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Abstract 
With the growing availability of data processing and machine learning infrastructures, crowd 
analysis is becoming an important tool to tackle economic, social, and environmental 
challenges in smart communities. The heterogeneous crowd movement data captured by 
IoT solutions can inform policy-making and quick responses to community events or 
incidents. However, conventional crowd-monitoring techniques using video cameras and 
facial recognition are intrusive to everyday life. This article introduces a novel non-intrusive 
crowd monitoring solution which uses 1,500+ software-defined networks (SDN) assisted 
WiFi access points as 24/7 sensors to monitor and analyze crowd information. Prototypes 
and crowd behavior models have been developed using over 900 million WiFi records 
captured on a university campus. We use a range of data visualization and time-series data 
analysis tools to uncover complex and dynamic patterns in large-scale crowd data. The 
results can greatly benefit organizations and individuals in smart communities for data-
driven service improvement. 

Introduction 
ICT infrastructures have a critical role in smart community initiatives where organizations, 
residents and visitors use digital information for positive impact. Many services in our 
communities are planned in advance but never optimized based on real-world usage or on-
demand requests. Crowd monitoring can provide the information needed to enhance 
service intelligence. Organizations can capture and evaluate how visitors access different 
parts of their premises and how such data evolve over time. The information can be used in 
data-driven risk assessment and resource planning for improved quality of life. Crowd 
monitoring also provides critical information for smart energy solutions to reduce energy 
consumption and carbon emissions in buildings and communal areas. Without ICT 
infrastructures, crowd monitoring is normally carried out by human operators which is 
inaccurate and inefficient. Many modern crowd-monitoring solutions have been designed to 
use video cameras paired with computer vision tools or LiDAR to monitor social distancing 
and crowd movements without human intervention [1] [2]. Unmanned aerial vehicle (UAV) 
has also been used for abnormal crowd behavior detection with the help of edge computing 
and machine learning [3]. Other mobile-based solutions such as contact-tracing apps use 
Bluetooth events to estimate the proximity between mobile phone carriers [4]. A survey 
conducted by Singh et al. compares a range of technologies used for crowd monitoring [5] 
and it shows that the majority of the solutions in operations are still based on video cameras 
due to their superior accuracy.  

Related work in the past has shown various attempts to use WiFi signals for crowd 
monitoring in different application scenarios. Chilipirea et al. installed 27 outdoor WiFi 
scanners on city streets and used WiFi probing signals from mobile devices to analyze crowd 
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data during a public event [6]. In this scenario, mobile devices are not connected to any WiFi 
network. The authors discussed the challenges of extracting crowd information in a dynamic 
environment using sparsely distributed scanners. Determe et al. also investigated the use of 
WiFi probing packets to estimate crowd information in the indoor environment and 
compare their results with visitor counts from a video camera feed [7]. In [8] the use of WiFi 
probing for people counting and mobility detection was expanded to edge networks using 
commercial WiFi scanners. The solution shows its practicality despite the lower precision 
compared with camera-based solutions. Braham studied a WiFi dataset from 10 access 
points placed in the centre of City Enschede [9]. The author explored how different 
movement patterns such as the ways that crowds approached the city centre from different 
surrounding areas, can be inferred from the WiFi connectivity data. Due to its limited 
number of access points, the dataset cannot offer the location accuracy needed for smart 
applications. Overall, existing crowd-monitoring solutions are highly dependent on 
specialised equipment such as surveillance cameras and high-resolution sensors which can 
be costly and intrusive to everyday life. Current WiFi-based solutions are advantageous for 
practicality and privacy but lack the accuracy to support smart communities.   

This article introduces a WiFi-based crowd-monitoring solution which uses network 
telemetry over 1,500 WiFi access points (APs) to form a network of always-on sensors. It 
takes a fundamentally different approach compared with previous WiFi probing-based 
solutions. Our work offers the following advantages compared with existing solutions: 

 It only uses data from standard WiFi services and does not require WiFi scanners.  
 It can track the movements of individual user devices for high-precision indoor and 

outdoor crowd monitoring and predictive analysis.  
 It can associate multiple devices that belong to the same user to further improve the 

accuracy of people counting.  
 Our solution includes tailored interactive web applications to visualize valuable crowd 

information for community users.  
 Our work is built upon a live dataset of over 900 million WiFi records from a smart 

campus network.  

The remainder of the paper introduces the supporting systems and a range of applications 
developed for smart community solutions. 

System Overview 
Network infrastructure for monitoring 
Figure 1 illustrates the WiFi-based crowd-monitoring system deployed at the University of 
Northampton’s Waterside campus. The campus has a state-of-the-art software-defined 
network (SDN) infrastructure to provide internet connectivity to its residents and visitors. 
SDN champions the new network paradigm that separates network control from the data 
forwarding functions. This allows network equipment from different vendors to be managed 
by a single network controller as long as they conform to the same SDN specifications. SDN 
has been increasingly adopted for the Internet of Things (IoT) and intelligent service 
applications [10]. The campus uses Cisco DNA Center as its primary network controller for 
network management and data aggregation. With its network telemetry features, the 
controller uses a set of automated processes to capture information about the connected 
devices. Around 1,500 indoor and outdoor APs provide wireless internet access to mobile 
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user devices across the campus. Each AP connects to a network switch via a high-speed 
wired connection and provides Wi-Fi connectivity in a designated area. Extended WiFi 
coverage is achieved by strategically placing APs. User devices moving across physical
locations will automatically detect available APs in the area and switch between APs 
seamlessly based on signal strength. 

Most buildings at Waterside campus have between 20 to 55 APs installed on each floor
depending on the functions and the internal structures of the building. Most rooms have at 
least one dedicated AP while some large meeting rooms, foyers and corridors are equipped 
with several APs to warrant excellent WiFi coverage. There are over 30 outdoor APs for the
outdoor workspace and for continuous internet connectivity while visitors travel between 
buildings. The physical location and installation mode (e.g., ceiling, wall, post) of each AP are 
registered for maintenance purposes. For instance, one AP is marked on the floor map with 
the descriptive text “outside room 210” and its installation type is “ceiling”. Using SDN, a 
single network controller manages all network switches and wireless APs. This enables a live 
and unified view of all devices connected to each AP. The density and the distribution of APs 
in the physical space determine the accuracy of crowd monitoring. The topology of the 
access network such as switches and routers does not impact the effectiveness of crowd 
monitoring because their role is to relay AP information to the network controller for data
aggregation. In summary, our solution uses information readily available at network 
controllers and does not require changes to the network.

Figure 1 smart campus system
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Data capturing and processing 
In order to study the crowd dynamics over time and to support predictive analysis, live 
device information at each AP must be sampled and stored. Each sample is a snapshot of all 
wirelessly connected devices and their associated APs. The number of connected devices is 
usually in the range of 1,000 to 6,000 depending on the time of the day and the day of the 
week. A dedicated server takes one sample every 60 seconds. This sampling rate was chosen 
based on four factors: how frequently devices switch between APs, the balance between 
noise and fidelity, the impact on the network controller APIs, and the storage capacity. In 
practice, visitors are either stationary or moving at regular walking speed. A sampling rate 
too high will lead to a significant amount of redundant data and a sampling rate too low will 
not capture details of the movements e.g., whether a change of location to a different floor 
was made via staircases or an elevator.  

Overall, the data collection process gathers over one million records per day. The raw data 
include over 20 data fields including datetime, MAC address, IP address, WiFi SSID, user ID, 
device type, and WiFi protocol. A data processing function goes through all unprocessed 
samples and populates a database asynchronously with filtered and formatted data. Visitors 
may have more than one device connected with the same user ID. By associating time-
coded records of connected devices and the geospatial information of APs, the system can 
discover how crowds are distributed on-site and how their locations change over time. So 
far over 900 million records of data have been collected since the beginning of our smart 
campus project. Table 1 lists sample records based on the raw data captured from network 
controllers.  
Table 1 Illustration of data captured from network controllers 

 
Personal and device information is anonymized via a custom hashing function as part of the 
sampling process. Due to the low probability of hash collision, the hashed data are 
considered unique and distinguishable. This allows us to estimate the number of visitors 
(unique user IDs) in an area (defined by the coverage of one or multiple APs) and how each 
person moves between areas.  

A range of data analysis and visualization applications have been developed to extract high-
level information from the large volume of collected data. The aim of the applications is to 
inform decision-making at both organisational and visitor levels. The original use cases of 
the project were promoting social interactions and closeness, energy efficiency, safety, and 
timetabling. To support COVID-19 recovery, many features have been extended to support 
safeguarding and social distancing. Examples of COVID-19 use cases are crowd density risk 
assessment, proactive workspace planning and scheduling, event simulation, and lone 
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worker support. The following sections discuss user behaviour modelling and the 
developments made to support the aforementioned use cases.  

Crowd dynamics 
Figure 2 shows the crowd dynamics over time in multiple communal areas. These figures 
were captured from a web portal that was designed for the services and facilities team to 
access crowd information. Users can use interactive features to zoom in on a selected time 
period or select any data label for further examination. Figure 2 (a) gives the crowd activities 
inside a building and the breakdown data across its five floors. Knowing how visitors access 
different levels of a building provides valuable insights into how resources should be 
distributed to accommodate service requirements. It also provides a quantitative 
measurement to assist fire and safety assessment at a typical time and day of the week. 
With longitudinal crowd data, the security team could also detect anomalies in access 
patterns and unusual behaviours such as substantial activities outside working hours.  

Figure 2 (b) uses heatmaps to illustrate the dynamics in population density over five weeks 
in a given area. The heatmap is quick and easy to understand without the need to read 
detailed figures. It helps service teams optimize resource allocations based on historical and 
live data. For instance, Mondays and Fridays show significantly different service demands 
that need to be catered to differently. The campus sees very few visitors during weekends 
but on Saturday 16th of July, a social event attracted hundreds of visitors. For a large public 
space with multiple communal areas, it is important to observe and compare crowd density 
at different granularity levels at the same time. Figure 2 (c) is a stream graph that shows 
how the population density changes on a single day and how the population was distributed 
across multiple areas. Crowd density from different areas is colour-coded and stacked 
around the central axis. For instance, the light blue area in the center depicts the number of 
visitors in LH area, a large multi-functional 5-story building. From 7:00 am, the crowd 
started to arrive on site, as can be seen from the growing number of wireless devices. Most 
crowds went to the four most prominent areas where the majority of the services and office 
space are allocated. Most areas saw their population peak in mid-day. The crowd in LH area 
stayed later compared with other areas such as SE where most visitors seem to depart 
before 18:00. This information is useful to enable smart planning of security and support 
staff rota in late afternoons and early evenings when resources are limited. 

 

 
(a) crowd activities across five floors within a building 
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(b) crowd density heatmap 

 

 
(c) stream graph of crowd activities across multiple areas 

Figure 2 Crowd dynamics 

Crowd modelling and predictive analysis 
The capability to predict the crowd density at a particular point in time is an essential tool 
for proactive planning and anomaly detection in smart communities. This will help build a 
more efficient and safer environment for community members. Our crowd information is 
time series data as they are sequences of numerical data points in successive order 
observed at regular intervals (i.e., every 60 seconds). Time-series analysis enables us to 
model trends and patterns which can support the prediction of the value at a future point. 
ARIMA (Auto Regressive Integrated Moving Average) [11] is a common time-series analysis 
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method characterized by 3 terms: p, d, q which capture the pattern of changes in the data 
(“auto-regressive”), the rate of changes in the data (“integrated”) and the noise between 
consecutive time points (“moving average”). The seasonal variation of ARIMA (SARIMA) 
introduces additional terms to capture seasonal differences for non-stationary data [12]. 
Our data are non-stationary with multiple levels of seasonality embedded. Taking a top-
down view: the institution organizes most of its activities in terms, each term is comprised 
of weeks with special events at the beginning and the end, each week has weekdays with 
many visitors and weekends that see few visitors, and each weekday includes regular 
working hours. Using different season configurations, the SARIMA can capture seasonality 
patterns at different levels. 

We first used the SARIMA method to predict crowd level on a single day. Hence, the 
seasonal term was configured to cover observations from a day. Two types of predictions 
were tested: intra-week prediction and inter-week prediction. The intra-week prediction 
uses data observed on the previous days of a week to estimate data on future days in that 
week, e.g., using data from Monday to Thursday to estimate the data on Friday. The inter-
week prediction is based on the data associated with the same weekday but from previous 
weeks, e.g., using Fridays from several weeks in the past to predict data on future Fridays. 

(a) crowd dynamics during a typical week 

(b) crowd dynamics when people were encouraged to work from home 

 
(c) week-level prediction of crowd dynamics 

Figure 3 SARIMA predictions 

Figure 3(a) shows the predictions of the crowd level on Friday, March 6 of a normal term 
week. The blue curve visualizes the observed data for that week (Monday to Friday). The 
green curve shows the results of an intra-week prediction where data from four days of the 
week was modelled. The intra-week prediction slightly overestimates the crowd level for 
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Friday afternoon. We believe this is attributed to people leaving early on Friday afternoons 
compared with other weekdays (as observed in Figure 2 (b)). The intra-week prediction 
cannot capture that extraordinary weekly pattern. The orange curve gives the inter-week 
prediction results based on the previous four Fridays. This method captures normal 
activities on Fridays but is agnostic to week-specific changes (e.g., public events or facility 
closure for maintenance). On this particular Friday, staff and student ambassadors were 
doing additional work preparing for a public “Discovery Day” for prospective students and 
their families. This explains the slight underestimation made by the inter-week prediction. 
Balancing intra- and inter-week predictions using a simple element-wise averaging function, 
the red curve shows the results when the outcomes from the two predictions are combined 
with equal weights.  

To investigate how the SARIMA-based models capture the impact of the COVID-19 
pandemic on crowd density, the second case study chose the week prior to the COVID-19 
lockdown (Figure 3(b)). This week is considered an “abnormal” week as crowd behaviors 
deviate from normal work patterns whilst people spent more time studying or working from 
home. In this case, the intra-week model successfully captures the decreasing trend of 
visitor numbers in that week, when other methods generally over-estimate the crowd based 
on previous weeks.  

By adjusting the seasonal configuration, the SARIMA method can model and predict data in 
the unit of a week. Using data from 7 consecutive term weeks, a model is constructed to 
predict the crowd level of the following week. Training data were down-sampled at 30-
minute intervals to speed up the modelling process. Figure 3(c) depicts the results of the 
week-level prediction. The model accurately captures the unique crowd characteristics on 
different days of the week.  
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Cross-area movements  

Crowd movements between areas are often determined by how physical facilities were 
designed and how events such as meetings and classes are planned. In some cases, cross-
area movements are encouraged for the benefit of the physical and mental health of 
community members or to facilitate innovation across boundaries in large organizations. 
There are also scenarios where extensive travelling between areas is considered a sign of 
poor planning and scheduling. For instance, simulations of crowd movements are often 
carried out to evaluate whether a public venue has sufficient access routes to allow a large 
number of visitors (flash crowd) to safely arrive or leave simultaneously. While combating 
COVID-19, unnecessary movements between floors or buildings may be discouraged as 
there are often “bottlenecks” such as stairs, elevators, and building entrances when people 
move between areas. Social distancing is less likely to be kept at the “bottlenecks”. 
Therefore, monitoring and understanding cross-area movements can assist risk assessment 
at high-risk locations. 

 
(a) movements between all areas                   (b) movements between buildings only 

Figure 4 A dependency graph showing crowd movements 

We developed data analysis functions to examine cross-area location changes taken by 
visitors. Figure 4 (a) shows a dependency graph of how visitors move between areas and 
buildings. The shortcodes at the edge of the graph represent different areas. For instance, 
“LH” stands for Learning Hub, a building whose data were used in Figure 2. “EX” is the code 
for all outdoor areas covered by outdoor (external) WiFi APs. “void” is a pseudo area code 
used to represent any out-of-campus areas. It helps visualise where devices were first 
observed. Normally, a mobile device with its WiFi turned on would first connect to outdoor 
APs (“EX”) as visitors approach the campus from car parks or footbridges. This is illustrated 
by the light blue outward link from “void” to “EX”. “EX” bridged most cross-building 
movements as visitors travelled between different parts of the campus. Figure 4 (b) shows 
the movements between buildings only. It gives a clear indication of how visitors access 
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facilities distributed between multiple buildings. It can be used to assess the capacity of 
footpaths against real usage.  

Smart floor maps 
For work planning and scheduling, it is essential to monitor and evaluate how facilities such 
as meeting rooms, work areas and catering areas are used. Our aim is to create a floor 
heatmap that visualizes crowd density from live, historic, or simulated data as shown in 
Figure 5. In practice, each area may be covered by one or multiple APs. Based on geospatial 
information of APs, area-to-AP mapping is defined to concatenate network telemetry data 
associated with multiple APs within an area to estimate the area crowd density. For 
instance, the number of visitors in a large meeting room equipped with two APs can be 
measured based on the number of unique devices (hashed MAC addresses) or unique users 
(hashed user IDs) connected to the corresponding two APs. Mappings are stored in a 
relational database as records of Theme ID, WiFi AP ID, area code, and area type. Such 
mappings are intent-based and not exclusive. Different mappings can be constructed for 
different analysis purposes in a smart community and an AP can be associated with different 
mapping schemes.  

For crowd density analysis, it is important to differentiate between stationary crowds 
(people staying in an area and purposely using the space) and crowd traffic (people moving 
through one area to access a different area). A person may pass by multiple areas before 
reaching her destination. This can leave a trace of a “digital footprint” when her user device 
joins and leaves multiple APs on her path. In an institution with regular timetabled events, 
crowd traffic can generate significant “noises” in the crowd data. For instance, a group of 50 
people leaving an indoor event and exiting the building would cause a major fluctuation in 
crowd density measurement in all areas between the room and the exits of the building. For 
our use case, the analysis is centered around stationary crowds. Hence, we filtered out 
presence data that were observed for less than one minute by any AP. This was done by 
comparing every two consecutive samples and keeping only the data records that appeared 
in both samples. 



Smart Community Networks and Systems (Nov 2022) 
 
 

     
Figure 5 A comparison of area crowd density of a building floor at 10:30 am on three different days. From left to right: Pre-
lockdown baseline, Near-lockdown reduced social contact, and working/studying from home during lockdown 

Figure 5 shows the crowd density floor map of one building floor at three different points in 
time. All diagrams were developed based on the actual floor plan provided by the architect. 
This floor has eighteen lecture rooms and study areas (white label), one large open-plan 
workspace (black label), and two catering areas (grey label). A deeper shade of blue color 
indicates a higher number of occupants in the area. The data is based on a 10-minute 
average of the live data observed. This augmented floor map is part of a web application 
that automatically refreshes to show up-to-date crowd information. It is also able to 
“replay” historic data at a configured playback speed.  

The comparison between the three diagrams in Figure 5 provides a unique view of the 
impact of the COVID-19 lockdown. The one on the left shows the data observed on 
Thursday, March 12, 2020 at 10:29 which is part of a week not significantly affected by 
COVID-19. Visitors were still using meeting rooms and study areas actively. The floor map in 
the middle shows the data captured one week later at the same time when many people 
start to work from home voluntarily. Some people still chose to access the shared space, but 
the use of confined spaces especially small meeting rooms had lessened significantly. Open 
areas became popular among visitors. The last floor map shows a deserted building floor 
during the lockdown period. Only a small number of authorized staff had access to the 
building for maintenance and security check. 

Potential Applications 
The paper gives the details of a data capturing and processing pipeline that allowed us to 
correlate time-coded device information from APs across campus and how live information 
of crowd density and movements can be derived at different granularity levels for a range of 
smart services. Multiple data visualisation methods are used to provide human-friendly 
graphics to assist decision-making. Predictive models are also developed to enable 
simulation and anomaly detection.  



Smart Community Networks and Systems (Nov 2022) 
 
 
Besides the prototyped solutions, we envisage a range of potential applications for smart 
communities. The time-series modelling is particularly useful for anomaly detection at 
either the global or local level [13]. Automated anomaly detections allow smart 
communities to advance their intelligent use of resources for improved service performance 
and resource efficiency. The inter-week model shown in Figure 3(b) can detect global 
anomalies when the observed pattern significantly deviates from SARIMA’s inter-week 
prediction. The service team can configure an anomaly threshold to trigger immediate 
responses. The local-level anomaly could be observed when there is a spike or a sudden 
drop in crowd population within a short period of time. This is normally measured using 
tools such as Exponentially Weighted Moving Average (EWMA). Causes of local anomaly 
include emergency evacuation, unusual access outside of standard business hours, and 
social events. One fire evacuation drill could be observed in Figure 2 (a) on 12th May when 
visitors left all floor areas in a very short period of time and returned soon after.  

The cross-building movements shown in Figure 4 can be modelled using data science tools 
such as a Markov model. A potential use case of such modelling is crowd simulation for 
planning and risk assessment. The crowd behavior model can help generate a large number 
of simulated visitors to evaluate the bottleneck of physical space design and indicates where 
visitors need to most support. The crowd density floor maps are intuitive to read. They can 
fit squarely on large-format public displays that are strategically placed across the physical 
space for visitors. When augmented with overlay information, smart floor maps play a key 
role in helping visitors gain confidence to return to work and discover less populated areas. 
The solution can also be used as a persuasive technology for positive changes in human 
behaviours. For instance, a health and well-being application may visualise the live usage of 
staircases and elevators as social gameplay to persuade more people to use stairs. APs can 
be clustered based on their proximity to staircases or elevators to showcase any increase in 
staircase usage. The heatmap design (Figure 2 (b)) can be extended with additional overlay 
information to help adapt air-conditioning, heating or lighting in different areas based on 
the estimated demand. 

Conclusions 
Crowd monitoring and analysis have a pivotal role in future smart community designs. We 
have witnessed how informed risk management and policymaking can mitigate the impact 
of COVID-19 and help contain new outbreaks in the future. Crowd-monitoring using video 
cameras provides accurate results but can be intrusive to daily life. Existing WiFi-based 
solutions using user devices’ probing signals lack the precision to support smart 
applications. Capitalizing on a smart campus project and an experimentation environment, a 
new high-precision WiFi-based crowd-monitoring solution is developed to enable live 
monitoring and analysis using network telemetry data from live Internet services. This 
project is the first of its kind that uses 1,500+ high-density indoor and outdoor WiFi APs for 
smart applications. Compared with traditional crowd-monitoring methods, our solution 
does not require specialised video cameras or WiFi-probing equipment while protecting the 
privacy of visitors. Developing useful smart applications based on a high volume of WiFi 
access data is a non-trivial task. We discussed the challenges of processing such complex 
data for smart communities and explored multiple data visualization and modelling tools 
that help reveal critical information embedded in WiFi connectivity data. For future work, 
we will investigate the use of WiFi signal strength measurements such as Received Signal 
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Strength Indicator (RSSI), a method discussed in [14] for WiFi probing solutions, to further 
enhance the location tracking accuracy. 

An associated dataset that includes over 300 million records of WiFi access data is available 
at: https://bit.ly/3Dmi6X1. 
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