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Abstract
This paper provides another proof of Fermat’s theorem. As in the previous work, a geometric approach is used, namely: 

instead of integers a, b, c, a triangle with side lengths a, b, c is considered. To preserve the completeness of the proof of the theorem 
in this work, the proof is repeated for the cases of right and obtuse triangles. In this case, the Fermat equation ap+bp = cp has no solu-
tions for any natural number p > 2 and arbitrary numbers a, b, c. When considering the case when the numbers a, b, c are sides of an 
acute triangle, it is proven that Fermat’s equation has no solutions for any natural number p > 2 and non-zero integer numbers a, b, c. 
Numbers a = k, b = k+m, c = k+n, where k, m, n are natural numbers that satisfy the inequalities n > m, n < k+m, exhaust all possible 
variants of natural numbers a, b, c, which are the sides of the triangle. In an acute triangle, the following condition is additionally 
satisfied: k n m n n m> − + −( )2 .

To study the Fermat equation, an auxiliary function f(k,p) = k p+(k+m)p–(k+n)p, is introduced, which is a polynomial of na-
tural degree p in the variable k. The equation f(k, p) = 0 has a single positive root for any natural p ≥ 2.

A recurrent formula connecting the functions f(k,p+1) and f(k,p) has been proven: f(k,p+1) = kf(k, p)–[n(k+n) p–m(k+m)p]. 
The proof of the main proposition 2 is based on considering all possible relationships between the assumed integer solution of the 
equation f(k, p+1) = 0 and the number  n m−( ) corresponding to this solution k.

The proof was carried out using the mathematical apparatus of number theory, elements of higher algebra and the foundations 
of mathematical analysis. These studies are a continuation of the author’s works, in which some special cases of Fermat’s theorem 
were proved.
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1. Introduction
In 1637, the French mathematician Pierre Fermat put forward the following hypothesis: for 

any natural number p > 2, the equation is:

a b cp p p+ = ,

has no solutions in non-zero integers a, b, c.
The results of attempts to prove Fermat’s theorem for more than 300 years are known,  

a review of which is given, for example, in [1–3]. Pierre Fermat himself proved the absence of 
integer solutions for the case p = 4 [4, 5]. Back in 1770, the case p = 3 was proven by Euler, and 
enough time had to pass for the theory used by Euler to be proven by Gauss. In 1825, the proof of 
Fermat’s theorem for the case p = 5 was presented almost simultaneously by Lejeune Dirichlet and 
Legendre [1]. For the case p = 7, the theorem was proved by Lame in 1839. Later, in 1847, Lame 
announced that he had managed to find a proof of Fermat’s theorem for all prime exponents p ≥ 3. 
But Liouville [1] almost immediately found an error in Lamé’s proof, which Lamé later admitted.

Using Kummer’s ideas, with the help of modern computing tools, the validity of Fermat’s 
theorem was proven for all simple exponents p < 100000.

In 1993, Andrew Wiles published the first version of the proof of Fermat’s theorem on 
130 pages. Soon a serious gap was discovered in it, which, with the help of Richard Lawrence 
Taylor, was quickly eliminated. In 1995, the final version of the proof of Fermat’s theorem was 
published [6].
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It is known that Fermat’s theorem was proven by Princeton University mathematics profes-
sor Andrew Wiles [7]. In this case, the author used modern mathematical tools. His proof took up 
an entire issue of the Annals of Mathematics.

Mathematicians appreciated the proof. Thus, the American mathematician, the author of [8], 
included in the third edition of his classic manual on algebra the main constructions of Wiles’s 
proof of Fermat’s theorem.

Attempts to contribute to the proof of Fermat’s theorem continue. Thus, in [9] a proof is  
given that «there are no non-zero integer solutions of the Fermat equation for exponents greater 
than the one for which the absence of integer solutions has been proven».

The idea of finding a simpler proof of Fermat’s theorem also remains attractive [10–13].

2. Materials and methods
The geometric approach, as well as the introduction of the auxiliary function u = f(k,p) of 

two variables, made it possible to simultaneously apply elements of number theory, higher algebra 
and mathematical analysis in the proof [10].

3. Results and discussion
The work is a continuation of research [14, 15].
Fermat’s theorem. For any natural number p > 2 the equation:

 a b cp p p+ = , (1)

has no solutions in non-zero integers a, b, c.
Let us prove the theorem in an equivalent formulation, which states that equation (1) has no 

natural solutions.
It is obvious that a < c, b < c, c < a+b. Let’s apply a geometric approach, namely: instead of 

a triple of numbers a, b, c, consider a triangle with side lengths a, b, c.
There are three options: a rectangular triangle, an obtuse triangle or an acute triangle.
In the first case:

 a b c2 2 2+ = . (2)

In the second case, from the cosine theorem it follows that:

 a b c2 2 2+ < . (3)

Combining (2) and (3), let’s obtain:

 a b c2 2 2+ ≤ . (4)

Multiplying inequality (4) by c p–2, let’s obtain:

a c b c cp p p2 2 2 2⋅ + ⋅ ≤− − .

Where:

a b cp p p+ < ,

since a2cp–2 > a p, b2c p–2 > bp. That is, in the first two cases, equation (1) has no solutions for p > 2.
Let’s consider the third case, namely: the triangle is acute. Without loss of generality, we 

will assume that a < b. When a = b, equation (1) takes the form:

a a cp p p+ = .
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Where:

c a p= 2.

From number theory [10] it is known what is an irrational number for a and p integers.
Numbers:

a k= , b k m= + , c k n= + ,

where k, m, n are natural numbers satisfying the inequalities:

n m n k m> < +, ,

exhaust all possible variants of natural numbers a, b, c, which are the sides of the triangle.
Let’s formulate the theorem in an equivalent form and the indicated notation.
Fermat’s theorem. For any natural number p > 2 the equation is:

k k m k np p p+ +( ) = +( ) ,

has no solutions in natural numbers k, m, n.
In an acute triangle, the following condition is additionally satisfied:

 k n m n n m> − + −( )2 . (5)

Let’s prove inequality (5). As is known from the cosine theorem,

a b c2 2 2+ > , k k m k n2 2 2+ +( ) > +( ) ,

k k n m m n2 2 22 0− −( ) + − > .

Where:

k n m n n m> − + −( )2 .

From inequality (5) it follows that k > 3.
Let’s consider a function of two variables:

 f k p k k m k np p p, ,( ) = + +( ) − +( )  (6)

where p ≥ 2, k > 3.
Some properties of function (6) are given in [14].
Assuming the number p to be an integer, let’s transform equality (6) using the Newton bi-

nomial formula:

 f k p k C n m k C n m k C n m kp
p

p
p

p
p

p p, ...( ) = − −( ) − −( ) − − −( ) −− − − −1 1 2 2 2 2 1 1 1 nn mp p−( ). (7)

Thus f(k, p) is a polynomial of degree p of k.
According to Descartes’ theorem [11] from the course of higher algebra, the equation:

 f k p, ,( ) = 0  (8)

has a single positive root for any p ≥ 2, that is, the number of positive roots of equation (8) does not 
depend on p.
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Let’s prove the necessary statements.
Proposition 1. For any integer p ≥ 3 and k ≤ p(n–m), the function f(k,p) < 0.
Proof. Let’s transform equality (7):

f k p k C n m k C n m k C n m kp
p

p
p

p
p

p p, ...( ) = − −( ) − −( ) + + −( ) +− − − −1 1 2 2 2 2 1 1 1 nn mp p−  .

Obviously, when:

 k C n m kp
p

p− −( ) ≤−1 1 0, (9)

function f(k,p) < 0.
Inequality (9) is satisfied under the condition:

 k p n m≤ −( ). (10)

Q.E.D.
Consequence. Equation (8) has a single positive root k0 satisfying the condition:

k p n m0 > −( ).

Proposition 2. The following recurrent formula is valid:

 f k p kf k p n k n m k m
p p, , ,+( ) = ( ) − +( ) − +( )



1  (11)

and f k p, +( ) ≠1 0 for any integer p ≥ 2 and integer k > 3.
Proof.

 
f k p k k m k n k k k m k m k n k np p p p p, +( ) = + +( ) − +( ) = ⋅ + +( ) +( ) − +( ) +(+ + +1 1 1 1 )) =

= ( ) − +( ) − +( )





p

p p
kf k p n k n m k m, .

Obviously, f(k,p+1) < 0 for f(k,p) ≤ 0.
Let’s assume the opposite, that is, there exist integers p and k (with corresponding values m 

and n) such that f k p f k p( , ) , ( , ) .





> + =0 1 0
Where:

 

 



 





 

k f k p n k n m k m
p p

, .( ) = +( ) − +( )
Therefore,

  

  



 



 









k f k p n m k C n m k C n mp
p

p
p

p, ...( ) = −( ) + −( ) + + −−1 2 2 1 1   


 

p p pk n m( ) + −+ +1 1. (12)

On the other hand, by definition:

  





 



 










k f k p k C n m k C n m kp
p

p
p

p, ...( ) = − −( ) + −( ) ++ −1 1 2 2 2 1
 + −( ) + −( ) 

− −C n m k n m kp
p p p p



   

 



 

1 1 1 2 . (13)

Let’s consider three possible options:
1) k and  n m−( ) relatively prime numbers, and  n m− ≠ 1;
2) numbers k and  n m−( ) have GCD m < − n m;
3) GCD of numbers k and  n m−( ) is equal to  n m−( ).
Let’s consider the first option. The right sides of equalities (12) and (13) are equal integers. 

However, the number on the right side of equality (12) has a divisor  n m−( ), and the number on the 
right side of equality (13) does not have such a divisor.
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It is arrived at a contradiction.
Let’s consider the second option. By condition:

 

 k t n m s= − =m m0 0, , (14)

where t0 and s0 are relatively prime numbers. Substituting values (14) into equalities (12) and (13), 
let’s obtain: 

 

 

  













kf k p s t C n m s t

C n

p
p

p

p

, ...( ) = ( ) + +( ) ( ) + +

+

−m m m m0 0
1

0 0
1

1 pp p p p p pmn m n m s t n mn− − − − −+ + + +( ) + + +1 2 2 1
0 0

1
       

    ... ..m m .. .+ +( )−
  

 m n m sp p1
0m  (15)

Consequently,

 

 

  











kf k p t C s t C n m s t
p

p
p

p
p,( ) = ( ) − ( ) + +( ) ( )+ −m m m m m0

1 1
0 0

2
0 0

11

1 2 3 3 2
0 0

+
 +

+ + + + +( ) (− − − −

...

...C n mn m n m s tp
p p p p



   

      m m )) +

+ + + + +( ) ( )− − − −

2

1 2 2 1
0 0     

   n mn m n m s tp p p p... .m m  (16)

The number on the right side of equality (15) has a divisor s0, and the number equal to it on 
the right side of equality (16) clearly does not contain such a divisor.

However, a case is possible when m = m1s0. Let’s substitute the number m = m1s0 into equali-
ties (15) and (16) and divide the resulting equalities by m1s2

0:

 

t f k p

s
s t C n m s t

C

p
p

p

p

0

0
1 0 0

1
1 0 0

1

1





 











,
...

( )
= ( ) + +( )( ) + +

+

−m m

nn mn m n m s t n mnp p p p p p     

       

− − − − −+ + + +( ) + + +1 2 2 1
1 0 0

1... m .... .+ +( )−
  

 m n mp p1  (17)

Consequently,

 

t f k p

s
s t C s t C n mp p p

p
p

p

0

0
1 0

1
0

1 1
1 0 0

2
1





 

  







,( )
= − ( ) + +( )− +m m m ss t

C n mn m n m

p

p
p p p p

0 0
1

1 2 3 3 2

( ) +
 +

+ + + + +

−

− − − −





   

     

...

...(( )( ) +

+ + + + +( ) − − − −

m

m

1 0 0
2

1 2 2 1
1 0 0

s t

n mn m n m s tp p p p
     

   ...  .  (18)

The right sides of equalities (17) and (18) are equal numbers, and the right side of equali-
ty (18) has a divisor m1s0t0 for any values of    p k m n, , , .

All terms on the right side of equality (17) also have a divisor m1s0t0, except, perhaps, the last 
term, which clearly does not contain this divisor.

Let’s check the last term. As is known:

 



 n m

k
M

p p+ +−
=

1 1

,

where M is an integer, since k is a solution to the equation f k p, . +( ) =1 0
Where:

     

   n mn m n m
Mt

s
p p p p+ + + + =− −1 1 0

0
... .

Let’s suppose that the specified number has a divisor m1s0t0, then:

� � � � � � �� � � �n mn m n m s tp p p p+ + + + =− −1 1
1 0 0... .m
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Consequently:

 =
M

sm1 0
2 .

That is, ℓ is an integer only for certain values of    p k m n, , , . It is a contradiction.
Let’s consider the third option. According to the condition  

 k n m= −( )λ , where  λ > +p 1.
Let’s substitute k into equalities (12) and (13) respectively and divide them by  n m−( )2 :

 






 



    



 









λ
λ λ

f k p

n m
n m p n m n mp p p p,( )

−
= −( ) + +( ) −( )− − −1 1 2 ++ + + +( +

+ + ) +
+

− −

− −

... ...   

  



  

 

 



p n mn

nm m
n mn

p p

p p
p

1 2

2 1 λ
  

  

 

p p pm n m

n m

− −+ + +
−

1 1...
,  (19)

and

 






 



  



 

 









λ
λ λ

f k p

n m
n m p n m

p p
p p p p,( )

−
= −( ) − −( ) +

−+ − −1 1 1 1(( )





+( ) −( ) + +

+ −( )

− −

− −

2
1 2

1 1 2

 



 

  







 

n m n m

p n m

p p

p p

λ

λ

...

++ + + + +( )⋅



− − − −

     


   n mn m n mp p p p1 2 2 1... .λ  (20)

All terms on the right side of equality (20) are integers, regardless of the values of    λ, , , .m n p  
The terms on the right side of equality (19) are integers, except, possibly, the last one. Let’s show 
that the number:

 
 

 

 n m

n m

p p+ +−

−( )
1 1

2 , (21)

is not always whole.
Without loss of generality, we can assume that the numbers m and n are also relatively 

prime. Let’s transform the number (21), assuming that  n m− ≠ 1:

 
 

 

      

 

  

n m

n m
n mn m n pm

p p
p p p

+ +
− − −−

−( )
= + + + +

1 1

2
1 2 2 32 3 ... 



 

 

p
pp m

n m
− +

+( )
−

1
1

. (22)

Obviously, the last term is fractional if:
1)   p n m+ < −1 ;
2) p +( )1  and  n m−( ) are relatively prime numbers;
3) numbers p +( )1  and  n m−( ) have GCD less than each of these numbers.
It is a contradiction, since the right-hand sides of equalities (19) and (20) are equal numbers.
Let’s consider the case  n m− = 1, that is  k = λ. Obviously, λ  is an odd number.
Let us divide equalities (12) and (13) by λ . As in the previous case, it is necessary to consider 

only the following term in the resulting equality:

 
 



 

 

  





 

m m p m
p p

m pp p p p+( ) −
=

+( ) +
+( )

+ + +( )+ + −1 1
1

2
11 1 1

λ

... mm

 λ λ
+

1
. (23)

If the first term is an integer, then the sum will be a fraction. Let the first term be a fractional 
number, then:

 

 

  

 

 p m
p p

m p m
A

p p+( ) +
+( )

+ + +( )
= +

−1
1

2
11 ...

,
λ

α
λ

where A and α are integers, 1 ≤ <α λ .
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Consequently,

 
 

 



m m
A

p p+( ) −
= +

++ +1 11 1

λ
α

λ
. (24)

The number (24) is an integer only in one case, namely when α λ= − 1.
The right sides of the equalities obtained by dividing equalities (12) and (13) by λ  are equal 

numbers. Moreover, one of them is always an integer, and the other is only in one case, namely: 
when α λ= − 1. It is a contradiction.

Thus, when  n m− = 1 the equation f(k,p+1) has no integer roots for integer p ≥ 2.
This implies the statement of proposition 2.
Consequence. If the triangle is right or obtuse, then equation (8) has no solutions in natural 

numbers k, m, n, p for f(k, 3) < 0.
Fermat’s theorem. For any natural number p > 2 the equation:

k k m k np p p+ +( ) − +( ) = 0,

has no solutions in natural numbers k, m, n.
Proof. Taking into account the previous corollary, it is necessary to prove the theorem only 

for an acute triangle. As is known, f(k, 2) > 0 for any k satisfying inequality (5). By Proposition 2, 
the number f(k, 3) can be negative or positive. Let f(k, 3) < 0. Due to the continuity and monotonic-
ity of the function f(k, p) with respect to the variable p, there is a unique number  p p2 3< <( ) such  
that f k p, .( ) = 0

If f(k, 3) > 0, then we continue the indicated process, considering f(k, 4) and so on.
Thus, the equation f(k, p) = 0 for any integer p > 2 has no solutions in natural numbers. The 

theorem has been proven.

4. Conclusions
The difference in the proof of Fermat’s theorem in [15] and in this work is only for the case 

when the numbers a, b, c are the lengths of the sides of an acute triangle.
In [15], the proof is based on the consideration of the even and odd free term of the equation 

f(k, p) = 0, and in this work – on the consideration of all possible relations between the assumed 
integer solution k of the equation f(k, p+1) = 0 and number  n m−( ) corresponding to this solution, 
which made it possible to significantly reduce and significantly simplify the proof of Fermat’s 
theorem itself.
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