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ABSTRACT 

 

Levis, John M., An Investigation into Optimal Descent Trajectories for Multipurpose Long 

Range Space Vehicles Under Advanced Conditions. Master of Science (MS), May, 2023, 105 

pp., 7 tables, 20 figures, references, 24 titles. 

In this work, we investigate the problem of fuel-optimal control of space vehicle descent 

trajectories. The main tool we use to establish optimality is Pontryagin’s Maximum 

Principle.  We present a variety of scenarios with increasing complexities, including drag, wind, 

and moving landing platforms in the context of differing atmospheric and gravitational 

conditions.  Throughout the paper, we use a balance of analytical and numerical techniques.  

Finally, observations and conclusions drawn from the investigation form the basis for 

suggestions into additional areas of analysis. 
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CHAPTER I 

INTRODUCTION & FOUNDATIONS 

1.1 Introduction 

1.1.1 Origins of the Problem 

Over the past decade there has been a renewed space-race reminiscent of the late 1950’s 

and 1960’s.  However, the driving objective of that era, a desire for military and political 

superiority, has been replaced by the prospects of individual achievement and commercial gain.  

Unlike the original space race, this new eagerness for interstellar travel is being driven by self-

made billionaires who, along with a desire to go where no one has gone before, bring a practical 

reality to the economics of such ventures. 

One of the primary areas of opportunity, and some will say necessity, for better 

economics is the ability to be able to safely land space craft on a planet such as Mars (for 

starters) with a full payload and then for that rocket to be able to relaunch itself for a return or 

ongoing trip.  Certainly, the engineering challenges for this kind of maneuver are plentiful.  

These include being able to orient and reorient the craft for atmospheric and non-atmospheric 

travel, dealing with the heat generated by atmospheric resistance, and many others.  At the core, 

however, is the need to be able to calculate and achieve descent trajectories that optimize the 

craft’s ability to safely, and economically, land and relaunch. 
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1.1.2 Outline of the Paper 

This paper focuses on the derivation of mathematical solutions, both analytic and 

numeric, to the problem of finding optimal descent trajectories under a few advanced conditions.  

Underlying the research is the use of optimal control theory to determine the optimal use of the 

vehicle’s engines as a means of controlling the descent to achieve the desired outcomes.  In this 

first chapter, we provide an introduction to the topic of optimal control theory first by illustrating 

two elementary problems, and then by diving deeper into the mathematical theory. 

In CHAPTER II, we begin applying that theory to the simplest of optimal descent 

scenarios, the lunar landing problem.  In this simple scenario where the only naturally occurring 

force is that of gravity, we can see how the use of optimal control theory guides to the optimal 

way of using the control – in this case the thrust generated by the vehicle’s engines – to guide 

the vehicle to a safe and soft landing while minimizing the fuel consumed in doing so.   

 CHAPTER III tackles the effects of atmospheric density by first modeling a case when 

the density is constant for the entire descent.  It then examines the more realistic case where the 

density decreases the closer the vehicle gets to the surface.  Under these conditions, we see how 

the behavior of the control varies with the presence of another naturally occurring force, drag.  

We also see how the relative strength of the forces of gravity and drag create different 

optimalities for the descent trajectories. 

CHAPTER IV examines an even more advanced scenario where not only does the 

presence of an atmosphere induce drag on the descending vehicle, it also creates the possibility 
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of wind influencing the trajectory.  We will also briefly extend the results of the other chapters in 

a scenario whether the desired landing platform is in motion as it would be in any situation 

involving a rotating celestial body. 

Finally, in CHAPTER V, we summarize the results of the paper and outline two possible 

avenues for further investigation.  Throughout the paper, analytic solutions are developed as far 

as practical at which point numerical solutions are used to illustrate and analyze the outcomes. 

1.1.3 Recent Works 

A review of related literature yields recent work in this area in two broad categories: 

• Research papers focused on solutions to the optimal descent trajectories for vehicles 

on celestial bodies with no material atmosphere such as earth’s moon.  This aligns 

with NASA’s renewed interest in lunar exploration through the Artemis program. 

• Investigations into optimal descent trajectories for the reuse of launch vehicles by 

safely returning them to earth as efficiently as possible.  SpaceX has been a very 

visible example of this. 

(Brodkin, 2021) and (Macki, 2006), among others, explore the first category taking 

advantage of the simplifying assumptions that come with landing under conditions where the 

atmosphere is negligible.  The models, as we will show, provide an illustrative example of the 

use of optimal control theory in solving such problems.  However, the simplicity of the model 

limits its use beyond that scenario. 

On the other hand, (Lu, 2018) and (Liu, 2018), among others, demonstrate a more robust 

treatment of the problem taking into account the additional complexities of atmospheric forces 

and a more sophisticated engineering of the space vehicle. In particular, Liu, outlines a model 
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that accounts for the both atmospheric drag and lift along with additional controls related to 

flight path and thrust angle.  Both of these papers, along with others including (Prous, 2020), 

explore the optimality of both launch and landing which has applications in the reuse of rockets 

desired to place satellites into orbit. 

Where this paper differs from others is in how it extends the modeling through the 

additional attention paid to ensuring the existence of optimal solutions and through additional 

scenarios that include conditions such as atmospheric wind and a moving landing surface. 

1.2 Notations and Nomenclature 

Throughout this paper, we will use a consistent set of notations and nomenclature to refer 

to mathematical models and their components.  We will also adopt the convention that vectors 

will be represented in a bold font and the time derivative of variables will appear with a single 

dot above them. 

1.2.1 Optical Control Foundations 

Table 1-1: Variables Used in Optimal Control Equations 

Variable/Parameter Explanation 

t Time variable, often decomposed into discrete intervals 
x(t) State variable describing the dynamics of the system 
u(t) Control variable used to influence the behavior of the system 

f(x, u) Function used to model the motion of the system 

l(t)	
Co-state variable introduced to mirror the state variable in confirming 
the controllability of a system 

H(x, u, l) 
Hamiltonian equation used in Optimal Control Theory to govern the 
controlled system’s dynamics 

C(x, u) 
The “cost” function which is value being either minimized or 
maximized by the use of the control 

M(x, u) The “variable” portion of the cost function 
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N(xf) The “fixed” portion of the cost function associated with its final state 

 

1.2.2 Optimal Descent Scenarios  

 

Table 1-2: Variables Used in Modeling Descent Scenarios 

Variable/ 
Parameter 

Definition Units Specific Uses 

t Time variable s t0 = initial time of descent 
t* = optimal switching time 
tf = time at landing 

h(t) Height of the vehicle above 
the landing surface 

m h0 = initial height  
hf = final height at landing 

r(t) Downrange position of the 
vehicle 

m r0 = initial downrange position 
hf = final downrange position at landing 

v(t) 
vh(t) 

Vertical velocity of the 
vehicle (positive is up) 

m×s-1 v0, vh0 = initial vertical velocity 
vf, vhf = final velocity at landing 

vr(t) Downrange velocity of the 
vehicle (positive is right) 

m×s-1 vr0 = initial downrange velocity 
vrf = final downrange velocity at 
landing 

m(t) Mass of the vehicle 
including fuel 

kg m0 = initial mass 
mf = final mass at landing 

x(t) State variable describing the 
dynamics of the system 

 [h v m]T for Scenarios 2 and 3 
[h r vh vr m]T for Scenarios 4 

u(t) Thrust of the vehicle engines 
(up and right are positive) 

N u, uh = vertical engines thrust 
ur = downrange engines thrust 

k Efficiency of thrust engines s×m-1 k, kh = vertical engines efficiency 
kh = downrange engines efficiency 

r(h) Atmospheric density kg×m3 r0 = atmospheric density at surface 
d Drag coefficient of vehicle n/a d, dh = longitudinal profile of vehicle 

dr = vertical profile of vehicle 
w(h) Windspeed surrounding the 

vehicle (positive is right) 
m×s-1 w0 = windspeed at the surface 
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1.3 Optimal Control Foundations 

1.3.1 Uncontrolled and Controlled Systems 

The fundamental idea behind Optimal Control Theory (OCT), and control theory in 

general, is the desire to influence the outcomes of a system through the use of controls imposed 

on the system in a certain manner at certain times during the execution of the system.  The fields 

of systems where such “controls” could be applied include economics, biological, physical, 

electrical and many others.  However, all of these applications share some foundational elements 

at the core of OCT. 

We start with a basic system as modeled through a set of ordinary differential equations 

as follows: 

%̇(t) = ()%(t)* 

t	³	0 

%(0) = %! 

(1.1) 

For simplicity, we will confine our discussion to real numbers although there is nothing 

preventing this from extending into complex numbers.  As such, we have	(: ℝ" 	→ 	ℝ", 

%(t)	Î	ℝ" and % ∶ 	 [0,¥)	®	ℝ".  To the degree it can be solved, the solution to (1.1) and the 

resulting behavior of the system can be thought of as “uncontrolled” by any influences outside 

the system.  For example, a simple system involving dropping an object from an elevated 
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position can be modeled.  The object will drop under the influence of gravity, drag and 

potentially wind and will eventually land somewhere on the ground. 

Now imagine that we wanted to control the object by affixing a small power source of 

some kind designed to propel the object in some direction for some amount of time and at some 

points in time during its fall.  We might want to do this to ensure the object fell where we wanted 

it to fall and/or when we wanted it to land.  In other words, we want to control the system in 

some way to meet some objective. 

Mathematically that involves introducing a “control” variable, u, into the system in this 

way 

%̇(t) = (2(%(t), 3) 

t	³	0 

%(0) = %! 

(1.2) 

Note that u is potentially a function of some combination of t, x(t) and %̇(t).  That is, the 

control can be triggered at specific points in time, at specific positions of the system, or at 

moments when the system’s natural rate of change reaches a certain level.  Note, u Î 4 which is 

set of all permissible values for the control variable.  We will discuss the characteristics and 

constraints of 4 later in this paper. 
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In order to visualize a control in action, consider the system in ℝ2 

ẋ(t) = f(x(t), u(t)) 

t	³	0 

x(0) = x# 

(1.3) 

where, 

u(t) = 	8
u$(t), 0 ≤ t ≤ t$
u%(t), t$ ≤ t ≤ t%
u&(t), t% ≤ t ≤ t&

 

(1.4) 

For example, let us consider the simple case where in (1.3) where f(x) = '(

)
+ u and the 

control, u, is as in (1.4).  Here we are modeling our object of mass, m, under the influence of 

gravity, g, and our control.  If we illustratively plot the trajectory of the controlled and 

uncontrolled system in Figure 1.1, we can see the different behavior the control imparts on the 

system. 

 
Figure 1.1: Discrete Controls 

 

x

tt1 t2

x0

t0

u = u1
u = u2

u = u3
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1.3.2 Properties for Controllability 

As noted by (Macki, 2006), modelling a system in the form of control system as we did 

in (1.2) does not actually guarantee that the system is indeed controllable.  In order to determine 

if a system is controllable, we must examine two key properties: 

i. the initial state of the system relative to the desired outcome and 

ii. the nature of the control 

The first condition relates to whether or not one can control the system, that is, have it 

reach a desired outcome, based on its starting point.  We define this as the controllable set of 

initial points as follows: 

;(t*) = {%#Î	ℝ"|	∃	3	Î	?	so	that	%(t*) = %*} 
(1.5) 

where, 

; is the set of all possible states of x 

? is the set of all possible controls, u, that can be applied 

tf is an acceptable final time 

xf is the desired final state of the system 

The second condition refers to the type of controls that can be applied to the system 

based, in turn, on the nature of the system and its scientific limits.  Although there are many 

different controls that can be modelled, (Macki, 2006) describes three common ones that could 

apply in this scope of this paper: 
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a) Bang-Bang controls where the control is defined as either instantaneously on (at 

full power) or off (e.g., a light switch) which can be modelled as the switch 

between two values 

b) Piecewise Constant where the control is constant for particular time interval 

(although the time interval and/or the magnitude of the constant can vary from 

interval to interval) (e.g., the volume control on a TV while watching a show 

among periodic background noise) 

c) Absolutely Continuous where the magnitude of the control varies smoothly at all 

times within the duration of the system (e.g., steering of a car while driving) 

Thinking about the controllability in these terms leads to the obvious conclusion that the 

two properties are not independent of each other.  Mathematically, that is clear from (1.5).  

Intuitively, it becomes clear when thinking about our objective drop example from the previous 

section.  If we drop the objective from too high an altitude that there is insufficient power in the 

control to overcome the force of gravity on it then we would not be able to land it where and 

when we want.  We will refer to these properties of controllability as we explore the optimal 

descent trajectory problem in various scenarios later in this and subsequent chapters. 

1.3.3 Optimally Controlling a System 

The introduction of a single control scenario into a system is generally insufficient for 

most purposes.  Instead, we want to consider a set of controls, ?, where 3(ẋ, x, t)	Î	?.  Each 

control in the set could potentially influence the system in a different way.  In our simple 

example of the dropping object with an on-board propeller, the propeller could be instructed to 

fly the object in a spiral on its way down or land in a designated spot using the least amount of 

power. 
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This ability to control a system in multiple ways gives rise to controlling the system with 

some objective in mind.  This leads to the second foundational element of OCT, the Cost 

Function.  Different authors refer to it by other terms: (Evans, 1983) refers to it as the “Payoff”; 

(Brodkin, 2021), refers to it as the “Objective”, and other terms are also used in the specific 

context of the application.  For the rest of this paper, we will define the Cost Function as 

C[3] ≔ 	G M)%(t), 3(t)*dt + N(%(t*))
+!

#
 

(1.6) 

where the Cost is a function of the control variable, u.  The functions, M(x(t),u(t)) and 

N(x(t*)) are known as the variable cost and fixed cost of the system, respectively, that runs from 

0	£	K	£	K, .   More specifically, M models the costs associated with the path the system takes to 

reach its end state, whereas, N models the costs associated with the particular end state reached 

regardless of the path taken.  Of course, x solves the ODE under the influence of control, u, 

where u Î ?. 

We define the optimal control, 3∗	Î	?,  as the control that minimizes the cost function 

such that 

C(3∗)	£	C(3)	∀	3	Î	? 
(1.7) 

Given the desire to find 3∗ for a particular system, three key questions emerge: 

1. Under what circumstances does an optimal control exist? 

2. If it does exist, are we able to calculate it? 

3. If we are able to calculate it, is it unique? 
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Before we explore those questions, let us examine the modeling of a couple of simple 

systems that will be very helpful later in the paper.  We will not fully solve for the optimal 

control at this point but this will set the context for how optimal control problems are framed. 

1.4 Examples of the Use of Optimal Control Theory 

1.4.1 Example 1: The Rocket Car 

Consider a car on a horizontal railway track with rocket engines on each end as depicted 

in Figure 1.2.  The system can be modeled as follows: 

p(t) is the position of the center of the car at time t 

v(t) is its velocity at time t 

u(t) is the thrust produced from the engines at time t where −1	£	u(t)	£	1 

m is the (constant) mass of the rocket car 

 

 
Figure 1.2: Rocket Car 

Our objective is to determine the sequence of firing the rockets to move the car from 

p(0) = p#  to p(t*) = 0 in the least amount of time and when the car is stopped, that is, v(t*) =

0.   In order to illustrate this idea, we will make some simplifying assumptions.  First, the rocket 

car’s mass will be fixed in order to eliminate the need to model the impacts of fuel consumption.  

Second, we will also assume that the wheel assemblies and track are frictionless to avoid the 

0
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need to model drag on the car’s motion.  (When we examine the main problem of this paper, the 

optimal descent of a space vehicle, we will explore the effects of both of these). 

In this case, our simplified rocket car system follows Newton’s laws of motion 

u(t) = mv̇(t) 
(1.8) 

which we can convert this second order ODE to a system of first order ODEs as follows: 

%(t) = S
x$(t)
x%(t)

T 	= 	 S
p(t)
ṗ(t)

T 

p̈(t) =
u(t)

m
 

We can derive the Cost Function by noting that we are trying to determine the control 

required to have the rocket pass by (but not necessarily stop at) p = 0 the first time 

C(u) = G 1
+!

#
ds 

(1.9) 

and our task would be to find u* that is of the bang-bang type described above (this will be 

proven in section 1.5 meaning that control switches from one value (±1) to the other (∓1) only 

once during the optimal trajectory).  This allows us to formally state the optimal control problem 

as follows: 

min
.
ZC(u) = G 1

+!

#
ds[ 

such that ẋ = 	 \
x%(t)
.(+)

)

] 



 14 

where u:[0, ¥) ® {-1, 1} 
(1.10) 

With this in place, we can now visually explore the behavior of the system by returning 

to the variables introduced at the start of this section. 

ṗ(t) = v(t) 

mp̈(t) = u(t) 

u(t) = 	±1 

(1.11) 

Since the mass is constant, we can set m = 1 to simplify the equations even further.  We can also 

define some initial and terminal conditions as follows: 

p(t0) = p0 

ṗ(t0) = v0 

p(tf) = 0 

Notice that we are not imposing the condition that ṗ(tf) = 0 as for this simple illustration 

we are only interested in minimizing the time required for the car to get back to p(tf) = 0.  In the 

first case, let us assume without loss of generality that the control is set to 1 in which case the 

system in (1.11) becomes 

p̈(t) = 1 

To solve this system, we first note that from the second equation, ṗ(t) = t + K with K = 

v(t0) = v0 we have v(t) = t + v0.  Inserting this into the first equations delivers p(t) = $
%
t% + v#t + 
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K’ with K’ = p(t0) = p0 we arrive at p(t) = $
%
t% + v#t + p#.  We can combine the expressions for 

v(t) and p(t) by substituting for t to observe that  

p(t) − p# =	
1

2
(v%(t) − v#

%) 

or 

p(t) = 	
1

2
v%(t) + a 

where, 

a	 = p# −	
1

2
v#
% 

Now, since a is a constant which is directly related to the initial conditions, the result is a 

set of parabolas in the v-p plane.  Similarly, if we assume that the control is set to -1 over some 

time interval [t1, t] we have 

ṗ(t) = v(t) 

v̇(t) = −1 

which yields the following similar outcome 

p(t) = 	−
1

2
v%(t) + b 

where, 

b	 = p(t$) +	
1

2
v%(t$) 

Again, since b is a constant which is directly related to the conditions at which the 

control, u, is set to -1, the result is another set of parabolas in the v-p plane.  The geometric 
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interpretation of these results is shown in Figure 1.3.  At t0 the rocket car is set in motion by the 

control value of u = 1.  As it travels long the rail, it maps out a parabolic curve in v-p plane as 

depicted by the green arrow labelled as such.  When it intersects the inverted parabola that passes 

through the origin, the control is flipped to u = -1.  This occurs at time t = t1.  The rocket car then 

moves along the rail following this new curve until it reaches the origin at t = tf. 

 
Figure 1.1: Geometric Illustration of a Bang-Bang Control 

 

A critical observation we can draw from the illustration is that the initial conditions of 

position and velocity of the rocket car, along with the possible values of the control dictate 

whether there is an optimal solution for the system.  For example, if the starting position, 

velocity and control were as depicted in Figure 1.4, the rocket car’s v-p trajectory would never 

intersect a curve where a single switch to u = -1 would return it the origin.  Instead, it would need 

to make two switches, at t = t1 and t = t2 to accomplish it.  However, if the order of the control 

variable values were reversed such that at t0 u = - 1, then an optimal path would exist by 

p = 1
2 %

! + ' p = −1
2 %! + )

u=1

u=-1

t0 t1

tf
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switching u to 1 only once at the point marked t2.  In 1.5 we shall see, and in fact prove, that in 

problems of this nature involving both linear state and control variables, a single switch of a so-

called “bang-bang” control produces an optimal result. 

 

 
Figure 1.4: Geometric Illustration of a Sub-optimal Bang-Bang Control 

 

The trajectory of the rocket car over the interval t0 £ t £ tf is illustrated in Figure 1.5.  

After an initial velocity in the positive direction to the right, the engine fires at time t1 exerting a 

force in the opposite (left) direction which will cause the vehicle to reverse direction and return 

back towards the origin.  Note, that we are defining tf as the time at which the rocket car first 

returns to the origin.  We are not constraining that the velocity be zero at that point.  This is 

another simplification of the model that we will address in 1.4.2 and beyond. 

p = 1
2 %

! + ' p = −1
2 %! + )

u=1

u=-1

u=1

t0
t1

t2

tf
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Figure 1.5: Rocket Car in Motion 

 

What becomes clear from this simple example of the use of optimal control is that the 

system is very sensitive to both the initial conditions and the domain of the control variables.  

Understanding the impact of initial conditions and control limitations is a critical component of 

optimal control theory and something we will explore more fully in the vehicle descent scenarios 

we explore in the rest of this paper. 

1.4.2 Example 2: Lunar Vehicle Landing 

As a second example, let’s consider a very simple version of the main problem of this 

paper, the soft landing of a space vehicle on the moon’s surface while using the least amount of 

fuel.  There are two forces affecting the vehicle: the force of gravity, G, in a downward direction 

and the upward thrust generated by the engine, T.  The situation is depicted in Figure 1.6 and we 

can model the problem as follows 

0

t = t0 v(t0)

0

t = t1 v(t1)

0

t = tf v(t1), p(tf) = 0



 19 

 h(t) is the height of the vehicle at time t 

 v(t) is its velocity at time t 

 m(t) is its mass at time t 

 u(t) is the thrust applied at time t 

Furthermore, we will set boundary, initial and terminal conditions as follows: 

 0	 ≤ K ≤ K,, where tf is the time at which the vehicle lands 

 h(0) = h0, the initial altitude of the vehicle above the surface 

 v(0) = v0, the initial velocity of the vehicle 

 m(0) = m0, the initial mass of the vehicle 

 h(tf) = 0, the vehicle lands on the surface 

 v(tf) = 0, the soft-landing requirement dictates zero velocity at tf 

 m(t*) = m+!, the mass of the vehicle at landing  

 
Figure 1.6: Lunar Landing Scenario 

h

Forces

T

G

Motion

v

0
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Note that in this case, unlike the rocket car, the use of fuel to generate thrust reduces the 

mass of the vehicle.  Also, for simplicity, we will assume that thrust is unidirectional and limited 

as 

u)1" ≤ u(t) ≤ u)23 

and applying Newton’s second law in this case gives us 

−gm(t) + u(t) = m(t)v̇(t) 

We then recognize that the control is really the thrust of the engines which in turn 

consumes the fuel on the vehicle.  So, the rate of change of the mass can be described in terms of 

the control  

ṁ(t) = −ku(t) 

where k is the reciprocal of the speed at which the engine exhaust is expelled.  Now, since we are 

trying to minimize the amount of fuel consumed, we can state the cost function as: 

C(u) = −G ṁ(s)
+!

#
ds = m(0) − m(t*) 

(1.12) 

We note that because the vehicle is consuming fuel,  ȧ(K) ≤ 0 for the duration of the 

descent.  Several interesting things emerge from (1.12): 

• the actual calculation of the cost function, C(u), in this problem is straightforward once 

m(t*) is derived 

• there are other potential ways to represent the cost function in this problem; for example, 

(Liu, 2018) shows how to minimize the “objective” function which is the negative of the 
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final mass of the vehicle and (Prous, 2020) attempts to minimize the square of the amount 

of thrust use 

• regardless of how the cost function is framed, provided that it makes mathematical sense 

in the context of the problem, the challenge is deriving the control that optimizes it 

• finally, minimizing C(u) is equivalent to minimizing the time it takes to land the vehicle 

1.5 Conditions for Optimality 

In both of these simple cases we were able to derive the cost function under the simple 

conditions laid out.  In more realistic scenarios, the questions of existence and uniqueness 

become more important to address. We will address these in order. 

1.5.1 Existence of an (Optimal) Control 

Existence theorems for the solutions of the general case of optimal control problems is an 

active field of study, especially for non-linear systems.  Indeed, before determining if an optimal 

control exists, we need to confirm that any control exists.  The controllability question is often 

framed in this manner: given a system with an initial state, x0, and a desired outcome, xf, does 

there exist a control, u, that can influence the system to attain xf in a finite period of time?  We 

first explored this in section 2.2 but now take a closer look especially as it relates to finding an 

optimal control. 

There has been a great deal of study in investigating the conditions under which an 

optimal control both exists and can be efficiently determined.  Although easier when the systems 

in question are linear, it turns out that the linearity of the system is not a direct driver of the 

existence of an easily derivable optimal control.  What is more critical is the convexity of the set 

of controls, 4, and the constraints imposed on them.  We recall that a set, A, is convex if 
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∀	a$, a%	Î	A	then	sa$ + (1 − s)a%	Î	A	where	s	Î	[0,1] 
(1.13) 

In the context of our exploration, this implies that both ? and the set of constraints on the 

controls must be convex if we are going to use calculation methods that depend on that convexity 

for efficiency.  The reason for this is that a non-convex set of controls or constraints on controls 

has the potential to yield local extrema that may not be global extrema.  That is, we may 

calculate a control which is only optimal for a portion of the system instead of the entire system.  

As we shall see, the convexity of the controls and in particular the control constraints come into 

question in the optimal descent trajectory problem and we will demonstrate an approach for 

addressing it. 

1.5.2 Pontryagin Maximum Principle 

One of the most powerful tools we have at our disposal to compute and confirm the 

existence of an optimal control, is the Pontrygain Maximum Principle (Pontryagin, Bolyanskii, 

Gamkrelidze, & Mishchenko, 1962).  As we will see and show, the maximum principle can be 

applied in different ways to suit the desired conditions of the system.  One of the things that the 

maximum principal makes clear is the usefulness of the Hamiltonian in determining optimal 

control solutions.  However, the Hamiltonian as defined by Pontrygain is different from the 

Hamiltonian of classical mechanics which is defined by (Brittanica, 2022) “the Hamiltonian of a 

system specifies its total energy—i.e., the sum of its kinetic energy (that of motion) and its 

potential energy (that of position) ...”.  Instead, according to (Ferguson & Lim, 1998), the 

Hamiltonian used in optimal control problems “can be understood as an instantaneous increment 
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of the Lagrangian expression of the problem that is to be optimized over a certain time period.”  

As such we define the Hamiltonian as  

H(x, l, u) 	= 	f(x, u) ∙ l	 + 	M(x, u) 

In its most general version, the maximum principle states that the optimal state, x*, optimal 

control, u*, and Lagrange multiplier, l*, will minimize the Hamiltonian, H, of the system as 

described in (1.3), over the time interval 0 ≤ K ≤ K, such that 

H(x∗(t), u∗(t), l∗(t), t) 	≤ H(x(t), u(t), l(t), t) 

(1.14) 

−l̇
4
(t) 	= 	H3(x∗(t), u∗(t), l(t), t) = l4(t)f3(x∗(t), u∗(t)) 	+	M3(x∗(t), u∗(t))	 

(1.15) 

l4(t*) = N3(x(t*)) 
(1.16) 

and if the final state of the system, x(tf) is not fixed, then 

N(x(t*)) + H(t*) 	= 	0 
(1.17) 

Recall from 1.3.3 that M(x(t), x(t))	and N(x(t*)) represent the variable and fixed costs of 

the system, respectively.  The other important element introduced is the appearance of the 

Lagrange multiplier, l, which is often referred to as the “costate”.  We can see from (1.14) that 

the costate variable also solves H.  According to the Maximum Principle, equations (1.14) - 

(1.17) represent necessary conditions for optimality.  These conditions become sufficient when 

the cost function and the constraints of the system meet certain convexity conditions.  We will 

discuss this in the context of the lunar landing problem in section 2.1.1. 
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As noted earlier, the Maximum Principle, can be applied in a number of different 

situations according to the nature of the problem.  In many cases, that is what (Evans, 1983) 

refers to as a “fixed time, free end state” problem where we are trying to minimize the time to 

advance the system from a given state.  However, in this paper, we are concerned with the 

category of a “free time, fixed end state” problem.  Said differently, we are less concerned about 

how much time it takes the system to reach the desired end state because we are trying to 

optimize the amount of fuel spent in reaching the desired state. 

In this case, we have the following conditions for achieving optimality over 0 ≤ K ≤ K, 

ḣ∗(t) = ∇lH(x∗(t), u∗(t), l
∗(t)) 

l̇
∗
(t) = −∇5H(x∗(t), u∗(t), l

∗(t)) 

H(x∗(t), u∗(t), l∗(t)) = min
.
{ H(x∗(t), u(t), l∗(t))} 

H(x∗(t), u∗(t), l∗(t)) = 0 
(1.18) 

We should note that in this case, tf represents the first time the system reaches its desired 

state.  In our case, that is the instant the vehicle touches down in the desired location on the 

surface with zero velocity and in the proper orientation.  Furthermore, we shall see that we can 

represent H in a more straightforward manner tied directly back to our system as follows 

H(x, l, u) 	= 	f(x, u) ∙ l	 + 	M(x, u) 
(1.19) 

One additional note.  Despite the fact that we define the Cost function as something we 

would strive to minimize through an optimal control, the Pontrygain Maximum Principle applies 

equally well in this context as maximizing a function is the mathematical equivalent of 

minimizing the negative of that function. 
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CHAPTER II 

SCENARIO ONE: THE LUNAR LANDING PROBLEM 

2.1 Framing the Scenario 

In 1.4.2 we introduced the basics of the lunar landing problem.  In this chapter, we will 

formalize the treatment of the problem, first by applying the maximum principle to confirm the 

form and existence of an optimal control, then to develop analytical and numeric solutions to the 

problem, and finally to examine the behavior of the optimally controlled system through a series 

of simulations and sensitivity analyses. 

 
Figure 2.1: Lunar Landing Scenario 

2.1.1 Applying the Maximum Principle to the Lunar Landing Problem 

To illustrate how this works in practice, let us return to the lunar landing example from 

1.4.2 using the variables from section 1.3.1.  Recall that the equations of motion with control can 

be expressed as 

h

Forces

T

G

Motion

v

0
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f(%, u) = k
ḣ
v̇
ṁ
l = m

v
u

m
− g

−ku

n 

(2.1) 

 

We can then define the control Hamiltonian as 

H(x, l, u) = vl$ + o
u

m
− 	gp l% − kul& − u	

= vl$ +
u

m
l% − 	gl% − (kl& + 1)u	

= vl$ 	− 	gl% + (−kl& +
$

)
l% − 1)u  

(2.2) 

So, we can calculate 

q5 = k
q6
q7
q8

l = r

0
l$

−
u

m% l%
s 

(2.3) 

and 

l̇(t) = 	−H3 = − k
H9
H:
H)

l = r

0
−l$
u

m% l%
s 

(2.4) 

Now by applying the maximum principle, we know that the control, u*, that maximizes H 

optimizes the cost function and therefore minimizes the fuel consumed.  We can easily test for 

the maximum of H over u from 

H; = −kl& +
1

m
l% − 1 = 0 

(2.5) 
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However, since ℋ is linear in u, ℋ is maximized at the endpoints of values of u, 

specifically 

u = u
u)23	if − kl& +

1

m
l% − 1 > 0

u)1"	if − kl& +
1

m
l% − 1 < 0

 

(2.6) 

It is at this point that we need to address the necessary condition for optimality in the use 

of the maximum principle.  That condition is the convexity of the dynamics of the problem and 

the set of controls, ?, and the constraints imposed on it.  We recall that a set, A, is convex if 

∀	a$, a%	Î	A	then	sa$ + (1 − s)a%	Î	A	where	s	Î	[0,1] 
(2.7) 

In the context of our exploration, this implies that ? = {x	|	u)1" ≤ u ≤ u)23} is convex. 

The reason for this is that if ? is non-convex there is the potential that the calculations will yield 

local extrema (or possibly no extrema) that may not be global extrema.  That is, we may 

calculate a control which is only optimal for a portion of the system instead of the entire system. 

In our case, ? as defined as not convex.  This is seen as follows.  Choose u1 and u2 as any 

two elements of ? where u$ > u%.  Consider su$ + (1 − s)u% where 0 ≤ y ≤ 1.  For ? to be 

convex, then 

u)1" ≤ su$ + (1 − s)u% 	≤ u)23 

Now, let e = u)1" so that 

su$ + (1 − s)u% ≥ e 

s ≥
e− u%
u$ − u%

 

(2.8) 



 28 

This says that as long as we select s < e'."
.#'."

 then we can make ? non-convex.  However, 

if e = u)1" = 0, then it is not possible to select such an s. 

The physical interpretation of this non-convexity issue can be thought of as the fact that 

from an engineering perspective, there are concerns that it is not feasible for a rocket engine to 

be completely turned off and back on again during flight.  Mathematically, this can be addressed 

in a number of ways.  For example, (Acikmese & Ploen, 2013) introduce a slack variable to take 

the place of the thrust control which convexifies ? at the cost of introducing another constraint.  

Alternatively, ignoring the engineering concerns in favor of a more straightforward approach 

used by (Evans, 1983) et. al., and one that we will adopt, is the assumption that engines are 

simple bang-bang controls such that u Î {u)1", u)23} so that u)1" = 0.  It is easy to see that 

inserting these values into (2.8) confirms that ? is convex. 

The other challenge with convexity comes from the nature of the equations involving the 

controls.  Convexification of these is core of the work by (Liu, 2018) and (Prous, 2020).  

However, because we are interested in exploring the just the descent phase of the vehicle’s 

trajectory, we are going to make use of Taylor approximations to create the necessary conditions 

for the Maximum Principle to apply. 

With these adjustments, we recognize that the control is now a switching function 

meaning the engines are turned on and off in some pattern to achieve optimality.  Now, a review 

of (2.5) and (2.6) suggests that because Hu is independent of u, then there is only one switch 

during the optimal descent.  This is something we will prove later in the solution. 

To begin our analysis of the problem, we can assume that initially the thrusters are turned 

off and are turned on at some point. Intuitively, if we were to consider the opposite and have the 
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thrusters initially turned on then they would need to operate for the entire duration of the descent 

to counter gravity only turning off at the very last instant; this actually maximizes the amount of 

fuel consumed.  So, with the engines initially turned off, we set t = t*, to the time when they are 

turned on so that v(tf) = 0 

u∗(t) = {
0, if	0	£	t < t∗

u)23, if	t
∗	£	t ≤ t*

 

(2.9) 

For brevity, we will refer to u)23 as u for the rest of this and subsequent chapters.  So, if 

we consider the initial period where 0	£	t < t∗ then u(t) = 0 in (2.1) which gives 

f(%, u) = 	 k
ḣ
v̇
ṁ
l = \

v
−g
0
] 

Which can easily be solved using the boundary, initial and terminal conditions as  

h(t) = 	h# + tv# −
1

2
gt% 

v(t) = v# − gt 

m(t) = m# 

(2.10) 

Now, if we consider t∗	£	t ≤ t* then we have 

f(x, u) = 	 k
ḣ
v̇
ṁ
l = m

v

−g +
u

m
−ku

n 

Which can be solved in the order of m(t), then v(t), then h(t) from the initial conditions 

derived from (2.10) with t = t∗ 

 m(t) = ∫(−ku) dt = −kut + c  

  = m# − ku(t − t∗) 
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 v(t) = ∫o−g + .

)
pdt =  ∫ o−g + .

)$'<.(+'+∗)
pdt 

  = −gt − $

<
ln)m# − ku(t − t∗)* + c  

  = v# − gt −
$

<
ln Z1 −

<.

)$
(t − t∗)[  

 

 h(t) = ∫v dt = v#t − g ∫ tdt −
$

<
∫Zln Z1 −

<.

)$
(t − t∗)[[dt  

  = v#t − g ∫ tdt −
$

<
∫Zln Z1 −

<.

)$
(t − t∗)[[ dt  

  = v#t −
$

%
gt% −

$

<
ot − t∗ −

)$
<.
p ln Z1 −

<.

)$
(t − t∗)[ +

$

<
t + c 

  =  h# + v#t −
$

%
gt% +

$

<
(t − t∗) −

$

<
ot − t∗ −

)$
<.
p ln Z1 −

<.

)$
(t − t∗)[ 

            (2.11) 

Now, if we write h(t) = f(v(t)) from both (2.10) and (2.11) we have 

h(t) = h# −
1

2g
(v(t)% − v#

%)	for	0 ≤ t ≤ t∗ 

and 

h(t) ≈ a(v(t)%) + b)v(t)* + c(ln(t))	for	t∗ ≤ t ≤ t* 

 

where a, b and c represent functions derived from substituting v(t) into h(t).  We can then note 

that over both time intervals h(t) they are parabolic in shape with respect to v(t).   So, we can see 

that by switching the engines on at t = t* we shift from one parabola (the uncontrolled system) to 

the other (the controlled system) in manner described in Example 1: The Rocket Car and 

illustrated in Figure 1.2. 

In order to confirm that our initial assumption of the optimal control, we examine the 

original system in terms of the costate variables, li.  Recall that, 
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l(t) = 	−H3 = −k
H9
H:
H)

l = m

0
−l$
.

)" l%
n 

and set initial conditions l$(0) = l$$, l%(0) = l%$, and l&(0) = l&$which together yields  

l$(t) = l$$ 	for	(0 ≤ t ≤ t*) 

l%(t) = l%$ − tl$$for	(0 ≤ t ≤ t*) 

l&(t) = 8

l&$ 	for	(0 ≤ t ≤ t∗)	

l&$ +G
l%$ − sl$$

(m# + k(t∗ − s))%
ds	for	(t∗ ≤ t ≤ t*)

+!

+∗

 

 

Now, recall from (2.5) that 

H.(t) = 	−kl& +
1

m
l% − 1 

(2.12) 

so 

Ḣ.(t) = 	−kl̇& +
ml̇% − ṁl%

m% = −k
u

m% l% +
l$
m
+
kul%
m% =

l$
m
=
l$$
m

 

This means that H.(t) is either increasing or decreasing throughout the descent.  So, we 

can assume that it is increasing throughout. Now, we can evaluate H.(t∗) as 

H.(t∗) = 	−kl&$ +
1

m
(l%$ − t

∗l$$) − 1 

and we can choose l$$, l%$, and l&$ so that H.(t∗) = 0 which means that 

H.(t) {
< 0, 0 ≤ t ≤ t∗	
> 0, t∗ ≤ t ≤ t*

 

which corresponds to and confirms that the optimal control has only one switch at t = t*. 
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2.1.2 Understanding the Impact of the Optimal Control 

Now that we have determined that the optimal descent trajectory involves one switch of 

the control thrusters from off to on, we would naturally want to understand two critical aspects of 

the solution: 

1. At what time, t*, should the control be switched? 

2. What is the set of initial conditions, h0, v0, and m0 that allow for an optimal descent? 

To determine the allowable set of initial conditions, we can compare the trajectory of a 

free-falling vehicle with that of a fully controlled vehicle.  In the first case, t∗ = t* in and in the 

second, t∗ = 0 in.  The former substitution characterizes the vehicle in free-fall through the 

entire duration of its descent.  The latter provides for the trajectory under complete control with a 

soft landing.  In this case, 

v(t*) = 		 v# − gt* −
1

k
ln Ä1 −

kut*
m#

Å = 0 

(2.13) 

h(t*) = h# + v#t* −
1

2
gt*
% +

1

k
t* −

1

k
ot* −

m#

ku
p ln Ä1 −

kut*
m#

Å = 0 

(2.14) 

Inserting (2.13) into  (2.14) allows us to arrive at a quadratic expression for the initial 

height 

h# = −
1

2
gt*
% +

1

k
o1 −

gm#

u
p t* − o

v#m#

ku
p 

(2.15) 

Both (2.13) and (2.15) can be further simplified by approximating the value of the 

logarithmic term with a Taylor expansion.  Doing this allows us to develop an analytical 

foundation for approximating the switching time for the engines.  We will replace this with 
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numerical techniques during our simulations later in this chapter.  For now, the we can 

approximate as follows: 

ln Ä1 −
kut*
m#

Å ≈ −
ku

m#
t* −

(ku)%

2m#
% t*

% 

(2.16) 

By inserting this estimate into (2.13) we can derive an expression for the initial condition 

for height and velocity as  

h# =
$

%
at*

% where a = .

)$
− g 

v# = bt*
% − at* where b = '<."

%)$"
 

 

There are couple of observations from these results.  The first is that the thrust-to-mass 

ratio of the engines must exceed the acceleration due to gravity, that is .
)$
− g > 0.  Intuitively 

this makes sense as if the engines are not strong enough to overcome gravity, a soft landing is 

not possible. Secondly, if the initial conditions are trivial, in that the vehicle is stationary on the 

surface, then tf defaults to 0 which again makes (uninteresting) sense. 

Combining these two results for h0 and v0 gives us 

0 = v# + Ç2ah# −
2b
a
h# = É(h#, v#, m#, u) 

(2.17) 

where we define É(h#, v#, m#) as the so-called switching function which can be interpreted as 

the function whose roots form the set of all possible initial conditions (h0, v0, m0) for achieving a 

soft landing based on the limits of the control (umin, umax).  Geometrically, the intersection of the 

curves É for values of u = 0 (fully free fall) and u = 1 (fully controlled) represents the point at 

which the control is switched on.  This was previously illustrated in Example 1: The Rocket Car. 
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At this point we turn to programs developed in MATLAB to model the scenario.  (See 

Appendix A for details of the code used).  For ease of illustration, we are using the following 

values: h0 = 1000m, v0 = 0m/s, m0 = 100kg, g = 1.6m/s2, u = 180 kg∙m/s2, k = .01s/m.  Note that 

the value of g is a close approximation to the acceleration due to gravity at the surface of the 

moon. The basic logic flow used in the MATLAB programming follows four main steps: 

1. Establish the values for the various parameters, initial and terminal conditions 

2. Calculate the trajectory for initial descent with the control engine turned off and the 

trajectory required for a soft landing with the engine turned on using ODE45 

3. Determine the point of intersection of the two trajectories using an algorithm from 

(Schwarz, 2017) and assemble the combined optimal descent trajectory 

4. Plot the results 
(2.18) 

In Figure 2.1 we can imagine the vehicle traveling down and to the left on the free-fall 

curve from its initial position at (0, 1000) until it intersects with the switching function at which 

point the engines are turned on and the vehicle’s trajectory changes under the influence of the 

control down and to the right until it reaches the soft-landing position at (0,0).  The engines are 

fired at 26.1s with the vehicle at 454m above the surface traveling at a velocity of 41.8m/s 

downwards.  The total duration of the descent is 60.6s and the mass of the vehicle at soft landing 

is 38.8kg.  Figure 2.2 shows the impact of the controlled engine burn on the mass of the vehicle.  

The actual height and velocity trajectories of the vehicle are depicted in Figure 2.3 where we can 

easily see how the acceleration of the vehicle changing to positive causing the descent trajectory 

curve to invert allowing both h(t) and v(t) to approach 0 at the end of the descent. 
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Figure 2.2: Optimal Switching Time and Mass Profile 

 
Figure 2.3: Optimal Descent Trajectories 

 

2.2 Observations, Sensitivities and Conclusions 

2.2.1 Observations 

The results of section provide a complete review of the key elements of the use of 

optimal control theory applied to the problem of fuel-optimal descent trajectories for space 

vehicle landings.  We saw that these kinds of problems are grounded in governing equations, in 
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this case Newtonian laws of motion.  The introduction of the control variable and the application 

of the Maximum Principle gave rise to the introduction of the control Hamiltonian and the co-

state variables.  This allowed us to speculate and then prove that the vehicle’s descent can be 

fuel-optimized through a single switching of the control engines from off to on during the 

descent.  Finally, we were able to show that the optimal time for this switch is a function of the 

initial conditions as well as the maximum magnitude of the engine. 

2.2.2 Sensitivities 

Based on these observations, we can explore the sensitivity of the system to 

controllability.  However, there are two things we must confirm in order to ensure that the 

solutions we are deriving are real. 

The first thing we need to confirm is that the logarithmic term that appears throughout the 

equations beginning in           

  (2.11) only produces real results.  That is m# − kut > 0.  This is accomplished 

through the recognition that there is an upper bound on the amount of fuel that can be consumed.  

If we let the me represent the mass of the vehicle without fuel, then m# −m= ≥ kut.  Which 

means that the vehicle will run out of fuel before a mathematical problem is created. 

The second requirement is that a = .

)$
− g that appears in (2.17) is positive.  This term 

represents the difference between the maximum force of the engines and that of gravity.  It is 

easy to see that if the engines are not strong enough to overcome gravity’s pull, the vehicle will 

never be able to achieve a soft landing.  Interestingly, we shall see in Chapter 3 that the presence 

of an atmosphere requires less powerful engines as drag forces are able to assist in the slowing of 

the vehicle. 
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With these resolved, the first sensitivity we will explore is that which is associated with 

the Taylor approximation in (2.16) which was derived from the standard Taylor approximation 

for ln(1-x) at x = 0 where, in this case, x = 	 <.
)$
t.  So, the question we have is, for how long does 

the order 2 Taylor approximation in (2.16) remain acceptable?  To simplify our examination, let 

µ = <.

)$
 which is constant for the duration of the engine burn.  So, this gives us that 

ln Ä1 −
kut

m#
Å = ln(1 − µt) ≈ −µt −

(µt)%

2
−
(µt)&

3
−⋯ = −Ü

(µt)1

i

>

1?$

 

If we assume, for example, that when fully fueled, half of the mass of the vehicle is fuel 

then µt ≤ $

%
, and the maximum error derived from the second-degree approximation is 

áln Ä
1

2
Å +

1

2
+

1

2 ∙ 2%
á = 0.06815 

and for the third-degree approximation the maximum error is  

áln Ä
1

2
Å +

1

2
+

1

2 ∙ 2%
+

1

3 ∙ 2&
á = 0.02648 

Although an understanding of this error size is helpful in determine the relative accuracy 

of the approximations to the analytical solution, the use of MATLAB as a means for more 

precisely calculating the optimal descent trajectory. 

The second area of sensitivity exploration involves the effect of the initial conditions, 

specifically, at what height (h0) and with what initial velocity (v0), should a vehicle of a given 

initial mass (m0), engine power (u), and engine efficiency (k) begin its descent.  Table 2-1, Table 

2-2 and Table 2-3 show the results of MATLAB simulations on the amount of fuel consumed in 

the optimal descent trajectory for each pair initial and given conditions. 
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Table 2-1: Initial Height and Velocity Simulation Results 

 

Table 2-2: Initial Height and Maximum Thrust Simulation Results 

Fuel Used (kg) Initial Height (m) 

 900 950 1000 1050 1100 
 

Max 
Thrust 

(N) 

160 15.3 15.0 14.8 14.6 14.4 
170 46.9 46.2 45.5 44.9 44.3 
180 64.5 63.6 62.7 61.9 61.1 
190 77.0 76.0 75.0 74.1 73.2 
200 87.0 85.9 84.8 83.8 82.9 

 

Table 2-3: Initial Height and Engine Exhaust Speed Simulation Results 

Fuel Used (kg) Initial Height (m) 
 900 950 1000 1050 1100 

Exhaust 
Speed 
(m/s) 

90 67.7 66.7 65.8 64.9 64.1 
95 66.1 65.1 64.2 63.4 62.6 
100 64.5 63.6 62.7 61.9 61.1 
105 63.0 62.1 61.3 60.5 59.8 
110 61.6 60.7 59.9 59.2 58.5 

 

These results lead us to some further observations: 

Fuel Used (kg) Initial Height (m) 

 900 950 1000 1050 1100 

Initial 
Velocity  

(m/s) 

0 64.5 63.6 62.7 61.9 61.1 
-5 64.6 63.7 62.8 62.0 61.2 

-10 65.0 64.1 63.2 62.3 61.5 
-15 65.6 64.7 63.7 62.8 62.0 
-20 66.5 65.4 64.4 63.5 62.6 
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• Increasing the initial (downward) velocity of the vehicle does not reduce the amount of 

fuel consumed and is thus, suboptimal; this is because the engines need to fire sooner in 

order to slow the vehicle to a soft landing 

• The data also confirms the findings by (Brodkin, 2021) that under the negligible 

atmosphere conditions in this scenario the minimum fuel problem is the same as the 

minimum time problem for controlled descent 

• The characteristics of the engines – both its maximum thrust (u) and the efficiency if the 

engines (k) – play an important role in the optimal descent trajectory; for example, 

experimentation in MATLAB illustrates that a 20% increase in the maximum thrust of 

the engines and a 20% increase in the efficiency of the engine can reduce fuel 

consumption by 3%; whether or not this is a good economic tradeoff is obviously 

dependent on the relative costs associated with such fuel consumption and engineering 

improvements 

The insights we gain from this sensitivity analysis will guide us as we look more closely 

into optimal descent trajectories in scenarios involving drag in Chapter 3 and then drag and wind 

in Chapter 4. 

2.2.3 Conclusions 

Although the lunar landing scenario with its overall simplicity derived from the lack of a 

measurable atmosphere does have applicability, it is also instructive in giving us clues to 

understanding the more complex scenarios in the chapter that follow.  More specifically, we will 

be looking for: 
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1. The format of the control Hamiltonian and in particular, its first derivative with respect to 

the control variable(s); this will give us an important clue as to the nature of the operation 

of the control(s) 

2. Whether the dynamics of the scenario will provide the necessary convexity to ensure that 

the Maximum Principle will deliver and optimal control solution 

3. The degree to which Taylor approximation will play a role in the derivation of a 

switching function to allow us to model the operation of the control(s) 

4. How the presence of a measurable atmosphere (in various formats) impacts our ability to 

understand how initial conditions impact the optimal descent trajectories.
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CHAPTER III 

SCENARIO TWO: ATMOSPHERIC DRAG 

3.1 Framing the Scenario 

In  

 

CHAPTER II we were able to illustrate the application of optimal control theory 

techniques to explore the optimal descent trajectory of a vehicle on the surface of the moon.  

Analysis of the lunar landing scenario benefits greatly from the mathematical simplicity that 

follow from the material absence of an atmosphere.  In this and subsequent chapters we will 

leverage these to explore additional more realistic – and more complicated – scenarios. 

The first additional scenario we will explore is the introduction of an atmosphere material 

enough to exert drag on the vehicle as it descends.  As the drag force is in the opposite direction 

of motion, we can continue to view this scenario in one (vertical) dimension.   The decent will be 

controlled in the same manner as in the lunar landing through an engine that can exert vertical 

thrust to oppose gravity.  In this scenario, however, the engine is aided by the drag force which 

increases as the downward speed of the vehicle increases.  Our objective remains to minimize the 

amount of fuel consumed to enable a soft landing. 

3.2 Modeling the System 
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The system in this scenario will be modeled using the same set of variables as in Chapter 

2 with the addition of the variables and parameters required to represent drag.  Based on this, the 

applicable equations of motion are:
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ḣ(t) = v(t)	

v̇(t) =
1

m(t)
(T(t) + D(t)) − G(h)	

ṁ(t) = 	−
T(t)

G(0)I@A
 

(3.1) 

where: 

 h(t) is the height of the vehicle above the landing surface 

 v(t) is the velocity of the vehicle 

 G(h) is the gravitational force acting on the vehicle 

 m(t) is the mass of the vehicle 

 T(t) is the thrust (force) magnitude 

 D(v) is the atmospheric drag force on the vehicle 

 Isp is specific impulse, or thrust efficiency, of the engines 

Further examination of the drag force acting on the vehicle as noted by (NASA, 2021) 

yields: 

D(v) =
1

2
r(h)v%ABCB 

(3.2) 

Our first observation is that the Drag force, D, varies quadratically with the speed of the 

vehicle which, in turn, varies with time.  Secondly, in both (3.1) and (3.2), r(h) is the 

atmospheric density and varies with altitude along with other factors such as temperature.  We 

will explore this nature of how the modeling of atmospheric density affects the optimal descent 



 44 

in section 3.4.  Finally, CD is the coefficient of drag and AD is the cross-sectional area of the 

vehicle against which the drag force is applied. 

In terms of initial and final conditions of the problem.  It is clear that for a safe landing 

we require that the vehicle’s velocity be zero at the end of the descent.  Furthermore, we also 

want the vehicle to land in a specific location on the landing surface directly below the initial 

point consistent with a one-dimensional problem.  Lastly, we want the amount of fuel consumed 

in the landing exercise to be as small as possible.  Figure 3.1 illustrates the forces, motion and 

orientation of the scenario. 

 
Figure 3.1: Atmospheric Drag Scenario 

 

3.3 Discerning the Appropriate (Optimal) Control 

As we pointed out in sections 1.3.3, to construct an optimal control problem we require 

two additional elements: the cost function we are trying to optimize and the controls we are using 

to do so.  Starting with the cost function, we noted that we are trying to minimize the amount of 

fuel consumed in the descent trajectory.  This is equivalent to wanting to maximize the mass of 

the vehicle at landing.  So, for convenience, we will choose the latter perspective with the control 
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at our disposal, as in 2.1.2, being the magnitude of the thrust, T.  Recognizing that there are 

physical and engineering limits to these controls, we will define upper and lower bounds for each 

of them as follows: 

T)1" ≤ T ≤ T)23 

Finally, we will complete the model with a few additional assumptions that will allow for 

a more focused analysis of the outcomes.  Specifically: 

• The force of gravity will be assumed to be constant over the entire descent (g) 

• We can then combine G0 and Isp into a single parameter, $
<
, which is reciprocal of the 

velocity at which exhaust is expelled by the engines (in the opposite direction of the 

thrust) 

• The coefficient of drag, CD, which in reality is a function of the Mach number of the 

vehicle and angle of descent will also be assumed to be constant 

• Similarity, the cross-sectional areas of the vehicle affected by the drag force will also be 

assumed to be constant 

Taking these latter two into account, we will redefine (1.9) and (1.11) as follows: 

D = rdv%, where	d =
1

2
ABCB 

(3.3) 

So, taking all of this into account, the mathematical model we will use to explore optimal 

descent trajectories for safely landing a vehicle on a moon or planet is 
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f(%, u) = k
ḣ
v̇
ṁ
l = 	 m

v
1

m
(u + rdv%) − g

uk

n 

(3.4) 

where we want to determine u* such that  

C(u∗) 	≤ 	C(u) 

subject to 

u)1" ≤ u ≤ u)23 

where we want to minimize 

C(u) = G ṁds
+!

#
= m(0) − m(t*) 

(3.5) 

so that 

0	 ≤ t ≤ t* 

h(0) 	= 	h#	and	h(t*) 	= 0 

v(0) 	= 	 v#	and	v(t*) 	= 0 

 m(0) = m0 and m(tf) = mf 

 u(t*) = 0 
(3.6) 

In this case, we are trying to minimize the fuel consumed or, alternatively, maximize the 

remaining fuel in the vehicle.  Assuming that the vehicle does not lose mass in any other way 

during the descent, that gives us a cost function as shown in (3.5).  This allows us to introduce 

the costate variables l1, l2, and l3 as follows to define the control problem Hamiltonian as 
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 H(x, l, u) = vl$ + o
$

)
(u + rdv%) − 	gpl% − ukl& − u 

= vl$ +
l%
m
(u + rdv%) − 	gl% − (kl& + 1)u	

= vl$ 	− 	gl% +
l"
)
rdv% + (−kl& +

$

)
l% − 1)u  

(3.7) 

We note that the Hamiltonian in this scenario defaults to that in the Lunar Landing problem 

from Chapter 2 when r = 0 which is the case when the atmosphere is negligible. 

From (3.7) we can proceed as follows 

 H9 =
<d:"

)
o
Cr

C9
pl% 

 H: = l$+ %
)
rdvl% 

 H) = − $

)" (u + rdv%)l% 

(3.8) 

and 

l̇$ = −H9 = −
v%d
m

Ä
dr
dh
Å 

l̇% = −H: = −l$ −
2

m
rdv 

l̇& = −H) = $
)" (u + rdv%)l% 

(3.9) 

and 

H; = −kl& +
1

m
l% − 1 

(3.10) 

If we compare (3.8), (3.9) and (3.10)  to (1.18), (1.19) and (2.3) , (2.4) we note two 

important observations.  Firstly, the presence of an atmosphere changes the dynamics affecting 
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the Hamiltonian and the costate variables.  Secondly, the Hamiltonian remains linear in u.  This 

is an important result because it allows us to speculate that the optimal control for the system is 

again a switching function.  As such, we can again choose to start from an assumption for u* 

based on (2.2) as follows 

u∗(t) = {
0	if	0	£	t ≤ t∗

u	if	t∗	£	t ≤ t*
 

(3.11) 

3.4 The Impact of Atmospheric Density 

As we have seen, the presence of a non-negligible atmosphere introduces non-linearity 

into our system.   The v2 term in the representation of the drag forces changes the nature of the 

equations of motion (3.4), the Hamiltonian (3.7), some of its partial derivatives (3.8), and the co-

state variables (3.9).  The key characteristic of the atmosphere in this scenario is the density of 

the atmosphere as the vehicle passes through it.  This is also referred to as atmospheric pressure.  

As noted by (NASA, 2021) under most conditions, r is primarily a function of elevation from the 

surface.  So, the degree to which r impacts the solution depends on the thickness of the 

atmosphere and the height above the surface at which we begin the descent.  There are several 

different ways of modeling atmospheric density.  In this paper, we will consider two.  One where 

the density is constant and the other where the density is a known function of the altitude above 

the surface. 

 

3.4.1 Case 1 – Constant Atmospheric Density 

We will begin by assuming the conditions are such that r is constant.  That is, 
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r(h) = r(0) = 	r# 
(3.12) 

Thus, in this case (3.8) and (3.10) become 

H9 = 0 

H: = l$+ %
)
r#dv 

H) = − <

)" (u + r#dv
%)l% 

(3.13) 

and 

l̇$ = −H9 = 0 

l̇% = −H: = −l$ −
2

m
r#dv 

l̇& = −H) = <
)" (u + r#dv

%)l% 

(3.14) 

and as we noted above, H. is unchanged from (3.10). 

One can easily see that if r0 = 0 which is the case on the moon, then all of the equations 

in this scenario simplify to those in Section 2.1.1 and 2.1.2.  As such, we can proceed with 

attempting to solve for the optimal control and the dynamics of the system in a similar manner. 

For the initial period of 0	£	t ≤ t∗, u(t) = 0 and becomes 

f(%, u) 	= 	 r

v
1

m#
r#dv

% − g

0

s 

(3.15) 

Now, we can easily see that m(t) = m0 as it was in the lunar landing.  However, the 

solutions for v(t) and h(t) require additional work.  Starting with v(t) we have 
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v̇ =
1

m#
r#dv

% − g 

(3.16) 

For simplicity, set a := $
)$
r#d so that (3.16) becomes 

v̇ = av% − g 
(3.17) 

which reveals three possibilities: 

1. If av% − g > 0, then the vehicle must be accelerating upwards and against the force of 

gravity; since the engines are off, then this is not possible. 

2. If av% − g = 0, then the vehicle has reached so-called terminal velocity which we will 

designate as vt and remains constant until the thrusters are applied. 

3. If av% − g < 0 for this entire time interval we can recognize (3.17) as a Riccati Equation 

with constant coefficients that we can then rearrange to 

G
dv

av% − g
= Gdt 

(3.18) 

Now, let b% ∶= 	 2
(
> 0	so we can simplify the integrand on the left-hand side  

1

av% − g
=

1
g

b%v% − 1
=

1
g

(bv − 1)(bv + 1)
=

1
2g

(bv − 1)
−

1
2g

(bv + 1)
 

and so (3.18) becomes 

G
1

(bv − 1)
dv − G

1
(bv + 1)

dv = 2gGdt 

and after integrating both sides with some slight rearranging 
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ln Z
(bv − 1)

(bv + 1)
[ = −2tanh'$(bv) = 2bgt + C 

which simplifies to 

tanh'$(bv) = −bgt − CD 
(3.19) 

and since v(0) = v0 we have CD = −tanh'$(bv#)  

Now we can again rearrange and take the hyperbolic tangent of both sides of (3.19) 

which results in 

v = 	−
1

b
tanh(bgt − CD) = 	−

1

b
tanh(bgt − tanh'$(bv#)) 

(3.20) 

By replacing all of the temporary parameters we arrive at 

v(t) = −ë
gm#

r#d
tanhíë

r#d
gm#

gt − tanh'$ íë
r#d
gm#

v#ì	ì 

(3.21) 

With an expression for v(t) we are able to calculate an expression for h(t) from (3.15) 

where, 

h(t) = −
1

b
G tanh(bgt − tanh'$(bv#)) dt 

= −
1

b%
ln(cosh(bgt − tanh'$(bv#))) + K 

 

Initially, h(0) = h0 so, 

K = h# +
1

b%
ln(cosh(tanh'$(bv#))) = h# +

1

b%
ln Z

1

Ç1 − (bv#)%
[ 
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which delivers 

h(t) = −
1

b%
ln(cosh(bgt − tanh'$(bv#))) + h# +

1

b%
ln Z

1

Ç1 − (bv#)%
[ 

(3.22) 

Now let us attempt to reconcile this result with that in Chapter 2 by considering the 

situation as r0 ® 0 Þ a ® 0 Þ b ® 0.  That is 

lim
E→#

v = lim
E→#

Ä−
1

b
tanh(bgt − CD)Å 

(3.23) 

Using the Taylor expansion of tanh at 0 

tanh(bgt − CD) = (bgt − CD) −
1

3
(bgt − CD)& +

2

15
(bgt − CD)G −+⋯ 

which implies 

−
1

b
tanh(bgt − CD) = Ä−gt +

1

b
CDÅ +

1

3b
(bgt − CD)& −

2

15b
(bgt − CD)G −+⋯ 

Recall from CD = tanh'$(bv#) which also has a Taylor series at 0 

CD = tanh'$(bv#) = 	 (bv#) +
(bv#)&

3
+
(bv#)G

5
+⋯ 

and 

−
$

E
CD =	−v# −

(E:$)&

&E
−

(E:$)'

E
+⋯  

which we can see tends to -v0 as b tends to 0.  Thus, 

lim
E→#

v(t) = −gt − v# 

This is the same result we derived in the scenario where the atmosphere was negligible.  

In a similar manner we can attempt to show that the same simplification applies to h(t).  
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Although it is possible to do this from (3.22), we can use the fact that (3.21) is both continuous 

and uniformly convergent to confirm that  

G lim
E®#

v(t) dt = lim
E®#

Gv(t) dt 

thus, 

lim
E→#

h = h# + tv# −
1

2
gt% 

which corresponds to (2.3).  

We now turn to the period of time where K∗ ≤ 	t ≤ K, and (3.16) becomes 

f(%, 3) 	= 	 k

v
$

)
(u + r#dv

%) − g

−ku
l  

As before, we will begin with finding m(t) which turns out to be straight forward in that it 

is the same as in (2.5). 

m(t) = m# − ku(t − t∗) 
(3.24) 

Solving for the velocity is significantly more difficult as we have 

v̇ =
1

m
)u + r#dv

%* − g =
r#dv

%

m
+
u

m
− g 

Now, let R(t) ≔ r$d
)

 and P(t) ≔ .

)
− g so we have another Riccati equation in form 

v̇ = R(t)v% + P(t) 
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This is a simpler version of the general Riccati equation v̇ = R(t)v% + Q(t)v + P(t) 

where Q(t) = 0.  Solutions to this category are offered in a variety of texts including (Al Bastami, 

Belic, & Petrovic, 2010) in which a substitution of v = −
Ḣ

JH
 yields 

z̈ −
Ṙ

R
ż + PRz = 0 

(3.25) 

Noting that Ṙ = r$d<.
()$'<.(+'+∗))"

	and substituting the values for R and P from above 

transforms (3.25) into  

z̈ −
r#dku
m%

m

r#d
ż +

r#d
m

(
u

m
− g)z = 0 

z̈ −
ku

m
ż +

r#d
m

(
u

m
− g)z = 0 

(3.26) 

Although it is possible to advance (3.26) further analytically, at this point we will move 

to numeric solutions using MATLAB following the same logic flow described in (2.18) that was 

used in the Lunar Landing Scenario by adapting the equation for the vertical acceleration solved 

by ODE45.  In order to develop a broader and more realistic picture of the impact of atmospheric 

density, the analytical results of this section were examined numerically for three different 

settings: Mars, Earth and an imaginary planet, Prueba, with comparable characteristics of 

gravitational acceleration and atmospheric density.   

Table 3-1 contains the values used in the simulations for all three planets along with the 

colors used to plot the results for ease of recognition.  The initial conditions were kept constant 

from the simulations used in Chapter 2, specifically h0 = 1000m, v0 = 0m/s, m0 = 100kg, u = 180 
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kg∙m/s2, and k = .01s/m.  The value of the unitless drag coefficient, d, was set to 0.1 in line with 

the NASA estimates for a tapered cylinder as a representative shape of the vehicle. 

Table 3-1: Planetary Parameters for Atmospheric Drag Simulations 

Planet Density 
(kg/m3) 

Gravity 
(m/s2) 

Graph 
Color 

Mars 0.020 3.721 red 

Earth 1.293 9.807 blue 

Prueba 0.870 15.00 green 

 

The output from the simulations on all three planetary models are plotted using the same 

four graph frames used in  

 

CHAPTER II.  The first observation we can make from these results is that the 

atmosphere helps.  The drag imparted by the atmosphere assists in slowing the vehicle down, 

which in turn means that the engines don’t need to come on as high in the descent as when there 

is no atmosphere.   This means that the engines do not need to run as long in order to bring the 

vehicle to a soft landing resulting in less fuel consumed.   
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Figure 3.2: Optimal Switching Times and Mass Profiles with Atmospheric Drag 

 

 
Figure 3.3: Optimal Descent Trajectories with Atmospheric Drag 

 

A closer look at the switching heights and velocities in Figure 3.2 gives us further insight. 

We can clearly see that the switching time occurs much higher in the descent to Mars than for 

Earth or Prueba.  This is a due primarily to the relative strength of the two natural forces 

affecting the vehicle: gravity and drag.  On Mars, although the gravity is approximately a third of 

that on Earth, the atmospheric density is less that 2% of Earth’s.  As a result, the drag force is of 
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relatively little help to the engines compared to Earth.  The same comparison can be made 

between Earth and Prueba.  In this situation, we see that Prueba actually creates conditions for 

the latest switching time.  This is a result of stronger gravity which accelerates the vehicle more 

rapidly than Earth’s gravity.  However, the faster the free-fall, the more it is affected by the 

atmospheric density as drag force varies directly with square of the velocity.  In this case, the 

two forces actually work together to the benefit of the fuel optimization objective resulting the 

longest time before switching and hence, the shortest time with the engines burning. 

Figure 3.3 rounds out the depiction of the comparison of the descent trajectories and 

reveal another critical observation.  Even though the engines switch on a higher altitude when 

approaching Mars, they must run longer to counter-act the force of gravity (with relatively little 

help from drag).  This longer burn time contributes to more fuel consumed.  The mass profile of 

the vehicle on each of the three descents clearly shows the fact that an optimal descent to Prueba 

will require less fuel than either Earth or Mars.    

On the other hand, we can see from Figure 3.3 that this optimality could come at a cost.  

At the instant its engines are turned on, the vehicle descending to Mars is traveling downwards at 

nearly 95 m/s, more than twice the speed if it were to be descending to Mars.  The bang-bang 

nature of this kind of engine control would likely put undesired stress on the vehicle’s frame.  It 

is likely, that in this case, the optimal fuel descent may not be the optimal cost descent if the 

vehicle becomes damaged along the way. 

Finally, the overall descent time, most easily seen in Figure 3.3, is almost twice as long 

under the conditions found on Mars compared to Earth.  The longer the vehicle is in motion, the 

more susceptible it is to other potential forces such as wind as well as other difficult to control 
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conditions near the desired landing sight.  We will explore the former in Chapter 4 and the latter 

in Chapter 5. 

3.4.2 Case 2: Atmospheric Density Varies with Altitude 

As we have noted, there are a number of factors affecting atmospheric density as noted 

by (NASA, 2021) including, among others, altitude, temperature and pressure.  Indeed, for 

earth’s atmosphere, the density does not vary uniformly with any variable because of the effects 

of the others.  Furthermore, the atmosphere itself behaves differently as it moves from the lowest 

elevations, known as the troposphere to higher elevations of the lower and then upper 

stratospheres. 

For the purpose of this paper, we will concentrate on the effect of elevation and use the 

modelling approximation from (Anglim, 2016) which in the variables from this paper are 

r(h) = 	r#e
'
(9(+))
9$  

(3.27) 

and 

dr
dh

= 	−
r#
h#
e
'
9
9$ 

(3.28) 

Substituting (3.27) and (3.28) into equations (3.8), (3.9), and (3.10) produces 

H9 =
−kdv%

m

r#
h#
e
'
9
9$ 

H: = l$+ %
)
dvl%r#e

'
(
($ 

H) = − $

)" (u + dv%r#e
'
(
($)l% 

(3.29) 
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and 

l̇$ = −H9 = <C:
"

)

r$
9$
e
'
(
($ 

l̇% = −H: = −l$ −	
2

m
dvl%r#e

'
9
9$ 

l̇& = −H) = $
)" (u + dv%r#e

'
(
($)l% 

(3.30) 

and 

H; = −kl& +
1

m
l% − 1 

(3.31) 

It is clear from equations (3.29) and (3.30) that solving for the velocity and movement of 

the vehicle will be more difficult than in Case 1.  However, we observe that the Hamiltonian’s 

derivative over u shown in (3.31) remains the same as in Case 1 and indeed the same as in the 

Lunar Landing scenario explored in Chapter 2.  This allows us to examine the optimal descent 

trajectory starting from the same assumption of a single switching time at t*. 

So, restarting from the basic equations of motion from (3.4), we have  

f(%, u) = k
ḣ
v̇
ṁ
l = 	 m

v
1

m
(u + rdv%) − g

−uk

n 

(3.32) 

now, the equation for the change in mass is unaffected by the formula for r so, 

m(t) = {
m#, 0 ≤ t ≤ t∗

m(t), t∗ ≤ t ≤ t*
 

However, the equation for the velocity of the descending vehicle is affected by inserting 

(3.27) into (3.32) yielding 
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v̇ =
1

m
Zu + r#e

'
9
9$dv%[ − g 

(3.33) 

as noted in with the basic premise that 

m(t) = {
m#, 0 ≤ t ≤ t∗

m(t), t∗ ≤ t ≤ t*
 

Unfortunately, solving the equations of motion analytically under the switching control is 

no long practical even for the period of 	0 ≤ t ≤ t∗ when the vehicle’s mass is constant.  So, as 

we did in the second part of the first case, we will use numerical techniques to solve for v(t) and 

h(t). 

Using the same basic approach in MATLAB as described in (2.18) with the noticeable 

adjustment of the revised system of equations in (3.32), we explored the impact on all three 

planets.  However, the most interesting result occurs when comparing the descent profiles on the 

same planet for the different representations of the atmospheric density.  The velocity profile and 

height profile results are shown for Mars in Figure 3.4 where the red line reflects the descent 

when the atmospheric density is constant, that is, r = r0, and the magenta line reflects a variable 

atmospheric density as modeled in (3.30) where  

r(h) = 	r#e
'
(((*))
($ . 
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Figure 3.4: The Effect of Variable Atmospheric Density on Optimal Descent Trajectories  

Although the impact is subtle, it is clear that the lower atmospheric density at higher 

altitudes enables the free-falling vehicle to acquire more speed which, as we have mentioned, 

increases the drag force.  This slightly higher velocity is enough to provide even more aid to the 

engines, especially at lower altitudes, when the logarithmic modeling of the variable atmospheric 

density quickly approaches the fixed value of r0.  Overall, this results in a slightly shorter burn 

and less fuel consumed. 

3.5 Conclusions 

In this chapter we explored the more advanced and useful scenario of optimal descent 

trajectories through the introduction of an atmosphere surrounding the planet on which we would 

like to softly land the vehicle.  In doing so, we have been able to draw some insightful 

conclusions: 

1. The introduction of the drag force caused by the presence of an atmosphere does not 

change the nature of the control variable that we can use to model and determine the 

optimal descent.  The bang-bang control of having the engines initially turned off and 
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then turned on at a specific time continues to deliver an optimal descent in terms of fuel 

consumed 

2. On the other hand, the presence of the drag force, and in particular its direct dependence 

on the square of the velocity of the vehicle introduces non-linearity into the system of 

equations used to model the scenario. As a result, we begin to see Ricatti equations 

appear in the solutions.  Although some of these are possible to solve, the additional 

complexity of a variable atmospheric density along with a desire to rapidly simulate the 

system as a means of determining the optimal descent, lead us to the need to develop 

numerical solutions for the system 

3. Through the results of the numerical solutions, we are clearly able to see the impact of 

the atmosphere on the optimal descent.  We observed that the drag force is the first line of 

defense against gravity when attempting to slow a free-falling vehicle to ensure a soft 

landing.  Furthermore, the combined impact of gravity and drag actually create the ideal 

conditions for optimal fuel consumption on descent. 

Our objective in this scenario was to understand the impact of an atmosphere on optimal 

fuel descent trajectories.  The modeling of the atmosphere – both as a fixed value and as a 

logarithmic changing value – provided helpful insight into understanding how optimal descent 

trajectories will vary from planet to planet.  Of course, there a number of other factors that can 

affect atmospheric density including the composition of the atmosphere, its thickness relative to 

the planet, and temperature to name just a few.  These additional conditions provide ample 

opportunity for further study of this problem. 
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CHAPTER IV 

SCENARIO THREE: ATMOSPHERIC WIND 

4.1 Framing the Scenario 

In this scenario, we will build on the work in CHAPTER III and add another force to be 

reckoned with, wind.  This phenomenon is to be expected in any atmosphere.  Wind speed, 

direction and the force it imparts on objects are a result of a number of factors, such as relative 

differences in atmospheric temperatures and densities.  Experience tells us that windspeed and 

direction appear almost random with gusts of wind affecting objects over very short distances.  

The direction and firmness of a flag flying from the top of a building on one side of a street 

might be completely different than that of a flag from the top of a similarly sized building on the 

other side of the street. 

For the purposes of this paper, we model wind as an entirely horizontal force acting on 

the descending vehicle.  As such, we need to consider three important elements of the descent 

trajectory.  The first is the concept of airspeed.  As explained by NASA’s (Glenn Research 

Center, 2021), in aviation, airspeed refers to the speed of an airborne craft relative to the air 

around it.  This is different from the craft’s groundspeed which the speed of the craft relative to a 

stationary point on the ground beneath it.  Both of these are different from windspeed, which 

reflects the speed of the air relative to a stationary point on the ground.



 64 

 

 

Mathematically, the three speeds are related 
through a simple formula: 

 
Airspeed = Groundspeed – Windspeed 

(4.1) 

 

 

Figure 4.1: Aeronautical Speed Terminology 

It is important to note that use of the word speed in all of this is aeronautical convention.  

Indeed, all three are velocities and direction matters.  As we shall see, this relationship between 

the three impacts how we state the equations of motion on the vehicle’s descent. 

The second key element is that windspeeds generally vary with altitude with winds at 

higher altitudes being typically higher than at lower points in an atmosphere.  There are to 

primary reasons for this. First, as we have discussed in CHAPTER III, atmospheric density 

declines with altitude so the forces responsible for creating wind are being imparted on less mass 

hence higher acceleration and velocities.  Second, there is more resistance to air movement at 

lower altitudes such as trees, buildings, etc.  This change in horizontal windspeed due to altitude 

is referred to as vertical windshear and is an important factor in both meteorology and 

aeronautics. 

The third factor we need to consider is that any attempt to influence the airspeed of an 

airborne craft will create drag on the vehicle in the opposite direction of the airspeed.  This is 

easy to grasp when we think about trying to walk or cycle into the wind.  However, it is still true 

h

(0,0) r

Airspeed Windspeed

Groundspeed
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if we are moving in the same direction of the wind.  If we are walking faster than the wind, the 

drag will tend to slow us down. If we walk slower than the wind, the drag will cause us to speed 

up.  There is no drag if we are moving at exactly the same speed as the wind because in that case, 

as noted in the formula above, our airspeed is actually zero. 

We are going to introduce one more factor to increase the realism of this scenario and 

that is the flexibility for guiding the vehicle to land at a point on the ground somewhere 

downrange from the point directly below the initial position. 

 
Figure 4.2: Atmospheric Drag and Wind Scenario 

In order to create as realistic scenario as possible, we will layer the impact of wind on the 

second case we explored in CHAPTER III, being the situation where atmospheric density varies 

with height.  The examination of the impact of wind will be done in two cases.  The first will be 

the case where the windspeed varies linearly with height and will be followed by a second case 

where the windspeed will vary logarithmically with height. 

We are going to introduce one more factor to increase the realism of this scenario and 

that is the flexibility for guiding the vehicle to land at a point on the ground somewhere 

downrange from the point directly below the initial position.  This will provide for the ability to 
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account for, among other things, the rotation of the planet during a descent.  An illustration of the 

system is shown in Figure 4.1. 

4.2 Modeling the System 

The introduction of a horizontal force makes this a two-dimensional problem.  If we 

restrict our model to consider the two orthogonal paths of motion, vertical and horizontal, as 

sufficiently independent, we can use the same set of variables from the two previous scenarios to 

model the vertical dimension and then introduce two new variables for the horizontal motion of 

the vehicle.  We will refer to the horizontal, or downrange, dimension of the problem as range, 

represented with r.  Referring back to the development in (3.1), we can model the system as 

follows: 

ḣ(t) = v9 

ṙ(t) = vK 

v̇9(t) =
1

m(t)
(T9(t) + D9(v9)) − G(h) 

v̇K(t) =
$

)(+)
(TK(t) + DK(vK, w(h))) + W(h) 

ṁ(t) = 	−
T9 + TK
G(0)I@A

 

(4.2) 

 

where: 

 h(t) is the height of the vehicle above the landing surface 

 r(t) is the horizontal distance of the vehicle downrange 

 vh(t) is the vertical velocity of the vehicle where vh(t) £ 0 
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 vr(t) is the horizontal velocity of the vehicle 

 G(h) is the acceleration due to gravity of the vehicle 

 m(t) is the mass of the vehicle 

 w(h) is the wind (atmospheric) velocity surrounding the vehicle 

 Th(t) is the thrust (force) of the vertical engines 

 Tr(t) is the thrust (force) of the horizontal engines 

 Dh(vh) is the atmospheric drag force on the vehicle as it descends 

 Dr(vr) is the atmospheric drag force as it moves downrange 

 Isp is specific impulse, or thrust efficiency, of the engines 

The initial, terminal, boundary conditions in this scenario are: 

0	 ≤ t ≤ t* 

h(0) = h#	and	h(t*) = 0 

r(0) = 0	and	r(t*) = r* 

v9(0) = v9#	and	v9(t*) = 0 

vK(0) = w(h#)		and	vK(t*) = 0 

m(0) = m0 and m(tf) = mf 
(4.3) 

Notice that in scenario, the initial downrange velocity of the vehicle is windspeed at the 

initial height, h0.  We shall show how the different models for w(h) will affect this initial 

condition. 
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4.3 Discerning the Appropriate (Optimal) Control 

In the Atmospheric Drag scenario discussed in CHAPTER III, we used the same control, 

the vertical engine thrust, that was first introduced in  

 

CHAPTER II.  We found that by switching that control from off to on at the specified 

time, t*, during the flight, we were able to minimize the amount of fuel consumed on safe descent 

and thus the control was optimal.  In this new scenario involving wind, it is clear that a second 

control will be required to govern the thrust produced from a horizontal engine (similar to the 

rocket car example in 1.4.1). 

The presence of horizontal forces requires us to determine appropriate equations of 

motion in the lateral or downrange dimension.  From Newton’s law, we have that 

v̇K =
−uK
m

+
1

m
rdK(vK −w)% + ẇ 

(4.4) 

The first term on the right-hand side represents the acceleration caused by the force of the 

horizontal engines similar to what we have seen in previous equations for v̇ with the except that 

the force is expected to act in the opposite direction of the wind and as a result shown as 

negative.  The middle term mathematically describes the impact of drag on the vehicle whenever 

the vehicles groundspeed differs that the windspeed.  That is, when the airspeed is not zero.  We 

have introduced the horizontal analogy to the drag coefficient of the vehicle in the form of dr.  

This is very likely a different value from the parameter we introduced in 3.2 (which we now 

rename as dh) because dr is based on the vertical profile of the descending vehicle.  Finally, the 

last term represents the time rate of change in windspeed. 



 69 

There is another important modification to our model in this scenario.  The presence of a 

second horizontal engine acting independently from the vertical engine means there is another 

consumer of fuel for which we must take account.  So, we need to change the way we describe 

the way in which the mass of the vehicle changes to ṁ = −(k9u9 + kKuK) which introduces kh 

and kr as measures of efficiency of the two separate engines. 

Based on this, we can begin to examine the requirements for optimal control.  Under 

these conditions we have 

f(%, 3) =

⎣
⎢
⎢
⎢
⎡ ḣ
ṙ
v̇9
v̇K
ṁ⎦
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎢
⎢
⎡

v9
vK

1

m
)u9 + rd9v9

%* − g

1

m
(−uK + rdK(vK −w)%) + ẇ

−(k9u9 + kKuK) ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

(4.5) 

and we have two controls, 3 = ü
u9
uK
† where u9 is the vertical thrust control and uK is the 

horizontal thrust control.  The total thrust at any one point in time, u, is the sum of the two so that 

u = uh + ur.  

We can now proceed with defining the control theory Hamiltonian in this scenario 

H(x, l, u) = λ$ḣ + λ%ṙ + λ&v̇9 + λLv̇K + λGṁ + u 

which we can make further explicit through substitution from (4.5) to arrive at 

H(x, l, u) = 	 λ$v9 + λ%vK + λ& Ä
1

m
)u9 + rd9v9

%* − gÅ 

+	λL Ä
1

m
(−uK + rdK(vK −w)%) + ẇÅ − λG(k9u9 + kKuK)̇ − (u9 + uK) 

(4.6) 
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H9 =
kd9v9

%

m
Ä
dr
dh
Ål& + ZdK

d(r(vK −w)%)
dh

+
dẇ

dh
[lL 

HK = 0 

H:( = l$ +
2

m
rd9v9l& 

H:, = 2rdK(vK −w)lL 

H) = −
1

m% )u9 + rdv9
%*l& +

1

m% (uK − rdK(vK −w)%)λL 
(4.7) 

and 

l̇$ = −H9 = −
kd9v9

%

m
Ä
dr
dh
Å l& − ZdK

d(r(vK −w)%)
dh

+
dẇ

dh
[ lL 

l̇% = −HK = 0 

l̇& = −H:( = −l$ −
2

m
rd6v9l& 

l̇L = −H:, = −2rdK(vK −w)lL 

l̇G = −H) =
1

m% )u9 + rdv9
%*l& −

1

m% (uK − rdK(vK −w)%)λL 
(4.8) 

and 

H.( =
l&
m
− 1 − λGk9 

H., = −
lL
m
− 1 − λGkK 

(4.9) 

An important observation from equations (4.7) and (4.8) is that only the H9 partial 

derivative and consequently the l̇$co-state variable equation are directly dependent on h.  We 

will address the impact on it each of the two cases below where we have specific representations 

for w(h).  The other key result from (4.9) is that the Hamiltonian is linear in u in both 
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dimensions.  As we have shown, that means that there is at most one switch for each control for 

optimality.  This combination of two controls with two different values produces four different 

possibilities for engine thrust as show in Figure 4.3.   

 
Figure 4.3: Possible Engines Ignition Sequences 

 

This can be simplified by observing that there are only two possible paths for the 

switching controls from the initial condition where uh = 0 = ur. Either the vertical engines turn on 

first at time t = t9∗  and then the horizontal engines at t = tK∗ (blue path) or the two engines turn on 

in the opposite order (red path).  It is possible, although highly unlikely, that both engines could 

turn on at exactly the same instant (t9∗  = tK∗) (green path).  However, regardless of the path taken, 

both engines can only switch once for optimality; once on, neither can turn off until landing.  

This gives us the optimal control values for u* as 
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u9
∗ (t) = {

0	if	0	£	t ≤ t9
∗

u	if	t9
∗ 	£	t ≤ t*

	

uK∗(t) = {
0	if	0	£	t ≤ tK

∗

u	if	tK
∗	£	t ≤ t*

 

(4.10) 

It is worth confirming that the cost function associated with the consumption of fuel 

remains the same as it was when we first introduced it in (1.12) as 

C(u) = −G ṁ(s)
+!

#
ds = m(0) − m(t*) 

This means that finding the optimal trajectory for descent under these conditions remains a 

problem of finding the fastest controlled trajectory resulting in a safe landing.  The actual 

sequence of the engines igniting, that is whether the vertical engines or the downrange engines 

fire first, does not impact the final value of the cost function, although it will have an impact on 

the actual trajectory of the vehicle. 

We can make one last observation from the equations derived in this scenario.  The 

introduction of a horizontal wind has not changed the nature of the vertical movement of the 

system.  In some ways, the problem can be thought of as a combination of the horizontal rocket 

car from 1.4.1 and the vertical lunar landing from 1.4.2, albeit with the additional drag and wind 

forces we have introduced in CHAPTER III and this chapter, respectively.  We are now ready to 

determine solutions for the optimal descent trajectories for the two different models of wind. 

4.3.1  Case 1 – Linearly Increasing Windspeed 

Qualitatively, this case assumes that the windspeed increases in a simple linear fashion 

with height, h.  As such, we can define a function for the windspeed as  
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w(h) = w#(1 + hz) 
(4.11) 

Where w0 is the windspeed at the surface and z is a constant that represents rate of 

change in windspeed due to the conditions outlined earlier in the chapter.  In this model, z has 

units of s-1.  We can then calculate both the height and time derivatives for the wind function as 

follows 

dw

dh
= w#z 

ẇ = 	
dw

dh

dh

dt
= w#zḣ = w#zv9 

(4.12) 

Recall that vh £ 0 for the entire descent and so we can see that the wind decreases from its 

maximum at t = 0 when w(h0) = w0 + h0z.  We can also determine more explicit expressions for 

the h partial derivative of the Hamiltonian as well as the time derivate of the first state variable.  

Starting with  

H9 =
kd9v9

%

m
Ä
dr
dh
Ål& + ZdK

d(r(vK −w)%)
dh

+
dẇ

dh
[lL 

(4.13) 

we note from (3.28) that  Cr
C9
=	−

r$
9$
e
'
(
($ , CṀ

C9
= 0, and substituting from (4.12) results in  

d(r(vK −w)%)
dh

= 	
dr
dh
(vK −w)% + r

d(vK −w)%

dh
	

= 	−
r#
h#
e
'
9
9$(vK −w)% − 2r#e

'
9
9$(vK −w)z 

Thus, (4.13) and l̇$become 
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H9 =
kd9v9

%

m
Ä
dr
dh
Ål& + ZdK

d(r(vK −w)%)
dh

+
dẇ

dh
[lL 

l̇$ =	−H9 

 

As previously mentioned, the rest of the partial derivatives of the Hamiltonian and time-

derivatives of the co-state variables remain unchanged from (4.7), (4.8), and (4.9) by the explicit 

function for windspeed.  Given these results, we are able to procced as we have done before in 

examining each of the time intervals of descent to understand how the equations of motion in 

(4.5) evolve during each of the time intervals. 

First, let us consider the period of time, 0 ≤ K ≤ min	(t6
∗ , tN∗) when both of the engines 

are off.  In this interval, uh = 0 = ur and the downrange velocity remains equal to the windspeed 

which causes the drag term to vanish.  Essentially, the vehicle will be “floating on the wind” 

during its descent until the downrange engines are ignited.  By inserting these values (4.5) 

becomes 

f(%, 3) =

⎣
⎢
⎢
⎢
⎡ ḣ
ṙ
v̇9
v̇K
ṁ⎦
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎢
⎡

v9
vK

1

m
)rd9v9

%* − g

ẇ
0 ⎦

⎥
⎥
⎥
⎥
⎤

 

(4.14) 

Next, we can consider the period when max(t9∗ , tK∗) ≤ t ≤ t* which is when both engines 

are turned on.  During this interval, f(x,u) becomes 
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f(%, 3) =

⎣
⎢
⎢
⎢
⎡ ḣ
ṙ
v̇9
v̇K
ṁ⎦
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎢
⎢
⎡

v9
vK

1

m
)u9 + rd9v9

%* − g

1

m
(−uK + rdK(vK −w)%) + ẇ

−(k9u9 + kKuK) ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

(4.15) 

Now, we turn our attention to the period when only one of the engines is on.  The obvious 

question we ask ourselves at this point is, which engine comes on first – the horizontal engine 

controlling for wind drift or the vertical engine controlling for gravity?  If the former, then in 

(4.5), uh = 0, and if the latter, ur = 0. 

As we saw in CHAPTER III, attempting to further solve the equations in (4.14) and 

(4.15) using analytical techniques would become quite challenging.  So, we will proceed to 

numerical solutions leveraging MATLAB as we have done previously. 

4.3.2 Case 2 – Exponentially Increasing Windspeed 

An even more realistic model for the way in which windspeed increases with height 

above the surface is to acknowledge that one of the most significant contributing factors to that 

phenomenon mentioned above, namely the decreasing atmospheric density at higher altitudes.  

There are two common models that consider this and have been shown to be fairly accurate 

experimentally: the power or exponential wind law and the logarithmic wind profile law.  For the 

power law (Bañuelos-Ruedas, Angeles-Camacho, & Rios-Marcuello, 2011), we have 

w(h)

we
= Ä

h

he
Å
H

 

(4.16) 

where we is the know speed at some known reference height, he, and z is the Hellman exponent 

which is a measure of the relative friction of the topography.  A common value used for z for 
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open land is 0.143 (Masters, 2013) which is what we will use in our simulations as it is 

reasonable to assume that most vehicle landings will want to be done in as open an area as 

possible for safety, security and other reasons.  

The second commonly used representation (especially in Europe), is the logarithmic wind 

profile law (Perterson & Hennessey, Jr., 1977) which represents the same ratio as  

w(h)

we
=
ln o

h
zp

ln Ä
he
z Å

 

(4.17) 

where in this law, z is referred to as the roughness coefficient length and again is a function of 

the local topology around he.  The flatter and less obstructed terrain, the lower the value.   

Although there are many published comparisons between these models, and indeed other 

models adopted in different contexts, for our purposes, we will use the exponential power law as 

expressed in (4.16).  One thing we will need to address is that this law (as with logarithmic law) 

relies on a ratio of the two heights.  Throughout this paper so far, we have set the surface height 

to be 0 and, in this chapter, designated w0 to be the known windspeed at the surface.  Obviously, 

we cannot set he = 0 in (4.16) so we will set it to be very small relative to the entire vertical 

descent so that we can equate we with w0.  So, from (4.16) we can calculate expressions for w(h) 

and CM
C9

 as follows 

w(h) = w# Ä
h

he
Å
H

 

dw

dh
= zw#

hH'$

he
H  

(4.18) 

One observation we can make from the first equation in (4.18) is that if the surface is 

perfectly unobstructed, we could let z = 0 in which case w is constantly equal to w0 throughout 
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the entire duration of the descent.  Secondly, w(h0) = w# o
9$
9e
p
H
 which means that our choice of 

the near-surface reference height, he, could have a significant impact on the initial conditions.  

We will address that in the simulations.  Lastly, we can recognize that in order to derive an 

expression for ẇ at any point during the descent, we need to compute the following: 

ẇ =
dw

dt
=
dw

dh

dh

dt
= 	zw#

hH'$

he
H ḣ = zw#

hH'$

he
H v9 

(4.19) 

Now, inserting both equations (4.18) and (4.19) into our general formulas for ℋ9 and l̇$ 

in (4.7) and (4.8), respectively, delivers  

 

H9 =
kd9v9

%

m
Ä
dr
dh
Ål& + ZdK

d(r(vK −w)%)
dh

+
dẇ

dh
[lL 

l̇$ =	−H9 

 

Again, since all of the required conditions to apply the bang-bang single-switch optimal control 

formulas continue you to be met, we can proceed with analyzing the equations of motion in the 

time intervals of interest to us. 

Starting with the period of time, 0 ≤ K ≤ min	(t6
∗ , tN∗) when both of the engines are off.  

In this interval, uh = 0 = ur and (4.5) becomes 
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ẇ
0 ⎦

⎥
⎥
⎥
⎥
⎤

 

(4.20) 
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Similarly, we can consider the period when max(t9∗ , tK∗) ≤ t ≤ t* which is when both 

engines are turned on.  During this interval, f(x,u) becomes 

f(%, 3) =
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(4.21) 

As we move to the numerical solutions for (4.20) and (4.21) we will insert the formulas from 

(4.18) to provide a complete model to be solved in MATLAB.  

 

4.3.3 Numerical Simulations Using Linear Model for Wind 

As the conditions under which we have explored optimal descent have advanced through 

this paper, so have the number of variables and parameters governing the systems used to model 

them.  At this point, there are a great many simulations that we could explore.  However, we will 

confine our exploration to a particular scenario that illustrates the impact of atmospheric wind 

alongside a desire to safely land the vehicle a position downrange from the initial position at the 

start of the descent.  In order to provide a similar frame of reference to previous scenarios, we 

will set some of the parameters to the same or similar values.  We will also present the results 

using the same basic format as done previously.  We will select Mars as the target planet Table 

4-1 captures the values used in MATLAB. 

The second dimension requires enhancement to the logic flow initially outlined in (2.18).  

More specifically, the enhanced logic follows these steps: 
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1. Establish the values for the various parameters, initial and terminal conditions 

2. Calculate the trajectory for initial descent with both control engines turned off and the 

soft-landing trajectory with the vertical engine turned on using ODE45 

3. Determine the point of intersection of the two trajectories using an algorithm from 

(Schwarz, 2017) and assemble the adjusted descent trajectory resulting from the 

vertical engine ignition 

4. Calculate the trajectory for the soft-landing trajectory with the downrange engine 

ignited using ODE45 

5. Determine the point of intersection of the two trajectories using an algorithm from 

(Schwarz, 2017) and assemble the combined optimal trajectory and the optimal 

descent trajectory for the remainder of the descent to a soft landing 

6. Plot the results 

Table 4-1: MATLAB Simulation Parameters 

Vertical Parameters Downrange Parameters 

Initial Height 1000m Initial Range 0m 

Initial Velocity 0 m/s Initial Velocity 4 m/s 

Maximum Thrust 160N Maximum Thrust 40N 

Engine Exhaust Speed 100 m/s Engine Exhaust Speed 100 m/s 

Gravity 3.7 m/s2 Surface Windspeed 2 m/s 

Drag Coefficient 0.1 Drag Coefficient 1.0 

Final Height 0m Final Range 70m 

Final Velocity 0m/s Final Velocity 0m/s 

Other Parameters 

Initial Mass 100kg Atmospheric Density .02 kg/m3 

Linear Windspeed .001m-1 Hellman Exponent 0.143 
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Some quick analysis on these parameters provides additional insights into the scenario 

being simulated.   More specifically, the desired landing position relative to the initial height and 

wind profile (both the surface windspeed and the linear model for wind), yield an optimal firing 

sequence of vertical engine first and the downrange engine second (the blue path depicted in 

Figure 4.3).  Furthermore, the relative engine strength and efficiency combine with the other 

parameters to show that downrange thrusters ignite to slow the downrange velocity of the vehicle 

to provide for a soft landing at the desired position.  These are visible in Figure 4.4 below. 

 
Figure 4.4: Engine Ignition Sequencing for Linear Wind Simulation  

Of course, the more interesting observations of this simulation come from understanding 

how the optimal descent is characterized by consumption of fuel and the trajectory of the vehicle.  

This is captured in Figure 4.5 where, although subtle, we see the impact of the second engine 

firing on the mass of the vehicle by the increasing steepness of the line measuring the mass of the 

vehicle throughout the dual burn.  Furthermore, we can see the distinctive change in the descent 

trajectory once both engines are ignited as the second engine works to bring the vehicle to a soft 
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landing at the desired downrange position while the vertical engine continues to softly land the 

vehicle on the surface. 

 
Figure 4.5: Optimal Fuel Consumption and Trajectory for Linear Wind Simulation  

4.3.4 Numerical Simulations Using Power Law Model of Wind 

In the course of refining the MATLAB programming to simulate this scenario using the 

power law model for wind, two initial insights were gained.  Firstly, because of the compounding 

effect of exponential growth in windspeed with this model, the initial windspeed and indeed for 

most of the early part of the descent is much faster than in the case of linear wind speed growth.  

As a result, the downrange engine needs to be much more powerful in order to slow the vehicle’s 

downrange velocity fast enough for a safe landing.  For example, the simulation results 

illustrated in Figure 4.6 and Figure 4.7, represent a model in which the maximum downrange 

thrust is 160N, making it equally powerful as the vertical engine. 

The second major insight is that the relative timing of the engine ignitions and general 

behavior of the system under the optimal control of the thrusters is very similar to that of the 

linear wind model depicted above.  The shape of the curves in Figure 4.6 and Figure 4.7 are 
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largely identical to those in Figure 4.4 and Figure 4.5, respectively.  The only material 

differences are derived from the increase in the power of the downrange thrust engine which 

consumes more fuel and the selection of a different downrange landing point of 110m (as seen in 

Figure 4.7). 

 
Figure 4.6 Engine Ignition Sequencing for Power Wind Simulation 

 
Figure 4.7 Optimal Fuel Consumption and Trajectory for Linear Wind Simulation 

4.4 Conclusions 

The objective of this scenario was to explore the impact on our optimal control model for 

descent trajectories when a second, downrange, dimension is added.  This was done though the 
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introduction of simple model for wind which directly affected the downrange velocity of the 

vehicle along with the desire to select a different downrange landing position for the vehicle.  

The main results of the analytical and numerical exploration of this scenario as follows: 

• The system can be modeled in such a way as to meet the necessary and 

sufficiency conditions for the Pontrygain Maximum Principle using two 

simplified bang-bang controls 

• The addition of a second engine control gives rise to four possible control states: 

both engines off, one on and the other off, vice versa, and both on; furthermore, 

additional analysis is required to understand which engine ignites first to achieve 

optimal descent and under what conditions 

• The manner in which wind is modeled does not materially change the behavior of 

the controls for optimal descent, provided that the wind is modeled in a manner 

that the wind is unidirectional; however, some of the parameters governing the 

system (e.g., engine thrust) may require adjustment in order for the model to 

numerically simulate optimal control 

• This technique, although capable of producing optimal results, has a narrow range 

of applicability; for example, introducing more flexibility into the modeling of 

downrange acceleration would permit the accommodation of a wider range of 

initial and/or terminal conditions. 

This last point lays the foundation for a discussion of how to extend the work and 

findings of this paper which will be outlined in the next and final chapter. 
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CHAPTER V 

RESULTS AND FUTURE EXPLORATION 

5.1 Summary of Results 

This paper set out to explore the use of optimal control theory as a technique for 

determining the optimal descent trajectories that minimize the consumption of fuel for vehicles 

under the advanced conditions of varying atmospheric density, wind and landing positions.  We 

began by laying a foundation of elementary optimal control theory including the properties and 

conditions under which solutions can be discerned and the use of the Pontrygain Maximum 

Principal to confirm the optimality of those solutions. 

We then applied these principles to the problem of optimal descent trajectories, initially 

through the use of analytical techniques to derive direct optimal solutions to the applicable 

equations of motion under the relatively simple conditions of the classic lunar landing problem. 

We showed that the conditions require to apply the maximum principle were met through both 

the behavior of the Hamiltonian’s partial derivatives and the convexity of the possible set of 

control values.  In order to better visualize the analytical solutions, MATLAB was used to create 

a variety of simulations.  These simulations helped us better understand the effects of a few of 

the variables on the optimal trajectories. 

The next area of exploration was the introduction of an atmosphere to create a more 

realistic condition for future landings.  The presence of an atmosphere changed the basic 
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equations of motion for the system as a drag force counteracts the force of gravity.  This drag 

force was modeled in two ways: the first was assuming a fixed atmospheric density at all 

altitudes and the second varies the density with attitude.  Under these advanced conditions we 

were again able to show the maximum principle applied.  Once again, the equations were 

partially solved analytically.  Although the Ricatti equations that emerged could have been 

solved further, it became more desirable to turn to MATLAB-generated numeric solutions.  

Those solutions showed that the presence of an atmosphere assisted in the conservation of fuel as 

the drag force worked in conjunction with the engines to slow the vehicle.  Furthermore, the 

combination of the force of gravity and the density of the atmosphere showed to be a critical 

factor in the optimal descent trajectories. 

The final advanced condition explored, atmospheric wind, required the introduction of a 

second dimension for the model and for the control equations.  As with the investigation into the 

effects of atmosphere, we use two cases to attempt to better understand the impact of wind on 

optimal descent trajectories.  Despite the introduction of a second dimension, the problem was 

framed in a manner that satisfied the conditions required by the maximum principal.  Under the 

conditions, the models were directly solved numerically using MATLAB.  The nuance in 

calculating these solutions was the recognition that each of the two separate control engines 

could switch once each but potentially in a different sequence depending on the relative strength 

of gravity and windspeed.  With the introduction of a second dimension of downrange travel, we 

were also able to investigate the impact of a potentially moving landing surface on the optimal 

descent trajectories as a further advanced condition corresponding to the more realistic situation 

of a rotating planet surface. 
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5.2 Areas for Future Exploration 

5.2.1 Deeper Sensitivity Analytics 

In  

 

CHAPTER II we explored the sensitivity of our optimal descent trajectory calculations to 

changes in a few of the initial conditions such as initial height, velocity, engine thrust limits, 

engine efficiency.  This was accomplished by holding two these variables constant while varying 

the other two.  Although this provided some helpful insight into the behavior of the system and 

how these variables impacted the quest for minimizing the amount of fuel consumed on descent, 

there is a room for much more analysis to be conducted. 

One line of further analysis would be to increase the number of variables considered for 

sensitivity.  For example, the mass of the vehicle could be one of the variables that could be 

varied, especially with an additional constraint on what portion of the vehicle’s mass is fuel at 

the outset of the descent.  Furthermore, we could look further into the relationship between 

gravity and atmospheric density to determine if there is a relationship between those two that 

could predictably provide insight into the initial height and velocity of the vehicle for optimal 

descent. 

A second area of further analysis would be to attempt to consider all of the potential 

variables together as a multivariate regression through a large series of simulations.  This would 

provide for an understanding of the complex relationships between all of the variables, some of 

which are ultimately fixed on a mission (e.g., gravity of planets) and some of which are variable 

in almost all situations (e.g., height at the start of descent).  Following this line would be 
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extremely instructive in that as the more we understand about the interplay between these 

variables on earth prior to launching a vehicle for a multi-destination journey, the more fuel 

optimal the mission would be. 

5.2.2 Sophisticated Wind Models 

In CHAPTER IV we got a glimpse of how the presence of a predicable wind impacts the 

optimal descent trajectory of a vehicle.  Our model was able to use this predictability to establish 

a frame of reference that allowed us to continue to leverage the relative simplicity of a single 

switch bang-bang control.  Intuitively, however, we know that wind is anything but predictable.  

In reality, onboard sensors might be the only way to accurately understand the impact of 

atmospheric wind during descent in real time.  That said, we could endeavor to gain greater 

insight into what we might expect through more sophisticated models for wind. 

Two possible approaches could involve modeling wind as a sinusoidal function or 

modeling it as a stochastic function.  As an example of the former, we could combine the notion 

of wind increasing with altitude that we saw used in CHAPTER IV to vary the amplitude of the 

alternating directions caused by a sinusoidal function to better simulate wind gusts.  

Alternatively, we could inject a degree of randomness into the model through the use of a 

stochastic function that could also be designed to drive the direction and speed of the 

atmospheric wind within an envelope of parameters such as gravity which are more predictable.  

It is clear, however, that any greater sophistication of wind modeling would also require a more 

sophisticated treatment of optimal control theory. 

5.2.3 Variable Controls 
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As we mentioned in the previous section, our rather simplistic treatment of our optimal 

control variables as a single-switch bang-bang control throughout this paper reaches its limit of 

usefulness once we begin contemplate even more advanced conditions.  The remedy is the 

change the model of the control from a pair of orthogonal engines, to a model where one of the 

controls is the thrust of the engines and the other is the angle at which the exhaust is expelled.  

Variations on these approaches are utilized by (Liu, 2018),  (Lu, 2018),  (Prous, 2020),  (Anglim, 

2016) and others.  

By modeling the controls in this manner, a number of complications are introduced: 

1. The basic equations of motion in the system become non-linear in that the 

direction of exhaust needs to be modeled through the use of sine and cosine 

functions 

2. This complexity caries into the Hamiltonian where its partial derivatives all 

become more difficult to calculate and, most importantly, ℋ; is no longer linear 

which immediately eliminates the possibility that the optimal control is single-

switch or bang-bang 

3. The desire to have the thrust controls vary continuously in both amplitude and 

direction also introduces the need to deal with the fact that 4, the set of all 

possible values of the control variables, u, is no longer convex.  This creates a 

challenge in the use of the Pontrygain Maximum Principle and needs to be 

addressed.  The authors cited above use different approaches for doing so. 

Combining all three of these advances into a single examination appears to create an 

opportunity for original research which would benefit the next great area of human endeavor: 

going where no one has gone before.
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MATLAB CODE 
 

 
Chapter II - Scenario One: Lunar Landing 
 
% CHAPTER 2: LUNAR LANDING (NO ATMOPSHERE) USING NUMERIC SOLUTIONS 
 
% INITIAL & TERMINAL CONDITIONS 
 
clear; 
h0 = 1000; % Initial height of the vehicle in meters (m) 
v0 = 0; % Initial velocity of the vehicle in m/s 
m0 = 100; % Initial mass of the vehicle in kg 
k = 1/100; % Reciprocal of the speed of expelled exhaust from engines in s/m 
g = 1.6; % Acceleration due to gravity in m/s^2 
ux = 180; % Control variable upper bound in kgm/s^2 
un = 0; % Control variable lower bound in kgm/s^2 
a = ux/m0 - g; % Simplifying variable alpha 
b = -(k/2)*((ux/m0)^2); % Simplifying variable beta 
tm = sqrt(2*h0/a); % Maximum time allotted for initial calculations= 
numtimesteps = 9999; % Number of time steps used in calcualtions 
timearray = linspace(0,tm,numtimesteps); % Consistent time dimension for all 
psl = .95; psu = 1.05; pst = numtimesteps/101; % Limits for plotting 
 
 
% DESCENT TRAJECTORY CALCULATIONS 
 
% Fully Free-fall Trajectory 
u = un; 
mdot = @(t,m) -k*u;   
vdot = @(t,v) u/(m0-k*u*t) - g; 
% Note, hdot = @(t,h) is embedded in x(2) 
Fxu = @(t,x) [mdot(t,x(1)); vdot(t,x(2)); x(2)]; 
[tffall, xffall] = ode45(Fxu, timearray, [m0;v0;h0]); 
 
% Fully Controlled Trajectory 
u = ux; 
mdot = @(t,m) -k*u;   
vdot = @(t,v) (u/(m0-k*u*t) - g); 
% Note, hdot = @(t,h) is embedded in x(2) 
Fxu = @(t,x) [mdot(t,x(1)); vdot(t,x(2)); x(2)]; 
[tfctrl, xfctrl] = ode45(Fxu, timearray, [m0,0,0]); 
 
% Calculate the Optimal Switching and Landing Times 
[vs,hs] = intersections(-xfctrl(:,2),xfctrl(:,3),xffall(:,2),xffall(:,3)); 
ts = (vs-v0)/(-g); % Time at which the control thruster is turned on 
ffall = [tffall xffall]; 
fctrl = [tfctrl xfctrl(:,1) -xfctrl(:,2) xfctrl(:,3)]; 
tsfi = find(ffall(:,3) > vs, 1, 'last' ); 
tsci = find(fctrl(:,3) < vs, 1 ); 
tfi = tsfi + tsci; 
 
% Assemble the Optimal Trajectory 
optraj = [ffall(1:tsfi,:) ; flip(fctrl(1:tsci,:))]; 
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optraj(:,1) = transpose(0:1:tfi-1)/pst; 
for i = tsfi+1:tfi 
    optraj(i,2) = m0 - k*ux*(i-tsfi)/pst; 
end 
 
% PLOT RESULTS 
 
% Free-fall and Fully Controlled Trajectories 
figure(1); clf(1); hold on; grid on; 
ylim([0 h0*psu]); 
xlim([vs*psu 0]); 
plot(xffall(:,2),xffall(:,3),'b-','linewidth',3); 
plot(-xfctrl(:,2),xfctrl(:,3),'b:','linewidth',3); 
title('Determining the Optimal Switch Time'); 
xlabel('Velocity (m/s)'); 
ylabel('Height (m)'); 
legend('Fully Free-fall', 'Fully Controlled','Location','east') 
figure(1); hold off; 
 
% Mass Profile of the Vehicle 
figure(2); clf(2); hold on; grid on; 
ylim([optraj(end,2)*psl m0*psu]); 
plot(optraj(1:tsfi,1),optraj(1:tsfi,2),'b-','linewidth',3); 
plot(optraj(tsfi:end,1),optraj(tsfi:end,2),'b:','linewidth',3); 
title('Optimal Vehicle Mass Profile'); 
legend('Free-fall', 'Controlled','Location','northeast') 
ylabel('Mass (kg)'); 
xlabel('Time (s)'); 
figure(2); hold off; 
 
% Optimal Velocity Trajectory 
figure(3); clf(3); hold on; grid on; 
plot(optraj(1:tsfi,1),optraj(1:tsfi,3),'b-','linewidth',3); 
plot(optraj(tsfi:end,1),optraj(tsfi:end,3),'b:','linewidth',3); 
%plot(tfall,xfall(:,2),'b-','linewidth',3); 
%plot(tctrl,xctrl(:,2),'r-','linewidth',3); 
title('Optimal Vehicle Velocity Trajectory'); 
legend('Free-fall', 'Controlled','Location','east') 
ylabel('Velocity (m/s)'); 
xlabel('Time (s)'); 
figure(3); hold off; 
 
% Optimal Height Trajectory 
figure(4); clf(4); hold on; grid on; 
plot(optraj(1:tsfi,1),optraj(1:tsfi,4),'b-','linewidth',3); 
plot(optraj(tsfi:end,1),optraj(tsfi:end,4),'b:','linewidth',3); 
title('Optimal Vehicle Height Trajectory'); 
legend('Free-fall', 'Controlled','Location','northeast') 
ylabel('Height (m)'); 
xlabel('Time (s)'); 
figure(4); hold off; 
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Chapter III - Scenario Two: Atmospheric Drag 
 
Scenario Two – Case 1: Fixed Atmospheric Density 
 
% CHAPTER 3: ATMOSPHERIC DRAG WITH FIXED ATMOSPHERIC DENSITY 
%            USING NUMERIC SOLUTIONS 
 
% INITIAL & TERMINAL CONDITIONS 
 
clear; 
h0 = 1000; % Initial height of the vehicle in meters (m) 
v0 = 0; % Initial velocity of the vehicle in m/s 
m0 = 100; % Initial mass of the vehicle in kg 
k = .01; % Reciprocal of the speed of expelled exhaust from engines in s/m 
g = 3.7; % Acceleration due to gravity in m/s^2 using Mars as reference 
%g = 9.8; % Acceleration due to gravity in m/s^2 using Earth as reference 
%g = 15.0; % Acceleration due to gravity in m/s^2 using imaginary planet 
ux = 160; % Control variable upper bound in kgm/s^2 
un = 0; % Control variable lower bound in kgm/s^2 
p0 = .02; % Atmospheric density in kg/m^3 using Mars as reference 
%p0 = 1.293; % Atmospheric density in kg/m^3 using Earth as reference 
%p0 = .87; % Atmospheric density in kg/m^3 using imaginary planet 
d = .1; % Assuming a long cylindrical tapered vehicle shape 
tm = 100; % Maximum time allotted for initial calculations 
numtimesteps = 9999; % Number of time steps used in calcualtions 
timearray = linspace(0,tm,numtimesteps); % Consistent time dimension for all 
psl = .95; psu = 1.05; pst = numtimesteps/101; % Limits for plotting 
 
% DESCENT TRAJECTORY CALCULATIONS WITH FIXED AIR PRESSURE  
 
% Fully Free-fall Trajectory 
u = un; 
mdot = @(t,m) -k*u;   
vdot = @(t,v) (1/(m0-k*u*t))*(p0*d*v^2 + u) - g; 
% Note, hdot = @(t,h) is embedded in x(2) 
Fxu = @(t,x) [mdot(t,x(1)); vdot(t,x(2)); x(2)]; 
[tffall0, xffall0] = ode45(Fxu, timearray, [m0;v0;h0]); 
%[tffall0,xffall0] = FreeFallFixedP(m0,v0,h0,p0,k,un,g,d,tm); 
 
% Fully Controlled Trajectory 
u = ux; 
mdot = @(t,m) -k*u;   
vdot = @(t,v) (1/(m0-k*u*t))*(p0*d*v^2 + u) - g; 
% Note, hdot = @(t,h) is embedded in x(2) 
Fxu = @(t,x) [mdot(t,x(1)); vdot(t,x(2)); x(2)]; 
[tfctrl0, xfctrl0] = ode45(Fxu, timearray, [m0;0;0]); 
%[tfctrl0,xfctrl0] = CtrlFallFixedP(m0,0,0,p0,k,ux,g,d,tm,0,-1); 
 
% Determine the OPTIMAL Switching TIme 
[vs,hs] = intersections(xfctrl0(:,2),-
xfctrl0(:,3),xffall0(:,2),xffall0(:,3)); 
ffall0 = [tffall0 xffall0]; 
fctrl0 = [tfctrl0 xfctrl0(:,1) xfctrl0(:,2) -xfctrl0(:,3)]; 
tsfi = find(ffall0(:,3) > vs, 1, 'last' ); 
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tsci = find(fctrl0(:,3) < vs, 1 ); 
tfi = tsfi + tsci; 
 
% Assemble Optimal Trajectory 
optraj0 = [ffall0(1:tsfi,:) ; flip(fctrl0(1:tsci,:))]; 
optraj0 (:,1) = transpose(0:1:tfi-1)/pst; 
for i = tsfi+1:tfi 
    optraj0(i,2) = m0 - k*ux*(i-tsfi)/pst; 
end 
 
% PLOT RESULTS 
 
% Free-fall and Fully Controlled Trajectories 
figure(1); hold on; grid on; 
ylim([0 h0*psu]); 
xlim([vs*psu 0]); 
plot(xffall0(1:round(tsfi*1.04),2),xffall0(1:round(tsfi*1.04),3),'g-
','linewidth',3); 
plot(xfctrl0(1:round(tsci*1.04),2),-
xfctrl0(1:round(tsci*1.04),3),'g:','linewidth',3); 
title('Determining the Optimal Switch Time'); 
xlabel('Velocity (m/s)'); 
ylabel('Height (m)'); 
legend('Fully Free-fall', 'Fully Controlled','Location','east') 
 
% Optimal Mass Profile of the Vehicle 
figure(2); hold on; grid on; 
ylim([optraj0(end,2)*psl m0*psu]); 
plot(optraj0(1:tsfi,1),optraj0(1:tsfi,2),'g-','linewidth',3); 
plot(optraj0(tsfi:end,1),optraj0(tsfi:end,2),'g:','linewidth',3); 
title('Optimal Vehicle Mass Profile'); 
legend('Free-fall', 'Controlled Descent', 'Location','northeast'); 
ylabel('Mass (kg)'); 
xlabel('Time (s)'); 
figure(2); hold off; 
 
% Optimal Velocity Trajectory 
figure(3); hold on; grid on; 
%ylim([optraj0(end,3)*0.95 optraj0(1,3)*1.05]); 
plot(optraj0(1:tsfi,1),optraj0(1:tsfi,3),'g-','linewidth',3); 
plot(optraj0(tsfi:end,1),optraj0(tsfi:end,3),'g:','linewidth',3); 
title('Optimal Vehicle Velocity Trajectory'); 
legend('Free-fall', 'Controlled Descent', 'Location','southeast'); 
ylabel('Velocity (m/s)'); 
xlabel('Time (s)'); 
figure(3); hold off; 
 
% Optimal Height Trajectory 
figure(4); hold on; grid on; 
ylim([0 h0*psu]); 
plot(optraj0(1:tsfi,1),optraj0(1:tsfi,4),'g-','linewidth',3); 
plot(optraj0(tsfi:end,1),optraj0(tsfi:end,4),'g:','linewidth',3); 
title('Optimal Vehicle Height Trajectory'); 
legend('Free-fall', 'Controlled Descent', 'Location','northeast'); 
ylabel('Height (m)'); 
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xlabel('Time (s)'); 
figure(4); hold off; 
 
 
Scenario Two – Case 2: Variable Atmospheric Density 
 
% CHAPTER 3: ATMOSPHERIC DRAG WITH VARIABLE ATMOSPHERIC DENSITY 
%            USING NUMERIC SOLUTIONS 
 
% INITIAL & TERMINAL CONDITIONS 
 
clear; 
h0 = 1000; % Initial height of the vehicle in meters (m) 
v0 = 0; % Initial velocity of the vehicle in m/s 
m0 = 100; % Initial mass of the vehicle in kg 
k = .01; % Reciprocal of the speed of expelled exhaust from engines in s/m 
g = 3.721; % Acceleration due to gravity in m/s^2 using Mars as reference 
%g = 9.8; % Acceleration due to gravity in m/s^2 using Earth as reference 
%g = 15.0; % Acceleration due to gravity in m/s^2 on an imaginary planet 
ux = 160; % Control variable upper bound in kgm/s^2 
un = 0; % Control variable lower bound in kgm/s^2 
p0 = .02; % Atmospheric density in kg/m^3 using Mars as reference 
%p0 = 1.293; % Atmospheric density in kg/m^3 using Earth as reference 
%p0 = .87; % Atmospheric density in kg/m^3 on an imaginary 
d = .1; % Assuming a long cylindrical tapered vehicle shape 
tm = 100; % Maximum time allotted for initial calculations 
numtimesteps = 999; % Number of time steps used in calcualtions 
timearray = linspace(0,tm,numtimesteps); % Consistent time dimension for all 
psl = .95; psu = 1.05; pst = 11;%numtimesteps/101; % Limits for plotting 
 
% DESCENT TRAJECTORY CALCULATIONS 
 
% Fully Free-fall Trajectory 
u = un; 
mdot = @(t,m) -k*u;   
vdot = @(t,v,h) (1/(m0-k*u*t))*(p0*(exp(-h/h0))*d*v^2 + u) - g; 
% Note, hdot = @(t,h) is embedded in x(2) 
Fxu = @(t,x) [mdot(t,x(1)); vdot(t,x(2),x(3)); x(2)]; 
[tffall0, xffall0] = ode45(Fxu, timearray, [m0;v0;h0]); 
 
% Fully Controlled Trajectory 
u = ux; 
mdot = @(t,m) -k*u;   
vdot = @(t,v,h) (1/(m0-k*u*t))*(p0*(exp(-h/h0))*d*v^2 + u) - g; 
% Note, hdot = @(t,h) is embedded in x(2) 
Fxu = @(t,x) [mdot(t,x(1)); vdot(t,x(2),x(3)); x(2)]; 
[tfctrl0, xfctrl0] = ode45(Fxu, timearray, [m0;0;0]); 
 
 
% Determine the OPTIMAL Switching TIme 
[vs,hs] = intersections(xfctrl0(1:30*pst,2),-
xfctrl0(1:30*pst,3),xffall0(:,2),xffall0(:,3)); 
ffall0 = [tffall0 xffall0]; 
fctrl0 = [tfctrl0 xfctrl0(:,1) xfctrl0(:,2) -xfctrl0(:,3)]; 
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tsfi = find(ffall0(:,3) < vs, 1, 'first' ); 
tsci = find(fctrl0(:,3) < vs, 1); 
tfi = tsfi + tsci; 
 
% Assemble Optimal Trajectory 
optraj0 = [ffall0(1:tsfi,:) ; flip(fctrl0(1:tsci,:))]; 
optraj0 (:,1) = transpose(0:1:tfi-1)/pst; 
for i = tsfi+1:tfi 
    optraj0(i,2) = m0 - k*ux*(i-tsfi)/pst; 
end 
 
% PLOT RESULTS 
 
% Free-fall and Fully Controlled Trajectories 
figure(1); hold on; grid on; 
ylim([0 h0*psu]); 
xlim([vs*psu 0]); 
plot(xffall0(:,2),xffall0(:,3),'k-','linewidth',3); 
plot(xfctrl0(:,2),-xfctrl0(:,3),'g-','linewidth',3); 
title('Determining the Optimal Switch Time'); 
xlabel('Velocity (m/s)'); 
ylabel('Height (m)'); 
legend('Fully Free-fall', 'Fully Controlled','Location','east') 
 
% Optimal Mass Profile of the Vehicle 
figure(2); hold on; grid on; 
ylim([optraj0(end,2)*psl m0*psu]); 
plot(optraj0(1:tsfi,1),optraj0(1:tsfi,2),'k-','linewidth',3); 
plot(optraj0(tsfi:end,1),optraj0(tsfi:end,2),'g-','linewidth',3); 
title('Optimal Vehicle Mass Profile'); 
legend('Free-fall', 'Controlled Descent', 'Location','northeast'); 
ylabel('Mass (kg)'); 
xlabel('Time (s)'); 
figure(2); hold off; 
 
% Optimal Velocity Trajectory 
figure(3); hold on; grid on; 
%ylim([optraj0(end,3)*0.95 optraj0(1,3)*1.05]); 
plot(optraj0(1:tsfi,1),optraj0(1:tsfi,3),'k-','linewidth',3); 
plot(optraj0(tsfi:end,1),optraj0(tsfi:end,3),'g-','linewidth',3); 
title('Optimal Vehicle Velocity Trajectory'); 
legend('Free-fall', 'Controlled Descent', 'Location','southeast'); 
ylabel('Velocity (m/s)'); 
xlabel('Time (s)'); 
figure(3); hold off; 
 
% Optimal Height Trajectory 
figure(4); hold on; grid on; 
ylim([0 h0*psu]); 
plot(optraj0(1:tsfi,1),optraj0(1:tsfi,4),'k-','linewidth',3); 
plot(optraj0(tsfi:end,1),optraj0(tsfi:end,4),'g-','linewidth',3); 
title('Optimal Vehicle Height Trajectory'); 
legend('Free-fall', 'Controlled Descent', 'Location','northeast'); 
ylabel('Height (m)'); 
xlabel('Time (s)'); figure(4); hold off; 
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CHAPTER IV: Scenario Three – Atmospheric Wind 

Scenario Three – Case 1: Linear Growth in Windspeed 
 
% CHAPTER 4: ATMOSPHERIC DRAG AND LINEAR WIND USING NUMERIC SOLUTIONS 
 
% INITIAL & TERMINAL CONDITIONS 
 
clear; 
h0 = 1000; % Initial height of the vehicle in meters (m) 
vh0 = 0; % Initial vertical velocity of the vehicle in m/s 
r0 = 0; % Initial downrange position of the vehicle in m 
rf = 70; % Final downrange position of the vehicle in m 
m0 = 100; % Initial mass of the vehicle in kg 
g = 3.7; % Acceleration due to gravity in m/s^2 using Mars as reference 
%g = 9.8; % Acceleration due to gravity in m/s^2 using Earth as reference 
%g = 15.0; % Acceleration due to gravity in m/s^2 using imaginary planet 
kh = .01; % Reciprocal of the speed of expelled exhaust from vertical engines 
in s/m 
kr = .01; % Reciprocal of the speed of expelled exhaust from horizontal 
engines in s/m 
uxh = 160; % Vertical control variable upper bound in kgm/s^2 
unh = 0; % Vertical control variable lower bound in kgm/s^2 
uxr = 40; % Horizontal control variable upper bound in kgm/s^2 
unr = 0; % Horizontal control variable lower bound in kgm/s^2 
p0 = .02; % Atmospheric density in kg/m^3 using Mars as reference 
%p0 = 1.293; % Atmospheric density in kg/m^3 using Earth as reference 
%p0 = .87; % Atmospheric density in kg/m^3 using imaginary planet 
w0 = 2; % Windspeed in m/s as measured at the surface 
dh = 0.1; % Assuming a long cylindrical tapered vehicle shape 
dr = 1.0; % Assuming a long cylindrical tapered vehicle shape 
tm = 100; % Maximum time allotted for initial calculations 
numtimesteps = 9999; % Number of time steps used in calcualtions 
timearray = linspace(0,tm,numtimesteps); % Consistent time dimension for all 
psl = .90; psu = 1.10; pst = 100; %numtimesteps/101; % Limits for plotting 
 
 
% WIND FUNCTION CALCULATIONS 
 
z = .001; % Linear growth in windspeed in 1/m 
%z = .143; % Hellan exponent value for open surfaces 
vr0 = w0*(1 + z*h0); % Initial downrange velocity of the vehicle in meters 
(m/s) 
h = linspace(0,h0,1000); 
w = w0*(1 + z*h); 
 
 
% TRAJECTORY CALCULATIONS 
 
% Calculate Free-fall Trajectory  
Fxu = @(t,x) [x(3); 
              x(4);  
              (1/x(5))*(unh + p0*(exp(-x(1)/h0))*dh*x(3)^2) - g; 
              (1/x(5))*(-unr + p0*(exp(-x(1)/h0))*dr*(x(4) - ... 
                    w0*(1+z*x(1)))^2) + w0*z*x(3); 
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              -(kh*unh + kr*unr)]; 
[tffall, xffall] = ode45(Fxu, timearray, [h0;r0;vh0;vr0;m0]); 
ffall = [tffall xffall]; 
 
% Determine r, vh and vr at free-fall impact (h = 0) 
ffi = find(xffall(:,1) < 0, 1); 
rff = xffall(ffi,2); 
vhff = xffall(ffi,3); 
vrff = xffall(ffi,4); 
 
% Calculate Vertical Controlled Trajectory 
Fxu = @(t,x) [x(3); 
              x(4);  
              (1/x(5))*(uxh + p0*(exp(-x(1)/h0))*dh*x(3)^2) - g; 
              (1/x(5))*(-unr + p0*(exp(-x(1)/h0))*dr*(x(4) - ... 
                    w0*(1+z*x(1)))^2) + w0*z*x(3); 
              -(kh*uxh + kr*unr)]; 
[tvctrl, xvctrl] = ode45(Fxu, timearray, [0;rff;0;vrff;m0]); 
 
% Determine Switching Time of Vertical Control 
[vhs,hs] = intersections(xvctrl(1:30*pst,3),-
xvctrl(1:30*pst,1),xffall(:,3),xffall(:,1)); 
vctrl = [tvctrl -xvctrl(:,1) xvctrl(:,2) xvctrl(:,3) xvctrl(:,4) 
xvctrl(:,5)]; 
tsvi = find(ffall(:,4) < vhs, 1, 'first' ); 
tcvi = find(vctrl(:,4) < vhs, 1); 
tfvi = tsvi + tcvi; 
 
% Assemble First Two Portions of Optimal Trajectory 
optraj(1:tfvi,:) = ffall(1:tfvi,:); 
optraj(tsvi:tfvi,2) = flip(vctrl(1:tcvi+1,2)); 
optraj(tsvi:tfvi,4) = flip(vctrl(1:tcvi+1,4)); 
optraj(:,1) = transpose(0:1:tfvi-1)/pst; 
for i = tsvi:tfvi 
    optraj(i,6) = m0 - kh*uxh*(i-tsvi)/pst; 
end 
 
% Calculate New Controlled Trajectory 
Fxu = @(t,x) [x(3); 
              x(4);  
              (1/x(5))*(uxh + p0*(exp(-x(1)/h0))*dh*x(3)^2) - g; 
              (1/x(5))*(-unr + p0*(exp(-x(1)/h0))*dr*(x(4) - ... 
                    w0*(1+z*x(1)))^2) + w0*z*x(3); 
              -(kh*uxh + kr*unr)]; 
[tnctrl, xnctrl] = ode45(Fxu, timearray, 
[hs;xffall(tsvi,2);vhs;xffall(tsvi,4);m0]); 
nctrl = [tnctrl xnctrl]; 
 
% Calculate Downrange Controlled Trajectory 
Fxu = @(t,x) [x(3); 
              x(4);  
              (1/x(5))*(unh + p0*(exp(-x(1)/h0))*dh*x(3)^2) - g; 
              (1/x(5))*(-uxr + p0*(exp(-x(1)/h0))*dr*(x(4) - ... 
                    w0*(1+z*x(1)))^2) + w0*z*x(3); 
              -(kh*unh + kr*uxr)]; 
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[trctrl, xrctrl] = ode45(Fxu, timearray, [0;rf;0;0;m0]); 
rctrl = [trctrl xrctrl(:,1) -xrctrl(:,2) xrctrl(:,3) -xrctrl(:,4) 
xrctrl(:,5)]; 
 
% Determine switching time of downrange control 
[vrs,rs] = intersections(-xrctrl(:,4),xrctrl(:,2),xnctrl(:,4),xnctrl(:,2)); 
if length(vrs) > 1 
    vrs = vrs(1); 
    rs = rs(1); 
end 
tsri = find(nctrl(:,5) < vrs, 1, 'first' ); 
tcri = find(rctrl(:,5) < vrs, 1,'last'); 
tfri = tsri + tcri; 
 
% Assemble Last Portion of Optimal Trajectory 
optraj(tsvi+tsri:tfvi,3) = 
flip(interp1(1:tcri,xrctrl(1:tcri,2),linspace(1,tcri,tcvi-tsri+1))); 
optraj(tsvi+tsri:tfvi,5) = flip(interp1(1:tcri,-
xrctrl(1:tcri,4),linspace(1,tcri,tcvi-tsri+1))); 
for i = tsvi+tsri:tfvi 
    optraj(i,6) = optraj(tsvi+tsri,6) - (kh*uxh+kr*uxr)*(i-tsvi-tsri)/pst; 
end   
mf = optraj(end,6); 
 
 
% PLOT RESULTS 
 
% Vertical Engine Ignition Switching Time 
figure(1); clf(1); hold on; grid on; 
xlim([vhs*psu 0]); 
ylim([0 h0*psu]); 
plot(xffall(1:tfvi,3), xffall(1:tfvi,1), 'r-', LineWidth=3); 
plot(xvctrl(1:tfvi,3), -xvctrl(1:tfvi,1), 'r:', LineWidth=3); 
title('Vertical Engine Ingition Switch'); 
xlabel('Vertical Velocity (m/s)'); 
ylabel('Height (m)'); 
legend('Free-fall', 'Vertically Controlled','Location','east'); 
figure(1); hold off; 
 
% Downrange Engine Ignition Switching Time 
figure(2); clf(2); hold on; grid on; 
ylim([0 vr0*psu]); 
xlim([0 rff*psu]); 
plot(ffall(1:tsvi,3), ffall(1:tsvi,5), 'r-',LineWidth=3); 
plot(xnctrl(1:tfvi,2), xnctrl(1:tfvi,4), 'r:', LineWidth=3); 
plot(xrctrl(1:tfri,2), -xrctrl(1:tfri,4), 'r--', LineWidth=3); 
title('Downrange Engine Ingition Switch'); 
ylabel('Downrange Velocity (m/s)'); 
xlabel('Downrange (m)'); 
legend('Free-fall','Vertically Contolled', 'Dual 
Controlled','Location','northeast'); 
figure(2); hold off; 
 
% Optimal Mass Profile of the Vehicle 
figure(3); clf(3); hold on; grid on; 
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xlim([0 tfvi*psu/pst]); 
ylim([mf*psl m0*psu]); 
plot(optraj(1:tsvi,1),optraj(1:tsvi,6),'r-','linewidth',3); 
plot(optraj(tsvi:tsvi+tsri,1),optraj(tsvi:tsvi+tsri,6),'r:','linewidth',3); 
plot(optraj(tsvi+tsri:tfvi,1),optraj(tsvi+tsri:tfvi,6),'r--','linewidth',3); 
title('Optimal Vehicle Mass Profile'); 
legend('Free-fall', 'Vertically Controlled', 'Dual Controlled', 
'Location','northeast'); 
ylabel('Mass (kg)'); 
xlabel('Time (s)'); 
figure(3); hold off; 
 
% Optimal Vehicle Position Trajectory 
figure(4);  hold on; grid on; 
xlim([0 100]); 
ylim([0 h0]); 
plot(optraj(1:tsvi,3), optraj(1:tsvi,2),'r-','linewidth',3); 
plot(optraj(tsvi:tsvi+tsri,3), optraj(tsvi:tsvi+tsri,2),'r:','linewidth',3); 
plot(optraj(tsvi+tsri:tfvi,3), optraj(tsvi+tsri:tfvi,2),'r--','linewidth',3); 
title('Optimal Vehicle Position Trajectory'); 
legend('Free-fall', 'Vertically Controlled', 'Dual Controlled', 
'Location','northeast'); 
ylabel('Height (m)'); 
xlabel('Downrange (m)'); 
figure(4); hold off; 
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Scenario Three – Case 1: Linear Growth in Windspeed 
 

% CHAPTER 4: ATMOSPHERIC DRAG AND POWER LAW WIND USING NUMERIC SOLUTIONS 
 
% INITIAL & TERMINAL CONDITIONS 
 
clear; 
h0 = 1000; % Initial height of the vehicle in meters (m) 
vh0 = 0; % Initial vertical velocity of the vehicle in m/s 
r0 = 0; % Initial downrange position of the vehicle in m 
rf = 100; % Final downrange position of the vehicle in m 
m0 = 100; % Initial mass of the vehicle in kg 
g = 3.7; % Acceleration due to gravity in m/s^2 using Mars as reference 
%g = 9.8; % Acceleration due to gravity in m/s^2 using Earth as reference 
%g = 15.0; % Acceleration due to gravity in m/s^2 using imaginary planet 
kh = .01; % Reciprocal of the speed of expelled exhaust from vertical engines 
in s/m 
kr = .01; % Reciprocal of the speed of expelled exhaust from horizontal 
engines in s/m 
uxh = 160; % Vertical control variable upper bound in kgm/s^2 
unh = 0; % Vertical control variable lower bound in kgm/s^2 
uxr = 160; % Horizontal control variable upper bound in kgm/s^2 
unr = 0; % Horizontal control variable lower bound in kgm/s^2 
p0 = .02; % Atmospheric density in kg/m^3 using Mars as reference 
%p0 = 1.293; % Atmospheric density in kg/m^3 using Earth as reference 
%p0 = .87; % Atmospheric density in kg/m^3 using imaginary planet 
w0 = 2; % Windspeed in m/s as measured at the surface 
dh = 0.1; % Assuming a long cylindrical tapered vehicle shape 
dr = 1.0; % Assuming a long cylindrical tapered vehicle shape 
tm = 100; % Maximum time allotted for initial calculations 
numtimesteps = 9999; % Number of time steps used in calcualtions 
timearray = linspace(0,tm,numtimesteps); % Consistent time dimension for all 
psl = .90; psu = 1.10; pst = 100; %numtimesteps/101; % Limits for plotting 
 
 
% WIND FUNCTION CALCULATIONS 
 
%z = .001; % Linear growth in windspeed in 1/m 
he = .5; %Reference height for windspeed at the surface 
z = .143; % Hellan exponent value for open surfaces 
vr0 = w0*(h0/he)^z; % Initial downrange velocity of the vehicle in meters 
(m/s) 
h = linspace(he,h0,1000); 
w = w0*(h/he).^z; 
 
 
% TRAJECTORY CALCULATIONS 
 
% Calculate Free-fall Trajectory  
Fxu = @(t,x) [x(3); 
              x(4);  
              (1/x(5))*(unh + p0*(exp(-x(1)/h0))*dh*x(3)^2) - g; 
              (1/x(5))*(-unr + p0*(exp(-x(1)/h0))*dr*(x(4) - ... 
                   w0*(x(1)/he)^z)^2) + w0*z*(x(1)^(z-1)/he^z)*x(3); 
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              -(kh*unh + kr*unr)]; 
[tffall, xffall] = ode45(Fxu, timearray, [h0;r0;vh0;vr0;m0]); 
ffall = [tffall xffall]; 
 
% Determine r, vh and vr at free-fall impact (h = 0) 
ffi = find(xffall(:,1) < 1, 1); 
rff = xffall(ffi,2); 
vhff = xffall(ffi,3); 
vrff = xffall(ffi,4); 
 
% Calculate Vertical Controlled Trajectory 
Fxu = @(t,x) [x(3); 
              x(4);  
              (1/x(5))*(uxh + p0*(exp(-x(1)/h0))*dh*x(3)^2) - g; 
              (1/x(5))*(-unr + p0*(exp(-x(1)/h0))*dr*(x(4) - ... 
              w0*(x(1)/he)^z)^2) + w0*z*(x(1)^(z-1)/he^z)*x(3); 
              -(kh*uxh + kr*unr)]; 
[tvctrl, xvctrl] = ode45(Fxu, timearray, [he;rff;0;vrff;m0]); 
 
% Determine Switching Time of Vertical Control 
[vhs,hs] = intersections(xvctrl(:,3),-xvctrl(:,1),xffall(:,3),xffall(:,1)); 
vctrl = [tvctrl -xvctrl(:,1) xvctrl(:,2) xvctrl(:,3) xvctrl(:,4) 
xvctrl(:,5)]; 
tsvi = find(ffall(:,4) < vhs, 1, 'first' ); 
tcvi = find(vctrl(:,4) < vhs, 1); 
tfvi = tsvi + tcvi; 
 
% Assemble First Two Portions of Optimal Trajectory 
optraj(1:ffi,:) = ffall(1:ffi,:); 
optraj(tsvi:tfvi,2) = flip(vctrl(1:tcvi+1,2)); 
optraj(tsvi:tfvi,4) = flip(vctrl(1:tcvi+1,4)); 
optraj(:,1) = transpose(0:1:tfvi-1)/pst; 
for i = tsvi:tfvi 
    optraj(i,6) = m0 - kh*uxh*(i-tsvi)/pst; 
end 
 
% Calculate New Controlled Trajectory 
Fxu = @(t,x) [x(3); 
              x(4);  
              (1/x(5))*(uxh + p0*(exp(-x(1)/h0))*dh*x(3)^2) - g; 
              (1/x(5))*(-unr + p0*(exp(-x(1)/h0))*dr*(x(4) - ... 
                   w0*(x(1)/he)^z)^2) + w0*z*(x(1)^(z-1)/he^z)*x(3); 
              -(kh*uxh + kr*unr)]; 
[tnctrl, xnctrl] = ode45(Fxu, timearray, 
[hs;xffall(tsvi,2);vhs;xffall(tsvi,4);m0]); 
nctrl = [tnctrl xnctrl]; 
 
% Calculate Downrange Controlled Trajectory 
Fxu = @(t,x) [x(3); 
              x(4);  
              (1/x(5))*(unh + p0*(exp(-x(1)/h0))*dh*x(3)^2) - g; 
              (1/x(5))*(-uxr + p0*(exp(-x(1)/h0))*dr*(x(4) - ... 
                   w0*(x(1)/he)^z)^2) + w0*z*(x(1)^(z-1)/he^z)*x(3); 
              -(kh*unh + kr*uxr)]; 
[trctrl, xrctrl] = ode45(Fxu, timearray, [he;rf;0;0;m0]); 
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xrctrl = real(xrctrl); 
rctrl = [trctrl xrctrl(:,1) -xrctrl(:,2) xrctrl(:,3) -xrctrl(:,4) 
xrctrl(:,5)]; 
 
% Determine switching time of downrange control 
[vrs,rs] = intersections(-xrctrl(:,4),xrctrl(:,2),xnctrl(:,4),xnctrl(:,2)); 
if length(vrs) > 1 
    vrs = vrs(1); 
    rs = rs(1); 
end 
tsri = find(nctrl(:,5) < vrs, 1, 'first' ); 
tcri = find(rctrl(:,5) < vrs, 1, 'last'); 
tfri = tsri + tcri; 
 
% Assemble Last Portion of Optimal Trajectory 
optraj(tsvi+tsri:tfvi,3) = 
flip(interp1(1:tcri,xrctrl(1:tcri,2),linspace(1,tcri,tcvi-tsri+1))); 
optraj(tsvi+tsri:tfvi,5) = flip(interp1(1:tcri,-
xrctrl(1:tcri,4),linspace(1,tcri,tcvi-tsri+1))); 
for i = tsvi+tsri:tfvi 
    optraj(i,6) = optraj(tsvi+tsri,6) - (kh*uxh+kr*uxr)*(i-tsvi-tsri)/pst; 
end   
mf = optraj(end,6); 
 
 
% PLOT RESULTS 
 
% Vertical Engine Ignition Switching Time 
figure(1); clf(1); hold on; grid on; 
xlim([vhs*psu 0]); 
ylim([0 h0*psu]); 
plot(xffall(1:ffi,3), xffall(1:ffi,1), 'r-', LineWidth=3); 
plot(xvctrl(1:tfvi,3), -xvctrl(1:tfvi,1), 'r:', LineWidth=3); 
title('Vertical Engine Ingition Switch'); 
xlabel('Vertical Velocity (m/s)'); 
ylabel('Height (m)'); 
legend('Free-fall', 'Vertically Controlled','Location','east'); 
 
% Downrange Engine Ignition Switching Time 
figure(2); clf(2); hold on; grid on; 
ylim([0 vr0*psu]); 
xlim([0 rff*psu]); 
plot(ffall(1:tsvi,3), ffall(1:tsvi,5), 'r-', LineWidth=3); 
plot(xnctrl(1:end,2), xnctrl(1:end,4), 'r:', LineWidth=3); 
plot(xrctrl(1:end,2), -xrctrl(1:end,4), 'r--', LineWidth=3); 
title('Downrange Engine Ingition Switch'); 
ylabel('Downrange Velocity (m/s)'); 
xlabel('Downrange (m)'); 
legend('Free-fall','Vertically Contolled', 'Dual 
Controlled','Location','northeast'); 
 
% Optimal Mass Profile of the Vehicle 
figure(3); clf(3); hold on; grid on; 
xlim([0 tfvi*psu/pst]); 
ylim([mf*psl m0*psu]); 
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plot(optraj(1:tsvi,1),optraj(1:tsvi,6),'r-','linewidth',3); 
plot(optraj(tsvi:tsvi+tsri,1),optraj(tsvi:tsvi+tsri,6),'r:','linewidth',3); 
plot(optraj(tsvi+tsri:tfvi,1),optraj(tsvi+tsri:tfvi,6),'r--','linewidth',3); 
title('Optimal Vehicle Mass Profile'); 
legend('Free-fall', 'Vertically Controlled', 'Dual Controlled', 
'Location','northeast'); 
ylabel('Mass (kg)'); 
xlabel('Time (s)'); 
figure(3); hold off; 
 
% Optimal Vehicle Position Trajectory 
figure(4); clf(4); hold on; grid on; 
xlim([0 100]); 
ylim([0 h0]); 
plot(optraj(1:tsvi,3), optraj(1:tsvi,2),'r-','linewidth',3); 
plot(optraj(tsvi:tsvi+tsri,3), optraj(tsvi:tsvi+tsri,2),'r:','linewidth',3); 
plot(optraj(tsvi+tsri:tfvi,3), optraj(tsvi+tsri:tfvi,2),'r--','linewidth',3); 
title('Optimal Vehicle Position Trajectory'); 
legend('Free-fall', 'Vertically Controlled', 'Dual Controlled', 
'Location','northeast'); 
ylabel('Height (m)'); 
xlabel('Downrange (m)'); 
figure(4); hold off; 
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