag 1 and the PACF tails off after that lag. In such scenario, the order of the 

tentative model becomes ARIMA(0,1,1). 

Step 4: After identifying a tentative model, the next step is to estimate the model 

parameters (this can easily be achieved by using standard statistical software such as R, SAS, and 

Python among others allow maximum likelihood estimation of Box-Jenkins models although these 

packages may not give the same regression coefficients, but they will be similar) and then fit 

obtained model.  

Step 5: Before the model can be used for forecasting, one must first check the adequacy of 

the fitted model by performing a residual analysis of the model. There should be no significant 

autocorrelation between the residuals. 
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One returns to step 4 and selects a better model if the model does not adequately suit the data. One 

selects the model with the fewest parameters out of those that represent the data equally well (this 

can be achieved with the statistical software packages named above). Special cases of ARIMA 

models some of which has been mentioned earlier are shown in Table 1 below.  

 

Table 1. Special cases of ARIMA (p,d,q) models  

Process Order of model  

Autoregression ARIMA(p,0,0) 

Moving average ARIMA(0,0,q) 

Random walk ARIMA(0,1,0)* 

Random walk with drift  ARIMA(0,1,0)* 

White noise  ARIMA(0,0,0)* 

*Has no coefficients or constants  

 

 

2.8 LSTM neural network model 

Artificial neural networks or neural networks are artificial mimicries of the biological 

network of neurons in animal brains. Recurrent neural networks are a class of neural networks 

where the connections between the nodes are cyclic which allows outputs from the nodes within 
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the network to affect later inputs that are fed into the same nodes. Put simply, this class of neural 

networks can store features of previous inputs within its internal states in the form of activations 

(short-term memories) which are later used to update the current and subsequent state of inputs 

(Elman, 1990; Jordan. 1986; Chen & Soo, 1996) This feature makes RNNs potentially useful and 

have had some success solving certain problems (Mozer, 1994; Karpathy, Johnson and Fei-Fei, 

2015, Li, Li, Cook, Zhu, and Gao, 2018). However, short-term memory becomes a drawback in 

solving tasks with long sequential inputs, particularly when the time series cannot be divided into 

a smaller subsequence. RNNs can take a discouraging amount of computing time or might not 

even be able to learn sequential inputs with long time lags (Hochreiter and Schmidhuber, 1997).  

In response to this drawback, Hochreiter and Schmidhuber (1997) proposed the long short-

term memory (LSTM) algorithm which is an evolution of RNNs has longer short-term memory 

for processing sequential data with long-term dependencies. However, the “New” algorithm was 

unable to forget redundant states of previous values which can become a problem, especially when 

learning a long continuous stream of sequential inputs. This phenomenon can be compared to a 

computing system that runs into an indefinite loop. The system will execute the line of commands 

repeatedly until the system runs out of memory and crash. In the same vein, since the algorithm is 

unable to forget previous states of inputs, the internal states of the standard LSTM cell will 

continue to grow out of bound which will lead to the eventual breakdown of the network. (Gers, 

Schmidhuber, & Cummins 2000) proposed the “forget gate” function within the cell architecture 

of the standard LSTM network. This function enables the network to reset itself (forget some of 

the things learned) at appropriate set times without loss of vital information. As a result, there are 
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variants of LSTM cells, such as LSTM with and without forget gates as well as LSTM with a 

peephole connection (Gers and Schmidhuber, 2000). In most literature, the phrase "LSTM cell" 

typically refers to an LSTM that has a forget gate (Yu, Si, Hu & Zhang, 2019). It is worth noting 

that all LSTM cells are characterized by “gate” functions. 

2.8.1 LSTM cell architecture 

The standard or initial LSTM cell as mentioned earlier has no forget gate function. Thus, 

the cell is characterized by only two gate functions namely the input gate and output gate as shown 

in Figure 2. The input gate determines what raw data should be added to the cell state at a time, 

and the output gate determines what data should be the output based on the cell state. Every time 

the cell states are updated, this process is repeated.  
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Figure 2: Architectural illustration of the standard LSTM memory cell from (Yu et al., 2019) 

The connections within the standard LSTM cell shown in Figure above, each connection is 

mathematically expressed as: 

𝑖𝑡  = 𝜎(𝑊𝑖ℎℎ𝑡−1 + 𝑊𝑖𝑥𝑥𝑡 + 𝑏𝑖),

�̃�𝑡  = tanh (𝑊𝑐ℎℎ𝑡−1 + 𝑊𝑐𝑥𝑥𝑡 + 𝑏�̃�),
𝑐𝑡  = 𝑐𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡,

𝑜𝑡  = 𝜎(𝑊oh ℎ𝑡−1 + 𝑊𝑜𝑥𝑥𝑡 + 𝑏𝑜),

ℎ𝑡  = 𝑜𝑡 ∗ tanh (𝑐𝑡),

      (21) 

In equations (21), 𝑥𝑡, and ht represent the input, and recurrent information at time t 

respectively.   Whereas  𝑏𝑖  denotes the bias,  𝑐𝑡 represents the cell state. 𝑊𝑖, 𝑊𝑐, and 𝑊𝑜 are the 

weights, and the operator ' ∗ ' represents the pointwise multiplication of two vectors. The modified 
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LSTM is characterized by three gates namely, the input gate, output gate and the forget gate 

respectively. With the same functions, the input and output gates control the inflow and outflow 

of data within the LSTM memory cell. 

 

Figure 3. Architectural illustration of LSTM memory cell with forget gate function from (Yu et 

al., 2019) 

 

The forget gate denoted 𝑓𝑡 in equations (22) determines which data to be erased from the 

cell state. This can be mathematically expressed as, 
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𝑓𝑡  = 𝜎(𝑊𝑓ℎℎ𝑡−1 + 𝑊𝑓𝑥𝑥𝑡 + 𝑏𝑓)

𝑖𝑡  = 𝜎(𝑊𝑖ℎℎ𝑡−1 + 𝑊𝑖𝑥𝑥𝑡 + 𝑏𝑖)

�̃�𝑡  = tanh(𝑊𝜏ℎℎ𝑡−1 + 𝑊 ̃𝑥𝑡 + 𝑏�̃�)                                                                                                          (22)
𝑐𝑡  = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡

𝑜𝑡  = 𝜎(𝑊𝑜ℎℎ𝑡−1 + 𝑊𝑜𝑥𝑥𝑡 + 𝑏𝑜)

ℎ𝑡  = 𝑜𝑡 ∗ tanh (𝑐𝑡)

 

The forget gate is a binary function. Whenever the value of the function is 1, the 

information within the cell at the time is maintained, whereas a function value of 0 implies deletion 

of all the information at time t (Yu et al., 2019). 

 

2.9 Mechanisms of missing data 

The mechanism of missingness can be represented as a probability function, which depicts 

the relation between the measured variables and the likelihood of a missing data. The notations 

used in this section may differ slightly from the one used by Little and Rubin (2019).Suppose 𝑋 =

(𝑥1, 𝑥2, … . , 𝑥𝑛)𝑇 is a vector random variable of the complete rectangular dataset which contains 

both missing and observed (𝑋𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑎𝑛𝑑 𝑋𝑜𝑏𝑠𝑟𝑣𝑒𝑑 respectively), with a density function 

of  𝑓(𝜑). The goal is to make inferences about the parameter 𝜑  which is unknown by using the 

given vector. Let 𝑀 = (𝑚1, 𝑚2, … , 𝑚𝑛)𝑇 be the missing data indicator variable with entries that 

are either zero or one depending on whether the accompanying elements within the variable X are 

missing or not. (That is, 𝑚𝑖 = 1 whenever the value 𝑥𝑖 is missing and 𝑚𝑖 = 0 whenever the value 

is observed). The pattern of missingness within the dataset is determined by the missing data 

indicator as explained above.  
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In Rubin (1976) each observation is considered as a two-valued vector. The value of the 

observation is indicated as either 𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 or 𝑋𝑚𝑖𝑠𝑠𝑖𝑛𝑔 and the corresponding M value (missing 

value indication code). By treating missing data as some variable, it is enough to suggest that the 

values assumed by the missing data indicator is governed by an underlying probability distribution. 

In this case, one should not expect M's distribution to be unrelated to X, although it is difficult to 

know the exact probability distribution of the missing data indicator. The nature of association 

between the indicator M and the dataset, on the other hand, is what separates the types of missing 

data mechanisms, which are described by the conditional distribution of M given a complete data 

X. Such that, 𝑓(𝑀|𝑋, 𝜑) where 𝜑, is the vector of unknown parameters which represents the 

likelihood of missing data  (Rubin, 1976; Schafer 1997). 

2.9.1 Missing completely at random (MCAR) 

When the likelihood of a missing data remains unchanged in all circumstances, the data is 

considered to be completely missing at random (MCAR). In this case, the probability of a missing 

observation is unaffected by the values of other variables as well as the value of the observation 

itself. Suppose X and Y are the columns of a complete bivariate dataset. Then the probability of 

data in X being missing is not dependent on either Y or X itself. This effectively suggests that the 

reasons for missing data is not dependent on either the missing or observed values in that variable 

or any other variables within the dataset.  For instance, blood pressure measurements of a patient 

may be missing because of breakdown of the automatic sphygmomanometer.  An unselected unit 

in random sampling is also another example of MCAR; because every unit in the population could 
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have been sampled not because of their demographic features. Thus, those units that were not 

chosen were not selected by pure chance (van Buuren, 2018).  

𝑃(𝑀|𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑋𝑚𝑖𝑠𝑠𝑖𝑛𝑔, 𝜑) = 𝑃(𝑀|𝜑)             𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋, 𝜑                                 (23) 

2.9.2 Missing at random (MAR)  

In MAR, the recurring difference between the missing observations and the observed can 

be explained by the available information. Put differently, the missing value within variable X 

depends on other variable(s) within the dataset, such that the pattern in which the data becomes 

missing is traceable. In the context of probability, this can be thought of as the probability of the 

data X being missing is dependent on the available values of Y and not on the missing observations. 

This assumption infers that the distribution of missing data is not entirely random, but it can be 

accounted for by other observed variables. Unlike the MCAR, this assumption is less restrictive.  

𝑃(𝑀|𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑋𝑚𝑖𝑠𝑠𝑖𝑛𝑔, 𝜑) = 𝑃(𝑀|𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝜑)                                           (24) 

2.9.3Missing not at random (MNAR)  

In this assumption, the missing observations are dependent on the missing values 

themselves, such that the available data cannot be used to estimate the missing value(s). Thus, in 

MNAR the data are missing for reasons linked to the values themselves and cannot be accounted 

for by the observed values.  In other terms, the likelihood of missing data on a variable X is not 

related to the observed values of X and as such cannot be used to estimate the missing ones.  

𝑃(𝑀|𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑋𝑚𝑖𝑠𝑠𝑖𝑛𝑔, 𝜑) = 𝑃(𝑀|𝑋, 𝜑) =  𝑃(𝑀|𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑋𝑚𝑖𝑠𝑠𝑖𝑛𝑔, 𝜑)             (25) 
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(Little & Rubin 2002, 2019; Hamzah et al., 2020). For instance, people with normal blood pressure 

are likely to monitor their blood pressure less often than those with known record of high blood 

pressure. Thus, in such scenarios, the blood pressure readings would be missing not at random 

(MNAR) because the reason for missing is dependent on itself rather than the time or the other 

observed readings within the data.  

2.9.4 Univariate equivalent of mechanisms of missingness  

Univariate time series data 𝑥𝑖, where 𝑖 = 1,2,3, … , 𝑁, like any other univariate sample are the 

simplest of data structures. Thus, in univariate data with missingness, 𝑥𝑖 and the missing value 

indicator 𝑚𝑖 are both scalar variables. Then the density function described earlier becomes: 

𝑝(𝑋 = 𝑥, 𝑀 = 𝑚|𝜃, 𝜑) = ∏ 𝑓𝑋(𝑥𝑖|𝜃) ∏ 𝑓𝑀|𝑋(𝑚𝑖|𝑥𝑖,
𝑛
𝑖=1

𝑛
𝑖=1  𝜑)                                      (26) 

Where 𝑓𝑌(𝑥𝑖|𝜃) represents the density function of 𝑥𝑖  indexed by the unknown vector of 

parameters 𝜃, and 𝑓𝑀|𝑌(𝑚𝑖|𝑥𝑖, 𝜑) denotes the density of a Bernouli distribution for the binary 

missing data indicator 𝑚𝑖, with the probability that an observation 𝑥𝑖 is missing as 𝑃(𝑚𝑖 =

1|𝑥𝑖 , 𝜑). If the mechanism underlying the missing data is independent of 𝑋, that is 𝑃(𝑚𝑖 = 1 ∣

𝑥𝑖 , 𝜑) = 𝜑, which is a constant that does not depend on 𝑥𝑖, then the missingness mechanism is 

MCAR (or equivalently MAR). Alternatively, if the mechanism responsible for the missing data 

depends on 𝑦𝑖, then the mechanism is MNAR because it depends on values of 𝑦𝑖, some of which 

are missing (Little & Rubin, 2019). 
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2.9.5. Ignorable mechanism 

With the exact meaning of 𝑚𝑖 and 𝜑 as missing data indicator and the unknown 

parameter which describes the probability of missing data. Suppose 𝑥𝑖𝑗 ∈ Ω𝑖𝑗, with Ω𝑖𝑗  being its 

sample space, 𝑚𝑖𝑗 = 1 if 𝑥𝑖𝑗 is missing and 𝑚𝑖𝑗 = 0 if 𝑦𝑖𝑗 is observed. When 𝑚𝑖𝑗 = 1, 𝑥𝑖𝑗 = NA, 

indicating that 𝑥𝑖𝑗 can take any value in Ω𝑖𝑗. Then by using the “selection model” factorization 

(Little and Rubin 2002), the joint distribution of X and M can be model as  

𝑝( 𝑋 = 𝑥, 𝑀 = 𝑚 ∣∣ 𝜃, 𝜓 ) = 𝑓𝑥( 𝑥 ∣ 𝜃 )𝑓𝑀∣𝑋( 𝑚 ∣∣ 𝑥, 𝜓 )                                                 (27) 

Where 𝜃 denote the parameter governing the data model, and 𝜓 is the parameter vector 

governing the model for the mechanism of missingness. Then the observed value 𝑚 of 𝑀 effects 

a partition of 𝑥 = (𝑥(0), 𝑥(1)), where 𝑥(0) = [𝑥𝑖𝑗: 𝑚𝑖𝑗 = 0] is the observed part of 𝑥 and 𝑥(1) =

[𝑥𝑖𝑗: 𝑚𝑖𝑗 = 1] is the missing part of 𝑥.The full likelihood based on the observed values (𝑥(0), 𝑚) 

and the assumed model (9) is defined to be 

𝐿full(𝜃, 𝜓 ∣ 𝑥(0), 𝑚) = ∫  𝑓𝑋(𝑥(0), 𝑥(1) ∣ 𝜃)𝑓𝑀∣𝑋(𝑚 ∣ 𝑥(0), 𝑥(1), 𝜓)d𝑥(1)                    (28) 

Considered as a function of the parameters(𝜃, 𝜑). The likelihood of 𝜃 ignoring the missingness 

mechanism is defined to be 

𝐿ign(𝜃 ∣ 𝑥(0)) = ∫  𝑓𝑋(𝑥(0), 𝑥(1) ∣ 𝜃)d𝑥(1)                                                                           (29) 

Since (11) does not involve the model for M, the phrase “ignorable likelihood” is sometimes used 

for it. Modeling the joint distribution of 𝑀 and 𝑋 is often challenging and as such many approaches 
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to missing data do not model 𝑀, and (implicitly or explicitly) base inference about 𝜃 on the 

ignorable likelihood in (11). It is thus important to consider under what conditions inferences about 

𝜃 can be based on this simpler likelihood (ignorable). Thus, (Little and Rubin, 2019) surmises that 

the missingness mechanism of the data is ignorable if the following two conditions are met:  

1. The missing data are MAR at (�̃�, 𝑥(0)), 

2. The parameters 𝜃 and 𝜓 are distinct. 

 

  



35 

 

CHAPTER III 

METHODS 

3.1 Dataset description 

 We obtained a de-identified univariate time series data of seventy equally spaced 

observations from a 48-hour ambulatory blood pressure data from the Maracaibo Aging Study. 

The Maracaibo Aging Study is a prospective, population-based cohort study of individuals ≥55 

years of age residing in Maracaibo, Santa Lucia County, Zulia, Venezuela. (Maestre et al., 2002). 

Detailed methodology of the study is described elsewhere (Maestre et al.,2002). Validated 

(Gropelli et al., 1992) oscillometric 90207 Spacelabs monitors (Snoqualmie, WA) were 

programmed to obtain blood pressure readings at 15-minute intervals from 6 AM until 11 PM and 

at 30-minute intervals from 11 PM until 6 AM. Specifically, the diastolic blood pressure readings 

were used for this study, the first 56(80%) observations of the data were used as the training data, 

and the remaining 14(20%) were used as test data for evaluating the prediction performance of the 

models. A reliable estimate of the autocorrelation function of time series data can be obtained with 

a minimum of at least 50 equally spaced data points (Box et al., 2015). Therefore the 56 

observations used in the training dataset were sufficient to be used for the Box-Jenkins 

methodology. 
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Figure 4: Time series plot of the diastolic blood pressure data depicting the train and test 

sections. The section colored blue represents the train and orange for the test dataset. 

 

3.1.1 Simulated missing data  

The literature showed that in one column, or univariate data, the MAR and MCAR 

mechanism of missingness are similar in several ways; first, both assume that the missingness of 

the data is unrelated to missing data themselves. Secondly, the missingness can be treated as a 

random process, meaning that the probability of missingness is the same or remains constant for 

all the data points (Little and Rubin, 2019). This further implies that, the missingness cannot be 

tied to a single cause and in such cases, the reasons behind the missing data can be ignored. For 

these reasons, we generated MCAR missing data using a Binomial distribution. First, we made 

four copies of the original training dataset. Subsequently, missing data at different rates (10%, 

15%, 25% and 35%) were generated within each of the four copies.  



37 

 

Each of these incomplete datasets were then imputed using the unconditional mean, last 

observation carried forward (LOCF), linear and stine interpolation (Stineman, 1980), interpolation 

with Kalman smoothing on ARIMA, interpolation with Kalman smoothing on structural time 

series technique, k-NN interpolation, simple moving average (SMA), exponentially weighted 

moving average (EWMA) and cubic spline interpolation techniques. The imputed datasets from 

the ten imputation algorithms for each rate of missingness, and the original dataset makes up a 

total of (4*10) +1=41 different datasets. The steps are summarized in the figure below.  

 

 

Figure 5: Flowchart of the methodology used in the study 
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3.2 Imputation of missing data  

Imputation techniques for univariate time series cannot solely depend on covariates 

because univariate time series data is one-column data, although time is given implicitly (Moritz 

et al, 2015; Moritz & Bartz-Beielstein, 2017). Thus, most of the high-performance techniques such 

as multivariate or multiple imputations by chain equations (MICE) (Rubin, 2004; van Buuren, 

Boshuizen & Knook, 1999; van Buuren & Groothuis-Oudshoorn, 2011), Expectation 

maximization (Dempster, Laird and Rubin, 1977) and Nearest neighbor (Vacek and Ashikaga, 

1980; Batista & Monard, 2002) techniques cannot be used directly on univariate time series data. 

Moritz et al (2015) categorize univariate time series imputation techniques into; univariate 

imputation (replacing missing values with measures of central tendency such as mean, median, 

etc.), univariate time series imputation (techniques that can harness the properties of the series 

such as trend or seasonal cycles to impute missing ones) and multivariate imputation techniques. 

For the imputation of the missing values, we used the imputeTS (Moritz and Bartz-Beielstein, 

2017) package in R which provides a collection of algorithms and tools for univariate time series 

imputation. The imputation algorithms include: 'Mean', 'LOCF', 'Interpolation', 'Moving Average', 

'Seasonal Decomposition', 'Kalman Smoothing on Structural Time Series models', 'Kalman 

Smoothing on ARIMA models'. Also, the KNN interpolation (See Kulesh, Holscneider and 

Kurennaya, 2008; Lepot, Aubin and Clemens, 2017) was performed using the DMwR2 package 

published by (Torgo, 2016). All the imputation methods were done using these packages in R.  

After the imputation in each dataset, the distribution and autocorrelations within the imputed 

datasets were compared to the original training using boxplots and the autocorrelation plots.  
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3.3 Evaluation metrics 

We evaluated the performance of the imputation techniques by using the root mean squared 

error (RMSE) and the mean absolute percentage error (MAPE) metrics. The RMSE was used to 

compare the difference between the imputed datasets and the actual values, considering the 

magnitude and direction of the errors. The smaller the RMSE value, the better the imputation 

algorithm. Thus, the imputed dataset from a given imputation technique with a smaller RMSE 

indicates better performance. A larger RMSE implies larger prediction errors, which suggests 

lower confidence in the algorithm’s performance in predicting or estimating the missing value.  

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖𝑚𝑝 (𝑖) − 𝑦𝑜𝑏𝑠(𝑖))

2
𝑛

𝑖=1

 

Similarly, the MAPE was used to compute the average absolute percent difference between 

the imputed and the original training dataset. In these two metrics, the smaller the value of the 

error metric, the better the performance of the imputation algorithm. 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑜𝑏𝑠(𝑖) − 𝑦𝑖𝑚𝑝(𝑖)

𝑦𝑜𝑏𝑠(𝑖)
|

𝑛

𝑖=1

 × 100% 

These two metrics, RMSE and MAPE were also used to evaluate the prediction 

performance of the models as well. 
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3.4 Forecasting algorithms 

3.4.1 ARIMA model  

The ARIMA model has three parameters, 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) where 𝑝 is the order of the 

autoregressive component of the model, 𝑑 represents the number of differencing required to make 

the data stationary, and 𝑞 is the order of the moving average component of the model. Due to the 

number of datasets (41 in total), obtaining the ARIMA models using the traditional way as outlined 

in the previous section for each of the datasets will take a lot of time. Thus, we used the automatic 

time series forecasting algorithm proposed by (Hyndman and Khandakar, 2008). The algorithm 

uses an automated algorithm to select the best ARIMA model for a given time series data. In the 

R statistical software, the automated time series model is obtained using 

the auto.arima() function. The function performs a grid search over a range of possible ARIMA 

models and then selects the best model based on a specified criterion. By default, the function uses 

the Akaike Information Criterion (AIC) to select the best model, but other criteria such as the 

Bayesian Information Criterion (BIC) or the Hannan-Quinn Information Criterion (HQIC) can also 

be used. 

The algorithm used by auto.arima() can be summarized as follows: 

1. The function starts by fitting a simple ARIMA model to the data and calculating the AIC. 

2. It then tries to improve the model by testing different combinations of AR, MA, and 

differencing parameters to find the model with the lowest AIC. 
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3. The function repeats this process for a range of possible models and selects the model with 

the lowest AIC as the best model. 

4. Finally, the function returns the best model along with diagnostic information such as 

residuals and fitted values. 

In addition to the time efficiency of the algorithm in selecting the best ARIMA model, 

auto.arima() also includes functionality for dealing with seasonality and non-stationary data. It 

can automatically detect and incorporate seasonal components into the model, as well as perform 

differencing to make the data stationary if necessary. Before any obtained model was used for 

forecasting, we first perform residual analysis to ensure that the assumption of independent and 

identically distributed errors was satisfied. This was done by plotting the ACF of the residuals to 

check for discernible patterns, and also a significant correlation between them. 

3.4.2 LSTM model  

The LSTM is a Recurrent Neural network (RNN) that can learn and memorize a long sequence 

of inputs. The algorithm employed performs a multi-step univariate time series forecast (Brownlee, 

2018). Keras library with Theano are requisites for the execution of the algorithm. For the 

reproducibility of results, we used different random seed numbers for each run. The first step in 

executing the algorithm is to prepare the time series data into a format that is LSTM modeling-

friendly. This involves converting the univariate data into three-dimensional input data. For the 

algorithm to learn a one-step prediction, we split the sequence into several input/output patterns, 

or samples, where three-time steps served as the input and a one-time step as the output. For 
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instance a univariate time series (10, 20, 30, 40, 50, and 60) becomes an array of 𝑥 (three time 

steps) with a one output time step 𝑦.  

𝑥   𝑦 

10, 20, 30  40 

20, 30, 40  50 

30, 40, 50  60 

The three-dimensional array of the input data consists of the; samples, time steps, and 

features. Sample denotes the number of observations in the training set. The time steps are the 

number of steps in each observation and the features are the number of features in each 

observation. Unlike the ARIMA model where the parameters or coefficients of the model were 

estimated based on the stochastic behavior of the time series, the LSTM uses hyper-parameters. 

Parameters are estimated from the training data (using known procedures like maximum likelihood 

estimation etc.,) but the hyper-parameters are “parameters” that are not estimated directly from the 

data based on analytical formulae but are rather determined by the analyst (Brownlee, 2018; Kuhn 

and Johnson, 2013). Usually, trial-and-error, random searching, or using examples that already 

worked in the past are all common ways to find the model hyperparameters of the LSTM model. 

We selected a range of parameters; the batch size of (1, 2,3,4,5,6,7), hidden layers of (1,2, and 3), 

number of neurons within a layer  (1,10,25, 32, 50, and 64), and Epochs of (100, 150, 300, 400, 

500).  
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The hyperparameters were then fine-tuned to improve the learning ability of the model 

using the algorithm outlined explained in (Brownlee, 2018). The experimental results from the 

number of Epochs showed that 400 Epochs was the best (it had the smallest RMSE values on the 

training data). 2 LSTM layers were stacked on top of each other. This makes enhances the models 

ability to learn the temporal dependencies within the train data. The “Adam” optimization 

algorithm was used in the learning process. After training the LSTM model, the predict () function 

was used to generate predictions for the testing data. Time series plots of the predicted and 

observed data were created to give a visual impression of the model’s prediction performance 

using the matplotlib library. Google Colaboratory or, Google Colab was used to run the LSTM 

algorithm. Google Colab is a Jupyter interface that enables running Python algorithms in the 

browser without any complex configuration. 

3.5 Forecasting Techniques  

The “Rolling Forecasting Origin" technique (Hyndman & Athanasopoulos, 2021), was 

used for the ARIMA and LSTM algorithms. Variations of this forecasting technique include; 

1. One-step forecasts without model re-estimation; in this technique, a fixed historical 

window of data is used to fit the model and then make a forecast. The window is then 

moved by a specified amount and the process is repeated.  

2. Multi-step forecast without re-estimation of the prediction model. Unlike the one-step 

mentioned above, this makes multiple-step forecasts without updating the model.   

3. Multi-step forecasts with re-estimation. In this variant, the time series model is re-estimated 

after each prediction. 
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The Multi-step forecast with re-estimation variant of rolling forecasting was used in this 

study. This technique is also known in the literature as the Walk forward validation. Walk-forward 

validation typically involves making forecasts for a fixed period (e.g., one day) and updating the 

model with the latest data before making the next forecast. Specifically, after fitting a model on 

training data, the model is used to predict (usually the first value in) the test data. The 

corresponding actual value in the test data is then added to the training set, and the model is rebuilt 

using the new dataset (initial training plus the added data from the test set). The updated model is 

then used to predict the next value and the procedure to give a one-step prediction for the entire 

test dataset. This method of forecasting accounts for the time dependency in the data. It also allows 

the model to be updated and refined as new data becomes available. 
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CHAPTER IV 

RESULTS 

4.1 Imputation of simulated missing data  

The time plot of the incomplete data at each rate of simulated missingness and the missing 

data map of the incomplete data at each rate are shown in Figure 5.  

 

Figure 6.(a) Time series plot of the datasets with generated missing values (left) and (b) Map of 

the four different rates (10%, 15%, 25%, and 35%) of missingness.  

 

4.1.1 Imputation performance in 10% missingness  

The comparative time series plot shows the original train and the imputed data using the 

ten imputation methods (Figure 6). The descriptive statistics of the datasets, both imputed and 

original train data, are shown in the boxplots (Figure 7). The unconditional mean (also known as 

the mean imputation) method outperformed the other missing data replacement techniques. The 

KNN interpolation technique comes in second to this strategy, with spline interpolation coming in 

last place as least effective based on the RMSE and SMA based on MAPE values (Table 2). The 
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probability density plot of the mean imputed dataset at 10% is similar in shape to the original train 

data (Figure 8). 

 

Figure 7. Comparative time series plot of training data and imputed data at 10% missing data rate 

 

 

Figure 8. Distribution of training data and imputed data at 10 % missing data rate 



47 

 

 

 

Figure 9: Density plot of training data and imputed data at 10% missing data rate 

 

Table 2. Imputation performance of various techniques at 10% level of generated missing data 

Technique  RMSE MAPE 

Kalman AR 3.447427 0.9845257 

Kalman ST 3.602193 1.014541 

EWMA 3.684186 1.083673 

SMA 3.890005 1.254096 
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Mean Imputation  1.777848 0.6033183 

Linear interpolation  4.244745 1.049757 

Stine Interpolation  4.244745 1.049757 

KNN 2.685169 0.8665411 

LOCF 4.288689 1.083729 

Spline 4.674523 1.143995 

 

4.1.2 Prediction performance in 10% imputed datasets 

The summary of the order and coefficient of the ARIMA models in 10% imputed and 

original training datasets (see Table 3). The missing data replacement methods increased the 

autocorrelation of the imputed data, except for the mean imputation technique using the original 

train data as the reference (Figure 9). The prediction performance of the ARIMA in the imputed 

datasets showed that the model in the spline imputed dataset was the best, and the mean imputed 

data was the worse. ARIMA models in the imputed datasets performed better than the model in 

the original train except for the mean imputed data (Table 4). The time plot of the ARIMA 

prediction on each dataset (Figure 10-12). The LSTM prediction performance on the original train 

performed better than the ARIMA. The prediction in the spline imputed was the best based on 

RMSE (Table 5). The prediction performance of the LSTM is in Figure 13, Figure 14, and Figure 

15. 
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Table 3. ARIMA models obtained on 10% level of imputed data  

Data Model  C(SE) p-value  

Train ARIMA(1,1,0) -0.4844(0.1161) 0.000000 

Kal.AR ARIMA(1,1,0) -0.3841(0.1249) 0.002109 

Kal.ST ARIMA(0,1,1) -0.3934(0.1201) 0.001053 

EWMA ARIMA(0,1,1) -0.3982(0.1195) 0.0008594 

SMA ARIMA(0,1,1) -0.4248(0.1164) 0.0002615 

MeanImp ARIMA(1,1,0) -0.5419(0.1120) 0.000000 

Linear ARIMA(0,1,1) -0.3646(0.1233) 0.003101 

Stine ARIMA(0,1,1) -0.3646(0.1233) 0.003101 

KNN ARIMA(0,1,1) -0.4430(0.1201) 0.0002242 

LOCF ARIMA(0,1,1) -0.3846(0.1219) 0.001604 

Spline ARIMA(0,1,1) -0.3521(0.1245) 0.004674 
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Figure 10. ACF of training data and imputed data at 10% missing data rate 

 

Table 4. Prediction performance of  the ARIMA model in original training and imputed 

data at 10% missing data rate 

 RMSE  MAPE 

Dataset Train Test  Train Test 

Original  10.7415 7.4601  10.9258 8.4710 

Kal AR 10.27982 7.3106  10.33441 8.1710 

Kal ST 10.02822 7.2612  10.12594 8.1460 

EWMA 10.02574 7.2651  10.15202 8.1590 

SMA 10.09056 7.2886    10.25016 8.230 
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Mean  11.02351 7.5771  11.25016 8.640 

Linear  10.08173 7.2400  10.20420 8.0710 

Stine  10.25759 7.2400  10.20420 8.0710     

KNN 10.25759 7.30778  10.44693 8.2750 

LOCF 10.12764 7.2543  10.24057 8.1240 

Spline  10.22252 7.23189  10.28856 8.038 

 

 

 

Figure 11: Prediction performance of the ARIMA model in original training data 
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Figure 12: Prediction performance of ARIMA model in stine(top left), KNN (top right), LOCF 

(bottom left), and spline(bottom right) interpolation imputed dataset at 10% missing data rate. 
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Figure 13: Prediction performance of ARIMA model in Kal AR (top left), Kal ST (top right), 

EWMA (middle left), SMA (middle right), MeanImp (bottom left), and Linear interpolation 

(bottom right) imputed dataset at 10% missing data rate. 
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Table 5. Prediction performance of LSTM on 10% imputed data 

 RMSE  MAPE 

Dataset Train Test  Train Test 

Original  9.1624 6.9976  9.2653 7.8742 

Kal AR  9.6553 10.79131  9.572096 11.28484 

Kal ST  8.7733 7.1748  7.84416 6.83658 

EWMA  8.712 10.3995   8.03265 10.263955 

SMA  8.9541 9.2407  8.5262 10.24068 

Mean   10.6666 8.08152   11.29377 9.20343 

Linear   9.2472 7.656   9.10248 8.8898 

Stine   9.0847 7.9207  8.46599 7.584497 

KNN  10.0431 7.5987  10.75127 8.43368 

LOCF  9.2511 7.0612  9.21232  7.1992 

Spline  9.0898 6.7717  8.758241 7.245654 
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Figure 14: Prediction performance of the LSTM model in the original training data 

 

  

  

  
Figure 15: Prediction performance of LSTM in Kal AR (top left), Kal ST (top right), EWMA 

(middle left), SMA (middle right), mean (bottom left), and linear interpolation (bottom right) 

imputed dataset at 10% missing data rate. 
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Figure 16: Prediction performance of LSTM model in stine(top left), KNN (top right), LOCF 

(bottom left), and spline(bottom right) interpolation imputed dataset at 10% missing data rate. 

 

4.2.1 Imputation performance in 15% missingness  

The comparative time series plot shows the original train and the imputed data using the 

ten imputation methods (Figure 16). The descriptive statistics of the datasets, both imputed and 

original train data, are shown in the boxplots (Figure 17). The unconditional mean (also known as 

the mean imputation) method outperformed the other missing data replacement techniques. The 

KNN interpolation technique comes in second to this strategy, with spline interpolation coming in 

last place as least effective based on the RMSE and SMA based on MAPE values (Table 2). The 

probability density plot of the imputed datasets at 15% is in Figure 18. 
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Figure 17.Comparative time series plot of training data and imputed data at 15% missing data 

rate 

 

 

Figure 18: Distribution of training data and imputed data at 15% missing data rate 
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Figure 19. Density plot of training data and imputed data at 15% missing data rate 

 

Table 6. Imputation performance of various techniques at 15% level of generated missing data 

Technique RMSE MAPE 

Kalman AR  3.188437 1.448203 

Kalman ST 3.126672 1.451397 

EWMA 3.011556 1.446414 

SMA 3.487081 1.589706 

Mean Imputation  6.120874 2.411064 

Linear interpolation  3.247633 1.4923 
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Stine Interpolation  3.224728 1.429948 

KNN 5.801836 2.065375 

LOCF 4.41588 1.868565 

Spline 4.858127 2.24265 

 

 

4.2.2 Prediction performance in 15% imputed datasets 

The summary, order, and coefficient of the ARIMA models in 15% imputed and original 

training datasets (see Table 7). The missing data replacement methods increased the 

autocorrelation of the imputed data, except for the mean imputation technique using the original 

train data as the reference. The KNN-imputed dataset showed a reduced autocorrelation in the first 

four lags (Figure 19). The prediction performance of the ARIMA in the imputed datasets showed 

that the model in the spline imputed dataset was the best, and the mean imputed data was the worse. 

ARIMA models in the imputed datasets performed better than the model in the original train except 

for the mean imputed data (Table 8). The time plot of the ARIMA prediction on each dataset 

(Figure 20 and Figure 21). The prediction in the KNN imputed dataset was the best based on both 

RMSE and MAPE (Table 9). The prediction performance of the LSTM is in Figure 22. 
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Table 7 ARIMA model obtained in 15% imputed data  

Data Model C(SE) Pr(>|z|) 

Train ARIMA(1,1,0) -0.4844(0.1161) 0.0000 

Kal.AR ARIMA(0,1,1) -0.5115(0.1243) 0.00004 

Kal.ST ARIMA(0,1,1) -0.5054(0.1245) 0.000049 

EWMA ARIMA(0,1,1) -0.4861(0.1256) 0.00011 

SMA ARIMA(0,1,1) -0.5332(0.1202) 0.00000 

MeanImp ARIMA(0,1,1) -0.6423(0.1346) 0.00000 

Linear ARIMA(0,1,1) -0.4360(0.1304) 0.000831 

Stine ARIMA(0,1,1) -0.4351(0.1316) 0.000942 

KNN ARIMA(0,1,1) -0.6814(0.1233) 0.000000 

LOCF ARIMA(0,1,1) -0.4878(0.1402) 0.000506 

Spline  ARIMA(0,1,1) -0.3863(0.1426) 0.006749 
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Figure 20. ACF of training data and imputed data at 15% missing data rate 

 

Table 8. ARIMA performance in 15% imputed data  

 RMSE  MAPE 

Dataset Train Test  Train Test 

Original  10.7415 7.4601  10.9258 8.4710 

Kal AR 10.21487 7.39043  10.24301 8.440 

Kal ST 10.21277 7.38141  10.24478 8.4270 

EWMA 10.22771 7.41249  10.28395 8.3860 

SMA 10.2745 7.42583  10.3443 8.4840 

Mean  10.98089 7.56997  10.88417 8.7800 

Linear  10.37185 7.29011  10.35169 8.2580 
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Stine  10.39919 7.28909  10.3907 8.256 

KNN 10.80289 7.64289   10.66717 8.8570 

LOCF 10.6814 7.3442  10.44967 8.3870 

Spline  11.00173 7.2443  11.06771 8.1310 

 

 

Figure 21: Prediction performance of ARIMA model in stine(top left), KNN (top right), LOCF 

(bottom left), and spline(bottom right) interpolation imputed dataset at 15% missing data rate. 
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Figure 22: Prediction performance of ARIMA model in Kal AR (top left), Kal ST (top right), 

EWMA (middle left), SMA (middle right), mean (bottom left), and linear interpolation (bottom 

right) imputed dataset at 15% missing data rate. 
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Table 9. LSTM performance on 15% imputed data  

 RMSE  MAPE 

Dataset Train Test  Train Test 

Original  9.1624 6.9976  9.2653 7.8742 

Kal AR  9.4448 7.158127   9.21625 8.332801 

Kal ST  9.8081 7.9714   10.0917 10.00353 

EWMA  9.539 7.1862  9.37526 8.444839 

SMA  9.6296  8.6818  9.242071  10.84434 

Mean   9.7847  7.6766   9.85172  8.84394 

Linear   9.1172  9.0516  7.75999 10.09751 

Stine   9.003  9.9418   8.017376 10.0028 

KNN  10.1829  6.4936  10.28377 7.65678 

LOCF  10.2038  7.4011  9.88481 8.74803 

Spline   9.3754 9.3217  8.70404 10.8177 
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Figure 23 Prediction performance of the LSTM in the 15% imputed datasets; Kal AR(first on 

first row),Kal ST(second on first row), EWMA(first on second row), SMA(second on second 

row),mean (first on third row), linear(second on third row), stine(first on fourth row), 

KNN(second on fourth row), LOCF(first on fifth row),spline(second on fifth row). 
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4.3.1 Imputation performance in 25% missingness 

The comparative time series plot shows the original train and the imputed data using the 

ten imputation methods (Figure 23). The descriptive statistics of the datasets, both imputed and 

original train data, are shown in the boxplots. Outliers were detected in the mean imputed dataset 

using the 1.5IQR rule (Figure 24). The probability density plot of the mean imputed data is 

distorted compared to the other datasets (Figure 25). The imputation performance at a 25% rate of 

missingness showed that Kalman ST was the best missing data replacement technique in RMSE 

and MAPE. EWMA technique came in second place, where spline was the worst data replacement 

technique (Table 10). 

 

 

Figure 24: Comparative time series plot of training data and imputed data at 25% missing data 

rate 
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Figure 25: Distribution of training data and imputed data at 25% missing data rate 

 

 

Figure 26: Density plot of training data and imputed data at 25% missing data rate 
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Table 10. Performance of imputation technique at 25% level of missing data 

Technique RMSE MAPE 

Kalman AR  4.40064 2.122796 

Kalman ST 3.946298 2.02317 

EWMA 3.999861 2.112269 

SMA 4.611497 2.415885 

Mean Imputation  7.056542 3.704329 

Linear interpolation  4.234976 2.364167 

Stine Interpolation  4.830909 2.638987 

KNN 5.748694 3.073106 

LOCF 5.641049 3.132674 

Spline 7.819639 4.361373 

 

4.3.2 Prediction performance in 25% imputed data 

The summary, order, and coefficient of the ARIMA models in 25% imputed and original 

training datasets (see Table 11). The autocorrelation within the mean imputed dataset was reduced 

significantly. Spline also showed a lowered autocorrelation decaying exponentially. The KNN 

imputed data showed a reduced autocorrelation in its first four lags (Figure 26). The prediction 

performance of ARIMA in LOCF-imputed data was the best in terms of RMSE, with the model in 
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the original train data being the worst (Table 12). The time plot of the ARIMA prediction in the 

25% imputed dataset (Figure 27 and Figure 28). The LSTM prediction in the Kal ST imputed 

dataset was the best based on RMSE and MAPE, with EWMA being the second best (Table 13). 

The prediction performance of the LSTM is in Figure 29. 

 

Table 11. ARIMA obtained on 25% imputed data 

Dataset Model C(SE) Pr(>|z|) 

Train ARIMA(1,1,0) -0.4844 (0.1161) 0.0000 

Kal.AR ARIMA(1,1,0) -0.5560 (0.1108) 0.0000  

Kal.ST ARIMA(1,1,0) -0.4993 (0.1157) 0.00001 

EWMA ARIMA(1,1,0) -0.4720 (0.1178) 0.00006 

SMA ARIMA(1,1,0) -0.5307 (0.1140) 0.000003 

MeanImp ARIMA(1,1,0) -0.6351 (0.1044) 0.00000 

Linear ARIMA(0,1,1) -0.3946 (0.1255) 0.001959 

Stine ARIMA(0,1,1) -0.4046 (0.1287) 0.00166 

KNN ARIMA(1,1,0) -0.6376(0.1023) 0.00000 

LOCF ARIMA(0,1,1) -0.4666 (0.1323) 0.00042 

Spline  ARIMA(1,1,1) 0.6217 |-0.9275(0.1637 |0.0948) 0.00015| 0.0000 
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Figure 27. ACF of training data and imputed data at 25% missing data rate 

 

Table 12 ARIMA performance on 25% imputed data 

 RMSE  MAPE 

Dataset Train Test  Train Test 

Original  10.7415 7.4601  10.9258 8.4710 

Kal AR 9.673936 7.1999  9.470673 8.005 

Kal ST 9.77325 7.11293  9.425376 7.967 

EWMA 9.81022 7.09267  9.4803 7.952 

SMA 9.852183 7.08436  9.535415 7.768 

Mean  10.86387 7.38017  10.48997 8.4130 

Linear  10.08832 7.05886  9.933298 7.8620 

Stine  10.15777 6.91784  9.941798 7.8080 
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KNN 10.51695 7.3272  10.82218 8.080 

LOCF 10.78772 6.91464  10.45732 7.777 

Spline  11.19237 6.99171  11.65583 8.3630 

 

 

 

Figure 28: Prediction performance of ARIMA model in stine(top left), KNN (top right), LOCF 

(bottom left), and spline(bottom right) interpolation imputed dataset at 25% missing data rate. 
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Figure 29: Prediction performance of ARIMA model in Kal AR (top left), Kal ST (top right), 

EWMA (middle left), SMA (middle right), MeanImp (bottom left), and Linear interpolation 

(bottom right) imputed dataset at 25% missing data rate. 
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Table 13. LSTM performance on 25% imputed data  

 RMSE  MAPE 

 Train Test  Train Test 

Original  9.1624 6.9976  9.2653 7.8742 

Kal AR 9.1067 7.0614  7.77871 7.778712 

Kal ST 9.1049 6.4184  8.703598 7.0720944 

EWMA 9.2886 6.6478  8.7758337 7.4387604 

SMA 9.6926  7.5763  9.67356 8.383058 

Mean  10.2237 8.442509  10.64077  10.15677 

Linear  9.3534 8.3362  8.7256617 7.904302 

Stine  9.6953 8.131101  9.7006114 8.6371184 

KNN 9.5688 7.31604  9.600092 8.1603804 

LOCF 10.0855 7.0506  9.2044165 7.4510109 

Spline  11.158 8.7628  10.05401 8.0435749 
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Figure 30: Prediction performance of the LSTM in the 25% imputed datasets; Kal AR(first on 

first row),Kal ST(second on first row), EWMA(first on second row), SMA(second on second 

row),mean (first on third row), linear(second on third row), stine(first on fourth row), 

KNN(second on fourth row), LOCF(first on fifth row),spline(second on fifth row). 
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4.4.1 Imputation performance in 35% imputed datasets  

The comparative time series plot shows the original train and the imputed data using the 

ten imputation methods (Figure 30). The descriptive statistics of the datasets, both imputed and 

original train data, are shown in the boxplots. Outliers were also detected in the mean imputed 

dataset using the 1.5IQR rule (Figure 31). The probability density plot of the mean imputed data 

is significantly distorted compared to the other datasets (Figure 32). The imputation performance 

at a 35% rate of missingness showed that Kalman ST was the best missing data replacement 

technique in RMSE, and Kalman AR was the best in terms of  MAPE, with mean imputation being 

the worst (Table 14) 

 

 

Figure 31: Comparative time series plot of training data and imputed data at 35% missing data 

rate 
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Figure 32: Distribution of training data and imputed data at 35% missing data rate 

 

 

Figure 33: Density plot of training data and imputed data at 35% missing data rate 
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Table 14. Performance of imputation techniques at 35% of missing data  

Technique RMSE MAPE 

Kalman AR 4.747496 2.761497 

Kalman ST 4.680732 2.80615 

EWMA 4.760597 2.885924 

SMA 4.899272 3.21842 

Mean Imputation 8.756517 5.583606 

Linear interpolation  5.558737 3.463321 

Stine Interpolation  5.951343 3.726194 

KNN 7.704995 4.067641 

LOCF 5.923621 3.917054 

Spline 7.161102 4.490717 

 

4.4.2 Prediction performance in 35% imputed data 

The summary, order, and coefficient of the ARIMA models in 35% imputed and original 

training datasets. Datasets imputed with linear, stine, LOCF, and stine resulted in a random walk 

process with inestimable coefficients (see Table 15). At this level of imputation, the mean, KNN, 

LOCF, spline, linear, and stine showed a lowered autocorrelation (Figure 33). The prediction 

performance of ARIMA in the EWMA-imputed dataset was the best in terms of RMSE and MAPE, 

followed by Kal ST and Kal AR, with the model in the KNN dataset being the worst(Table 16). 
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The ARIMA prediction in the 35% imputed dataset (Figure 34 and Figure 35). The LSTM on the 

original train dataset outperformed all the imputed datasets in the 35% rate missingness (Table 

17). The prediction performance of the LSTM in each dataset is shown in Figure 36. 

 

Table 15. ARIMA model obtained on 35% imputed data 

Dataset Model  C(SE) Pr(>|z|) 

Train ARIMA(1,1,0) -0.4844(0.1161) - 

Kal.AR ARIMA(0,1,1) -0.4311(0.1276) 0.000727 

Kal.ST ARIMA(0,1,1) -0.3999(0.1280) 0.001783 

EWMA ARIMA(1,1,0) -0.3195(0.1267) 0.01165 

SMA ARIMA(0,1,1) -0.4605(0.1168) 0.000008 

MeanImp ARIMA(0,1,1) -0.7815(0.1281) 0.000000 

Linear ARIMA(0,1,0) -  

Stine ARIMA(0,1,0) -  

KNN ARIMA(0,1,1) -0.7859(0.0942) 0.00000 

LOCF ARIMA(0,1,0) - - 

Spline  ARIMA(0,1,0) - - 
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Figure 34. ACF of training data and imputed data at 35% missing data rate 

 

Table 16. ARIMA performance on 35% imputed data 

 RMSE  MAPE 

Dataset Train Test  Train Test 

Original  10.7415 7.4601  10.9258 8.4710 

Kal AR 9.3882 7.2973  9.1919 8.2540 

Kal ST 9.3405 7.2680  9.1846 8.1730 

EWMA 9.3067 7.2531  8.8726 7.9890 

SMA 9.5863 7.3294  9.7408 8.3220 

Mean  10.6788 7.8376  10.9086 9.2560 

Linear  9.5096 7.3776  8.5189 8.0460 
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Stine  9.5723 7.3776  8.51685 8.0460 

KNN 10.5650 7.8615  10.5417 9.3760 

LOCF 11.1692 7.3776  8.5630 8.0460   

Spline  10.0214 7.3776  9.2268 8.0460 

 

 

 

Figure 35: Prediction performance of ARIMA model in stine(top left), KNN (top right), LOCF 

(bottom left), and spline(bottom right) interpolation imputed dataset at 35% missing data rate. 
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Figure 36: Prediction performance of ARIMA model in Kal AR (top left), Kal ST (top right), 

EWMA (middle left), SMA (middle right), mean (bottom left), and linear interpolation (bottom 

right) imputed dataset at 35% missing data rate. 
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Table 17.LSTM performance on 35% imputed data  

 RMSE  MAPE 

Dataset Train Test  Train Test 

Original  9.1624 6.9976  9.2653 7.8741 

Kal AR 7.9381 7.2527  7.7158 8.09551 

Kal ST 8.1695 7.5205  7.7095 9.1685 

EWMA 8.9142 7.6226  7.6129 8.3102 

SMA 7.6871 9.8699  8.1015 11.5875 

Mean  10.4242 9.1676  10.0183 10.9721 

Linear  8.4688 8.4115  7.0661 8.7439 

Stine  9.7287 8.5534  7.8319 8.7218 

KNN 10.3023 7.9139  9.9549 9.0317 

LOCF 10.1281 9.2982  8.2839 9.0239 

Spline  9.7466 8.3552  8.3684 9.7541 
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Figure 37: Prediction performance of the LSTM in the 25% imputed datasets; Kal AR(first on 

first row), Kal ST(second on first row), EWMA(first on second row), SMA(second on second 

row), mean (first on third row), linear(second on third row), stine(first on fourth row), 

KNN(second on fourth row), LOCF(first on fifth row),spline(second on fifth row).
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CHAPTER V  

DISCUSSION 

 This study investigated the effects of various imputation techniques on univariate 

time series forecasting using ARIMA and LSTM models. We compared the imputation 

performance of mean imputation, LOCF, EWMA, SMA, Kal ST, Kal AR, KNN interpolation, 

linear, cubic spline, and stine interpolation at four different rates (10%, 15%, 25%, and 35%) of 

missingness under MCAR mechanism. Consideration was given to the effectiveness of these 

imputation approaches, the modifications made to the data, and the effects of these modifications 

on time series models. 

Our study showed that the mean imputation, followed by the KNN interpolation was the 

best technique with the smallest MAPE and RMSE at a 10% rate of missing data. This indicated 

that the mean imputation technique is effective for replacing missing values in time series data 

when the proportion of missingness is smaller. This finding is consistent with the observations 

made by (Norazian, Shukri, Azam & AlBakri, 2008; Zakaria & Noor, 2018; Wijesekara & 

Liyanage 2020). However, the mean imputation is not a reliable method of replacing missing data. 

Recall, mean imputation was the best imputation technique at a 10% rate of missingness, but as 

the rate of missingness increased to 15%, it became the worst technique. At a 15% rate of 

missingness, the exponentially weighted moving average (EWMA) technique outperformed the 

other imputation techniques in terms of RMSE, and stine interpolation was the best method of 

imputation based on MAPE. This disparity is not uncommon in literature because each evaluation 
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metric has a unique sensitivity to extreme values and should be used in conjunction with other 

metrics while taking the context of the particular problem and the data properties into account. 

(Chai and Draxler, 2014). Although the EWMA and Kalman smoothing on structural time series 

techniques were similar in their performance, the Kalman smoothing on structural time series 

model performed better based on RMSE and MAPE at a 25% rate of missingness. At a 35% rate 

of missingness, the Kalman smoothing on the ARIMA model (Kalman AR) was the best 

imputation technique based on MAPE, whereas Kalman ST was the best technique based on 

RMSE. The results obtained from the imputations also show that aside from the mean imputation, 

LOCF, KNN interpolation, linear interpolation, stine, and cubic spline interpolation are all gap 

dependent because they work relatively well for a small rate of missing values, and vice versa 

when the gap increase. A similar observation was reported by (Junninen et al., 2004) for simple 

interpolation techniques. However, interpolation with EWMA, SMA, Kal ST, and Kal AR yielded 

a consistent performance across the four missingness scenarios. 

It is worth mentioning that each of the imputation techniques considered in our study either 

increased or decreased the autocorrelation (i.e., how the data from the past and future are 

connected) within the imputed dataset. The observations made from the analysis of the ACF plots 

showed that the mean imputation method, when used to replace missing values in any scenario of 

missingness reduced the autocovariance and the autocorrelation within the imputed data. In 

computing the variance and autocovariance, the imputed values cancel out, while increasing the 

degrees of freedom (sample size). This effect lowers the autocovariance and autocorrelation at 
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each lag after the first lag. The shape of the probability distribution of the imputed dataset using 

mean imputation also became significantly distorted as the rate of missingness increased. Other 

observations including underestimation of errors, disruption of the relationships between variables, 

and biased estimates have been associated with the mean imputation technique in univariate and 

multivariate data particularly when the data are not MCAR (Enders, 2010; Tan et al., 2013; Kang, 

2013; Dong et al., 2014; van Buuren, 2018). On the other hand, imputed data based on Kal AR, 

Kal ST, EWMA, SMA, LOCF, KNN, stine, linear, and cubic spline interpolation increased the 

autocorrelation of the data. These changes in autocorrelation were also observed to impact the 

prediction performance of the ARIMA models. The higher the autocorrelation, the better the 

prediction performance (using the original train data as the reference). This pattern of ACF changes 

and prediction performance were also consistent to some extent in the LSTM models. This pattern 

was observed in datasets at all the scenarios of missingness except at 25% for cubic spline, and 

35% rate for LOCF, KNN, cubic spline, linear, and stine interpolation imputed datasets also led to 

a reduced autocorrelation and yet, the ARIMA model obtained on them showed slightly better 

prediction on the test. In the LSTM models, none of the models obtained on the imputed dataset 

performed better than the original train data. Although many studies report caution against the use 

of LOCF for imputing missing data due to a lack of theoretical validity (Lachin, 2016; Kenward 

and Molenberghs, 2009, Moritz et al., 2015) and spurious results in longitudinal analysis (Lachin, 

2016), our results showed that the ARIMA model obtained on the LOCF imputed data at 25% rate 

of missingness had the best prediction performance in terms of RMSE and second in terms of 

MAPE. The results across the different scenarios indicated that models trained on LOCF imputed 
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time series data can produce reliable time series predictions but the inadequate literature on time 

series forecasting with ARIMA and LSTM on imputed time series data, makes it difficult to 

corroborate and ascertain whether this outcome is a random result or not.  

The majority of statistical literature on time series imputation focused on comparing the 

imputation performance of existing techniques (Walter et al., 2013; Moritz et al., 2015; Wijesekara 

& Liyanage, 2020). Our results have shown that in any scenario of missingness, the best imputation 

technique among the methods used does not guarantee that the time series model obtained on the 

corresponding data will yield better predictions than the others. As mentioned earlier, the mean 

imputation was the best with cubic spline being the worst imputation technique at a 10% rate of 

missingness. However, the model obtained on the spline imputed data yielded the best prediction 

performance (with the smallest RMSE and MAPE for ARIMA and only in RMSE for the LSTM 

model). Similarly, the EWMA and Kalman ST Imputation techniques performed better at a 15% 

rate of missingness but the ARIMA model obtained on the spline dataset and the LSTM obtained 

on the KNN dataset had the best prediction performance. These results are variable across the 

scenarios of missingness, methods for imputation, and model performance in terms of ARIMA 

and LSTM. However, there is a pattern that Kalman ST, Kalman AR, and EWMA methods for 

imputation perform relatively well for both ARIMA and LSTM forecasting. 

In this study, the LSTM trained on the original dataset performed better than the ARIMA 

on the test data. This result is corroborated by (Boulmaiz, Guemoui, and Boutaghane, 2020) who 

showed that the LSTM algorithm is robust and can give reliable performance both on small and 
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large training data, but the performance of the LSTM significantly improve by increasing the size 

of the training data. While there is no rule of thumb regarding the minimum required data size for 

LSTM, the algorithm performs better on large sequential data with complex long-term 

dependencies (Hochreiter and Schmidhuber, 1997; Gers et al., 2000; Boulmaiz et al., 2020). In 

literature, many studies have reported improved performance of the LSTM than the ARIMA in 

financial time series data (Siami-Namini et al., 2018) and healthcare-expenditure time series data 

(Kaushik et al., 2020). These prediction improvements are usually accompanied by a more 

complex computational structure and a higher data processing time. On the other hand, the ARIMA 

model on several occasions in the imputed datasets outperformed the LSTM algorithm. It is not 

uncommon in literature for ARIMA models to outperform recurrent neural network architectures 

like LSTM (Yamak, Yujian, and Gadosey, 2019; Choy, Hoo & Khor, 2021; Kobiela, Krefta, Król 

& Weichbroth, 2022; Zhang, Song, Chen, Wang & Li, 2022). Several factors, including the 

changes in the autocorrelation, hyperparameters selected, and the overall size of the train data that 

contribute to this outcome.  

In the literature (Azari, 2019; Choy, Hoo & Khor, 2021) ARIMA models perform well in 

short-term predictions and the results of this study further suggest that for time series forecasting 

on imputed data, ARIMA models may be preferable to LSTM because they are comparably easy 

to implement. Also, in terms of computational convergence, ARIMA models typically converge 

faster than LSTM models, as they are simpler and have fewer parameters to estimate. However, 

the convergence of LSTM models depends on several factors, such as the number of layers, the 
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Epoch size, the size of the hidden layers, and the length of the input sequences. Overall, this choice 

between ARIMA and LSTM models for time series forecasting depends on the specific 

characteristics of the data and the forecasting problem at hand. ARIMA models may be more 

appropriate for short-term forecasting of stationary data, while LSTM models may be better suited 

for modeling complex and non-linear relationships in long-term forecasting tasks (Gers et al., 

2000).  

Our study has some limitations, the first being the sample size. Time series with at least 50 

observations are required to obtain a reliable estimate of the autocorrelation function in the 

ARIMA methodology (Box et al., 2015). This sample size may not be ideal for an LSTM algorithm 

which by design is for handling long-term dependencies within sequential data (Hochreiter and 

Schmidhuber, 1997; Yu et al., 2019). In our study, missing data were generated under the MCAR 

mechanism. The assumption of MAR implies that the missing data are related to an observed 

variable. However, in the univariate time series data, there are no other variables other than the 

time variable (which is implicit). For this reason, it is practically unlikely for the blood pressure 

readings of any individual to be missing at 15% or 35% simply because of the monitoring time. In 

addition, the study focused on MCAR because, in practice, it is empirically impossible to 

distinguish data that are MAR or MCAR or both in univariate data. Since these assumptions 

assume a random variable with a probability distribution, several factors or mechanisms unrelated 

to the missing values can make the data incomplete. The factors underlying the missingness in 

such circumstances can be ignored (Little and Rubin, 2019). For these reasons, existing literature 
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assumes that the missing data are either MAR or MCAR (Moritz et al., 2015; Twumasi-Ankrah et 

al., 2019; Wijesekara & Liyanage, 2020). The effects of these imputation methods on non-

ignorable mechanisms (MNAR) would be a great addition to existing literature. However, the 

small sample size, nature, and distribution of the data limited us from choosing a threshold value 

for simulating data that are MNAR for the various scenarios studied. 

5.1 Conclusion  

Our study showed that imputation techniques used on univariate time series either 

increased or lowered the autocorrelation within the data. These changes in the time series data 

impacted the prediction performance of the time series forecasting algorithms. Simple 

interpolation methods like spline, linear, and stine imputation methods are recommended over 

mean imputation when the gap of missing data is small because they can be effective, and the 

models obtained on imputed data can give reasonably better predictions than mean imputed data. 

Overall, Kalman smoothing on Structural time series, Exponentially weighted moving average, 

and Kalman smoothing on ARIMA techniques not only performed well at every rate of 

missingness, but the models obtained on the imputed data can also give consistent predictions. 

Specifically, ARIMA is recommended over LSTM prediction on imputed datasets because it is 

simple to execute and tends to perform better on imputed data with higher autocorrelation, even 

though imputed datasets with higher autocorrelation to some extent were also observed to yield 

better predictions in the LSTM architecture. 
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