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ABSTRACT 

 

Deep Learning Models for Biomedical Data Analysis 

(August 2023) 

 
Lucy Nwosu 

Prairie View A&M Universty 

Chair of Advisory Committee: Dr. Xishuang Dong 

 
The field of biomedical data analysis is a vibrant area of research dedicated to 

extracting valuable insights from a wide range of biomedical data sources, including 

biomedical images and genomics data. The emergence of deep learning, an artificial 

intelligence approach, presents significant prospects for enhancing biomedical data 

analysis and knowledge discovery. This dissertation focused on exploring innovative 

deep learning methods for biomedical image processing and gene data analysis. 

During the COVID-19 pandemic, biomedical imaging data, including CT scans and 

chest x-rays, played a pivotal role in identifying COVID-19 cases by categorizing patient 

chest x-ray outcomes as COVID-19-positive or negative. While supervised deep learning 

methods have effectively recognized COVID-19 patterns in chest x-ray datasets, the 

availability of annotated training data remains limited. To address this challenge, the thesis 

introduced a semi-supervised deep learning model named ssResNet, built upon the 

Residual Neural Network (ResNet) architecture. The model combines supervised and 

unsupervised paths, incorporating a weighted supervised loss function to manage data 

imbalance. The strategies to diminish prediction uncertainty in deep learning models for 

critical applications like medical image processing is explore.  It achieves this through an 
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ensemble deep learning model, integrating bagging deep learning and model calibration 

techniques. This ensemble model not only boosts biomedical image segmentation 

accuracy but also reduces prediction uncertainty, as validated on a comprehensive chest 

x-ray image segmentation dataset.  

Furthermore, the thesis introduced an ensemble model integrating "Proformer" and 

ensemble learning methodologies. This model constructs multiple independent 

"Proformers" for predicting gene expression, their predictions are combined through 

weighted averaging to generate final predictions. Experimental outcomes underscore the 

efficacy of this ensemble model in enhancing prediction performance across various 

metrics.   

In conclusion, this dissertation advances biomedical data analysis by harnessing the 

potential of deep learning techniques. It devises innovative approaches for processing 

biomedical images and gene data. By leveraging deep learning's capabilities, this work 

paves the way for further progress in biomedical data analytics and its applications within 

clinical contexts.  

Index Terms-biomedical data analysis, COVID-19, deep learning, ensemble learning, 

gene data analytics, medical image segmentation, prediction uncertainty, Proformer, 

Residual Neural Network (ResNet), semi-supervised learning. 
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ReLU  Rectified Linear Unit  

ResNet Residual Neural Network 

 RNA  Ribonucleic Acid 

RNA-seq RNA Sequencing 

RNN  Recurrent Neural Network  

scRNA-seq Single-Cell RNA sequencing  
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CHAPTER 1 

1. INTRODUCTION 

 

Biomedical data such as genome, transcriptome, protein sequences and imaging 

or spectroscopic data, provides information about expression patterns, splicing variants, 

localization, protein-protein interaction, and pathway networks related to an organism or 

set of organisms [6, 7]. Analysis of these data plays an essential role in understanding how 

living organisms function, their disease mechanisms, and provides information for 

improved medical treatment. Artificial intelligence (AI) technologies are increasingly 

used for biomedical and healthcare informatics research. Due to recent advancements in 

technologies, large amounts of biological and clinical data have been generated and 

collected at an unprecedented scale, speed, and complexity. This research focused on 

effective disease treatment and increased patient survival rate by using deep learning 

algorithms as a tool for early detection and diagnosis of diseases from biomedical data. 

1.1 Data Analysis on Biomedical Data 

In recent years, the ability to monitor and observe individual patients’ health has 

never been more data intensive. Though this enables extensive analysis of clinical 

data for diagnosis and research, understanding and interpreting findings can be quite 

complex. Several statistical methods are employed for biomedical data analysis [8]. Point 

estimates like the mean, median, or mode are used to describe the central tendency of a 

distribution while standard deviation or variances is used to check the spread 

___________________________________ 
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distribution. The random sampling of a normal distribution is achieved  with T-test, 

other distributions apply the Mann-Whitney U-test. T-test can be unpaired for instance, 

to determine if the blood oxygen saturation levels are different in smokers vs. non-

smokers [9] or paired when the same group is observed under two different conditions, 

like comparing muscle oxygen saturation levels of the same participants before and after 

exercising [10]. Deep learning methods are also used for biomedical data analysis and 

methods such as Convolutional Neural Networks (CNNs) [11] mostly improve prediction 

performance have pushed the boundaries of what was possible. Problems which were 

assumed to be unsolvable are now being solved with super-human accuracy. 

1.2 Artificial Intelligence for Data Analysis 

Artificial Intelligence (AI) is a collection of technologies that is used to extract 

insights and patterns from large sets of data. Deep learning and machine learning are 

subsets of artificial intelligence systems used to perform complex tasks in a way that 

is similar to how humans solve problems. 

1.2.1 Machine Learning Model 

Machine learning focuses on developing computer programs that can access data and 

use it to learn for themselves. The machine learning process begins with observations 

or data.  It looks for patterns in data so it can later make inferences based on the 

examples provided. Its function can be descriptive, meaning that the system uses data 

to explain what happened; predictive, meaning the system uses the data to predict 

what will happen; or prescriptive, meaning the system will use the data to make 

suggestions about what action to take. There are three different types of machine 

learning approaches [12]: 
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• Supervised learning: supervised algorithms apply what has been learned in the 

past to new data using labeled examples to predict future events [12By 

analyzing a known training dataset, the learning algorithm produces an inferred 

function to predict output values. Examples Support Vector Machine (SVM) 

[13], Decision Tree (DT) [14], and Random Forest. 

• Unsupervised learning: unsupervised algorithms are used when the training data 

is not labeled [15]. It infers a function to describe a hidden structure from 

unlabeled data. Different types of clustering algorithms [16] like k-means clustering 

and hierarchical clustering exist. 

• Reinforcement learning: reinforcement learning trains machines through trial and 

error, using feedback from its own actions and experiences to establish a reward 

system [17, 18]. This method allows machines and software agents to automatically 

determine the ideal behavior within a specific context to maximize its 

performance. 

In addition to these approaches, semi-supervised approach is another known machine 

learning method. It uses only few labelled data as training data and the rest of the 

training data are unlabeled [19]. As labelled data is scarce and expensive, researchers are 

focusing more on semi-supervised approach. In this work, supervised and semi- 

supervised learning approaches were employed to classify chest images into Covid-

19, pneumonia and normal. 

1.2.2 Deep Learning Model 

The main challenge in the research area of AI is to develop an efficient and effective 

system that can imitate the human brain. Therefore, researchers have developed and 
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designed deep learning models that can mimic the human brain and present more 

meaningful information of the context [20]. Deep learning is a subset of machine 

learning that learns and improves on its own by examining computer algorithms [12] 

It works with an artificial neural network. These neural networks attempt to 

simulate the behavior of the human brain by learning from large amounts of data. Deep 

learning algorithms seek to exploit the unknown structure in the input data distribution to 

discover good representations, often at multiple levels, with higher-level learned features 

defined in terms of lower-level features [21]. This has aided image classification and 

image segmentation applications in medical research [22]. It can be used to solve any 

pattern recognition problem and without human intervention. However, advancements in 

biomedical data acquisition and analysis have employed larger, sophisticated neural 

networks, allowing computers to observe, learn, and react to complex situations faster than 

humans, which has resulted in accurate and robust computer aided disease diagnosis [4]. 

1.3 Data Analysis via AI Techniques 

1.3.1 Image Classification 

Image classification plays an essential role in computer-aided medical image analysis 

for diagnosing diseases. It can be applied in the clinical diagnosis of diabetic 

retinopathy [23], skin disease [24], breast cancer [25] and lung disease such as pneumonia 

[26]. In pneumonia detection using chest x-ray images, the input image is usually 

labelled to represent predefined classes of the disease to be detected. To handle the 

scarcity of data, a deep transfer learning model was used [26] for binary image 

classification. It used an ensemble of three convolutional neural network models: 

GoogLeNet, ResNet-18, and DenseNet-12, to classify the images to pneumonia and 
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healthy. A multi-classification [27] with more than two classes can be employed if the 

task is to detect the type of pneumonia present on an image such as bacteria 

pneumonia, viral pneumonia, mycoplasma, and fungal pneumonia. Histopathology 

images from the biopsy samples of breast cancer which were captured by a microscope 

employed binary image classification [28] to classify samples to benign or malignant 

tumors. A convolutional neural network (CNN) was used to extract important features 

which are then classified using a fully connected network. 

1.3.2 Image Segmentation 

Image segmentation is a computer vision tool for medical image analysis. It 

diagnoses diseases by classifying the pixel values on an image into predefined classes 

instead of the class assigned to the input image. It localizes the disease by recognizing the 

region of interests (ROIs). Segmentation can be applied to segmenting organs and 

structures such as pancreas [29], skin lesions [30], and the heart [31]. Deep learning 

models such as U-Net and FCNs have shown great performance in the segmentation 

of medical images [30] though both are associated with parameter redundancy as well as 

disappearing gradient when depth increases. To solve these issues, a skin lesion 

segmentation model with a loss function [30], which improves the Jaccard index of 

skin lesion image segmentation was used to improve performance in diagnosing the 

types of skin lesions and the boundary between lesions and normal skin. Medical 

Image Segmentation with Convolutional Neural Networks (MIScnn) [32], a state- of-

the-art intuitive end to end API pipeline which provides training, prediction, as well 

as fully automatic evaluation, is used for multi-class semantic Kidney Tumor 

Segmentation [32], with 300 CT scans. Results show a powerful prediction model 
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based on the standard 3D U-Net model. 

1.3.3 Gene Expression Data Analysis 

Gene expression data analysis involves studying the activity levels of genes in a 

particular biological context, often measured using techniques like RNA sequencing 

(RNA-Seq) or microarrays.  It focuses on understanding which genes are active or 

inactive, and to what extent, under different conditions or in different tissues. The output 

of RNA-seq differential expression analysis is a list of significant differentially 

expressed genes (DEGs) [11]. Over representation analysis (ORA) [9] and Gene set 

enrichment analysis (GSEA) [11] methods are used to gain greater biological insight on 

the differentially expressed genes. The output from the over representation analysis (ORA), 

tests whether a gene set contains disproportional genes of significant expression change. 

The output of the Gene set enrichment analysis (GSEA) is a test of whether genes of a 

gene set accumulate at the top or bottom of the full gene vector ordered by direction and 

magnitude of expression change. To visualize and identify gene sets associated with each 

subtype, plots such as upset plot, dot plot, ridge plot, barplot, and gseaplot are used. It 

provides information on the gene count and the enrichment score [11]. In the case of 

DNA sequences, they are composed of four types of deoxyribonucleotides (bases) (A, 

T, C, G) that contribute to the diversity of DNA molecules [33]. The DNA double helix 

structure in Fig. 1.2 demonstrates how the bases from one strand specifically bond with 

complementary bases on the other strand, forming base pairs as the basic units of 

DNA sequences. 

 

 

-
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1.4 Deep Learning Based Image Processing 

Image processing transforms an image into a digital form and performs certain 

operations to get some useful information from it. It uses several deep learning models 

for image classification and image segmentation tasks. The deep learning models used 

in this research are described here. 

 

 

 

 

Fig. 1.1. The Double helix of DNA 

[33] 

1.4.1 Residual Networks (ResNet) 

A residual neural network (ResNet) [34, 1] is an artificial neural network (ANN). 

It aims to solve the problem of the vanishing/exploding gradient. Its architecture 

introduced the concept called Residual Blocks and uses a technique called skip con- 

nections. The skip connection connects activations of a layer to further layers by 

skipping some layers in between. This forms a residual block which is stacked to- 

gether to form ResNet. Fig 1.2 shows the relationship between the three building 

blocks: embedding, mapping and prediction [34]. 

3' 

S' 3' 
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1.4.2 Fully Convolutional Networks (FCN) 

 

A fully convolutional network (FCN) uses a convolutional neural network to trans- 

form image pixels to pixel classes Long et al. [35]. Unlike the CNNs, a fully 

convolutional network transforms the height and width of intermediate feature maps 

back to those of the input image. The model first uses a CNN [36] to extract image 

features, then transforms the number of channels into the number of classes via a 

convolutional layer, and finally transforms the height and width of the feature maps. 

iv 

 

 

 

Fig. 1.2. A schematic view of ResNet architecture, decomposed into three 
blocks: embed-ding, mapping and prediction [1] 
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1.4.3 U-shaped Encoder-Decoder Network (UNET) 

UNET is u-shaped encoder network followed by a decoder network developed for 

Biomedical Image Segmentation [35, 36, 2]. It requires a discrimination at pixel level 

but also a mechanism to project the discriminative features learnt at different stages of 

the encoder onto the pixel space. The encoder is the first half in the architecture 

diagram (Fig. 1.3). It uses a pre-trained classification network like VGG or ResNet 

where convolution blocks are applied followed by a maxpool downsampling to 

encode the input. The decoder is the second half of the architecture. The goal is to 

semantically project the discriminative features (lower resolution) learnt by the encoder 

onto the pixel space (higher resolution) to get a dense classification. The decoder consists 

of up-sampling and concatenation followed by regular convolution operations 

[35].represent copied feature maps. The arrows of different colors represent different 

operations. [2] 

1.4.4 MobileNet 

MobileNet is a type of convolutional neural network designed for mobile and 

embedded vision applications. They are based on a streamlined architecture that uses 

depthwise separable convolutions to build lightweight deep neural networks that can 

have low latency for mobile and embedded devices. The architecture uses a depthwise 

separable convolutions to construct lightweight deep convolutional neural networks 

and provides an efficient model for mobile and embedded vision applications [15]. 

The depthwise separable convolution filters are composed of depthwise convolution 

filters and point convolution filters. The depthwise convolution filter performs a 

single convolution on each input channel, and the point convolution filter combines 
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the output of depthwise convolution linearly with one-by-one convolutions. 

 

 

 

Fig. 1.3. U-net architecture. Blue boxes represent multi-channel feature maps, while 

boxes 

1.4.5 Pyramid Scene Parsing Network (PSPNet) 

Pyramid Scene Parsing Network (PSPNet) is a semantic segmentation model that 

utilizes a pyramid parsing module that exploits global context information by different 

region-based context aggregation [37]. The local and global clues together make the 

final prediction more reliable. The PSPNet architecture considers the global context of 

the image to predict the local level predictions and hence, gives better performance on 

benchmark datasets like PASCAL VOC 2012 and cityscapes [38]. The model was 
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designed because FCN based pixel classifiers were not able to capture the context of the 

whole image. 

1.5 Deep Learning Based Gene Expression Prediction 

Deep learning has emerged as a powerful technique for analyzing gene expression data, 

enabling researchers to gain insights into gene function, biological pathways,  and 

disease mechanisms. It provides a powerful framework for analyzing gene expression 

data, offering improved accuracy in classification, clustering, prediction, and regulatory 

network inference tasks. These models leverage the expressive capacity of neural 

networks to extract meaningful representations and capture complex patterns in gene 

expression profiles. Deep autoencoders are neural network architectures that aim to 

reconstruct input data by learning a compressed representation in the hidden layers. They 

have been successfully applied to identify informative features and patterns in gene 

expression data, leading to improved classification and clustering accuracy [39]. Du et 

al. [40], applied convolutional filters to gene expression profiles. Due to CNNs ability to 

extract spatial and local dependencies from gene expression data, it can capture important 

patterns and motifs associated with gene expression patterns, facilitating tasks such as 

gene classification and bio-marker discovery. Recurrent neural networks (RNNs) have 

also been employed in modeling the temporal dependencies present in time-series gene 

expression data. By utilizing the sequential nature of gene expression measurements, [41] 

used RNNs to capture dynamic patterns and correlations over time, enabling accurate 

prediction of gene expression levels and gene regulatory network. 
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1.5.1 Transformer 

Attention-based deep learning models, such as the transformer architecture, can 

effectively capture long-range dependencies and interactions between genes. It has been 

applied to gene expression imputation, gene expression prediction, and gene regulatory 

network reconstruction, yielding competitive performance [42]. This research leverages 

the transformer model in Fig. 1.4 introduced in the groundbreaking paper, “Attention 

Is All You Need,” [43] for gene expression prediction. Transformer architecture, 

revolutionized sequence-to-sequence tasks by effectively handling long-range 

dependencies without recurrence or convolution 

• Input: each word in the input sequence is converted into an embedding vector. These 

embedding vectors are then augmented with positional encoding vectors 

of the same model length, incorporating positional information into the input 

representation. 

• Encoder: the left half of the Transformer architecture comprises the encoder, 

consisting of two sub-layers. The first sub-layer employs a multi-head self- attention 

mechanism, allowing the model to attend to different positions in the input 

sequence.   The second sub-layer is a fully connected feed-forward network with 

ReLU activation, transforming the input sequence into a continuous representation, 

which is subsequently passed to the decoder. 

• Decoder: situated on the right half of the architecture, the decoder takes its own 

predicted output sequence at each time-step as input. Similar to the encoder, 

positional encoding is applied to augment the decoder input. The decoder block 

comprises three sub-layers: (a) masked self-attention, where masking prevents the 
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decoder from attending to future words, (b) decoder attention, allowing the decoder 

to attend to all positions in the input sequence through the output of the encoder, 

and (c) a fully connected feed- forward network. 

• Output: the output of the decoder undergoes a fully connected layer, followed by a 

softmax layer, producing predictions for the next values in the output sequence. 

 

 

 

Fig. 1.4. The transformer model architecture [43] 
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1.5.2 Generative Pre-trained Transformer (GPT) & ChatGPT 

The GPT model, developed by OpenAI, is an example of a widely known 

large language models (LLMs). An LLM can be utilized for gene expression 

prediction from promoter sequences by leveraging their ability to capture complex 

patterns and relationships in text data [3]. In this context, the promoter sequence refers 

to the region of DNA preceding a gene that plays a crucial role in regulating gene 

expression. To use an LLM for gene expression prediction from promoter sequences, 

the model needs to be trained on a large dataset of promoter sequences and their 

corresponding gene expression levels. The promoter sequences can be represented as 

text strings, where each nucleotide is encoded as a token (e.g., A, C, G, T) [41]. The 

architecture of GPT in Fig. 1.5 also includes positional embedding, which enables the 

model to understand the sequential order of words in the input text. By incorporating 

positional embedding, GPT can consider the relative positions of words and capture 

the contextual information in the text. GPT is a “unidirectional” model, meaning it 

generates text in a sequential manner from left to right. This allows the model to learn 

patterns. 

Specifically, ChatGPT, GPT-based chatbot, can be employed to achieve promoter 

embedding of the data and to implement few-shot learning techniques [33]. During 

training, the LLM learns the statistical patterns and associations between promoter 

sequences and gene expression levels. It can capture important sequence motifs, 

regulatory elements, and other features that influence gene expression. By understanding 

the context and relationships within the promoter sequence, the model can make 

predictions about the corresponding gene expression level. 
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1.6 Challenges 

Though many approaches have been proposed to overcome the challenges associated 

with biomedical data, more research is still required to address these challenges. These are 

some challenges encountered in this research while working with chest images for Covid-

19 detection. 

 

Fig. 1.5. The GPT architecture [43]
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Accurate and adequate statistical data are essential for research to be effectively 

carried out for its purpose to be achieved. Biomedical research depends on relevant 

data from patients, medical centers, hospital, medical practitioners, and other relevant 

sources.  Hence, when the statistical data is adequate and accurate it will aid 
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biomedical research in providing solutions to the problems of interest which will in 

the long run assist medical practitioners’ efficiency in their jobs. The availability of 

labeled Covid-19 chest images is a big concern in training deep learning models to 

detect Covid-19 patterns as it results in issues such as the inability of models to 

generalize and under-fitting [44]. 

1.6.2 Prediction Uncertainty 

For safety-critical applications like medical image processing, the prediction un- 

certainty of DL models is a key evaluation metric on reliability of model predictions, 

where high prediction uncertainty means low prediction reliability. Prediction un- 

certainty then arises when uncertainty is characterized through the variance of the 

prediction rather than through the whole probability distribution [45]. This measure of 

uncertainty is validated by computing the change of error rate for samples with large 

prediction regions compared to all samples by benchmarking it on a collection of 

datasets. For example, for covid-19 applications, applying uncertain predictions to 

clinical processes would result in disastrous consequences such as missing serious covid 

cases or delayed treatments. There is need for comprehensive investigation of 

prediction uncertainty of deep learning models for biomedical imaging task since 

many deep learning models focus on performance improvement. 

1.6.3 Low Performance on Gene Expression Prediction 

Understanding the cis-regulatory logic of the genome is of paramount importance 

as it holds the potential to provide valuable insights into the underlying causes of 

various diseases. Constructing accurate learning models for gene expression 

prediction using human data has not achieved satisfactory performance due to 
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limitations      in the diversity of sequences, and the presence of extensive repetitive DNA 

[41]. Furthermore, biological variability, arising from factors such as cell types, tissue 

het- erogeneity, and disease states, adds complexity to the data, making it difficult to 

identify consistent patterns and relationships. This is a big concern in training deep 

learning models as it results in issues such as training bias, overfitting, over 

generalization and data-misinterpretation. In addition, the absence of rigorous 

validation on large datasets limits our understanding of the true potential and 

reliability of deep learning models for accurately predicting gene expression. 

1.7 Problem Statement 

1.7.1 Problem Formulation for covid-19 Image Classification and Segmentation 

Biomedical image classification on chest images is a supervised learning task 

which aims to identify predefined classes such as covid-19, normal and pneumonia 

from chest images. It is considered as either a multi-class image classification or 

image segmentation problem. 

The multi-class classification problem with K chest image classes ={s1, s2, ..., 

sK} where the classes include covid-19, normal and pneumonia class labels and x 

is   the input images, for the image segmentation problem with K pixel classes S 

= {s1, s2, ..., sK}, where the pixel classes are the lung region and the background 

and x are the input images. 

f(x;θ)→s                                                             (1.1) 
 

The aim of this research work was to build a function that could correctly 

predict the covid-19 class on chest images. x-ray image dataset Covidx was used to 

classify chest images into covid-19, normal and pneumonia while the covid-19 chest 

--
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x-ray dataset is used to segment and predict each pixel of chest image into lung region 

and       background region. The chest images are fed as input data into deep learning models. 

Meaningful information was extracted from the data and inferred on the deep learning 

model for covid-19 image detection. It is very challenging to build a classification 

model from covid-19 images due to scarcity of labeled data which can result in 

unreliable models. 

1.7.2 Problem Formulation for Gene Expression Prediction 

Gene Expression Prediction on millions of randomly generated promoter sequences 

in yeast is a supervised learning task which aims to predict gene expression level.   

This is considered a regression problem since the quantitative output of continuous 

values of gene expressions are handled. The problem statement is as follows: 

f(x;θ) →  k                                                         (1.2) 
 

This is a regression problem since the quantitative output of continuous values of gene 

expression levels K = {k1, k2, ..., kk}, for each data sample are handled, where θ 

includes the weight vector w and the bias b. When the promoter sequence x is multiplied 

elementwise with the weight vector w and summed, the result is combined with the bias 

term b to obtain the final output of the regression model f(x), which represents the 

predicted gene expression level based on the given promoter sequence input. 

1.7.3 Contribution 

The major contribution of this research topic was to propose reliable covid-19 

detection models from chest images (CT scan, x-ray). The main contributions of the 

work are based on the two-research work published in this study: 

• Contributions from the research Semi-Supervised learning for covid-19 image 
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Classification Via ResNet. 

– Proposed a semi-supervised deep learning model with ResNet through jointly 

training a supervised ResNet and an unsupervised ResNet. We observed that 

the proposed model can learn on both unlabeled images and labeled images 

jointly for covid-19 image classification with high performance. 

– The proposed model is validated on a large-scale covid-19 image dataset. 

Experimental results indicate that the proposed model is able to effectively 

recognize covid-19 images by learning on very few labeled medical 

images, for example, less than ten percent samples in the training data, which 

meets the requirement of few available labeled data from the medical do- main 

for real applications, especially for the cases at the early stage of such a 

global pandemic. 

• Contributions from the research Calibrated Bagging Deep Learning for Image 

Semantic Segmentation: A Case Study on Covid-19 Chest X-Ray Image 

Systematically compare the performance of various state-of-the-art DL models on 

semantic segmentation on covid-19 CXR data with different evaluation metrics. 

Moreover, the prediction uncertainty of these DL models were investigated by 

estimating expected calibration error (ECE) and maximum calibration error (MCE) 

– We implemented a novel ensemble deep learning model based on model 

calibration and bagging deep learning, which is to calibrate bagging deep 

learning models through weighted summation of predictions generated by 

individual models. The proposed approach is easily implemented and scalable 

to various tasks. 
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– Validate the proposed method on semantic segmentation on a large covid- 19 

CXR dataset based on different evaluation metrics. Experimental results 

demonstrated its effectiveness on improving performance and prediction 

certainty for semantic segmentation. 

• Contributions from the research Proformer-based Ensemble Learning for Gene 

Expression Prediction 

– The proposed method is a novel approach that involves an ensemble model 

consisting of various end-to-end transformer encoders with different 

architectures. The model predicts the gene expression values of promoter 

sequences by generating predictions using individual models and combining 

them by averaging weighted summation. 

– I evaluated the proposed model on thousands of randomly generated promoter 

sequences in Yeast using various evaluation metrics. The experimental results 

demonstrated the effectiveness of the approach in improving the performance 

of existing state-of-the-art methods through effectively learning feature 

representations of promoter sequences. 

1.8 Outline of the Dissertation 

This study comprises six chapters and they are framed as follows: the first chapter 

introduced the theoretical background of the analysis of biomedical data using deep 

learning methods. This chapter focused on biomedical image processes and posed 

challenges on the analysis of chest image data for detection of covid-19. Chapter 2 

provides literature review on relevant research works. Chapter 3 proposes a novel semi-

supervised learning method for covid-19 image classification using ResNet. Chapter 4 



21 
 

 
 

introduces a novel method for covid-19 detection based on a calibrated bagging deep 

learning method for image semantic segmentation. Chapter 5 introduces a proformer-

based ensemble learning for gene expression prediction. Chapter 6 concludes the 

contribution of this study by highlighting   its future work and opportunity. 
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CHAPTER 2 

2. LITERATURE REVIEW 

 
This chapter presents a comprehensive study of recent research work on deep 

learning models for biomedical data analysis. 

2.1Biomedical Data Analysis 

There are various types of biomedical data that can be mined to reveal patterns used 

in making informed medical decisions such as genomics, imaging, proteomics, 

metabolomics, wearables, and health records. This research focused on the use of genomic 

and biomedical image data. 

2.2Types of Biomedical Data 

2.2.1 Genomic Data 

The availability of vast amounts of genomic data has revolutionized the understanding 

of genetics and holds great promise for advancing personalized medicine. Genomic data 

encompassing DNA sequences, gene expression profiles, epigenetic modifications, and 

other molecular information and provides a rich resource for studying the complexities of 

genetic variation and its impact on human health and disease [41]. It provides a 

foundation for studying gene expression by identifying the genes present in an organism’s 

genome and characterizing their structure and organization [41]. It allows researchers to 

identify coding sequences, non-coding regions, regulatory elements (such as promoters 

and enhancers), and other functional elements within the genome. Gene expression can 

be thought of as the flow of information   from the genetic code in DNA to the 

synthesis of specific molecules that perform essential cellular functions. The process 
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of gene expression involves several steps [3] as shown in Fig. 2.1. 

• Transcription: transcription is the first step in gene expression, where the DNA 

sequence of a gene is transcribed into a complementary RNA molecule. 

• RNA Processing: after transcription, the primary transcript undergoes various 

processing steps to generate a mature RNA molecule that is ready for 

translation into a protein or performs a regulatory function. 

• mRNA Export: in eukaryotic cells, mature mRNA molecules are transported 

from the nucleus, where transcription occurs, to the cytoplasm, where 

translation occurs. This export process involves interactions with specific proteins 

and nuclear pore complexes, ensuring that only processed and functional 

mRNA molecules are exported. 

• Translation:  translation is the process by which the information carried by the 

mRNA molecule is used to synthesize a protein. It takes place in the cyto- 

plasm and is carried out by ribosomes, complex cellular machinery composed 

of ribosomal RNA (rRNA) and proteins. 

• Post-Translation Modifications: after translation, the newly synthesized 

polypeptide chain may undergo various modifications to become a functional 

protein. These modifications include folding into a specific three-dimensional 

structure, addition of chemical groups (such as phosphorylation or glycosylation), 

and cleavage of specific regions to generate the final, functional protein. 

 This research involved predict gene expression levels based on gene expression    

profiles obtained from high-throughput measurements of the cis-regulatory activity. 



24 
 

 
 

of randomly generated promoters in single-cell yeast organisms. The gene expression 

profiles, and DNA sequences are described as follows:  

• Gene Expression Profiles:  the analysis of gene expression patterns and levels 

across a set of genes or an entire genome in a specific biological sample   or 

condition is known as gene expression profiles. They provide a snapshot of 

the genes that are active or inactive and the extent to which they are ex- pressed 

in a given context. Gene expression profiles from single-cell sequencing data 

allows them to explore the transcriptional landscape, identify cell types and 

states, uncover regulatory dynamics, and gain insights into biological 

processes or disease mechanisms at the single-cell resolution [41]. By utilizing 

single-cell sequencing data, researchers can derive gene expression profiles, 

revealing the intricate patterns and levels of gene expression within a specific 

biological sample or condition. These profiles enable the exploration of the 

transcriptional landscape, facilitating the identification of distinct cell types 

and states. Moreover, they provide valuable insights into regulatory dynamics, 

allowing researchers to unravel the complexities of biological processes and 

disease mechanisms at the single-cell resolution [41]. Through the analysis of 

gene expression profiles, researchers can gain a comprehensive understanding 

of cellular heterogeneity, uncover novel molecular markers, and shed light on 

the underlying molecular mechanisms driving cellular behavior. 
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Fig. 2.1. Gene Expression [3] 

 

• DNA sequences: present in the cells of all known organisms, including bacteria, 

plants, animals, and humans, is the DNA molecule, or deoxyribonucleic acid. 

It is a long, double-stranded polymer that carries the genetic information in 
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living organisms. Each nucleotide in DNA is represented by one of four bases: 

adenine (A), cytosine (C), guanine (G), or thymine (T). For example, a 

DNA sequence of “GCAAACCAAT” consists of ten nucleotides. DNA 

sequence refers to the specific arrangement of nucleotide bases in a DNA 

molecule. It carries the genetic information that determines the characteristics 

and traits of an organism [41]. DNA sequence refers to the precise order of 

nucleotide bases in a DNA molecule. It carries the genetic information that 

determines the characteristics and traits of an organism. It represents the 

genetic code that carries the instructions for the development, functioning, and 

inheritance of all living organisms. A specific region of DNA located upstream 

of a gene, which contains regulatory elements that control gene expression is 

known as the promoter sequence. It plays a vital role in initiating the 

transcription process by binding transcription factors and RNA polymerase, 

thereby determining when and how strongly a gene is transcribed. Analyzing the 

promoter sequence helps in understanding gene regulation, identifying 

transcription factor binding sites, and elucidating the factors that control gene 

expression [41]. Promoter sequences can vary between genes and species, and 

studying their functional elements provides insights into the mechanisms 

underlying gene regulation and cellular processes. 

2.2.2 Biomedical Images 

Biomedical imaging is used in biological and health sciences to generate scientifically 

useful images of various aspects of organisms and biological systems that are          not 

visible to the naked eye [4]. Imaging reveals complex structures and dynamic interactive 
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processes, located deep inside the body, that are otherwise difficult to detect, Fig. 2.2 

shows various biomedical data images such as eye, chest, lung, nerves etc. Some imaging 

techniques are used to develop images of tissues below the skin, while others are 

used to mark and trace biologically important processes at a molecular level. Clinical 

image techniques include magnetic resonance imaging (MRI), x-ray computed 

tomography (CT), ultrasound, and light-based methods - endoscopy and optical 

coherence tomography (OCT) [21]. Mining and analysis of biomedical images help 

in diagnosing diseases and conditions, such as chronic obstructive lung disease, 

pulmonary embolism, lung cancer, brain cancer and covid-19 [2, 46]. Below are 

examples of medical images. x-ray: x-ray imaging is one of the oldest and most 

commonly used medical imaging techniques. It involves passing a small amount of 

ionizing radiation through the body to create an image on a film or a digital detector 

[47]. X- rays are primarily used to visualize bones and the lungs but can also be used 

to examine other body parts. They are particularly effective at highlighting dense 

structures such as bones, allowing for the detection of fractures, dislocations, 

infections, and certain tumors. x-rays are relatively quick and inexpensive, making 

them a valuable tool for initial screening and diagnosing a wide range of conditions. 

2.3Biomedical Data Analysis and Deep Learning 

Biomedical data analysis plays a crucial role in extracting valuable insights from 

various biomedical datasets, and deep learning models have emerged as powerful 

tools for this task. These models aid the exploration, interpretation, and extraction of 

valuable insights from various types of biomedical data [48, 49]. Biomedical data 

encompasses a wide range of data sources, including biomedical images, genomic 
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sequences, clinical records, and molecular data. The goal of biomedical data analysis 

is to uncover patterns, relationships, and meaningful information that can aid in 

understanding diseases, improving diagnoses, predicting outcomes, and guiding 

treatment and decisions [50, 51]. 

Traditional approaches to biomedical data analysis often relied on manual feature 

engineering, statistical methods, and domain-specific algorithms [52, 49]. However, with 

the rapid advancement of computational techniques and the availability of large- scale 

datasets, there has been a paradigm shift towards using machine learning and artificial 

intelligence methods, particularly deep learning, in biomedical research and clinical 

applications. Deep learning has revolutionized the field of biomedical data analysis by 

enabling the automatic learning of complex representations directly from raw data. Deep 

learning models, such as neural networks with multiple layers, have shown remarkable 

capabilities in capturing intricate patterns and extracting valuable information from 

biomedical data. These models can effectively handle the high dimensionality and 

complexity of biomedical datasets, allowing for more ac- curate predictions, improved 

feature extractions, and enhanced data-driven decision- making [52, 53]. 
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Fig. 2.2. A collection of some biomedical imaging applications in which deep learning 
has achieved some state-of-the-art results. Images from top-left to bottom-right: (a). 
Mammographic mass classification, (b). Segmentation of brain lesions, (c). Leak detection 
in airway tree segmentation, (d). Diabetic retinopathy classification, (e). Prostrate 
segmentation, (f). Nodule classification. (g). Breast cancer metastases classification, (h). 
Skin lesion classification, (i). Bone suppression. [4] 
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2.4Deep Learning Models for Biomedical Image Processing 

Deep learning models have emerged as powerful tools for analyzing biomedical 

images, revolutionizing the field of biomedical image processing. These models leverage  

the hierarchical representations learned from large-scale datasets to extract meaningful 

features and facilitate accurate analysis and interpretation of biomedical images. 

Convolutional Neural Networks (CNNs) [53] have played a pivotal role in advancing 

biomedical image analysis. CNNs excel in capturing local and global spatial 

dependencies within images, enabling tasks such as image segmentation, object 

detection, and disease classification. For instance, U-Net [54], a popular architecture 

based on CNNs, has demonstrated remarkable success in biomedical image 

segmentation tasks, such as delineating tumor boundaries in medical scans [53, 55]. 

  Transfer learning has further enhanced the effectiveness of deep learning models for 

biomedical image processing [55, 56, 57]. By leveraging pre-trained models on large-

scale datasets, such as ImageNet, and fine-tuning them on biomedical image data, 

transfer learning allows for efficient training even with limited labeled biomedical 

images [56]. This approach has been widely adopted in various biomedical imaging 

applications, including histopathology image analysis, retinal image analysis, and 

radiology image interpretation. Beyond traditional 2D imaging, deep learning models 

have also been applied to3D biomedical image analysis. Recurrent Neural Networks 

(RNNs) and their variants, such as 3D convolutional neural networks (3D CNNs) [56, 

57, 52] and long short- term memory (LSTM) networks [52], have shown promise in 

handling the temporal and spatial dependencies in volumetric medical images, such 

as computed tomography (CT) scans and magnetic resonance imaging (MRI) 
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volumes. These models enable tasks like tumor segmentation, organ tracking, and 

disease progression mon itoring [52]. Generative Adversarial Networks (GANs) [57, 

52] have emerged as powerful tools for biomedical image synthesis and augmentation. 

GANs can generate realistic and diverse biomedical images, aiding in data 

augmentation and addressing the issue of limited annotated datasets [52, 56, 57, 58]. 

This facilitates training deep learning models with improved generalization and 

robustness. GANs have found applications in generating synthetic medical images, 

such as brain MRI scans, retinal fundus images and chest x-rays and computed 

tomography (CT) images. 

Deep learning techniques application to chest images are further described in this 

research in terms of image localization, segmentation, registration, and classification 

leading to covid-19 detection. Numerous studies have focused on developing deep 

learning models specifically for covid-19 image classification. For instance, Wang et 

al [58] proposed a deep learning framework called COVID-Net, which utilizes a 

lightweight convolutional neural network (CNN) architecture to classify chest x-ray 

images into covid-19, pneumonia, or normal cases. Similarly, Apostolopoulos and 

Mpesiana [59] introduced a deep learning model based on a pre-trained CNN called 

COVIDX-Net, achieving high accuracy in covid-19 classification.    In addition to 

covid-19 image classification, accurately identifying the regions of infection in covid-

19 is crucial for diagnosis and detailed assessment. Semantic segmentation techniques can 

help recognize these regions and patterns, allowing for the quantify cation and 

assessment of covid-19 in chest x-ray or CT images. The regions of interest (ROIs) 

typically include the lung, lobes, bronchopulmonary segments, and infected regions or 
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lesions. Deep learning approaches have significantly advanced the field of semantic 

segmentation in biomedical image analysis [2, 46]. Several segmentation networks have 

been developed specifically for covid-19, such as the classic U-Net [60, 54, 61], UNet++ 

[31], and VB-Net [62]. These methods can be classified into two groups: lung-region-

oriented methods and lung-lesion-oriented methods. The former focuses on separating 

lung regions (that is, the whole lung and lung lobes) from other background regions in CT 

or x-ray images [63, 64]. The latter aims to detect lesions or artifacts within the lung 

region, such as metal and motion artifacts [65, 66]. It is worth noting that segmenting x-

ray images is particularly challenging due to the presence of ribs that project onto soft 

tissues in 2D. While supervised deep learning models outperform other methods in these 

tasks, they often require a large amount of labeled data for training, which may not be 

practical in real-world applications. Semi-supervised deep learning has gained attention 

for its ability to generalize model performance by leveraging both labeled and unlabeled 

data [67, 68, 69, 70]. In safety-critical applications like medical image processing, 

autonomous driving, and precipitation forecasting, high accuracy alone is not sufficient. 

It is equally important to measure the prediction uncertainty and ensure model 

calibration. Two categories       of methods are commonly used to calculate model calibration 

[71, 72].  

Overall, the application of deep learning models in biomedical data analysis, 

particularly in the context of covid-19, has shown promising results in semantic 

segmentation for identifying the regions of infection. The use of semi-supervised learning 

and model calibration techniques further enhances the generalization and reliability of 

these models in safety-critical applications. While deep learning models have shown 
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significant advancements in biomedical image processing, challenges remain. 

Interpreting and explaining the decisions made by deep learning models in the medical 

domain is a critical concern. Efforts are underway to develop explainable AI 

techniques that can provide insights into the decision-making process of these models, 

enhancing their trustworthiness and facilitating clinical adoption These models learn 

hierarchical representations of image features, enabling precise identification of 

anatomical structures, early detection of abnormalities, and accurate diagnosis. 

2.5Deep Learning Models for Genomic Data Analysis 

Deep learning models have shown great promise in the field of genomic data analysis, 

enabling researchers to extract meaningful insights and unravel the complexities of the 

genome. By leveraging the power of neural networks and their ability to capture intricate 

patterns in large-scale genomic datasets, deep learning approaches have revolutionized 

various aspects of genomic data analysis. It is employed to tackle challenges such as high-

dimensional gene expression data, identification of disease-related genetic variations, and 

prediction of molecular interactions. Recurrent neural networks (RNNs) [41] and 

transformer-based architectures [73] have shown promise in modeling the sequential and 

temporal dependencies in genomic sequences, enabling accurate gene expression 

prediction, classification of disease subtypes, and discovery   of biomarkers. 

Deep learning models have been applied to variant calling and interpretation. 

Convolutional neural networks (CNNs) have been utilized to analyze DNA sequences 

and identify genomic variations, such as single nucleotide polymorphisms (SNPs) and 

insertions/deletions (indels). By learning informative sequence motifs [74], CNNs can 

accurately classify genomic variants and aid in the identification of disease-associated 



34 
 

 
 

mutations. Deep learning models have been instrumental in deciphering the three-

dimensional structure of the genome and understanding its regulatory mechanisms. 

Convolutional and recurrent neural networks have been employed to analyze chromatin 

conformation capture data, enabling the prediction of chromatin interactions and 

identification of regulatory elements [75, 76]. These models have shed light on gene 

regulation networks and enhancer-promoter interactions, offering valuable insights into 

gene expression regulation and cellular processes. 

Deep learning models have been successfully employed for gene expression 

prediction, which plays a crucial role in understanding gene function, biological 

pathways, and disease mechanisms. Gene expression prediction is an essential task. Gene 

ex- pression involves using the information stored in genes to create a functional gene 

product. By connecting the expression of genes of interest to a biological process or 

phenotype, researchers can gain insights into gene function, biological pathways, and the 

genes responsible for regulating development, cell behavior, and signaling [75]. The 

degree of a gene’s expression is primarily governed by multiple input signals that are 

interpreted by the non-coding regulatory DNA sequences known as cis-regulatory logic. 

These sequences exert control over gene expression intensity by using transcription factors 

(TFs) that bind to regulatory sequences located throughout the DNA, including promoters 

that contain a wealth of information related to mRNA levels [75]. Recurrent neural 

networks (RNNs) and transformer-based architectures have demonstrated their 

effectiveness in modeling the sequential dependencies present in gene expression data 

[77, 78, 77]. These models can capture the temporal dynamics   of gene expression 

patterns and provide accurate predictions, facilitating the identification of potential 
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biomarkers and therapeutic targets. 
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CHAPTER 3 

3. METHODOLOGY 

This chapter focuses on the methods for deep learning data analysis. Three 

methods will be discussed.  

3.1 Semi-Supervised Learning for Covid-19 Image Classification  

Via ResNet 

Coronavirus disease 2019 (COVID-19) outbreak has led to the heavy losses of the 

world’s economy and life. To reduce the spread of covid-19 and the death rate, it is 

essential to detect the disease at the early stage with effective and timely 

screening/testing and place covid-19 infected patients in quarantine immediately [79, 

80]. Artificial intelligence (AI), an emerging technology for medical imaging 

processing, has actively contributed to the fight against covid-19 [81]. Compared to 

the traditional imaging workflow that heavily relies on human interpretation, AI 

enables more safe, accurate and efficient imaging solutions. 

Recent AI-empowered applications in covid-19 detection include the dedicated 

imaging platform, the lung and infection region segmentation, as well as the clinical 

assessment and diagnosis [82, 61, 60]. Moreover, commercial products integrate AI to 

combat covid-19 and demonstrate the capability of the AI technology [82]. All of         

these examples show the tremendous enthusiasm cast by the public for AI-empowered 

progress in the medical imaging field, especially during the ongoing covid-19 pan- demic. 
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Fig. 3.1. Framework of the proposed semi-supervised learning. Input x is the medical 
image. Labels such as y are available only for the labeled inputs. Shared ResNet will 
evaluate the input to obtain the low-level representations as inputs to supervised 
ResNet and unsupervised ResNet, where these three ResNets are built with residual 
blocks and N, M, and K are numbers of residual blocks for these three ResNets. Then 
zsup and zunsup are outputs from the supervised ResNet and the unsupervised ResNet, 
respectively. Moreover, zsup and y will be applied to calculate a weighted cross 
entropy loss lWCEL whereas zsup and zunsup are used to calculate a mean squared error 
loss lMSEL, where w the weight to different classes of samples. I jointly optimize the 
combined losses, where λ is the weight for unsupervised loss, ⊕ is the short-cut 
connection in the residue operation. 
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Regarding the covid-19 research based on AI, covid-19 image classification 

becomes more and more attractive, which is to separate covid-19 patients from non-

covid-19 subjects using the features extracted from medical images. Specially 

supervised deep learning such as convolutional neural networks (CNN) has been very 

popular in this research area. For example, Wang et al. proposed a 2D CNN 

supervised model to analyze delineated region patches to accomplish classification 

between covid-19 and typical viral pneumonia [83]. Similarly, Xu et al. utilized 

candidate infection regions to complete COVID-19 classification via supervised 

ResNet-18 [84]. In addition, as a powerful deep learning model for medical image 

analysis, UNet [2] was employed for COVID-19 image classification and 

segmentation. For example, Zheng et al. employed UNet to obtain lung segmentation 

and predicted the probability of COVID-19 with 3D CNN on segmentation features 

[60]. Jin et al. proposed a UNet++ based segmentation model for locating lesions 

and built a ResNet-50 based classification model for COVID-19 diagnosis [63]. 

Chen et al. implemented COVID-19 classification with the patterns of segmented 

lesions extracted by supervised UNet++ [85, 31]. Moreover, they employed a 2D 

Deeplab model for the lung segmentation and a 2D ResNet-152 model for lung-mask 

slice-based identification of positive COVID-19 cases [86]. Although supervised 

deep learning presents impressive performance on COVID-19 image classification, 

it requires a large amount of annotated medical images to train models, which is not 

practical with respect to    limited data resources related to COVID-19, due to huge 

costs of labeling medical images, and labeling noise [4]. 

To reduce the efforts on labeling medical images for COVID-19 image 
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classification, I built a two-path semi-supervised deep learning model that was able to 

learn on both labeled and unlabeled medical images, based on residual neural net- works 

(ResNet) [87]. ResNet is an artificial neural network developed by mimicking pyramidal 

cells in the cerebral cortex. It introduces a so-called “identity shortcut connection” that 

skips one or more layers since stacking layers should not degrade the network 

performance. With ResNet, I implemented a two-path semi-supervised learning model 

that was composed of three components namely, shared ResNet, supervised ResNet, 

and unsupervised ResNet. 

  Framework of the proposed model is shown in Fig. 3.1. The right path is 

composed of a shared ResNet and a supervised ResNet while the left path consists of 

the shared ResNet and an unsupervised ResNet. All data (labeled and unlabeled data) 

was evaluated to calculate the unsupervised loss, that is the mean squared error loss 

(MSEL), while only labeled data was used to calculate the supervised loss, that is the 

cross-entropy loss (CEL). Specifically, I designed a weighted cross entropy loss 

(WCEL) that assigns more weight to the COVID-19 class for addressing the data 

imbalance. Reducing MSEL is to enhance the image representation while decreasing 

WCEL is to enhance classification performance. The proposed model was validated 

on a large-scale of x-ray image dataset COVIDx and experimental results 

demonstrated the proposed model could accomplish covid-19 image classification 

with promising performance even when trained on the extremely limited amount of 

labeled x-ray images.The contributions in this study are below. 

•  A semi-supervised deep learning model with ResNet through jointly training a 

supervised ResNet and an unsupervised ResNet was proposed. I observed that the 
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proposed model can learn on both unlabeled images and labeled images jointly for 

COVID-19 image classification with high performance. 

•  The proposed model was validated on a large-scale COVID-19 image dataset. 

Experimental results indicated that the proposed model was able to effectively 

recognize COVID-19 images by learning on very few labeled medical images, 

for example, less than ten percent of samples in the training data, which met 

the requirement of few available labeled data from the medical domain for real 

applications [4], especially for the cases at the early stage of such global 

pandemic. 

3.1.1 Proposed Methodology 

I proposed a semi-supervised ResNet to address the challenge of lacking of labeled data 

for covid-19 image classification, where the detailed framework is shown in Fig. 3.1. 

The shared ResNet will generate a new representation z below of input x. 

z = fpooling(fResblockN  · · · fResblock1 (x′)) . (3.1) 
 

where 

x′ = fconv(x). (3.2) 
 
 

fResblock(x′) = x + fconv(fconv(x′)) .  (3.3) 
 

fcov(·)  is  the  convolutional  operation.   fResblock(·)  is  the  residual  operation  [87] 

and  fResblockN  refers  to  N  sequencing  residual  operations.   fpooling(·) is the pooling 

operation. The shared ResNet introduced to the proposed model is inspired by deep 

multi-task learning [99, 100], since different tasks share a low-level feature 

representation extracted from the input x. 
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In addition, the reason for learning low-level feature representations instead of directly 

using x is that the original representation may not have enough expressive power for 

multiple tasks [101]. With the training data in all tasks, a more powerful representation 

can be learned for all tasks and this representation will improve performance. As shown 

in Fig. 3.1, I have two “tasks” in the proposed model, namely, a supervised task and an 

unsupervised task, which is similar to the framework of deep multi-task learning. 

Therefore, the shared ResNet is necessary to feed the low-level representations to 

these two tasks. 

The output z from the shared ResNet is evaluated by two ResNets, namely, a supervised 

ResNet and an unsupervised ResNet. For the supervised ResNet, it is to learn the deep 

features of labeled samples. The output zsup of the supervised ResNet is given by 

𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑠𝑠𝑠𝑠𝑠𝑠 �𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀

𝑠𝑠𝑠𝑠𝑠𝑠 .  .  .𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1
𝑠𝑠𝑠𝑠𝑠𝑠  (𝑍𝑍′)�   (3.4) 

 
where   

          
                                                                           𝑍𝑍′ =  𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠 (𝑍𝑍)    (3.5) 

 
 

      𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑠𝑠𝑠𝑠𝑠𝑠  (𝑍𝑍′) =  𝑍𝑍′ + 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠 (𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠  (𝑍𝑍′))               (3.6) 

The same operations including the pooling operation f sup , the convolution   

operation f sup (·) is employed, and M  sequencing residual  operations  f  sup       (·). 

Moreover, I build the unsupervised ResNet to generate another representation of all 

inputs including labeled data and unlabeled data. This representation zunsup is given 

by  
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𝑍𝑍𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =  𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 �𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 .  .  .𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  (𝑍𝑍′′)�        (3.7) 

where 
 

        𝑍𝑍′′ =  𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑍𝑍)                                                                 (3.8) 

 
 

                𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  (𝑍𝑍′′) =  𝑍𝑍′′ + 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑍𝑍′′))                  (3.9) 

 

Similarly, the pooling operation  𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  (. ) is employed, the convolutional operation 

f unsup(·),  and K sequencing residual operation  f unsup    (·),are used to build the 

unsupervised ResNet. Then, those two vectors zsup and zunsup are utilized to calculate 

the weighted cross entropy loss (WCEL) and mean squared error loss (MSEL) for 

supervised and unsupervised paths, respectively. They are given by 

lWCEL = − ∑ w × y × logϕ(zsup).                  (3.10) 

lMSEL = ||zsup − zunsup||
2 .                           (3.11) 

 

where y is the ground truth of the input and w is corresponding weight.  ϕ(·) is the 

softmax activation function. lWCEL is the weighted cross entropy loss to account for 

the loss of labeled inputs. To enhance classification performance for the minority class 

(covid-19 class), I assigned more weight to covid-19 class, where during the learning 

procedure the classifier paid more attentions to covid-19 class so as to reduce the 

learning bias that was caused by data imbalance.  

lMSEL is used to measure the differences between zsup and zunsup. Since training 

ResNets with dropout regularization and gradient-based optimization is a stochastic 

process, the two ResNets had different link weights after training. In other words, 

-
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there were differences between the two prediction vectors zsup and zunsup that are from 

these two ResNets (the supervised ResNet and the unsupervised ResNet). These 

differences can be treated as an error in the classification and thus minimizing this 

loss is a goal in the proposed model, which is inspired by Π model [70]. Based on 

these two losses, the total loss is defined by 

Loss = lWCEL + λ × lMSEL  (3.12) 

where λ is the weight for lMSEL. Training the proposed model was to optimize loss   on 

the training data. At the beginning of training, the total loss and the learning gradients 

are dominated by the supervised loss component, that is, the labeled data only. At later 

stage of training, unlabeled data contributed more than labeled data. These processes 

are controlled by fine-tuning λ [70]. The detailed steps for learning of the proposed 

model are shown in algorithm 1.   fθ shared (·) is to learn the low-level features from the 

medical images. Parameters of the shared ResNet θshared include weights learned for the 

operations, namely, pooling operation fpooling(·), convolutional operation fconv(·), and 

residual operation fResblock(·).After extracting low-level feature representations from 

the inputs I used fθ sup (·) and  fθ (·)  to  obtain  higher  level  representations  zsup  and  

zunsup,  where  zsup  is used to complete COVID-19 classification. In addition, zsup and 

zunsup were employed to enhance the image representations. Parameters of the 

supervised ResNet include weights learned for the operations, namely, pooling 

operation f sup(.), convolutional operation f sup (·), and residual operation f sup (·) while 

those of the unsupervised ResNet θunsup consisted of weights learned for the 

operations, namely, pooling operation f unsup (·), convolutional operation  f unsup(·), and  

residual  operation f unsup (·). In the training procedure, the data imbalance was 
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overcome by assigning more weight wi to the minority class (COVID-19 class) 

of samples. Finally, I employed ADAM optimizer to jointly optimize the total loss. 

3.1.2 Experiment 

3.1.2.1 Dataset 

A large-scale of chest x-ray dataset COVIDx [58] was employed to validate the 

proposed model. It was comprised of 18,543 chest radiography images across 13,725 

cases. Examples of chest x-ray images belonging to normal, pneumonia, and COVID- 

19 classes from COVIDx dataset are shown in Fig. 3.2. When these examples are 

examined, I can differentiate these images in terms of features shown within areas marked 

by the blue circle since I can observe some lighter areas indicating COVID- 19 infected 

regions in the blue circle. Additionally, when examining the class distribution 

between training and testing data, I noticed that class distribution of the training set 

was significantly different from that of testing set. Hence the data was rebuilt by 

splitting the dataset into training and testing datasets that share similar class 

distributions, where 70% and 30% of data were used for training and testing datasets, 

respectively. The detailed information of the rebuilt dataset is shown in Table 3.1 for 

sample distribution. 
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(a) normal (b) pneumonia (c) COVID-19 

 
Fig. 3.2. Examples of chest radiography images belonging to normal, pneumonia, 
and COVID-19 classes are shown in (a), (b) and (c), respectively. Yellow circle 
locates infected regions of pneumonia for subfigure (b) while in subfigure (c) the 
red rectangle shape of region in the blue circle shows the potential infected areas of 
COVID-19. 

 
 
 

TABLE 3.1. SAMPLE DISTRIBUTION IN DIFFERENT CLASSES FOR  
TRAINING AND TESTING DATASETS 

 
 

Dataset Normal Pneumonia COVID-
19 

Total 

Training 6,195 6,708 75 12,978 
Testing 2,656 2,876 33 5,565 
Total 8,851 9,584 108 18,543 

 
 

  3.1.2.2 Experimental Settings 

In this experiment, the proposed model performed COVID-19 classification. The     

key hyper parameters for training the proposed model were: Minibatch size: 256, Number 

of epochs: 50, Optimizer: Adam optimizer, and Initial Learning rate: 0.1. They were 

determined by trial and error. Moreover, the details of the model architecture is illustrated 

in Table 3.2, where the residual block is the standard one [87]. Specifically, the output of 

the proposed model contains two parts: image class ϕ(zsup) and a new epresentation zunsup. 
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COVID-Net1 [58] is employed as a baseline supervised model to present the state-of-

the-art performance of COVID-19 image classification for comparison. Furthermore, the 

proposed model is compared with SRC-MT [102], that is the state-of-the-art of semi-

supervised learning since it outperformed Π model [70] and mean teacher model [103] 

in the area of medical image classification. 

 
TABLE 3.2. THE PROPOSED NETWORK ARCHITECTURE. 

 

 
Name Description  
Input Medical Images 
Shared ResNet one convolutional layer, 2 residual block, 

batch normalization, one pooling layer 
Supervised ResNet one convolutional layer, 2 residual block, 

batch normalization, one pooling layer 
Unsupervised ResNet one convolutional layer, 2 residual block, 

batch normalization, one pooling layer 
Output image class ϕ(zsup) and 

a new representation zunsp

 
3.1.3 Evaluation Metric 

 
Different evaluation metrics are applied to evaluate the performance of the proposed 

model. Since the task is a multi-class classification problem, I use accuracy, macro-

average Precision (MacroP), macro-average Recall (MacroR), and macro-average Fscore 

(MacroF) [44, 104, 105]. Accuracy is calculated by dividing the number of medical 

images identified correctly over the total number of testing medical images. 

Accuracy = 
Ncorrect . (3.13) 
Ntotal 

 
Macro-average [106] is to calculate the metrics such as Precision, Recall and F-scores 

independently for each image class and then utilize the average of these       metrics. It is to 

evaluate the whole performance of classifying image classes. 
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MacroF =   1
𝐶𝐶
 ∑ 𝐹𝐹𝐶𝐶

𝑐𝑐=1 scorec           (3.14) 
 
MacroP =   1

𝐶𝐶
 ∑ 𝑃𝑃𝐶𝐶

𝑐𝑐=1 recisionc          (3.15) 
 
MacroR =   1

𝐶𝐶
 ∑ 𝑅𝑅𝐶𝐶

𝑐𝑐=1 ecallc           (3.16) 
 

where C denotes the total number of image classes and Fscorec, Precisionc, Recallc 

are Fscore, Precision, Recall values in the cth image class which are defined by 

 
Fscore = 2 × Precision × Recall         (3.17) 

   Precision + Recall 
 

where Precision defines the capability of a model to represent only correct image 

classes and recall computes the aptness to refer all corresponding correct image classes: 

 

Precision = 
TP  

TP + FP 
                                (3.18) 

Recall = 
TP  

T P + FN 
.                                 (3.19) 
 
 

whereas T P (True Positive) counts total number of medical images matched the annotated 

images. FP (False Positive) measures the number of recognized classes does not 

match the annotated images. FN (False Negative) counts the number of medical 

images that does not match the predicted medical images. The ideal case of learning 

from imbalanced datasets such as COVIDx is to improve the recall without hurting 

the precision. However, recall and precision goals are often conflicting, since when 

increasing the true positive (TP) for the minority class (True), the number of false 

positives (FP) can also be increased. This reduces the precision [107]. In addition, the 

confusion matrix is employed to check the detailed performance for each class, 
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especially on COVID-19 class.     

3.2 Calibrated Bagging Deep Learning for Image Semantic 

Segmentation: A Case Study on Covid-19 Chest X-Ray 

Image.  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes 

coronavirus disease 2019 (COVID-19) which was first identified in 2019 in Wuhan, 

compared to RT-PCR tests, medical imaging tests such as chest x-ray (CXR) and 

computed tomography (CT) are more effective and efficient [111, 112], which is of 

great help to physicians. For instance, in Italy, the United States, and China, the  

majority of serious COVID-19 cases have been identified through the manifestation 

characteristics in CT images [113]. Therefore, effective extraction of COVID-related 

information on medical images would play an important role to fight against a new 

round of pandemic caused by COVID mutated variant [114].  Deep learning (DL) 

played an important role in promoting COVID-related information extraction by 

COVID-19 infection region segmentation and disease classification through 

analyzing CXR and CT data [88, 61]. Compared with CT images, CXR images 

are easier to obtain in radiological inspections. Currently, most of DL models, 

especially convolutional neural networks (CNN), were employed to classify entire 

CXR images to detect COVID-19 cases [58, 115]. For example, Hemdan et al. proposed 

COVIDX-Net to assist radiologists to diagnose COVID-19 based on CXR features 

[116]. It integrated various deep convolutional neural networks (DCNN) models with 

different structures, such as DenseNet201 [117], Xception [118], and MobileNetV2 

[119].  Sethy et al.   integrated different DCNN models with a sup- port vector 
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machine (SVM) classifier to recognize COVID-19 [120]. In addition, to address 

the shortcomings of training data, Castiglioni et al. employed transfer deep learning 

techniques for COVID-19 classification, where the pretrained models were built based 

on ResNet on ImageNet datasets [121]. Ioannis et al. comprehensively evaluated 

transfer learning based COVID-19 classification by investigating five DCNN models, 

including VGG19, MobileNetV2, Inception, Xception, and Inception- ResNetV2 

[59]. Similarly, Narin et al.  applied three typical pretrained DCNN models (that is, 

ResNet50, InceptionV3, and InceptionResNetV2) to classify COVID-19 on a small-

scale CXR dataset [122]. Moreover, Lucy et al. [72] developed two-path semi- 

supervised deep learning model to implement COVID-19 classification by using huge 

amounts of unlabeled data. 

Compared with CXR classification, CXR semantic segmentation is a more 

challenging task, that is, to classify each pixel into predefined classes [123] to 

recognize region of interests (ROIs) on CXR images, where a few previous work 

explored this task [124, 125, 126]. Specifically, it seems to not be comprehensively 

investigated on prediction uncertainty of deep learning models for this task since many 

DL models focus on performance improvement on this task. However, for safety-

critical applications like medical image processing, the prediction uncertainty of 

DL models is a key evaluation metric on reliability of model predictions, where high 

prediction uncertainty means low prediction reliability. For example, for COVID-19 

applications, applying uncertain predictions to clinical processes would result in 

disastrous consequences such as missing serious COVID cases or delayed treatments. 
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Fig. 3.3. Flow of building and testing calibrated bagging deep learning. SR       
denotes predictions with individual deep learning model. 
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2) Calculating calibration errors to measure prediction uncertainties of these DL 

models on validation dation CXR datasets, where expected calibration error 

(ECE) and maximum calibration error (MCE) [128] are employed to 

estimate the prediction uncertainties. 

3) Appealing weighted voting of predictions on testing CXR datasets generated 

by these DL models to implement calibrated bagging deep learning, where the 

weight of each DL model is inversely proportional to the calibration error; The 

proposed model was validated on a large-scale CXR dataset to examine its 

effectiveness. Experimental results demonstrated that the proposed method not 

only enhanced the performance of semantic segmentation, but also improved 

the prediction certainty on CXR data. 

The contributions in this study are below. 

• Systematically compared performance of various state-of-the-art DL models on 

semantic segmentation on COVID-19 CXR data with different evaluation 

metrics. Moreover, the prediction uncertainty of these DL models was investigated 

by estimating expected calibration error (ECE) and maximum calibration error 

(MCE). 

• Implemented a novel ensemble deep learning model based on model calibration and 

bagging deep learning, which is to calibrate bagging deep learning models through 

weighted summation of predictions generated by individual models. The proposed 

approach was easily implemented and scalable to various tasks. 

• Validated the proposed method on semantic segmentation on a large COVID- 

19 CXR dataset based on different evaluation metrics. Experimental results 
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demonstrated its effectiveness in improving performance and prediction 

certainty for semantic segmentation. 

3.2.1 Methodology 

The method was built based on model calibration [130, 131, 132] and bagging deep 

learning [127] to enhance COVID-19 image segmentation with higher prediction 

certainty. 

3.2.1.1 Model Calibration 

The prediction reliability of machine learning models is critical for high risk ap- 

plications such as medical diagnosis [131, 132] and self-driving [133], which can be 

formulated as model calibration [130] that refers to the process of adjusting model 

parameters to make prediction confidence to be accurate estimation of the probability 

of the correct prediction [128]. Suppose a machine learning model is perfectly calibrated 

given a class y with the true probability p. 

P (ŷ = y|p̂ = p) = p (3.20) 

where p ∈ [0, 1] and class labels y ∈ {0, ..., k}. It means that when the prediction 

probability p̂ is equal to true probability p, the prediction ŷ is the same as the ground true 

y. Furthermore, the difference between the prediction confidence P and the true 

probability p is defined as calibration error, that is to estimate model uncertainty. The 

expected calibration error (ECE) and the maximum calibration error (MCE) were 

proposed to measure the quality of uncertainty for machine learning models in terms 

of prediction accuracy [134]. 

• Expected Calibration Error (ECE). It estimates the calibration error in 

expectation values with three steps: 1) discretizing the prediction probability 

region into a fixed number of bins; 2) assigning each predicted probability to one 

of these bins; 3) calculating the difference between the fraction of predictions in 
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the bin that are correct (accuracy) and the mean of the probabilities in the bin 

(confidence) by 
K 

ECE = k acc(k)–conf(k) (3.21) 
N 

k=1 

where nk is the number of predictions in bin k, N is the total number of samples 

predicted, and acc(k) and conf(k) denote the accuracy and confidence in the bin k, 

respectively. It is a weighted average of differences of accuracy vs confidence in 

these bins. 

• Maximum Calibration Error (MCE). It measures an upper bound of ECE that is 

the maximum difference between accuracy and confidence over all predictions across 

all bins. 
K 

MCE = max acc(k)–conf(k) (3.22) 
k=1 

 
 In summary, MCE measures the largest calibration gap across all bins, whereas 

ECE measures a weighted average of all gaps. Both MCE and ECE equal 0 if the 

model is perfectly calibrated  

 

 

 

 

 

 

 

Fig. 3.4. Diagram for building a bagging deep learning model. The model can be 
different deep learning models such as convolutional neural networks (CNN) and 
recurrent neural networks RNN) for different applications. 
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3.2.1.2 Bagging Learning 

Ensemble deep learning combines several individual deep models to improve 

generalization performance through various ensemble strategies such as bagging and 

boosting, which integrates the advantages of both deep learning and ensemble learning 

[127]. Bagging, (or bootstrap aggregating, generates a series of independent sub- sets 

from training data to build multiple individual predictors to build an ensemble model 

[135In detail, it generates the bagging samples and passes each bag of samples to base 

models to build multiple predictors. Then, it is to combine predictions of these 

multiple predictors with specific strategies such as majority voting. Fig. 3.4 presents a 

diagram for building and testing bagging deep learning with majority voting, where 

multiple training sets can be generated by sampling with or without replacement. 

                3.2.1.3. Proposed Model  

A calibrated bagging deep learning model is proposed to enhance generalization 

performance as well as reduce prediction uncertainty for COVID-19 semantic 

segmentation. Fig. 3.3 presents the flow for building the proposed approach. It includes 

three stages: 1) training various state-of-the-art deep learning models such as UNet 

[2], PSPNet [37], and MobileNet [129], on an identical training data for COVID-19 

image segmentation models, which differs from the standard strategy for bagging 

learning that is to generate a bag of training sets on original training data; 2) estimating 

calibration error (CE) for these different models. First, it is to complete COVID-19 

semantic segmentation on validation data by running these DL models to obtain 

prediction probabilities and accuracy. Then, it calculates CE including ECE and 

MCE to evaluate uncertainties of these DL models; 3) testing via weighted voting 

-
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bagging deep learning. I performed calibrated bagging prediction on testing data 

through implementing weighted voting, where the weights were built with CE of these 

DL models. It assumed that lower CE of DL models meant higher certainty of these 

DL models. Moreover, DL models with the higher certainty were assigned with more 

weights.  

3.2.2 Experiment 

3.2.2.1 Dataset 

COVID-19 chest x-ray dataset was employed to validate the effectiveness of the 

proposed method. It included 6, 402 images of AP/PA chest x-rays/CT scan with 

pixel-level polygonal lung segmentation. Each image had a corresponding ground 

truth with two “Lung” segmentation masks, (rendered as polygons, including the posterior 

region behind the heart), where the masks included most of the heart, revealing lung 

opacities behind the heart which may be relevant for assessing the severity of viral 

infection. Fig. 4.3 shows one example of CXR image and corresponding ground truth. 

In terms of the example, semantic segmentation on CXR images was to classify pixels 

in the original image into two classes:  Lung, (white region in ground truth, and non-

lung, (black region in ground truth). I split the dataset into training (70% data), 

validation (10% data), and testing (20% data) datasets 

3.2.2.2 Experimental Settings 

I employed five state-of-the-art individual models as baselines to evaluate 

performance of semantic segmentation, namely, UNet [2], PSPNet [37], FCN32 

[35] (FCN with 32×upsampling), FCN32 ResNet50 (FCN32 combined with ResNet50 

[87]),    FCN32 MobileNet  (FCN32 combined with MobileNet [129]), and an ensemble 

base-line built based on majority voting, where the ensemble baseline was built based 
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on bagging learning with these results generated by these five baselines (UNet, PSPNet, 

FCN32, FCN32 ResNet50, and FCN32 MobileNet).  Moreover, key hyper-parameters 

of these individual models are shown in Table 3.3. 

Algorithm 2 Building calibrated bagging deep learning  
Require: Training set Dtraining and validation set Dval 
Ensure: Calibrated bagging deep learning 
1: form ← 1 to M do 
2: Setting hyper-parameter (HP) for DLm 
3: Training DLm on Dtraining 
4: Calculating CEm of DLm on Dval 
5: end for 
6: return DL models DL= {DL1, DL2, ..., DLM} and corresponding  

CE = {CE1, CE2, ..., CEM}  
 
 

 
3.2.1.1 Original (b) Groundtruth 

 
Fig. 3.5. (a) Original image (b) Ground truth, an example of CXR image and 
corresponding ground truth 
 
TABLE 3.3. HYPER-PARAMETERS OF BASELINES FOR COVID-19 IMAGE 
SEGMENTATION 

 
 

Model Learning Rate Batch Size Epoch 
UNet 1e-3 2 50 
PSPNet 1e-3 2 70 
FCN32 1e-3 2 50 
FCN32 ResNet50 (F32 R50) 1e-3 2 50 
FCN32 MobileNet (F32 M) 1e-3 2 50 
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I implemented two versions of the proposed approach including Ensemble 

(Weighted Voting (ECE)) and Ensemble (Weighted Voting (MCE)). Ensemble 

(Weighted Voting (ECE)) is a weighted bagging learning method, where the weights 

are obtained by calculating expected calibration error (ECE). Similarly, Ensemble 

(Weighted Voting (MCE)) is a weighted bagging learning method, where the weights 

are obtained by calculating maximum calibration error (MCE). Moreover, I combined 

the predictions of Ensemble (Majority Voting (MV)), Ensemble (Weighted Voting 

(ECE)), and Ensemble (Weighted Voting (MCE)) by majority voting to build 

Ensemble (Majority Voting + ECE + MCE (MVEM)). 

3.2.3 Evaluation Metric 

Various evaluation metrics were employed to evaluate the performance of the pro- 

posed model, which included accuracy, F1score, sensitivity, and specificity. Accuracy 

was calculated by dividing the number of pixels identified correctly over the total 

number of pixels in chest x-ray images. 

Accuracy = 
Ncorrect . (3.23) 
Ntotal 

 

Fscore = 2 × Precision × Recall . (3.24) 
Precision + Recall 

 
where Precision defines the capability of a model to represent only correct pixels and 

Recall computes the aptness to refer all corresponding correct pixels. 

 

Precision = 
TP  

T P + FP 
. (3.25) 
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Recall = 
TP  

T P + FN 
. (3.26) 

 

 Specificity = 

 
TN 

T N +FP 

.                 
 

                                     (3.27)          
        

 

 Sensitivity = 
TP  

T P + FN 
                                       (3.28) 

 

whereas T P (True Positive) counts the total number of pixels that matches the annotated 

pixels of RIOs. FP (False Positive) measures the number of pixels that do not belong 

to RIOs, but are recognized as pixels of RIOs.  FN (False Negative) counts the  

number of pixels of RIOs are recognized as those that do not belong to RIOs. The 

main goal for binary classification is to improve the recall without hurting the 

precision. However, recall and precision goals are often conflicting, since when 

increasing the true positive (TP) for the minority class (True), the number of false 

positives (FP)  can also be increased. This will reduce the precision [107]. 

Moreover, I employed sensitivity and specificity to evaluate performance of semantic 

segmentation [136], where the sensitivity measures how good a test is at detecting the 

RIOs while the specificity refers to how good a test is at avoiding false alarms. Finally, I 

employed expected calibration error (ECE)2 and MCE to calculate the calibration 

errors [128] for evaluating the prediction uncertainty, where ECE and MCE were 

defined as equations (1) and (2), respectively. The lower the ECE and MCE, the 

higher the prediction certainty. 
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3.3 Proformer-Based Ensemble Learning for Gene Expression 

Prediction 

DREAM Challenges are widely acknowledged as a pioneering force in the field of 

biomedical research [145], with a primary objective of encouraging transparent, 

cooperative, and open scientific inquiry in biomedicine. These challenges strive to 

enhance techniques in systems biology by tackling intricate and groundbreaking problems 

in biology and biomedicine. A staggering number of individuals, exceeding 30,000 from 

different parts of the world, have benefited from these challenges, encompassing 

individuals with diverse backgrounds and multidisciplinary interests. The utilization 

of open-source code and data plays a significant role in driving the success of these 

challenges. Moreover, it is equally essential to highlight the biological insight and 

translatability of the algorithms used to address the queries presented in the challenges. 

Comprehending the cis-regulatory logic of the human genome is crucial as it 

would offer insights into the origins of various diseases. Nonetheless, learning models 

from human data faces many challenges, such as limitations in the diversity of 

sequences, extensive repetitive DNA, a vast number of cell types that interpret 

regulatory DNA differently, limited reporter assay data, and substantial technical 

biases. The DREAM Challenges 2022 [146] have addressed these issues by creating 

high-throughput measurements of cis-regulatory activity for millions of randomly 

generated promoters in the single-cell organism Yeast. The level of expression 

produced by each promoter sequence is assessed using a fluorescent reporter gene that is 

regulated by the promoter. The number of randomly generated promoter sequences is 

so vast that it is comparable in complexity to the entire human genome, providing 
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unprecedented opportunities to learn the numerous parameters for comprehending gene 

regulation. As the cis-regulatory logic of both human and Yeast systems is based on 

similar principles, it is hoped that the model architectures learned from the yeast data 

would be promising for developing models for the human genome. During this 

competition, participants will receive expression measurements of millions of promoter 

sequences that are randomly generated to train machine learning models that predict 

gene expression from the sequences. 

From a machine learning perspective, predicting gene expression can be seen as a 

regression problem, where the gene sequences serve as inputs and the corresponding 

expression levels are the outputs [147]. In recent years, deep learning techniques have 

been utilized to improve gene expression prediction, with deep convolutional neural 

networks (CNNs) currently achieving the best performance for predicting gene ex- 

pression from DNA sequences in both human and mouse genomes [148, 149, 150, 151]. 

For example, ExPecto [148], a deep learning-based framework, can accurately predict 

tissue-specific transcriptional effects of mutations, including rare or unobserved ones, 

from a DNA sequence. Kelley et al. trained deep CNNs simultaneously on multiple 

genomes and applied it to large compendia of human and mouse data, improving the 

accuracy of gene expression prediction on variant sequences [149]. Agarwal et al. 

applied deep CNNs to predict gene expression levels based solely on genome 

sequence, and achieved surprising success in explaining up to 59% and 71% of 

variation in steady-state mRNA levels in human and mouse, respectively, using only 

promoter sequences and mRNA stability-related features [150]. Despite the promising 

results of deep learning-based gene expression prediction, there have been few attempts 



61 
 

 
 

to leverage the power of deep learning with millions of gene sequences. 

In this chapter, I proposed an ensemble deep learning models based on Pro- former [5] 

to successfully perform gene expression prediction through training and testing on 

millions of gene sequences. Proformer is an end-to-end Transformer [43] encoder as seen 

in Fig. 3.7, to predict the expression values from DNA sequences. 

It utilizes a Macaron-like Transformer encoder architecture with two half-step feed 

forward (FFN) layers placed at the beginning and end of each encoder block, along 

with a separable 1D convolution layer inserted after the first FFN layer and before the 

multi-head attention layer. Proformer achieved 3rd place in the DREAM Challenges 

2022 for gene expression prediction. To further improve its performance, I introduced 

ensemble strategies by building multiple Proformers and combining their predictions 

using various weighted strategies. Experimental results demonstrated that the 

proposed method not only enhanced the performance of Proformer effectively 

regarding four evaluation metrics, but also achieved higher performance than the 

winning of the DREAM Challenges 2022 in terms of values of Score Spearman and 

Spearman. 

The contributions in this study are below: 

• The proposed novel approach involves an ensemble model consisting of various 

end-to-end transformer encoders with different architectures. The model predicted 

the gene expression values of promoter sequences by generating predictions using 

individual models and combining them through averaging weighted summation. 

• I evaluated the proposed model on thousands of randomly generated promoter 

sequences in Yeast using various evaluation metrics. The experimental results 
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demonstrated the effectiveness of the approach in improving the performance of 

existing state-of-the-art methods through effectively learning feature 

representations of promoter sequences. 

3.3.1 Methodology 

The proposed method was built based on Proformer [5] and ensemble deep 

learning [127] to enhance gene expression prediction. 

3.3.1.1 Proformer 

Proformer is a deep learning model that uses the Transformer encoder 

architecture to predict expression values from DNA sequences in an end-to-end 

manner [5]. Its unique design includes a Macaron-like Transformer encoder 

architecture with two half-step feed forward (FFN) layers at the beginning and end of 

each encoder block, respectively. In addition, a separable 1D convolution layer is 

inserted after the first FFN layer and before the multi-head attention layer. Proformer 

utilizes sliding k-mers from one-hot encoded sequences that are mapped onto a continuous 

embedding, along with learned positional and strand embeddings (forward strand vs 

reverse complement strand) as the sequence input. The model also uses multiple 

expression heads, which predicts expression values for each head and then averages the 

predictions of all heads to obtain the final predicted expression value. It achieves 

significantly better than conventional methods, such as using a global pooling layer 

as the output layer for regression tasks. In summary, Proformer provides a new and 

effective approach to learn and characterize how cis-regulatory sequences determine 

expression values. 
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3.3.1.2 Ensemble Deep Learning 

Ensemble deep learning combines several individual deep models to improve 

generalization performance through various ensemble strategies such as bagging and 

boosting, which integrates the advantages of both deep learning and ensemble learning 

[127]. Bagging (or bootstrap aggregating) generates a series of independent sub- sets 

from training data to build multiple individual predictors to build an ensemble model 

[135]. In detail, it generates the bagging samples and passes each bag of samples to 

base models to build multiple predictors. Then, it is to combine predictions of these 

multiple predictors with specific strategies such as majority voting. 

3.3.1.3 Proposed Model 

I proposed a Proformer-based ensemble model to enhance gene expression pre- 

diction, where the flow of building the proposed method is shown in Fig. 3.6. The 

process began with the preprocessing of data, which involved several steps such as 

gene reverse complement, gene masking, and K-mer representation. The gene re- 

verse complement was to reverse the gene order of original gene sequences. The gene 

masking was to mask individual gene randomly. The K-mer representation was to 

map one-hot encoded sequences onto a continuous embedding, combined with the learnt 

positional embedding and strand embedding, (forward strand vs reverse complement 

strand, as the sequence input. The preprocessed data was then used to train multiple 

Proformers, each with a unique configuration, where a Proformer consisted of four 

Macaron Encoders [5]. Then these training Proformers were employed for gene 

expression prediction on the test gene sequences to generate gene expression level (GEL). 

The final GEL was produced by merging the different GELs obtained from the 

-
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various Proformers using a weighted summation, where the weight can be built bad 

on evaluation metrics. 

3.3.2 Experiment 

3.3.2.1 Dataset 

Dream Challenges 2022 provided millions of randomly generated promoters in the 

single-cell yeast organism [146]. In detail, it consisted of more than 6 million promoter 

sequences, each having identical leading 17 nucleotides, identical trailing 13 

nucleotides, and a corresponding expression level ranging [0.0, 17.0] with the distribution 

shown in Fig. 3.8. A fluorescent reporter gene regulated by a promoter is was used to 

measure the expression level produced by each promoter sequence. The number of 

randomly generated promoter sequences was so vast that it was comparable in complexity 

to the entire human genome. This provided an unparalleled opportunity to gain insights 

into the numerous parameters necessary for comprehending gene regulation. Since the cis-

regulatory logic of both humans and yeast follows comparable principles, the model 

architectures learned from yeast data can offer guidance on how to construct models for 

the human genome. 

Furthermore, the data was preprocessed by trimming the identical nucleotides in 

each promoter sequence and by padding the sequences that were less than 100 

nucleotides on the left and right sides with a specific letter K, which was to ensure 

a standard promoter length of 100 nucleotides for training and testing. Moreover, the 

reverse complemented sequences, which was formed by interchanging A and T and 

interchanging C and G in the promoter sequence, were concatenated with the original 

sequences, (after trimming and padding, as the input for model training. Thus, the -
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total length of the input sequences was 200 nucleotides. The expression levels were 

standardized to the mean of zero and a standard deviation of one for better model 

generalization performance and faster convergence. 

3.3.2.2. Experimental metrics 

Various evaluation metrics were employed to evaluate the performance of the 

proposed model, namely, PearsonR, Spearman, score PearsonR, score Spearman. 

• PearsonR: PearsonR’s correlation measures the strength of the linear 

correlation of the standardized slope of a simple linear regression line (fit) 

[152]. 

ρp = (xi − x̄ )(yi − ȳ )       

         √(xi − x)2(yi − y)2 

ρp = Pearson correlation coefficient 

xi = Values of the x-variable in a sample 

 x̄  = Mean of the values of the x-variable 

yi = Values of the y-variable in a sample 

 ȳ  = Mean of the values of the y-variable 

  where the x-variable is the gene in the gene sequence while the y-variable is the gene 

expression. 

• Spearman: Spearman’s correlation ρs determines the strength and direction of 
the monotonic relationship between two ranked variables [152]. 

 
ρs = 1 -  6 (Di)2     

                  n(n2 − 1) 
 
Where D2 = R(xi) – R(yi) 
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i D2 = Squared of the difference between the two ranks of each x and y 

observation 

R = rank for each observation in a sample 

xi = Values of the x-variable in a sample 

yi = Values of the y-variable in a sample 

n = Number of observations 

• Score PearsonR: A weighted measure of the strength of the linear correlation of 

the standardized slope of a simple linear regression line (fit). In this study, the 

mean square error is used as weight [153]. 

  ρsp =                           ∑ [wi(xi −  x)(yi −  y)]𝑛𝑛
𝑖𝑖=1    

  ∑ (wi(xi − . x)2)𝑛𝑛
𝑖𝑖=1 ∑  (wi(yi − . y)2)𝑛𝑛

𝑖𝑖=1  
 

ρsp = Score PearsonR correlation coefficient 

n = Number of observations 

• Score Spearman: a weighted rank measure of correlation that weights the distance 

between two ranks using a linear function of those ranks, giving more importance 

to higher ranks than lower ones.   In this study, the mean square error was used as 

weight [153]. 
ρs   =      1 -  6 ∑ Wi𝑛𝑛

𝑖𝑖=1 (Di)2     
                     n(n2 − 1) 
ρss = Score Spearman correlation coefficient 

wi = Mean square error 

n = Number of observations 
 

3.3.3  Experimental setup 
 

I proposed a novel ensemble of end-to-end Transformer encoder architectures that 

leveraged the self-attention mechanisms and could handle long-range correlations 

between the input-sequence items to predict the expression values from millions of DNA 

sequence. Specifically, the values of evaluation metrics including Spearman, PearsonR, 
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Score Spearman, and Score PearsonR were employed as weight to implement the 

weighted sum during the prediction and average it to obtain the final predicted gene 

expression values. The key hyper-parameters of these individual models are shown in 

Table 3.4. 

TABLE 3.4. HYPER-PARAMETERS OF BASELINE MODELS 
 

Parameters Model 1 Model 2 Model 3 Model 4 
Attention Heads 4 8 8 8 
Encoder Blocks 4 4 4 4 
Expression Heads NA 1 32 32 
Batch size 512 512 512 512 
Masking NA NA 5% 5% 
Learning Rate 1e-3 1e-3 1e-3 1e-3 
Epochs 20 20 20 20 

 
 
 

 
 

Fig. 3.6. Distribution of genes expression levels. 
 

 

The training losses consisted of the mean squared error between the expression values 

(y mse), and the reconstruction loss (y recon) which helps stabilize the training process 

especially with larges models, where five percent of the nucleotides were randomly 

masked and predicted. The mean of the prediction of all heads for all predicted expression 

value from for each head was used as the final predicted expression value. 
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Fig. 3.7. Flow of the proposed ensemble Proformer models. It starts with data 
preprocessing including gene reverse complement, gene masking, and K-mer 
representation. Outputs of the data preprocessing are employed to train multiple 
Proformer with different setups, where the Proformer is composed of four Macaron 
Encoder [5].  These Proformer perform gene expression prediction on the testing 
gene sequences to conduct corresponding gene expression level (GEL). Finally, 
these different GELs are merged through averaging weighted summation of 
predictions to produce the final GEL. 
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Fig. 3.8. The transformer model architecture [43] 
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CHAPTER 4  

                                                       4. FINDINGS 

4.1 Experimental Findings for Semi-Supervised Learning For 

Covid-19 Image Classification Via Resnet 

4.1.1 Experimental Results 

The proposed model performance in four steps was evaluated. The first step was to 

examine the performance of supervised learning baselines, which was to prove if ResNet 

was a reasonable supervised model for COVID-19 image classification. A competitive 

supervised baseline is useful to compare the proposed semi-supervised model in order 

to present the effectiveness of the proposed model. Furthermore, I checked whether fewer 

labeled data would lead to lower performance. The second step was to compare the 

proposed model with state-of-the-art semi-supervised learning.  

 

 (a)COVID-Net (100%) (b) ResNet (100%) 

Fig. 4.1. Comparison of confusion matrix generated by COVID-Net (100%) and 
ResNet (100%). 

 
The third step was to examine whether the hyper-parameter setting would affect the 

performance of the proposed model significantly. Finally, the inability of the proposed 

model to classify certain COVID-19 cases is discussed. 
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(a) ResNet (5%) (b) ResNet (7%) (c) ResNet (9%) 

(d) Weighted ResNet (5%) (e) Weighted ResNet (7%) (f) Weighted ResNet (9%) 

Fig. 4.2. Comparison of confusion matrix generated by different ResNets training on 
different ratios of labeled data. Weighted ResNet is built by assigning more weight to 
COVID-19 class during training for overcome the challenge of data imbalance.

 

4.1.1.1 Supervised Learning for COVID-19 Classification 

Table 4.1 presents the comparison of supervised baselines built with ResNet. I 

observed that ResNet (100%) outperformed COVID-Net (100%) when comparing 

accuracy, macro-average precision, and macro-average Fscore. It means that ResNet is 

a competitive supervised baseline for COVID-19 image classification. To learn from 

fewer labeled data, I only focused on the cases of five percent, seven percent, and nine 

percent labeled data since the labeled data would be very scarce in the medical domain 

[4] during the early stage of a global pandemic such as COVID-19 outbreak. 
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TABLE 4.1. COMPARISON ON SUPERVISED BASELINE PERFORMANCE. 
RESNET IS TRAINED ON DIFFERENT RATIOS (%) OF LABELED X-RAY 
IMAGES. WEIGHTED RESNET IS BUILT BY ASSIGNING MORE WEIGHT TO 
COVID-19 CLASS DURING TRAINING FOR OVERCOMING THE CHALLENGE 
OF DATA IMBALANCE 
 

DL Accuracy 
(%) 

MacroP            
(%) 

MacroR 
(%) 

MacroF 
(%) 

COVID-Net (100%) 93.98 72.70 96.05 77.33 
ResNet (100%) 94.68 90.52 78.87 83.04 
ResNet (5%) 87.59 58.23 58.50 58.30 
ResNet (7%) 89.27 59.51 59.91 59.68 
ResNet (9%) 90.10 60.05 60.44 60.24 
Weighted ResNet (5%) 86.45 57.63 57.95 57.78 
Weighted ResNet (7%) 88.70 59.15 59.54 59.31 
Weighted ResNet (9%) 89.36 66.16 60.46 60.78 

 

4.1.2 Supervised Learning for COVID-19 Classification 

It was observed that the classification accuracy can be improved by 

increasing the labeled data to train ResNet. Meanwhile the performance 

such as accuracy and MacroF was reduced significantly when comparing with ResNet 

(100%), which demonstrated that more labeled data was imperative for building high 

performance supervised models. Moreover, it was observed that weighted ResNet could 

not improve the performance since inappropriate weight might be assigned to different 

classes. 

Fig. 4.1. indicates that ResNet (100%) could be a promising supervised baseline 

model when compared to COVID-Net in terms of the accuracies   on the normal and 

pneumonia classes. For the COVID-19 class, ResNet was lower than COVID-Net 

since COVID-Net employed transfer learning to enhance performance. To check the 

performance for each class when learning on fewer labeled data, the detailed 

performance with confusion matrix shown in Fig. 4.2 is presented. With low  ratios of 
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labeled training data to train models, ResNet cannot recognize COVID-19 images 

effectively, which is due to insufficient COVID-19 labeled samples. In the training 

sets of these cases, only a few of images are for the COVID-19 class. For example, 

in the case of ResNet (five percent), only three images for COVID-19 class were   

present in the training data, which means that most of training images were for the 

classes of Normal and Pneumonia. Learning on this data will lead to classification   

bias. Weighted ResNet was not sufficient to enhance the performance, which means 

that even more weight assigned to COVID-19 class was not enough to overcome 

the lack of labeled samples to learn distinct features to differentiate COVID-19 

patients from non-COVID-19 patients on x-ray images with supervised learning 

4.1.3 Comparing the Proposed Model with State-of-the-art Semi-Supervised 

Learning 

In this section, I examine whether the proposed model was able to effectively 

identify COVID-19 samples by training on very limited number of annotated images. 

Table 4.2 presents the comparison of classification performance between SRC-MT and 

the proposed model (SSResNet). Overall accuracies of SRC-MT are better than those of 

the proposed model. However, when only five percent labeled samples were used for 

training, MacroF of the proposed model was higher than that of SRC-MT, which indicates 

that the proposed model was more effective in detecting COVID-19 samples and can  

detect COVID-19 samples with higher performance. It means that compared to SRC-MT, 

the unsupervised path could enhance the data representation for improving COVID-19 

classification more effectively. 

In addition, detailed performance of each class with confusion metrics shown in 
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Fig. 4.3 are examined. I observed that the accuracy of recognizing COVID-19 by   

the proposed model is higher than that of SRC-MT, which means SSResNets can learn 

more effective features from unlabeled data to recognize COVID-19 samples. 

Furthermore, with the increased ratios of labeled data, the accuracies of recognizing  

COVID-19 is enhanced significantly. It means that the unsupervised path can enhance the 

representations of images to improve the classification. In other words, unlabeled data 

contributed to increasing the COVID-19 classification performance significantly by 

enhancing the image representations with the unsupervised path of the SSResNet. 

4.1.3.1 Hyper-Parameter Setting 

In addition to examining the performance comparison between the proposed models 

and baselines, the sensitivity of the proposed model to hyper-parameters was determined. 

There are various hyper-parameters involved in the learning procedure of the proposed 

model. Here, the class weight was checked since different weights would lead to different 

performance of recognizing COVID-19 samples. Table 4.3 shows the comparison results 

for different weights of three classes. It is observed that different weight resulted in 

significant differences of the performance when examining the values of accuracy. On 

the other hand, compared to accuracy and MacroP, MacroR and MacroF were less 

sensitive to the weight of COVID-19 class. Generally, the weight for COVID-19 class 

was delicately selected to obtain the optimal performance. 
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TABLE 4.2. COMPARING PERFORMANCE BETWEEN SRC-MT AND OUR 
MODEL (SEMI- SUPERVISED RESNET (SSRESNET))  

 

Semi-supervised 
Model 

Accuracy (%) MacroP (%) MacroR (%) MacroF (%) 

SRC-MT (5%) 90.67 61.08 60.75 60.59 
SRC-MT (7%) 89.82 89.92 74.13 78.95 
SRC-MT (9%) 92.79 93.61 79.15 84.15 
Our model Accuracy (%) MacroP (%) MacroR (%) MacroF (%) 
SSResNet (5%) 84.95 61.18 66.76 62.41 
SSResNet (7%) 84.21 63.67 67.85 62.83 
SSResNet (9%) 81.79 59.34 70.99 59.19 

 
4.1.3.1.1 Error Analysis 

     Fig. 4.4 presents three COVID-19 samples that are classified into Normal, COVID- 

19, and Pneumonia classes, respectively. x-ray images of COVID-19 patients shows 

various features for different stages of COVID-19 patients2. At the early stage of 

COVID-19 patients, x-ray images cannot present significant features (Fig. 4.4 (a)) that 

can be used to differentiate COVID-19 and Non COVID-19 patients, which leads to 

the incorrect classification result for the sample. It is consistent with the expectation 

that x-ray images are not ideal evidence to support diagnosis of COVID-19 for the 

patients at the early stage. However, with development of COVID-19, x-ray images 

are able to present obvious features such as multifocal lung airspace opacities, nodules 

and consolidation (Fig. 4.4 (b)), which contributes to the correct classification result. 

Unfortunately, if the patients are at the late stage of COVID-19, x-ray images present 

lobar diffused consolidation (See Fig. 4.4 (c)) that is similar to features of pneumonia. 

These features were confusing to the proposed model and lead to the incorrect result  



76 
 

 
 

 

(a) SRC-MT (5%) (b) SRC-MT (7%) (c) SRC-MT (9%) 

 
 

 
 

  

(d) SSResNet (5%) (e) SSResNet (7%) (f) SSResNet (9%) 

Fig. 4.3. Comparison of confusion matrix generated with SRC-MT and 
SSResNets trained on different ratios of labeled data. 

 
 
 

 
 

 

 (a)Normal (b) COVID-19 (c) Pneumonia 

Fig. 4.4. COVID-19 samples classified into Normal, COVID-19, and Pneumonia 
classes, are shown in (a), (b), and (c) respectively. The blue circles locate the infected 
regions of COVID-19. 
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TABLE 3.5. COMPARING PERFORMANCE WITH DIFFERENT CLASS 
WEIGHTS. C1, C2, AND C3 ARE THE WEIGHTS OF NORMAL CLASS, PNEU-
MONIA CLASS, AND COVID-19 CLASS, RESPECTIVELY. 

 
 

 5% Labeled Data 
Clas
s 

Weight Accuracy MacroP MacroR MacroF 

c1 = 1, c2 = 1, c3 = 2 84.95 61.18 66.76 62.41 
c1 = 1, c2 = 1, c3 = 5 78.82 58.18 67.38 56.79 
c1 = 1, c2 = 1, c3 = 10 66.78 57.24 66.70 50.77 

 7% Labeled Data 
Class Weight Accuracy MacroP MacroR MacroF 

c1 = 1, c2 = 1, c3 = 2 85.90 65.75 64.62 64.84 
c1 = 1, c2 = 1, c3 = 5 84.21 63.67 67.85 62.83 
c1 = 1, c2 = 1, c3 = 10 79.31 58.57 67.71 59.39 

 9% Labeled Data 
Class Weight Accuracy MacroP MacroR MacroF 

c1 = 1, c2 =1, c3 = 2 87.28 70.32 62.93 64.65 
c1 = 1, c2 = 1, c3 = 5 84.69 60.91 66.79 61.86 
c1 = 1, c2 = 1, c3 = 10 81.79 59.34 70.99 59.19 

 
for    the sample shown in Fig. 4.4 (c). In summary, in terms of samples shown in Fig. 

4.4,     the proposed model was effective for the patients who were in the development of 

COVID-19 rather than those at the early stage or late stage of such disease. 

4.1.4 Discussion 

Deep learning technique has shown its power on classification of COVID-19. 

Ghoshal et al. [88] proposed a Bayesian convolutional neural network to estimate the 

diagnosis uncertainty in COVID-19 prediction, where the dataset includes 70 lung X-

ray images of patients with COVID-19 from an online COVID-19 dataset [89], 

and non-COVID-19 images from Kaggle’s Chest x-ray data (Pneumonia).  Narin et al. 

[90] is to detect COVID-19 infection from X-ray images through comparing three 

different deep learning models, namely, ResNet50, InceptionV3, and Inception- 

ResNetV2. The evaluation results showed that the ResNet50 model outperformed other 
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two models. Zhang et al. [91] also utilized ResNet to complete COVID-19 

classification on X-ray images and estimated an anomaly score to optimize the 

COVID-19 score for the classification. In addition, Wang et al. [58] propose COVID-

Net to detect COVID-19 cases using X-ray images. In general, most current studies 

use X-ray images to differentiate between COVID-19 and other pneumonia and 

healthy subjects. However, with limited number of COVID-19 images, it is 

insufficient to evaluate the robustness of the methods and also poses questions to the 

generalizability. Semi-supervised deep learning has attracted lots of attention since it has 

the strong ability to generalize the model performance through learning on labeled data 

and unlabeled data [67, 68, 69, 70]. Generally, it is to train the deep neural networks 

by jointly optimizing the standard supervised classification loss on labeled samples and 

an unsupervised loss on unlabeled data [67, 70]. The rationale of these semi-supervised 

learning models is to enrich the supervision signals by exploiting the knowledge learned  

o n  unlabeled data [92] or regularize the network by enforcing smooth and consistent 

classification boundaries [69]. Regarding COVID-19 research such as COVID-19 image 

classification and image segmentation, semi-supervised learning is employed to resolve 

lack of labeled data [93, 94, 95, 96, 97, 98]. However, for COVID-19 image classification, 

these studies [93, 94, 95] have not comprehensively examined the model performance on 

a large-scale of X-ray image dataset such as COVIDx [58] by comparing with the state-

of-the-art, especially for the case    of very few labeled data such as less than ten percent 

labeled data. This research proposed a semi-supervised deep learning model for COVID-

19 image classification and checked   the model performance systematically on the 

COVIDx [58] dataset. 
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• Computed Tomography Scan (CT-SCAN): a CT scan is a medical 

imaging technique that combines X-ray technology with computer 

processing to generate detailed cross-sectional images of the body [47]. It 

uses a series of X-ray beams taken from different angles to create a 3D 

representation of internal structures. CT scans are particularly useful for 

visualizing bones, organs, soft tissues, and blood vessels. They can provide 

information about the size, shape, density, and location of various structures, 

aiding in the diagnosis and monitoring of conditions such as fractures, 

tumors, infections, and internal bleeding. 

• Magnetic Resonance Imaging (MRI): MRI is a non-invasive imaging 

technique that uses a powerful magnetic field and radio waves to generate 

detailed images of the body’s internal structures [47]. It provides highly 

detailed images of organs, tissues, and other structures without using 

ionizing radiation. MRI scans are particularly valuable for examining soft 

tissues such as the brain, spinal cord, muscles, joints, and internal organs. 

They can provide information about the structure, function, and blood flow 

in these areas, aiding in the diagnosis and evaluation of various conditions, 

including tumors, injuries, neurological disorders, and cardiovascular 

diseases. 

In this research, a novel framework of semi-supervised deep learning was proposed 

for COVID-19 image classification on chest x-ray images. Supervised learning based 

COVID-19 classification on x-ray datasets could provide useful information to medical 

staff for facilitating a diagnosis of COVID-19 in an effective and efficient manner. 
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Unfortunately, it relies on the availability of large amount of labeled medical images, 

which are not available in practice in the early outbreak of such global pandemic. Hence, 

a semi-supervised learning model based on ResNet that can utilize unlabeled images to 

enhance classification performance was proposed. There were two paths in the model  

for reducing supervised cross entropy loss and unsupervised mean squared error loss, 

respectively. Then training was performed by jointly optimizing these two losses, which 

allowed the proposed scheme to take advantage of the information from both labeled and 

unlabeled images. Experimental results demonstrated that the proposed model could 

recognize COVID-19 lung pathology effectively by learning on very limited labeled 

images and substantial unlabeled images. For the future work, the plan is to extend the 

proposed model for other tasks such as COVID-19 image segmentation. 

4.2 Finding for Calibrated Bagging Deep Learning for Image 

Semantic Segmentation: A Case Study on Covid-19 Chest 

X-Ray Image Method. 

4.2.1 Experimental Results 

I validated the proposed method from two perspectives: comprehensive performance 

comparison between the baselines and the proposed method, and hyper-parameter 

examination.  

4.2.1.1 Performance Comparison 

Table 4.2 presents the performance comparison between the state-of-the-art 

individual models and the proposed method. It can be observed that these individual 

models could perform well on COVID-19 image segmentation regarding F1scores. 

and accuracy. Moreover, prediction uncertainties of most of them were promising with 

-
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respect to ECE and MCE. For these individual models, FCN32 ResNet50 

outperformed other individual models with higher certainty. In addition, as one 

baseline, Ensemble (Majority Voting (MV)) performed better than other individual 

methods with highest prediction certainty by comparing F1score, ECE and MCE. 

It means that combining predictions of these individual models can effectively 

improve performance and prediction certainty. For the proposed method, Ensemble 

(Weighted Voting (ECE)) can perform better than the baselines including these 

individual models and ECE and MCE. For these individual models, FCN32 ResNet50 

outperformed other individual models with higher certainty.  

In addition, as one baseline, Ensemble (Majority Voting (MV)) performed better 

than other individual methods with highest prediction certainty by comparing 

F1score, ECE and MCE. It means that combining predictions of these individual 

models can effectively improve performance and prediction certainty. For the 

proposed method, Ensemble (Weighted Voting (ECE)) can perform better than the 

baselines including the individual models and the ensemble (Majority Voting (MV)) 

by comparing accuracy, recall, and F1score. Moreover, Ensemble (Weighted Voting 

(ECE)) was able to improve the prediction certainty. It means that using ap- 

propriate calibration errors as weights to implement weighted bagging deep learning can 

effectively improve prediction certainty as well as performance. In other words, it is an 

effective method to calibrate models by using appropriate calibration errors as weights 

to combine predictions. Furthermore, Ensemble (Majority Voting + ECE + MCE 

(MVEM)) obtained the optimal performance with highest prediction certainty. It 

indicated that ensemble strategy such as majority voting was effective to combine 
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predictions to further improve performance and prediction certainty. In addition to 

the performance comparison, an example of prediction visualization on semantic 

segmentation generated by the baselines and proposed models is shown in   Fig. 4.4. When 

I examined the prediction visualization for these individual models, I observed that they 

missed some key components for detecting ROIs. Taking UNet as an example through 

comparing the predictions with ground truth, three key components circled are missed 

on subfigure (g). On the contrary, ensemble models such as MV, ECE, and MVEM 

perform better in that regard of predictions since they only miss one or two small 

components for detecting ROIs, where the proposed method including ECE and 

MVEM outperformed other baselines. It means that the proposed method can 

effectively improve recall on detecting ROIs by distributing contributions of 

prediction based on calibration errors such as ECE and MCE. 

4.2.1.2 Hyper-Parameter Examination 

Fine-tuning hyper-parameter for building deep learning models is an imperative 

step to obtain optimal performance. The process of building the proposed method involved 

various hyper-parameters. For example, for each individual DL model, the fine-tune 

learning rate, batch size, and epoch were fine-tuned to achieve optimal performance. 

Specially, for the proposed bagging deep learning, how many individual models involved 

is still an open challenge. Here, I individual models. Generally speaking, more 

individual models will enhance performance and improve prediction certainty 

regarding F1score and ECE. When we employed five individual models (Ensemble 5 

(FCN32 RESNET50 + FCN32 + UNET + FCN32 MOBILENET + 

PSPNET)), the optimal performance and the highest prediction certainty regarding  
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values of accuracy were obtained, F1score, and ECE for Ensemble (Weighted 

Voting (ECE)) and Ensemble (Majority Voting + ECE + MCE (MVEM)), where 

the values of Recall and F1score were improved more significantly than other 

evaluation metrics. Additionally, Fig. 4.6 shows comparison of prediction 

visualization produced by the proposed methods built with different number of 

individual models. It was observed that more individual models involved in the proposed 

approach would reduce the size of missing components. Moreover, MVEM outperformed 

other ensemble methods, which means that majority voting based on more individual DL 

models can further enhance the performance of recognition of RIOs. 

 

(a) original image (b) ground truth (c) FCN (d) F32 R50 (e) F32 M 

     

(f) PSNet (g) UNet (h) MV (i) ECE (j) MVEM 
 

Fig. 4.5. An example of prediction visualization on semantic segmentation generated 
by the baselines and proposed models. F32 R50 and F32 M denotes FCN32 
ResNet50 and FCN32 MobileNet while MV, ECE, and MVEM denotes 
Ensemble (Majority Voting (MV)), Ensemble (Weighted Voting (ECE)), and 
Ensemble (Majority Voting + ECE + MCE (MVEM)). 

 
 
 
 
 
 

w 
/ ,-I 1 \ 

(.,,- -- ~ I - II 

'- ~ ---~., 



84 
 

 
 

TABLE 4.4. COMPARING PERFORMANCE BETWEEN THE BASELINES AND 
THE PROPOSED METHOD USING ACCURACY (ACC), SENSITIVITY (SE), 
SPECIFICITY (SP), F1SCORE (F1), ECE AND MCE 

 

DL Acc (%) Se (%) Sp (%) F1(%) ECE 

(%) 

MCE 

(%) 

UNet 95.4±2.5 90.7±3.9 88.9±4.5 93.4±3.0 3.2±1.3 39.7±18.8 

PSPNet 95.0±2.0 89.1±3.9 88.2±4.3 92.5±2.9 4.6±1.2 40.6±14.9 

FCN32 95.8±2.4 92.3±4.5 91.0±5.0 94.0±3.5 2.5±2.1 37.6±19.1 

FCN32 
ResNet50  
(F32 R50) 

96.0±2.5 92.3±5.5 91.4±5.9 94.3±3.8 2.3±2.3 29.8±20.3 

FCN32 
MobileNet  
(F32 M) 

95.2±2.3 91.0±4.7 90.1±5.6 93.1±3.3 4.1±1.6 38.2±19.9 

Ensemble 
(Majority Voting 
(MV)) 

98.8±0.6 94.1±3.0 92.9±3.6 96.6±1.7 2.4±1.2 28.1±14.1 

Ensemble 
(Weighted 
Voting (ECE)) 

99.1±0.5 95.4±2.9 94.3±2.9 97.1±1.5 2.3±1.2 24.7±12.4 

Ensemble 
(Weighted Voting 
(MCE)) 

98.7±0.7 93.9±3.7 92.6±3.7 96.3±1.9 2.4±1.2 28.9±14.6 

Ensemble 
(Majority 
Voting + ECE + 
MCE (MVEM)) 

99.2±0.4 97.7±2.3 95.4±2.3 98.4±0.8 2.1±1.1 20.1±10.1 

 
 

In summary, in terms of observations mentioned above, the proposed method can 

effectively improve semantic segmentation, as well as reduce the prediction 

uncertainty through using the calibration error as weights of DL models to combine 

their predictions. Moreover, more individual DL models involved in the 

implementation of the proposed approach can further enhance the performance and 
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prediction certainty, which meets the intuition of majority voting for bagging deep 

learning. To some extent, it is an effective method to combine advantages of these 

individual DL models to improve the task performance without complex 

implementations. 

 

   
(a)original image (b) ground truth (c) F32 R50 

   
(d) ECE 3 (e) MCE 3 (f) MVEM 3 

   
(g) ECE 5 (h) MCE 5 (i) MVEM 5 

 

Fig. 4.6. Comparison of prediction visualization produced by the proposed methods 
built with different number of individual models. The second row presents the 
predictions generated by three implementations of the proposed method with Ensemble 
3 (FCN32 RESNET50 + FCN32 + UNET) including ECE 3 (Ensemble (Weighted 
Voting (ECE))), MCE 3 (Ensemble (Weighted Voting (MCE))), and MVEM 3 
(Ensemble (Majority Voting + ECE + MCE (MVEM))). Similarly, The third row 
presents the predictions generated by five implementations of the proposed method 
with Ensemble 5 (FCN32 RESNET50 + FCN32 + UNET + FCN32 
MOBILENET + PSPNET) including ECE 5, MCE 5, and MVEM 
5.TABLE 4.5. COMPARING PERFORMANCE OF THE PROPOSED METHODS 
BUILT WITH DIFFERENT NUMBER OF INDIVIDUAL MODELS USING 
ACCURACY (ACC), SENSITIVITY (SE), SPECIFICITY (SP), F1SCORE (F1), ECE 
AND MCE 
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TABLE 4.5. COMPARING PERFORMANCE OF THE PROPOSED 
METHODS BUILT WITH DIFFERENT NUMBER OF INDIVIDUAL 
MODELS USING ACCURACY (ACC), SENSITIVITY (SE), SPECIFICITY (SP), 
F1SCORE (F1), ECE AND MCE 

 
Ensemble 2 (FCN32 RESNET50 + FCN32) 
DL Acc (%)    Se (%)   Sp (%)   F1 (%) ECE(%) MCE(%) 
FCN32 ResNet50 
(F32 R50) 

95.8±2.1 92.3±3.9 91.0±4.5 94.0±3.0 2.5±1.3 37.6±18.8 

Ensemble (Weighted 
Voting (ECE)) 

99.0±0.5 95.3±2.4 94.4±2.8 96.9±1.6 2.3±1.2 22.3±11.3 

Ensemble (Weighted 
Voting (MCE)) 

98.8±0.6 93.8±3.1 93.7±3.2 96.4±1.8 2.5±1.3 25.1±12.6 

Ensemble 3 (FCN32 RESNET50 + FCN32 + UNET) 
DL Acc (%)    Se (%)   Sp (%)   F1 (%) ECE(%) MCE(%) 
Ensemble (Majority 
Voting (MV)) 

98.7±0.7 93.9±3.0 94.1±3.0 96.1±2.0 2.7±1.4 31.1±15.6 

Ensemble (Weighted 
Voting (ECE)) 

98.4±0.8 95.5±2.3 94.9±2.6 96.9±1.6 2.8±1.4 26.1±13.1 

Ensemble (Weighted 
Voting (MCE)) 

98.3±0.9 93.1±3.5 93.0±3.5 96.0±2.0 2.8±1.4 31.2±15.6 

Ensemble (Majority 
Voting + ECE + 
MCE (MVEM)) 

98.8±0.6 97.6±1.2 96.4±1.8 98.1±1.0 2.1±1.1 21.1±10.6 

Ensemble 4 (FCN32 RESNET50 + FCN32 + UNET + FN32 MOBILENET) 
DL Acc (%)    Se (%)   Sp (%)   F1 (%) ECE(%) MCE(%) 
Ensemble (Weighted 
Voting (ECE)) 

98.3±0.9 95.0±2.5 94.6±2.7 96.5±1.8 2.7±1.4 24.3±13.5 

Ensemble (Weighted 
Voting (MCE)) 

97.9±1.1 94.1±3.0 93.8±3.1 96.1±2.0 3.0±1.5 32.3±15.0 

Ensemble 5 (FCN32 RESNET50 + FCN32 + UNET + FCN32 MOBILENET 
+ PSPNET) 
DL Acc (%)    Se (%)   Sp (%)   F1 (%) ECE(%) MCE(%) 
Ensemble (Majority 
Voting (MV)) 

98.8±0.6 94.1±3.0 92.9±3.6 96.6±1.7 2.4±1.2 28.1±14.1 

Ensemble (Weighted 
Voting (ECE)) 

99.1±0.5 95.4±2.9 94.3±2.9 97.1±1.5 2.3±1.2 24.7±12.4 

Ensemble (Weighted 
Voting (MCE)) 

98.7±0.7 93.9±3.7 92.6±3.7 96.3±1.9 2.4±1.2 28.9±14.6 

Ensemble (Majority 
Voting + ECE + 
MCE (MVEM)) 

99.2±0.4 97.7±2.3 95.4±2.3 98.4±0.8 2.1±1.1 20.1±10.1 
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4.2.2 Discussion 

This research aimed to build a novel bagging learning method to implement 

COVID- 19 semantic segmentation through combining bagging deep learning and 

model calibration. Semantic segmentation has achieved significant successes by 

developing deep learning models such as U-Net [2] and V-Net [137].  In the 

biomedical do- main, there have been numerous techniques for lung segmentation 

with different purposes [46, 138]. The U-Net is an effective technique for segmenting 

both lung regions and lung lesions in COVID applications [65]. The U-Net built with 

fully convolutional network [2] has a U-shape architecture with two symmetric paths: 

encoding path and decoding path. The layers at the same level in two paths are 

connected by the shortcut connections, which is to learn better visual semantics as 

well as detailed contexture. Zhou et al. [85] proposed the UNet++ that inserts a 

nested convolutional structure between the encoding and decoding path. In addition, 

Milletari et al. [137] built V-Net using the residual blocks as the basic convolutional 

block, and optimized the network by a Dice loss.  Furthermore, Shan et al. [62] built 

VB-Net for more efficient segmentation by equipping the convolutional blocks with 

the so-called bottleneck blocks. Moreover, U-Net and its variants have been 

developed, achieving reasonable segmentation results in COVID-19 diagnosis [31]. 

In recent years, attention mechanisms can learn the most discriminant part of the 

features in deep learning models. Oktay et al. [139] proposed an Attention U-Net to 

capture fine structures in medical images, thereby suitable for segmenting lesions and 

lung nodules in COVID-19 applications.  

The main concern of such methods is associated with its high computation 
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complex and prior assumption on model weights. To reduce the computation complexity 

and enhance the scalability of Bayesian neural networks for data analysis on larger 

datasets, Hernńdez-Lobato et al. [140] proposed probabilistic back-propagation for 

learning Bayesian neural networks. Non-Bayesian-based methods develop various 

strategies such as model ensemble [141] and prior assumption on predictions [142] to 

estimate the prediction uncertainty, which is to reduce the cost of estimating the 

uncertainty. To reduce computation cost and training difficulty, Lakshminarayanan et 

al. [141] proposed deep ensemble that is simply to implement, trained in a parallel manner, 

requires less hyper-parameter tuning, and estimates high quality predictive uncertainty. 

However, it is very tricky to obtain the optimal number of individual models to build 

deep ensemble for various applications. Moreover, to reduce   the cost of the memory 

usage and inference of Bayesian neural networks and deep ensembles, Liu (2020) et al. 

[143] proposed approaches to estimate uncertainty by building only one neural network 

with two steps: 1) measuring the distance between testing samples and training samples, 

and 2) implementing spectral-normalized neural Gaussian process (SNGP), that is, to 

improve the measurement of the distance by adding a weight normalization step 

during training and replacing the output layer with a Gaussian process. However, 

experimental results on dialog intent detection indicated that deep ensemble performed 

better than the proposed method on many evaluation metrics such as accuracy. Recently, 

Wilson et al. [144] systematically summarized Bayesian deep learning and claimed 

that deep ensemble could be treated as approximate Bayesian marginalization of 

model parameters. On the other side, they also claimed that Bayesian methods were not 

perfect regarding prior assumptions on model weights. 
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In this research, a novel bagging deep learning model was proposed for COVID- 

19 image segmentation on chest x-ray images. It combined the model calibration and 

traditional bagging learning to not only enhance the segmentation performance, but also 

improve the prediction certainty that is extremely important to high-risk applications in 

biomedical domain. The proposed method was validated on a large chest x-ray dataset that 

was associated with COVID-19. Experimental results demonstrated that the proposed 

model could recognize the lung region more effectively through comparing with state-of-

the-art baselines. For the future work, the plan is to extend the proposed model for 

building an end-to-end model for both COVID-19 image classification and image 

segmentation. 

4.3 Findings for Proformer-Based Ensemble Learning Gene 

Expression Prediction Method 

4.3.1 Experimental setup 

I proposed a novel ensemble of end-to-end Transformer encoder architectures that 

leveraged the self-attention mechanisms and could handle long-range correlations 

between the input-sequence items to predict the expression values from millions of DNA 

sequence. Specifically, the values of evaluation metrics including Spearman, PearsonR, 

Score Spearman, and Score PearsonR were employed as weight to implement the 

weighted sum during the prediction and average it to obtain the final predicted gene 

expression values. The key hyper-parameters of these individual models are shown in 

Table 4.6.The training losses consisted of the mean squared error between the expression 

values (y mse), and the reconstruction loss (y recon) which helps stabilize the training 

process especially with larges models, where five percent of the nucleotides were 
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randomly masked and predicted. The mean of the prediction of all heads for all predicted 

expression value from for each head was used as the final predicted expression value. 

4.3.1 Experimental results 
 

I validated the proposed method based on a comprehensive performance comparison 

between the baselines and the proposed method. Table 4.7 presents the performance 

comparison, where it includes benchmark performance of top three teams from DREAM 

Challenge 2022, variants of Proformers, and proposed weighted ensemble models. 

Specifically, these weighted ensemble models were built using weights obtained based on 

various evaluation metrics. It was observed that for the benchmarks, the winning team 

utosome.org outperformed Unlock DNA significantly. through examining variants of 

Proformer, the performance was similar across different models, which indicated that the 

model design did not impact the performance significantly 

 
TABLE 4.6. HYPER-PARAMETERS OF BASELINE MODELS 

 
 

Parameters Model 1 Model 2 Model 3 Model 4 
Attention Heads 4 8 8 8 
Encoder Blocks 4 4 4 4 
Expression Heads NA 1 32 32 
Batch size 512 512 512 512 
Masking NA NA 5% 5% 
Learning Rate 1e-3 1e-3 1e-3 1e-3 
Epochs 20 20 20 20 

 

For the proposed method, the weighted ensemble models performed better than 

variants of the proformer by comparing the PearsonR, Spearman, Score PearsonR, and 

Score Spearman values. It means that the ensemble model can effectively individual 
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model performance. In addition, employing different evaluation metrics to calculate 

weights led to different results, which illustrated that it should select evaluation metrics to 

obtain weights to achieve optimal performance. Finally, the proposed model outperformed 

the winning team regarding values of Score Spearman and Spearman, which further 

demonstrated the effectiveness of the proposed models. 

 
TABLE 4.7. COMPARING PERFORMANCE BETWEEN THE PROPOSED 
ENSEMBLE MODELS AND BASELINES. THE BASELINES INCLUDE MODELS 
FROM TOP 3 TEAMS IN DREAM CHALLENGES 2022 AND VARIANTS OF 
PROFORMER, T HE PROPOSED MODELS ARE BUILT BASED ON PROFORMER 
FROM UNLOCK DNA. 

 
Model Score 

PearsonR 
Score 

Spearman 
PearsonR Spearman 

Top 3 teams in DREAM 
Challenges 2022 

utosome.org 0.818 0.854 0.972 0.976 
BHI-dream challenge 0.791 0.845 0.962 0.971 
Unlock DNA 0.766 0.823 0.957 0.967 

Variants of Proformer 
Model1 0.766 0.819 0.918 0.961 
Model2 0.765 0.817 0.921 0.964 
Model3 0.781 0.827 0.926 0.965 
Model4 0.765 0.810 0.929 0.967 

Proposed Ensemble Models 
Weighted Ensemble 
(PearsonR) 

0.781 0.833 0.931 0.977 

Weighted Ensemble 
(Spearman) 

0.793 0.857 0.939 0.981 

Weighted Ensemble (Score 
PearsonR) 

0.769 0.823 0.923 0.965 

Weighted Ensemble (Score 
Spearman) 

0.779 0.829 0.929 0.971 

 
 

In addition to evaluating performance with various metrics, Fig. 4.7 compared 

differences between gene expression prediction levels and target gene expression levels, 

where the top subfigure contained the results with Model 4 while the bottom subfigure 

included predictions with the weighted ensemble model built with spearman values. It 
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randomly selected 50 genes in the prediction results for the comparison. Through 

comparing the difference between these two subfigures, it was obvious to observe that the 

weighted ensemble was able to enhance the predictions for different genes, for example, 

G23 and G27. It means that ensemble model was capable of using complementary 

advantages of multiple individual models to enhance the predictions for gene expression 

prediction. 

4.3.2 Discussion 

This study focused on predicting gene expression via developing novel deep learning 

models, which covered gene expression prediction and deep learning models. 

Although each cell in the human body contains a copy of an individual’s DNA, not        

all genes are active or expressed in every type of cell at all times. The degree of a 

gene’s expression is primarily governed by multiple input signals that are interpreted 

by the non-coding regulatory DNA sequences known as cis-regulatory logic.These 

sequences exert control over gene expression intensity by using transcription factors 

(TFs) that bind to regulatory sequences located throughout the DNA, including 

promoters that contain a wealth of information related to mRNA levels [75]. Gene 

regulation errors are frequently implicated in genetic disorders, as mutations that alter 

gene expression levels are a common cause. As such, comprehending the regulatory 

code would enable the development of cures for diseases and the management of protein 

production in biotechnology. Ultimately, a long-standing issue in regulatory genomics 

is associated with gene expression prediction from DNA sequence. 

In the field of bioinformatics, gene expression prediction is an essential task. Gene 

expression involves using the information stored in genes to create a functional gene 
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product. By connecting the expression of genes of interest to a biological process or 

phenotype, researchers can gain insights into gene function, biological pathways, and the 

genes responsible for regulating development, cell behavior, and signaling [75]. 

Models that use DNA sequences to estimate gene expression offer the potential to 

enhance understanding of transcriptional regulation and the impact of non-coding 

genetic variants associated with diseases and traits. These models can take two 

different approaches: mechanistic models [154], which aim to simulate the underlying 

biology directly, and artificial intelligence (AI) models [155], which do not necessarily 

use existing biological knowledge but instead learn to map input cell states to output 

expression levels. Predicting gene expression involves estimating the expression levels of 

many genes simultaneously, which has led to the application of multi-task learning, 

transfer learning, and deep learning methods [156, 157]. 

Deep learning is a powerful AI technique that has the ability to automatically extract 

features by efficiently exploring the feature space and identifying nonlinear 

transformations of weighted averages of those features [158]. One example of deep 

learning application is deepChrome [159], which employs a convolutional neural net-

work (CNN) to predict gene expression levels based on five types of histone mark 

ChIP-seq signals aggregated in a 10, 000bp region surrounding the transcription start site 

(TSS) of each gene. To visualize feature importance within the gene’s local 

neighborhood, deepChrome introduced attention layers [159]. Another deep learning 

system, deepTrio [160], uses a mask multiple parallel CNN to predict protein-protein 

interaction. Temporal Convolutional Networks (TCN), a type of stacked neural net- 

work where each hidden layer has the same length as the input layer, was designed to 
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ensure that predictions for a target time point are dependent on all the previous time 

points’ information [154]. Another CNN model with six convolutional layers, three 

residual connections, and additional features like batch normalization, dropouts for 

regularization, and max pooling operation after the penultimate convolutional layer 

[158] was implemented to improve generalization and reduce model size while learning 

feature representations of promoter sequences. In the Dream Challenges, various CNN 

implementations were utilized in the benchmark methods [146] to learn feature 

representations of the nucleotide combinations of the entire target promoter sequence and 

predict expression profiles. 

CNN-based models have a limitation in information flow between distal elements, 

restricting them to consider only sequence elements up to 20kb away from the 

transcription start site (TSS) [161]. To overcome this limitation, Graph Convolution 

Network (GCN) has been developed as a powerful tool for generalizing the traditional 

convolution to graphs by propagating information of neighboring nodes for each 

central node [162]. Additionally, attention mechanisms have been integrated into 

many models to assign weights to different parts of input data, which can im- prove 

prediction performance. In this study, attention mechanism in transformer encoder 

was used to build novel ensemble models to further improve performance in learning 

feature representations for gene expression prediction. 

In this experiment, a novel ensemble deep learning model was proposed for gene 

expression prediction. It combined transformer and traditional bagging learning to not 

only enhance the prediction performance, but also validate a simple and effective strategy 

to enhance benchmarks based on large deep learning models. Experimental results 
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illustrated that the proposed model could predict gene expressions effectively through 

comparing with state-of-the-art baselines. For the future work, we plan to further enhance 

the propose 

 

 

Fig. 4.7. Differences between gene expression prediction levels and target gene expression 
levels. x-axis denotes different genes while y-axis denotes gene expression levels. 
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CHAPTER 5 

         5. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusion 

The goal of this study was to apply deep learning techniques to biomedical data 

analysis. With a focus on analyzing biomedical images, a generalized model for the 

detection of covid-19 on radiological images was proposed. Deep learning methods are 

applied to the processing and analysis of chest x-ray images as potential solution to the 

early detection and diagnosis of Covid-19. Many research efforts have been focused on 

detecting the covid-19 patterns on chest images but the unavailability of labeled chest 

images and ensuring the reliability of the AI models has been a continuous issue and 

this research has introduced two approaches to address these limitations. A semi-

supervised learning model based on ResNet that can utilize unlabeled images to enhance 

classification performance was proposed. There were two paths in the model for reducing 

supervised cross entropy loss and unsupervised mean squared error loss, respectively. 

Then training was performed by jointly optimizing these two losses, which allowed the 

proposed scheme to take advantage of the information from both labeled and unlabeled 

images. Experimental results demonstrated that the proposed model could recognize 

COVID-19 lung pathology effectively by learning on very limited labeled images and 

substantial unlabeled images. A second approach that involved bagging deep learning 

model was proposed for COVID-19 image segmentation on chest x-ray images. It 

combined the model calibration and traditional bagging learning to not only enhance the 

segmentation performance, but also improve the prediction certainty that is extremely 

important to high-risk applications in biomedical domain. 

--
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I validated the proposed method on a large chest x-ray dataset that was associated 

with COVID-19. Experimental results demonstrated that the proposed model could 

recognize the lung region more effectively by comparing with state-of-the-art baselines. 

Another focus of this work was to explore building high-performance deep learning 

models to enhance gene expression prediction using high-throughput measurements of 

cis-regulatory activity in yeast through randomly generating millions of promoters. In this 

research, a novel ensemble deep learning model was proposed for gene expression 

prediction, which combines the transformer architecture and traditional bagging learning. 

This model not only enhanced prediction performance but also introduced a simple and 

effective strategy to improve benchmarks based on large deep learning models. 

Experimental results demonstrated the model’s effectiveness in predicting gene 

expressions compared to state-of-the-art baselines. 

5.2 Recommendations  

In future work, it is recommended that the proposed ensemble deep learning 

model for gene expression prediction, which combines the transformer architecture and 

traditional bagging learning, be further enhanced by incorporating novel data 

augmentation techniques, such as GPT-based data augmentation. The GPT model is based 

on the transformer architecture used in this research for gene expression prediction, 

where it has a stack of transformer layers, each layer has a multi-head self-attention 

mechanism and a feed-forward neural network. The self-attention mechanism allows the 

model to capture relationships between tokens in a sequence, while the feed-forward 

neural network helps in incorporating non-linear transformations.  

In addition, few-shot learning techniques were proposed to improve the model’s 
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ability to generalize and make accurate predictions when given only a limited amount of 

labeled data. By leveraging the language processing capabilities of ChatGPT, the GPT 

model can be trained to learn from a small number of labeled examples and effectively 

apply that knowledge to unseen gene expression data. This approach has the potential 

to enhance the model’s performance and expand its applicability in scenarios where 

labeled data is scarce or limited. 
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