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ABSTRACT 

Deep Learning for Resource Constraint Devices 

(August 2023) 

Sheikh Rufsan Reza, PhD EE., Prairie View A & M University; 

Chair of Advisory Committee: Dr. Xishuang Dong 

The amount of Internet-of-things (IoT) devices is rapidly expanding. This also trig-

gered the necessity of smart IoT devices which are capable of conducting any task 

by itself. Deep learning techniques are also booming due to the increased comput-

ing power and refned algorithms. The advantage of deep learning is that it can be 

tuned into any application without the manual feature extraction process. Now, the 

combination of deep learning with smart IoT devices/edge devices can result in any 

application that can be used in machine vision, vision inspection, autonomous ve-

hicle, and many more. These applications can be automated which requires human 

operation. Now, combining deep learning and edge device together and running the 

application can be a difcult task. The main reason is that deep learning requires 

large computation power and edge devices does not have that capability. This study 

focused on this problem. Ie used techniques to encrypt and compress data which is 

essential for the edge devices. In addition, we developed novel methods to protect 

user privacy for data collection and learning on edge devices. Also, we conducted a 

study to evaluate diferent edge devices for diferent application purposes with certain 

compression technique of the models. Lastly, we conducted a real life experiment of 

collecting data, creating diferent models and evaluating it on diferent edge devices. 

index terms - IoT, computer vision, deep learning, machine learning, quantization, 

autoencoder, mobilenet v1, mobilenet v2, inception v3, face mask detection 
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CHAPTER 1 

INTRODUCTION 

The expansion of Internet of things (IoT) devices has resulted in producing a huge 

amount data. IoT refers to devices which can establish an internet connection and can 

interact with one other [4]. The internet has revolutionized the entire communication 

system. In almost every aspect of life it has become essential. Some popular mentions 

are education [5], workplace, industry, healthcare [6] and many more. The popularity 

and desideratum of the internet has paved the widespread use of IoT devices. These 

devices can be found from industrial equipment to home appliances. For example, 

any IoT industrial equipment is more preferred than a regular equipment. The IoT 

device can be controlled and observed remotely where the regular device does not have 

that capability. Home appliances are also becoming IoT compatible for the similar 

reason. It is expected that the number of IoT devices will increase signifcantly 

with time. These devices are producing a lot data. These data are mostly in text 

format and some other formats are images and videos. It is crucial and can be used 

to learn predictive behavior. It makes any product more user friendly, easy and 

fast to use. Artifcial Intelligence, namely machine learning is playing a huge role 

in procurement of this data. Also there has been a surge to make the IoT devices 

smarter with incorporation with artifcial intelligence. One fundamental function of 

AI is that it can generate insights that can shape any application to user specifcation. 

This is making applications efcient, user-friendly and cost-efective. Moreover it is 

expanding in many sectors such as education, healthcare, city, home, energy, banking, 

1This thesis follows the style of IEEE. 
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industry and many more. In details in the banking sector AI is helping to detect fraud 

and credit scoring [7]. Smart city is being designed with efcient energy usage [8]. AI 

is helping to get insight of disease, selecting more accurate treatment and medicine 

for individual patients. AI is also making the manufacturing industry more accurate 

and smart. Process automation and robotics is where AI is helping to improve the 

productivity signifcantly. The trend is now to make the IoT devices more smart and 

faster using AI. However in order to make the devices smarter, they must learn the 

predictive behavior from data. So, high computational resource is essential to procure 

this huge amount of data. Even after creating the AI model, it is not easy to deploy 

those on IoT devices because in most cases the devices does not have that sufcient 

resources to execute. Now the model on edge devices must be lighter to support the 

confguration of the device. Some trending advanced research that are helping AI 

models to be lighter are pruning, quantization, compression, knowledge transfer and 

many more. 

1.1 Deep Learning 

Deep learning is the most advanced version of machine learning. It is considered 

as a sub-feld of machine learning [9]. Now machine learning is the idea to automate 

a system or predict the future. Machine learning is also a subsection of AI. AI is 

the science which focuses on building machines or systems that do task that requires 

human intelligence. In simple words AI is the study of building a machine that can 

learn a task by itself. Then it can provide solution based on its learning. So, it 

can learn better if the amount of data is huge. It also provides a complete solution 

where the learning is not required to tuned manually. Fig. 1.1 shows the relationship 

between felds. One main diference is that deep learning can perform better on large 

datasets. Also, machine learning requires manual feature extraction whereas deep 

learning does not. The aim is to achieve high level semantic information from huge 
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complex data. This method is very convenient as it is mostly automated. It makes 

easier to extract information from huge dataset. 

Fig. 1.1. Relationship between artifcial intelligence, machine learning and deep 
learning. Machine learning is a subfeld of artifcial intelligence. Deep learning is 
a subfeld of machine learning 

1.1.1 Deep Learning Basics 

Deep learning learns the pattern or function of a task with huge amounts of 

data which comes in diferent forms such as images, videos and texts. It uses the 

computational method to learn a function or model from the data. This method is 

diferent from the traditional programming. Traditional programming requires data 

and methods to get the desired output. Machine learning uses data and output to 

create the method as shown in Fig. 1.2. Predictive analysis such as classifcation, 

clustering and forecast are some of the popular models. Deep learning introduces 

multi-layer concepts to learn from its data. These layers are the building blocks of a 

neural network. The function of this layer is to take an input and then learn patterns 
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by using non-linear functions. Finally, it passes the output to the next layer. The 

series of layers are constructed using this technique. Usually, regular models have two 

to three layers but deep learning models can have as many as but not limited to 150 

layers. These deep layers can solve very complex problem and require large data. It 

is capable of directly extracting features without human interaction, making it more 

efcient than machine learning. Moreover it requires a high graphics processing unit 

(GPU) to train the model. 

Fig. 1.2. Diference between traditional programming and machine learning. Ma-
chine learning uses data and output to create a model whereas traditional program-
ming uses data and model to create output. 

1.1.2 Workfow 

Deep learning follows a standard workfow. Consider a problem where the ob-

jective is to identify two objects such as cats and dogs, then data in the form of 

images of the two classes is required. Even distribution of both classes ensures a 

more stronger and accurate model. Data collection is an integral part and can be 

obtained in many ways. The vast use of IoT devices has made it easier to produce 

huge quantities of data. Data preprocessing is required for clean and enhanced data. 

Cleaning or formatting is performed at this stage to eliminate noise. The size of 
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individual images needs to be same before feeding them into the model. Afterwards, 

the model is trained and diferent hyperparameters are tuned to get the maximum 

desired results. Backpropagation is used in a feed forward the network in order to 

learn. After training, a separate test set which is not used during training is used to 

examine the performance of the model. It is illustrated in Fig. 1.3. 

Fig. 1.3. The fow of building machine learning models.The frst step is to fgure 
out what sort of problem to solve. Then collecting data and preprocessing. The 
next step is to train the model and fnally testing the model on a separate data. 

1.2 Computer Vision 

Computer vision is another subset of artifcial intelligence which is associated with 

the study of high-level understanding of digital images or videos. Some of these appli-

cations are class recognition, object detection, autonomous driving, object tracking, 

semantic representation and many more. It goes in the category of supervised learn-

ing. The model learns how to predict each class from its labeled dataset. It is mostly 

used for predictive task. Another category is the unsupervised learning. It does not 

require labeled dataset and is used to learn pattern or structure. 
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1.2.1 Convolutional Neural Network 

In this work we focus on image classifcation task. It is the idea of extracting 

high-level information about diferent classes from an image. Convolutional neural 

network [10] is the most common approach for this sort of learning. The most com-

mon building blocks are: convolution layer, pooling layer and fully connected layer. 

Feature maps are used in the convolution layer to extract relevant information of an 

image. The convolution operation is mainly the matrix multiplication of the image 

with the feature vector. Then pooling layer is used the reduce the size of the vector. 

The fully connected layer makes the matrix fatten and prepare for the fnal predic-

tion. It is illustrated in Fig. 1.4. Moreover, if we consider X as data and K as the 

flter and i,j are the dimensions, then convolution operation can be expressed by S as 

shown in equation 1.1. 

Fig. 1.4. The architecture of convolutional neural network. The main blocks are the 
convolution layer and pooling layer. A series of this is followed by a fully connected 
layer which makes the model ready for fnal prediction. 

XX 
S(i, j) = (K ∗ X)(i, j) = X(i − m, j − n)K(m, n) (1.1) 

m n 
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1.2.2 Existing Model and Dataset 

MNIST [11] is the frst dataset having hand-written grey color images for classif-

cation. It has a total of ten classes representing zero to nine numbers. Then Cifar10 

is another popular image dataset having ten classes of color images containing 10 

diferent objects. The most popular image dataset is ImageNet which consists of 1.2 

million images and over 1000 classes. The most commonly used pre-trained mod-

els such as AlexNet, VGG-16, ResNet, Inception, MobileNet are all trained on this 

dataset. Using a pre-trained model is a popular technique as this is working on top of 

a popular trained model which can perform certain tasks. The idea is simple, it im-

plements the learning from one task into another. This is extremely useful in real life 

problems as it requires very less data. Also, the time becomes very less. For example, 

a pre-trained model that can classify between cats and dogs can be used to generalize 

diferent breeds of cats and dogs. This saves time and makes the training process 

much faster. All the pre-trained models have their own uniqueness. For example, 

AlexNet and VGG-16 were created to see depthness efects the performance of a DL 

model. The model architecture of MobileNet was created for a resource constraint 

embedded device. ResNet introduced residual learning which addresses the vanishing 

gradient problem by adding shortcuts to a model while adding more layers. 

1.3 Machine Learning on Edge Devices 

The main objective of machine learning on edge devices is to make smarter IoT 

devices. In recent times we do not only want smart IoT to do its application, but also 

to make smart decisions. For example, in most workplaces, CC tv cameras are used to 

monitor the security. A smart IoT camera can actually detect an outsider or visitor. 

Every company has an employee database. An object detection classifer trained on 

employee databases can detect each employee entering the facility. Usually these 



8 

applications are run on a workstation. If this model can be executed on the smart 

IoT device, then it works as a real time alarming system. It will notify the authorities 

if someone from outside enters the facility. Moreover this research is associated with 

both hardware and the model. The most common approach is making the model 

lighter for edge devices. 

1.3.1 Edge Devices 

Machine learning on edge is becoming popular as more and more diferent types of 

embedded devices are being developed. Some of these devices have small lightweight 

GPU with the ability to process data at a higher speed. For example, NVIDIA has 

four Jetson embedded devices:TX1, TX2, Nano and Xavier specially for AI comput-

ing. These are the most popular models used for edge deployment. NVIDIA Jetson 

TX2 can be mounted on top of a drone which can track an object in real time. All 

the Jetson models have their own specifc design and memory which can be used for 

diferent case studies. Also, Google introduced Coral Edge TPU which has specialized 

ASIC for AI purposes. Intel has introduced Field programmable Gate Array (FPGA) 

which aims to replace GPUs for faster execution. 

1.3.2 Existing Research 

Traditional training of machine learning model is created using high computing 

resources such as GPU. For example, an image classifer can classify two objects such 

as cats and dogs. After training it can be used for deployment. A new image or a set 

of images not used during training is passed through the classifer and the classifer 

yields whether it is cat or dog. This part is called testing. Normally in most cases even 

testing is not possible on edge devices or it can perform at a slow speed. In order to 

execute these in real time, the model must be made lightweight. Diferent techniques 

such as pruning, quantization, knowledge transfer, and knowledge distillation are 
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some of the popular methods. The common tradeof is between speed and accuracy. 

If a model is made lighter, it losses its accuracy. Now the main focus of this is to 

make the model lighter without losing much accuracy. Moreover, MobileNet models 

from Google are designed to make it most suitable for embedded devices. 

1.4 Problem Statement and Contribution 

In recent time, the demand to execute deep learning (DL) models on edge devices 

is booming as it preserves privacy and safety from any sort of adversarial attack 

during data transmission. However, deep learning is not usually compatible with 

resource-constrained devices. The requirement of high computation power makes it 

difcult to execute them on edge devices. In addition, DL models are too complex to 

be deployed on edge devices directly. Therefore, how to make the DL models faster 

and lighter is the core problem to this application. For example, how to make the 

model lighter while preserving most of its efectiveness is a key problem. Moreover, 

how these lighter models perform on diferent edge devices is another key problem. 

Finally, how to apply this technique to build real applications, such as face mask 

detection in public using IoT and DL, is an interesting problem. Main contributions 

are summarized below: 

• Quantize three DL models to three diferent levels of compression and execute 

those models in various edge devices. 

• Compare their performance for all cases which can serve as a benchmark to 

identify model, compression level and edge devices for diferent applications. 

• Apply model compression techniques to build face mask detector on edge de-

vices. 

• Investigate privacy preserving techniques for deep learning models on edge de-

vices. 
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1.5 Outline of the Dissertation 

The rest of the study is outlines as follows. Chapter 2 presents a novel approach 

on privacy preserving edge computing framework for image classifcation. Inference 

performance of CNNs on various edge devices are compared in Chapter 3 and a bench-

mark to identify model, compression level and edge devices for diferent applications 

is provided. Chapter 4 presents an important application of edge intelligent DL for 

face mask detection on IoT. Chapter 5 concludes the study and presents future works. 
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CHAPTER 2 

EFFICIENT PRIVACY PRESERVING EDGE 

COMPUTING FRAMEWORK FOR IMAGE 

CLASSIFICATION 

2.1 Introduction 

Emerging technologies such as the Internet of Things (IoT) and 5G networks will 

add a huge number of devices and new services, and as a result, a huge amount of data 

will be generated in real time. One of the important data types is image data, since 

many applications involve images and videos such as in video surveillance. In order to 

take advantage of the “big image data”, data analytics must be performed to extract 

knowledge from the data. One way to handle the data would be uploading all data 

from edge devices to the cloud or remote data centers for processing and knowledge 

extraction [12]. However, as highlighted in Fig. 2.1, there are several factors that may 

render this practice infeasible: 1) the sheer volume of the images may overwhelm the 

uplink with limited bandwidth; 2) the uplink may not be always available especially 

when wireless communications is used due to weather (for example., for mmWave), 

distance, or jamming; 3) proprietary images may need encryption that introduce 

additional delay and 4) the end users may have concerns about the security and 

privacy of their images, thus they may not agree to upload raw images that may 

contain private information. Furthermore, uploading is subject to eavesdropping, 

interceptions, or other unauthorized access. 

In order to address these challenges, a novel efcient privacy preserving frame-

work for image classifcation in edge computing systems is proposed in this study. 
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Fig. 2.1. Challenges incurred when uploading all data from edge devices to the 
cloud. 

Specifcally, the large raw data was processed locally at the edge by a pre-trained au-

toencoder. Then, instead of uploading the raw image, only compressed latent vector 

that contained critical features learned from the raw image were uploaded through 

the access point or hub to the cloud for further processing. The framework is high-

lighted in Fig. 2.2. It demonstrated that the learning performance of extracting 

knowledge at the cloud had very little degradation when the compression ratio was 

not large (for example, below 16 in the test cases). Furthermore, the raw images could 

be reconstructed with very small error at the cloud using the pre-trained decoder if 

needed. 

Compared to traditional source coding like zip, using autoencoder has the follow-

ing advantages: 1) instead of only reducing the redundancy in the raw data as in 

source coding or traditional data compression, autoencoder will extract critical fea-

tures in the raw data and encode the features in a compact form, the latent vector. In 
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Fig. 2.2. The proposed efcient privacy preserving framework for image classifca-
tion in edge computing systems. Here xi is the raw image, zi is the compressed la-
tent vector, and xi is the reconstructed image. 
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other words, the encoderperforms initial learning at the edge devices; 2) in addition to 

compressing the data, autoencoder also “encrypts” the data by transforming the raw 

data into latent vectors, which enhance the security of data. For example, a zipped 

fle can easily be unzipped by an adversary if not encrypted. On the contrary, an 

adversary could not reconstruct the raw data from the latent vector without knowing 

the structure (that is, number of layers, number of nodes in each layer) and all the 

weights of the pre-trained autoencoder (the decoder part to be exact). It is shown 

in [13] that autoencoder provides a similar level of security to normal encryption -

assuming that the decoder is not shared; (3) even if the edge device is captured by an 

adversary, it is very difcult for the adversary to deduce the decoder part from the 

encoder part on the edge device. The proposed framework has some similar charac-

teristics such as taking advantage of large diverse data from many edge devices and 

data locality at each device as in federated learning [14]-[15]. However, compared to 

federated learning, the proposed framework had the following advantages: 1) in fed-

erated learning, the server and the end users (edge devices) train the same model. As 

a result, the complexity of the model is constrained by the computing capability and 

storage of the edge device. On the contrary, in the proposed framework, the training 

of the classifer was done at the cloud server only, thus it could be very deep and 

complex if needed, and it was not subject to the constraints of the edge devices. 2) 

in federated learning, the edge device must rely on the server to update the gradients 

and train the model. In the proposed framework, the training of the autoencoder 

can be done independently at each edge device without any server involvement, 3) 

in federated learning, the privacy of the end users’ data is protected by applying 

diferential privacy schemes [16] or through secure aggregation [17], thus introduce 

additional cost due to encryption or secret sharing. In the proposed framework, the 

privacy of the end users’ data is protected by transmitting latent vectors without 



15 

additional cost of encryption. 

2.2 Proposed Framework 

The proposed efcient privacy preserving framework for image classifcation in 

edge computing systems is shown in Fig. 2.2. It has two levels: the edge devices 

and the edge server. It is assumed that the nodes of the edge devices contain sen-

sors such as cameras and embedded computing devices such as Google edge TPU 

[18] or NVIDIA Jetson Nano [19]. The edge server is assumed to have strong com-

putational capacity and large storage. The edge segment of the framework mainly 

contains the various edge devices of interest and the pre-trained encoder. The server 

mainly contains the hub, the pre-trained classifer and the pre-trained decoder. We 

only considered supervised learning in this study and it was assumed that the train-

ing dataset was labeled. The data from each of the edge devices were passed to the 

corresponding encoder attached to it. Unique pre-trained encoder is used for each of 

the edge devices in order to take advantage of the data locality at each device. The 

function of the pre-trained encoder, which is in the inference mode, is to extract the 

most important and critical features in the data. The encoder also ensures dimension 

reduction of the input data by a pre-determined amount. The extracted critical fea-

tures (latent vectors, or feature maps when the data are images) are then transmitted 

to the hub at the server. The two major functions at the server are the classifcation 

task and the data reconstruction task (recover a copy the original image from the la-

tent vectors). In other words, the latent vectors are input to the pre-trained classifer 

for prediction and they are also input to the corresponding decoder at the server for 

the reconstruction of the images. 
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Table 2.1. Information on the CIFAR10 and ImageNet (IMGNETA and 
IMGNETB) Datasets. 

Training 
Dataset Image size # of images # of classes Comments 

Testing Ration 
Cifar10 32 ∗ 32 ∗ 3 60,000 5:1 10 
ImageNet-A 256 ∗ 256 ∗ 3 13,000 7:3 10 similar images 
ImageNet-B 256 ∗ 256 ∗ 3 13,000 7:3 10 similar images 

2.2.1 Training Stage 

The dataset collected at each edge device is used to train an autoencoder for the 

corresponding device. This is done to take advantage of the data locality at each 

devices. Autoencoders are generative models where an artifcial neural network is 

trained to reconstruct its own input in an unsupervised way. Fig. 2.3 illustrates 

all the components of an autoencoder and the training process. It is made up by 

two main blocks which are the encoder and the decoder [20], [21]. The encoder 

compresses the input X into a low dimensional representation of pre-determined size, 

called the latent vector denoted by Z that contains the most important features in 

the data. When the input data are images, Z will be the corresponding feature maps. 

The decoder then tries to reconstruct the original data from the latent vector Z. 

The reconstructed data obtained at the decoder output is denoted by Xˆ. It should 

be noted that an autoencoder is a lossy network as the original image will not be 

fully recovered. However, it is expected that the critical features will remain in the 

recovered image. 

The autoencoder achieves the proper training of the encoder and decoder by min-

imizing the diferences between original input and the reconstructed input. This is 

achieved by the use of the mean square error loss function or any other loss func-

tion. After the training of the autoencoder, the encoder part of the autoencoder is 

then extracted, deployed in the inference mode on the edge device, and then used 
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Fig. 2.3. The training for the proposed autoencoder at edge device. 

Fig. 2.4. The training for the proposed CNN classifer at the server. 
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to generate the latent vector Z. Hence, the dataset is transformed from [X, Y ] to 

[Z, Y ] where Y are the labels. The latent vectors and the corresponding labels are 

then aggregated at the hub and they are used for training a classifer on the cloud 

in a supervised manner as shown in Fig. 2.4. The type of classifer on the cloud is 

determined by the nature or type of supervised task to be done. The most common 

type of classifer used for image dataset is the convolutional neural network (CNN) 

and it uses the cross entropy loss function. 

2.2.2 Inference Stage 

In this stage,the pre-trained encoder, decoder and classifer are deployed in the 

inference mode. The data X from the edge device is fed to the corresponding pre-

trained encoder attached to it. The encoder then transforms the data X to a latent 

vector Z which represents the most critical feature in X. The latent vector Z, which 

is smaller than X by a pre-determined ratio, is then transmitted to the cloud. At the 

cloud server, the latent vector Z is then fed into the pre-trained classifer and predict 

a label Yˆ . In situations where the original data is needed on the cloud, say I want 

to see a copy of the original image, the latent vector Z is also fed into the input of 

the corresponding decoder and the estimated data is obtained. 

2.3 Experiments 

2.3.1 Dataset Description 

The result in this work was generated using three diferent datasets summarized in 

Table 2.1. These datasets were from the Canadian Institute For Advanced Research 

dataset (CIFAR10) [22] and the ILSVRC (ImageNet) 2012 datasets [23]. 1) Canadian 

Institute For Advanced Research (CIFAR10)is a dataset contains 60,000 color images, 

and is a subset of about 80 million labeled but tiny images. The dataset is further 

divided into 50,000 training samples and 10,000 testing samples. It has about 10 
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classes which are mutually exclusive and there is no semantic overlaps between images 

from diferent classes. 2) ILSVRC (ImageNet) 2012: The original ILSVRC 2012 

dataset contain about 1.2 million color images of diferent sizes across about 1,000 

classes. The 1,000 classes are either internal or leaf nodes but do not overlap. Two 

subsets of the ILSVRC 2012 dataset termed IMGNET-A and IMGNET-B were used 

in this work. Each subset contained about 13,000 images each resized to a dimension 

256 × 256, spanning 10 classes. The images in each subset was further divided into 

training samples and testing samples with ratio 7:3. The diference between the two 

subsets lay in the type of nodes they contained. The IMGNET-A subset contains 

images from 10 diferent leaf nodes (diverse images) while IMGNET-B contained 10 

child nodes from a single leaf node (similar images). 

2.3.2 Deep Learning Model Design and Training Strategy 

The autoencoder for the edge devices and the classifer at the edge server were 

chosen such that the autoencoder was optimized for feature extraction and the clas-

sifer was optimized for image classifcation. The autoencoder design and training 

strategywas afected by the type of images and the compression ratio. For instance, 

the model architecture for CIFAR10 dataset for compression ratios four and eight 

were diferent. This also applied for compression ratio four for the IMGNET-A and 

CIFAR10 datasets. Hence, diferent models were developed across several edge de-

vices, compression ratios and datasets. Fig. 2.5 shows the model architecture for an 

autoencoder designed for CIFAR10 dataset for compression ratio of four. The model 

contained a mix of convolutional (same padding), max pooling, and upsampling lay-

ers. The relu function was used as the activation function for all layers except the last 

layer where the sigmoid function was used. The models were trained from scratch 

using glorot-uniform method as initializer, mean square error as the cost function 

and rmsprop optimization algorithm as the optimizer. After the convergence of the 
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Fig. 2.5. Details of an encoder model for compression size of 4 using CIFAR10 
dataset. 
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autoencoder model during training process, the encoder part of the autoencoder was 

then used in the inference mode to compress all the images. 

2.3.3 Training Stage 

1. Classifer Design: the convolutional neural network (CNN) models were used 

in this work. CNNs are well suited for image processing applications and other 

grid-like data [21]. They are more computationally efcient than the dense deep 

neural network thus reducing the memory usage. Using the flters, CNNs fnd 

and extract meaningful features from the images and preserve spatial relations. 

Three diferent CNN classifers, denoted Model-A, Model-B and Model-C as 

listed in Table 2.2, were used in this work. 

• Model-A and Model-B: Model-A and Model-B are considered to be vanilla 

models because they were trained from scratch. Model-A and Model-B 

were specifcally designed for the original input image and feature maps 

of CIFAR10 dataset and ImageNet dataset, respectively. The detailed 

CNN architecture of Model-A and Model-B are shown in Tables 2.3 and 

2.4, respectively. The models contained a mix of convolutional, max pool-

ing, and fully connected layers and relu and softmax activation functions. 

Furthermore, the models also contained some dropout layer in order to 

prevent over-ftting. The diferences between Model-A and Model-B lay 

in the number of the diferent layers used and the use of padding in the 

convolutional layer of Model-A. 

The models were trained from scratch with the aim of minimizing the 

diference between the labels (ground truth) and the predicted labels. This 

was achieved by the use of glorot-uniform method as initializer, categorical 

cross entropy as the loss function and adams optimization algorithm as the 
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Fig. 2.6. The Transfer Learning Model Block (Model-C) 

Table 2.2. The Deep Learning Models and the Dataset used in Training the Models 

Cifar10 ImageNet-A ImageNet-B 
Vanilla Model-A x - -
Model Model-B - x x 
Transfer 
Model 

Model-C - x x 

optimizer. Data augmentation was also used during the training process to 

mitigate overftting due to the small quantity of the datasets. It should be 

stated that each classifer was trained with their respective original image 

and the feature maps (compressed images). 

• Model-C: Model-C is a transfer learning based model designed specifcally 

for the ImageNet dataset in this work. The CIFAR10 version was not 

presented in this work because of poor performance when used with the 

feature maps (compressed image) of CIFAR10 which can be attributed to 

its small dimension. 

The block diagram of the model is shown in Fig 2.6. Model-C is divided 

into two parts: the base layer and the top layer. The base layer is a 

pre-trained layer of other standard deep learning models without the fully 

connected layer that has been trained with data similar to the Imagenet 
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Table 2.3. The architecture of the vanilla model for CIFAR10 dataset (Model-A) 

Vanilla Model For CIFAR10 Dataset 
Conv2D, Filter Size=3*3, No of Filters=32, Stride=1*1,Padding 

Activation Layer (Relu) 
Conv2D, Filter Size=3*3, No of Filters=32, Stride=1*1, Padding 

Activation Layer (Relu) 
Max Pooling, Pool Size = 2*2,Stride = 1*1, Padding 

Dropout(0.25) 
Conv2D, Filter Size = 3*3, No of Filters = 64,Stride = 1*1, Padding 

Activation Layer (Relu) 
Conv2D, Filter Size = 3*3, No of Filters = 64,Stride = 1*1, Padding 

Activation Layer (Relu) 
Max Pooling,Pool Size = 2*2,Stride = 1*1, Padding 

Dropout(0.25) 
Flatten 

Dense(512) 
Activation( Relu) 
Dropout(0.5) 
Dense(10) 

Activation(Softmax) 

https://Dropout(0.25
https://Dropout(0.25
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data and achieved better performance. By using this pre-trained models, 

the excellent feature extracting property of the standard model was being 

leveraged to achieve better performance. Furthermore, it also comple-

mented data augmentation in training decent model in situations where 

datasets are limited. VGG16, VGG19, InceptionV3, InceptionResnetV2 

and Resnet50 pretrained models [24] were used as base models for Model-

C. The details of the top layer used for this work is shown in Table 2.5. 

It should be noted that the frst dense layer of the top layer in Model 5 

is smaller than that of the other models. This is because Model 5 was 

overftting if the number of neurons in the frst layer was 256, the same 

number used in the other models. Hence, the size of the dense layer was 

reduced to reduce overftting and achieve good performance. A two-stage 

training method was used for the transfer learning model to minimize the 

error between the ground truth labels and the predicted labels. This ap-

proach was diferent from the training approach used for Model-A and 

Model-B which were trained from scratch. In the frst stage, the base layer 

was fxed while the fully connected top layer was trained using the Adam 

optimizer after being initialized using the glorotuniform method. This was 

done in order to initialize the weight of the top layer close to the weight 

of the base layer. Thereafter, the whole model was retrained using the 

stochastic gradient descent (SGD) with momentum optimizer in order to 

tune the whole weight of the model appropriately. SGD with momentum 

was used because it is less aggressive than the adam optimizer as the use 

of an aggressive optimizer in the second step might cause the information 

in the base layer to be signifcantly eroded or lost. The binary categorical 

entropy was used as the cost function in the entire training process. 
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Table 2.4. The architecture of the vanilla model for Imagenet dataset (Model-B) 

Vanilla Model For ImageNet Dataset 
Conv2D, Filter Size=3*3, No of Filters=32, Stride=1*1,Padding 

Activation Layer (Relu) 
Conv2D, Filter Size=3*3, No of Filters=32, Stride=1*1, Padding 

Activation Layer (Relu) 
Max Pooling, Pool Size = 2*2,Stride = 1*1, Padding 

Dropout(0.25) 
Conv2D, Filter Size = 3*3, No of Filters = 64,Stride = 1*1, Padding 

Activation Layer (Relu) 
Conv2D, Filter Size = 3*3, No of Filters = 64,Stride = 1*1, Padding 

Activation Layer (Relu) 
Max Pooling,Pool Size = 2*2,Stride = 1*1, Padding 

Dropout(0.25) 
Flatten 

Dense(512) 
Activation( Relu) 
Dropout(0.5) 
Dense(10) 

Activation(Softmax) 

2.3.4 Experimental setup 

This work sought to propose a new approach to design and implement deep learn-

ing models for distributed systems without compromising on data privacy and se-

curity. It achieved this by extracting the most important/critical machine features 

intelligible yet human unintelligible features from the dataset. These features were 

then transmitted across the communication network from the edge devices to the 

edge server where they are aggregated and used to train a classifer. The experimen-

tal methods, performance metrics and tools used in validating the proposed frame-

https://Dropout(0.25
https://Dropout(0.25
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work is explained in this section. The experimental method: involved a two-stage 

methodology was used to validate the proposed framework and this method was the 

same irrespective of the type of dataset or model used. In the frst stage, the original 

training set of the original input dataset (uncompressed images) was used to train the 

classifer. Thereafter, the test set was then used to obtain the needed performance 

metric in order to set the baseline. In second the stage, the training set of the feature 

maps (compressed images of the dataset used in the frst stage), is used to train the 

same classifer model. The feature map, which is smaller than the original image by a 

pre-determined factor, is obtained by passing the original dataset through the encoder 

of the autoencoder. Thereafter, the performance metric of the classifer is obtained 

using the test set of the feature maps and the performance compared to the baseline. 

For the performance metric, the efectiveness of the framework was assessed using a 

simple classifcation task. The test accuracy of the model obtained after the training 

process was used as the primary performance metric. Furthermore, the efect of the 

proposed method on the training and testing time, and the number of model param-

eters were also investigated. Regarding software and hardware, The design, training 

and testing of the deep learning models (autoencoders and cnn classifers) were im-

plemented using Keras deep learning framework on TensorFlow backend, running on 

a NVIDIA Tesla P100-PCIE-16GB GPU. 

2.4 Results and analysis 

The results of the experimental work are presented in this section. The perfor-

mance of the proposed framework was compared with the baseline using the perfor-

mance metrics stated in Section III-D2 above. The baseline performance was rep-

resented by compression ratio 1 and was synonymous with using the uncompressed 

image to test our various models. Furthermore, it should be noted that the vanilla 

model for the CIFAR10 and ImageNet datasets were diferent as stated in Section 
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Table 2.5. The Architecture of the Transfer Learning Model for Imagenet datasets 
(Model-C)) 

Model 1 Model 2 Model 3 Model 4 Model 5 
Base 

VGG16 VGG19 InceptionV3 InceptionResNetV4 ResNet50 
Layer 

Dense(256) Dense(256) Dense(256) Dense(256) Dense(50) 
Top Activation(Relu) Activation(Relu) Activation(Relu) Activation(Relu) Activation(Relu) 
Layer Dense(10) Dense(10) Dense(10) Dense(10) Dense(10) 

Activation(Softmax) Activation(Softmax) Activation(Softmax) Activation(Softmax) Activation(Softmax) 

III-D. 

2.4.1 Efect on Test Accuracy 

Fig. 2.7 shows the testing accuracy of vanilla CNN Classifers (Model-A and 

Model-B) when trained and tested with compressed and uncompressed CIFAR10 and 

Imagenet datasets. The testing accuracy for the compression ratio 1 (uncompressed 

images), representing the baseline, was highest across all the cases, as expected. 

This was because all features in the raw images could be used for classifcation. 

Furthermore, the testing accuracy for IMGNET-A is higher than that of IMGNET-

B. The diferences in performance can be attributed to the very close similarity in the 

images in IMGNET-B, as classifying such images is a much more difcult classifcation 

task as compared to classifying images in IMGNET-A. 

A general degradation in the testing accuracy is observed in Fig. 2.7 as the 

compression ratio was increased, although the rate of reduction varied across the 

models used for the three datasets. The rate of degradation of the testing accuracy 

of the model tested for CIFAR10 dataset is the highest for all the compression ratios. 

This was because of the small dimension of the CIFAR10 images (32*32), implyinh 

that the amount of features needed to perform a classifcation task was even smaller 

when compressed. Furthermore, the rate of degradation of the testing accuracy for 

IMGNET-A dataset was very modest across all the compression ratios. However, 

similar performance was not observed in IMGNET-B, particularly for compression 
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Fig. 2.7. Comparison of the testing accuracy of the vanilla models for the original 
dataset (compression ratio =1) and compressed dataset (latent variables) with com-
pression ratio = 4, 8, 16. 

Fig. 2.8. Testing accuracy of the transfer learning based model (Model-C) using 
diferent base models for the ImageNet dataset with compression ratio = 4. 
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ratios 8 and 16 despite having the same image dimension (256*256). The bigger 

degree of degradation observed in the case of IMGNET-B for compression ratios eight 

and sixteen was due to the complexity of the classifcation task. This was because of 

the similarities in the images that made up the various classes in IMGNET-B, unlike 

IMGNET-A where the the images that made up the classes were very diferent.Hence, 

the complexity of its classifcation task means it requires a lot more features than that 

of IMGNET-A. Furthermore, bigger compression ratio also means the model has less 

amount of features to make a classifcation decision. The testing accuracy of transfer 

learning based model (Model-C) for the ImageNet dataset compressed by a factor of 

four, using diferent base models, is shown in Fig. 2.8. The transfer learning model 

was not designed and trained (see Fig. 2.8) Testing accuracy of the transfer learning 

based model (Model-C) using diferent base models for the ImageNet dataset with 

compression ratio = 4. using the CIFAR10 datasets as its performance was poor with 

the compressed images. The poor performance can be attributed to the very deep 

nature of the transfer learning based model leaving inadequate number of features 

available at the beginning of the fully connected layer (top layer) where classifcation 

took place. The same reason also explains why the transfer learning model was only 

designed and tested with ImageNet dataset with compression ratio one and four only. 

The testing accuracy of the transfer learning model across diferent base models for 

IMGNET-A and IMGNET-B datasets at compression ratio one (baseline) and four is 

higher than the corresponding performance of the vanilla model (Model-A and Model-

B). This performance can be attributed to the powerful feature extraction property of 

the diferent base layer used. However, the rate of degradation in the testing accuracy 

for compression ratio four was higher than what was observed for the vanilla models. 

This can also be attributed to the very deep nature of the transfer learning models as 

a small amount of information/features left was not distinct enough to make accurate 
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Fig. 2.9. Comparison of the normalized number of vanilla model parameters vs. 
data compression ratio 

classifcation. 

2.4.2 Efect on Number of Parameters 

The number of parameters in a convolutional neural network is determined by 

many factors such as the flter size, the number of flters, the size of the input data, 

and the number and type of hidden layers, etc. Hence, reduction in the number of 

parameters can be achieved by reducing the size of the input data. The relationship 

between the normalized number of parameters in the vanilla model for the CIFAR10 

and ImageNet datasets versus the compression ratio is shown in Fig. 2.9. It can be 

observed that for the same compression ratio, the rate of reduction in the normalized 

number of parameters of the vanilla model for the ImageNet dataset was bigger than 

that for the CIFAR10 dataset. 

The bigger rate of reduction can be attributed to the size of the image, and in 
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turn, the number of features, which impacted the number of parameters in the fully 

connected layers of the model. It was also observed that the rate of reduction in the 

normalized number of parameters for each model appeared to be fat after a certain 

compression ratio which varied from model to model. The fatness was due to the 

reduction in the signifcance of the fully connected layer to impact on the number of 

parameters, as the number of features reduces below a certain point. 

2.4.3 Efect on Testing and Training Time 

Fig. 2.10 shows the comparison of the normalized testing time and training time of 

the vanilla models for various compression ratios for CIFAR10 and ImageNet datasets. 

Fig. 2.10 show the normalized amount of time required for testing and training, 

respectively, of the vanilla models for various compression ratios for CIFAR10 and Im-

ageNet datasets. A reduction in the amount of training and testing time was observed 

across the compression ratios and the models. The reduction can be attributed to 

the decreasing size of the input data and the smaller number of parameters to learn, 

when compression ratio increased. 

2.5 Discussion and Related Works 

There are several methods proposed in the literature to address the privacy and 

security concerns associated with data used for training deep learning models. Exam-

ples of popular approaches include homomorphic encryption [25], diferential privacy 

[12], [26] and secure multiparty computation [27]. Despite the successes of these 

methods, some issues remain such as performance degradation, non-trivial overhead 

or limited application [28]–[29]. The use of collaborative deep learning method, such 

as federated learning, has been introduced in recent years to solve the problem of 

data privacy. Federated learning is a type of machine learning where the goal is 

to train a high quality centralized model while the data remains distributed over a 
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Fig. 2.10. Comparison of the normalized testing time and training time of the 
vanilla models for various compression ratios for CIFAR10 and ImageNet datasets. 
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large number of clients [14]. It involves the sharing of model parameters and model 

gradients through a parameter server without sharing their local data. Federated 

learning is based on an iterative model averaging and it is robust to unbalanced data 

and non-i.i.d. data distribution. Federated learning has been applied to mobile key-

board prediction, vocabulary word learning and google keyboard query suggestions 

improvement [30]– [31]. Federated learning may be viewed as an extension of the idea 

discussed in [32] that stochastic gradient descent can be implemented in parallel and 

asynchronously. Federated learning may sufer from non-trivial communication cost. 

To deal with the high communications cost, an efcient multi-objective evolutionary 

algorithm, based on a scalable network connectivity encoding method, was proposed 

in [33]. To help reduce the uplink communication bottleneck, the use of structured 

and sketched updates was introduced in [34]. Federated learning may also sufer from 

security/privacy issues due to the need to communicate the model parameters to the 

central server. One recent study showed potential security/privacy issues due to the 

possibility of reconstructing original data from the shared gradient [35]. Secure ag-

gregation, a type of secure multi-party computation algorithm for federated learning 

was introduced in [36]. This helps guarantee the privacy of data used in generating 

gradients shared by each model and improve communication efciency. Furthermore, 

it was observed that federated learning performs poorly when the data distributed 

across the training center is strictly noni.i.d. of a single class. This statistical chal-

lenge was resolved by creating and using a small subset of data which is globally 

shared between all the edge devices [30] or adopting a multitask learning approach 

[37]. Autoencoder has been applied to address data privacy concerns in several recent 

works [13], [38], [39]. In [38], a convolutional autoencoder that perturbs an input face 

image to impart privacy to a subject is proposed. It is shown the method can protect 

gender privacy of face images. A proof-of concept study was performed in [13] to use 
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an autoencoder for preserving video privacy, especially when non-healthcare profes-

sionals were involved. A modifed sparse denoising autoencoder has been applied in 

[39] to reduce the sparsity and denoise the data. Then a three-class classifcation is 

performed on the reconstructed data from the autoencoder and it is shown that the 

classifer can classify the original black class data as the transformed gray class data. 

Although autoencoder has been used to address data privacy concerns, this work is 

the frst in the use of autoencoder for addressing privacy concerns, communication 

cost, and deep learning efciency associated with mobile edge computing systems 

with large number of edge devices. This was achieved by using the autoencoder to 

extract human unintelligible but machine intelligible features from the data. The 

features or latent vectors were then used to train the classifer. Furthermore, the 

proposed approach comes with the added advantage of reducing the dimensionality 

of data needed to be transmitted, thus reducing the communication cost and the 

number of model parameters, as well as training and inference time. This approach 

did not sufer from leaking gradient problem associated with federated learning [35]. 

2.6 Conclusions 

A novel edge computing framework for designing and implementation of privacy 

preserving image classifcation models was proposed in this work. The proposed 

framework provides 1) fexibility of training autoencoder at each edge device individ-

ually, thus protecting data privacy of end users because raw data is not transmitted 

at any time; 2) after the training of autoencoder was complete, raw data was “com-

pressed” and “encrypted” by the encoder before transmitting to the edge server, and 

this will reduce the communications cost and further protect the data privacy and 

security; 3) the autoencoder provided features to the classifer at the server, thus 

allowing the classifer to be trained on the features with less and controlled dimen-

sions; 4) the decoupling of the training of the autoencoder at the edge devices and the 
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training of the classifer at the edge server relaxed the frequent communications re-

quirement between edge devices and edge server. Experiments have been carried out 

using CIFAR10 and ImageNet datasets, and detailed analysis of the tradeof between 

classifer accuracy, dimensionality of data, compression ratio and diferent choice of 

classifers have been given to provide benchmark and insights on the proposed scheme. 

For future work, comparison with federated learning in terms of classifer performance 

versus the communications cost and model complexity will be carried out for image 

classifcation tasks. This helped quantify the pros and cons of the proposed approach. 

Furthermore, the use of other types of autoencoder to extract latent variables and use 

of knowledge distillation to help mitigate the reduction in the model accuracy were 

explored. 
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CHAPTER 3 

INFERENCE PERFORMANCE COMPARISON OF 

CONVOLUTIONAL NEURAL NETWORKS ON EDGE 

DEVICES 

3.1 Introduction 

The Internet of Things (IoT) is responsible for generating a large amount of data 

using diferent devices with an unprecedented speed. Any artifcial intelligent appli-

cation can be created to make it more user friendly and fast. This dataset was used to 

train an algorithm for predictive analysis. Usually this is computationally expensive 

and data center/cloud is used to perform this computation. Now it is necessary to 

process the data on local device as it protects user privacy and makes it more secure. 

It also reduces communication cost by saving bandwidth by not sending the data into 

the cloud. This section will cover how diferent popular and widely used pre-trained 

convolutional neural networks performs on three popular IoT devices. These IoT 

devices are specially designed for machine learning purposes. The experiment had a 

common test dataset which was used for each case. Three pre-trained models such 

as MobileNetV1 & V2 and Inception V3 were used for image classifcation task on 

NVIDIA Jetson TX2, Jetson Nano, and Google Coral Edge TPU USB Accelerator. 

Moreover, the model complexity has been reduced using quantization. This made 

the model more lighter and faster and to some extent, more suitable for low com-

putational edge devices. The results will serve as a benchmark for practitioners of 

real-time and local learning for this type of task. 

Pervasive interconnected smart devices interacting with one another have become 
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very popular as the development of low-cost sensor, wireless communication tech-

nologies and new internet techniques [40] have become rapid. It is formally known as 

Internet of Things and these devices are booming for their functionality and low-cost. 

There are already a huge number of IoT devices producing a huge amount of data 

which needs to be processed. In this circumstances, deep learning methods can be 

used to create models which can process data and a commonly followed method of 

this is shown in Fig. 3.1. IoT sensors and devices are responsible for creating a huge 

number of data and machine learning algorithms can be used to process to make fu-

ture predictions. Typically, these sorts of method requires high computational power 

to train and evaluate the model. 

Fig. 3.1. Processing IoT data in cloud 

Recently, the proliferation of IoT and the advancement of artifcial intelligence 

increased the incentive for an intelligent edge device that can operate on real-time 

and locally. Although centralized procurement of big data is a formal method, it is 

sometimes not feasible to transmit the data due to privacy, bandwidth or adversarial 
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attack. Sometimes the delay in the transmission may break the tolerance level of 

the time-sensitive applications [41]. One reason can be limited wireless bandwidth 

availability due to exceedingly amount of edge devices. Moreover. transmitting pri-

vate and confdential data is a big concern when the transmission method is not 

secure [42]. This triggers mobile edge computing where the aim is to perform the 

computation closer to the data [41]. Highly sophisticated network and client nodes 

is provided by the present wireless edge networks. It is also equipped with powerful 

sensors, larger computation and a good amount of storage resources. Considering 

these aspects, there is a huge opportunity to deploy mobile edge devices as learning 

engines. These devices can use on-device collected data or local data from the edge 

nodes in forms if audio, video or text and procure local learning models (edge model, 

see Fig. 3.1) without sending the original data through the cloud to the central pro-

cessing zone. This approach signifcantly reduces the bandwidth cost, reduces latency 

and protects data privacy more so than the conventional learning solutions. 

There are several examples where it is essential to process the data locally. A 

surveillance camera of an ofce can be an example. These cameras are the main 

equipment to monitor the security of a certain area. Normally these cameras are 

deployed at high number and requires a good amount of human resource to monitor 

all of them. Machine learning models can leverage the human resource required for 

this job. These models can be trained to detect any adversarial attack or an unfamiliar 

personal. Usually the data needs to be transferred to a high computational station 

where it can be procured. For this real-time application, any latency or bandwidth 

unavailability may be impractical. Running the model locally is a solution for this 

situation. The camera connects to an IoT device capable of locally running deep 

learning models without the need to transfer the data to a central station. The 

model will raise alarm or alert the authority for any unfamiliar personal. This saves 
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a lot of time, bandwidth, human resource and computational cost. 

However, limited computational power and energy resources on edge devices are 

the biggest challenge for practical accomplishment. The enhancement of complexity 

of the DNNs is also another concern. The model is becoming more complex as the 

DNN models are providing solution to more complex problems. Some recent studies 

can also be found covering inference performance of popular machine learning models 

on IoT devices. It has been realized that Jetson Nano can run MobileNet V1 model at 

64 FPS for images with resolution 300 × 300 on TensorFlow framework, and also can 

process larger image size of (960 × 544) at 5 FPS on a ResNet-18 SSD backbone [43]. 

This section covers a comprehensive comparison of inference performance of three 

convolutional neural networks (CNN) models, namely, MobileNet V1 [1], MobileNet 

V2 [44], and Inception V3 [45] by running image classifcation tasks on the same 

dataset. It used three edge devices specially designed for machine learning appli-

cations, NVIDIA Jetson TX2, NVIDIA Jetson Nano, and Google Edge TPU based 

on quantization. These machines did not have high computational power and the 

models needed to be lighter or compressed before execution. Extensive research was 

conducted on these techniques such as pruning [46], quantization [47, 48], binarized 

neural network [49, 50], and tensor decomposition [51] to reduce the model complexity 

and faster execution. The aim was to benchmark the advantages and disadvantages of 

deep learning models when running those models considering their performance and 

speed. This provides a guidance of practical choices of compressed DNNs over edge 

devices to achieve certain specifcations of applications specially for delay-sensitive 

applications. 
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3.2 Deep Learning Models and Tools 

3.2.1 Convolutional neural network models 

Convolutional neural network (CNN) [10] is a category of multilayer neural net-

work that was been chosen for the image classifcation task for this section. It was 

formed with three main components: convolution layer, pooling layer as well as non-

linear activation layer and fnally the fully connected layer. In general the convolu-

tional layer extract features by parsing diferent size flters across the image. Pooling 

layer is for making the computation faster by decreasing the size of the input. It also 

lowers the risk of overftting by selecting certain features. The fully connected layer 

was the fnal layer where the main prediction was made by getting the probability of 

the image belonging to a certain class by sending it through an softmax activation 

function. In image classifcation top-1 and top-5 accuracy is defned in many cases 

where top-1 refers to the highest probability score of the class which is same as the 

output class. On the other hand top-5 accuracy means that the actual output be-

longs to the either of the top 5 classes with the highest probability. CNN is not only 

limited to image classifcation task [52], but can be used for object detection [53], 

object tracking [54] and other applications also. 

This section utilized three pre-trained models: MobileNet V1 [1], MobileNet V2 

[44] and Inception V3 [45] for performance comparison. These models are popular 

for image classifcation task. Moreover, quantization method was used to tune these 

models into more lighter versions. It made the models compatible for edge devices 

without losing too much performance. MobileNet [1] is a popular model which is 

suitable for mobile and embedded devices for its state-of-the art architecture. The 

architecture ensures a faster execution of the model and also can be executed with 

very limited computational power. It breaks down the standard convolution into 
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into parts knows as depthwise convolution and pointwise convolution. Also width 

and resolution multipliers are used to tune the width of the image for version 1. 

This signifcantly reduces the computation and makes it faster. Equation (3.1) shows 

regular convolution operation (RCO) and Equation 3.2 shows depthwise followed by 

pointwise convolution operation (PCO) [1]. 

CostRCO = DK ∗ DF ∗ M ∗ N ∗ DK ∗ DF (3.1) 

CostPCO = DK ∗ DF ∗ M ∗ DK ∗ DF + M ∗ N ∗ DF ∗ DF (3.2) 

where DK and DK are the height and width of flter while DF and DF are the height 

and width of input feature map size. Moreover, M is the number of input channel and 

N is the number of output channel. The comparison between these two convolution 

operations results in 1/N + 1/DK 
2 , which means PCO has less computation than the 

RCO [1]. 

MobileNet V2 is the more advanced version which can perform better than the 

previous version. One key diference is that version 2 has a new layer which is called 

the projected layer. It is used more like an expansion of the layer.Residual connections 

are introduced in this version to address the overftting problem of the model. The 

architecture used convolution layer with 32 flters. 19 residual layers were followed 

after this layer and ReLU6 is utilized as the activation function. Kernel size was kept 

standard at 3×3. The entire model was trained using 16 GPU and a batch size pof 96 

was chosen. MobileNet V2 performed faster than MobileNet V2 to some extent [44]. 

Inception V3 [45] uses approaches such as factorizing convolution, auxiliary clas-

sifer, grid size reduction to build a more robust and lighter model. The model 

architecture refected more accurate performance than the MobileNet models. For 

example, a large 5 × 5 flter is replaced by two 3 × 3 flters. This reduces the number 
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Fig. 3.2. (a): Regular convolution operation (RCO), (b): Point-wise convolution 
operation (PCO) [1] 
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of parameter from 25 to 18. Moreover, a 3 × 3 flter was replaced by 3 × 1 and 1 × 3 

flter. This also reduced the parameter number from 9 to 6. 

3.2.2 Model compression 

CNN models require high computational resources for execution. In contrast edge 

devices have very limited computational and memory resources. Simplifying the CNN 

models into more lighter model is essential before deploying in edge devices [55]. The 

advantage of making the model lighter is that it makes the model faster but it also 

reduces the performance [56]. The weights in the DNN require huge memory for 

procurement and the aim is to reduce that requirement. Pruning [46], quantization 

[48], and data compression [57] are some of the popular model compression techniques. 

The main concept of pruning is to fnd the less important neurons [46]. Then the 

weight value can be either made zero or ignored in the network. Quantization refers 

to the method where the size of the foating point operation is reduced in order to 

make it faster and less resourceful [48]. It is extremely popular for speeding up the 

process as lesser computation is required between memory and network. The memory 

consumption can also be reduced without losing much performance. For example, 

binarized neural network is a version of quantization where the activation and weights 

are represented in binary, making it easily compatible for memory constrained devices 

[49]. Data compression is also an example of model compression. Parameters that 

were tuned can be stored in compressed form and can be decompressed during the 

execution [57].This also adds an extra layer of security in the data as it becomes 

encrypted during the compression technique. 

3.2.3 Software tools 

This research is based on evaluating diferent device and software libraries. Ten-

sorFlow was the main software used for this experiment. TensorRT was another 
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Fig. 3.3. TensorRT workfow [2] 

software kit that was used which has high performance deep learning interface based 

on CUDA [2]. Maximum throughput can be achieved with lower latency by this tool. 

Another advantage of TensorRT is that it can be made compatible with other frame-

works such as TensorFlow or MATLAB and supports APIs such as PyTorch, Keras 

and Cafe [58]. This entire information can be viewed in Fig. 3.3. It is compatible 

to provide the reduced bit point operation for computer vision, natural language pro-

cessing and so forth [2, 59]. In this experiment we used three types of foating point 

operation: 32-bit, 16-bit and 8-bit operation. The 32-bit point operation was created 

directly from Keras applications. Keras is popular deep learning API which runs on 

top of TensorFlow [60]. Moreover, it gives user the fexibility to design any model by 

its simplicity and ease of use. TensorRT was used to convert the 32-bit operation into 

16-bit operation. Lastly the 8-bit operation was directly derived from TensorFlow 

Lite model [3]. 

3.3 Edge Devices 

Fig. 3.4 shows the devices used for this experiment. Two NVIDIA Jetson devices 

were selected for this part. It gives a good platform for machine learning tasks. 
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Specially these have a lightweight GPU installed making deep learning models run 

fuently. NVIDIA Jetson TX2 and Nano were selected where both of these have a 

4-core ARM A57 core. TX2 performs at 2 GHz. Also both of these have 256-core 

and 129-core Pascal respectively. 

Fig. 3.4. Left: Jetson TX2, Right (Top): Jetson Nano, Right (Bottom): Google 
Coral TPU USB Accelerator 

Google Coral Edge TPU USB Accelerator is the third device used for the ex-

periment. It is specially designed for deep learning task and cannot operate regular 

computer programs. Multiple applications such as machine vision, robotics, medi-

cal, retail and many more [61] can be deployed using this interface. It uses Tensor 

Processing Units (TPUs) which is a custom-developed application-specifc integrated 

circuits (ASICs) designed for machine learning task by Google Inc. Google has this 
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technology in both cloud and edge devices. The edge devices are called Coral De-

velopment Board and USB Accelerator. This experiment used USB Accelerator and 

referred as Edge TPU as shown in Fig. 3.4. It is based on TensorFlow Lite and the 

hardware was designed in such way that machine learning models could be executed 

at faster speeds than other devices. This research utilized 8-bit foating point opera-

tion and the workfow as illustrated in Fig. 3.5. The diference between Dev Board 

and the USB Accelerator is that the Board has its own CPU and the other does not. 

The USB Accelerator needs a support machine to operate. A special type of training 

method named quantize-aware training is needed for the creation of 8-bit pre-trained 

model. The processing is designed such way that hundreds of thousands of operation 

of matrix multiplication can be performed where a conventional GPU can only do 

tens of thousands. It does the multiplication and addition instantly without sending 

those into the memory making them faster [3]. The comparison can be viewed in 

Table 3.1. 

Fig. 3.5. TPU USB accelerator workfow [3] 
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Table 3.1. Edge Device Comparison 

Jetson TX2 Jetson Nano 
Google Coral TPU 
USB Accelerator 

Memory 8 GB 4 GB NA 
Storage 32 GB 16 GB eMMC NA 

Processor 
Quad-Core ARM 

Cortex-A57 MPCore 
Quad-core ARM 

Cortex-A57 MPCore 
NA 

AI Accelerator 256 Cuda Core (Pascal) 128 Cuda Cores (Maxwell) Edge TPU 

3.4 Experiment 

3.4.1 Dataset 

ImageNet is the most popular dataset for computer vision tasks. It is consists of 

1.2 million images with 1,000 classes [62]. All the popular pre-trained models are also 

created using this dataset. We employed ImageNet 2012 validation dataset which had 

50,000 images of 1,000 classes. The goal was to test the performance using pre-trained 

models based on TensorFlow and use diferent edge devices for comparison. 

3.4.2 Evaluation Metrics 

We utilized diferent evaluation metrics for performance comparison. They are 

listed below. 

• FP denotes foating point operation taken 32 bit and 16 bit for Jetson devices 

and 8 bit operation for Edge TPU. 

• Accuracy refers to the ratio of number of correct predictions to the total number 

of testing samples. 

• Memory denotes how much dynamic memory has been allocated by the python 

thread in mebibyte or MiB (1 MiB = 1024 × 1024 bytes). 

• Load denotes the pre-trained model loading time in seconds. 
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• Time denotes the total time python script requires to execute the task. 

• Average Inference (Avg Inf) is the average inference time of a single image in 

seconds. 

• FPS (inf) represents the frame per second which is how many images can this 

model run in one second. FPS (inf) shows the rate of processing image while 

only considering inference whereas the last column FPS shows the rate of pro-

cessing image while taking model loading, image preprocessing and inference 

into consideration. 

Frame per second (FPS) and Frame per second (inf) are given in equation (3.3) and 

(3.4). 
N 

F P S = , (3.3)P50000M + (Pn + In)n=1 

N 
F P S(inf) = . (3.4)P50000 Inn=1 

Here N denotes the 50,000 validation images. M in the denominator is the model 

loading time, P is the time for preprocessing of images, and I is inference time. The 

model loading occurs only once but preprocessing and inference occurs for all 50,000 

images. 

Table 3.2. Performance Comparison on Various Edge Devices with MobileNet V1. 

Device 

TX2 
TX2 
Nano 
Nano 
TPU 

FP 

32 bit 
16 bit 
32 bit 
16 bit 
8 bit 

Accuracy 

0.68364 
0.68374 
0.68362 
0.68372 
0.68008 

Memory 
(MiB) 
1595.426 
2267.48 
1147.215 
2136.59 
108.516 

Load (sec) 

30.98 
363.11 
20.04 
82.95 
3.06 

Time (sec) 

2582.42 
2033.77 
4591.97 
2151.96 
1235.07 

Avg Inf 
(ms) 

40 
20 
70 
20 

9.43 

FPS (inf) 

25 
50 

14.29 
50 

106.04 

FPS 

19.36 
24.58 
10.89 
23.23 
40.48 
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Table 3.3. Performance Comparison on Various Edge Devices with MobileNet V2. 

Memory Avg Inf 
Device FP Accuracy Load (sec) Time (sec) FPS (inf) FPS 

(MiB) (ms) 
TX2 32 bit 0.68048 1818.398 53.95 2799.24 40 25 17.86 
TX2 16 bit 0.68048 1914.27 187.56 2278.44 20 50 21.94 
Nano 32 bit 0.68048 1546.164 28.93 5471.34 90 11.11 9.14 
Nano 16 bit 0.68084 2102.309 78.96 2206.76 20 50 22.66 
TPU 8 bit 0.69026 103.078 3.07 1315.2 11.28 88.65 38.02 

Table 3.4. Performance Comparison on Various Edge Devices with Inception V3. 

Memory Avg Inf 
Device FP Accuracy Load (sec) Time (sec) FPS (inf) FPS 

(MiB) (ms) 
TX2 32 bit 0.76276 1674.637 88.99 8860.52 150 6.67 5.64 
TX2 16 bit 0.76284 3656.887 1945.94 4302.21 20 50 11.62 
Nano 32 bit 0.76276 1044.277 47.38 17752.81 320 3.13 2.82 
Nano 16 bit 0.76264 3213.441 469.4 4191.77 50 20 11.93 
TPU 8 bit 0.7705 147.883 3.13 25463.41 490 2.04 1.96 

3.4.3 Results and Analysis 

Three models named: MobileNet V2, MobileNet V2 and Inception V3 were eval-

uated using three diferent foating point operations. The 32-bit, 16-bit and 8-bit op-

erations were tested on three devices respectively on NVIDIA Jetson TX2, NVIDIA 

Jetson Nano and Google Coral Edge TPU. The Jetson devices were used for 32-bit 

and 16-bit operation whereas Edge TPU was used for 8-bit operation. 

Table 3.2 refects the result of MobileNet V1. the 16-bit took more model loading 

time but lesser execution time for the entire program than the 32-bit operation. The 

32-bit foating point operation was obtained from Keras applications and 8-bit from 

TensorFlow Lite original hub. Both of these used their own platform to execute the 

model, making it efcient. However, the 16-bit operation was derived from the 32-

bit pre-trained model and executed on newly developed platform. This made the 

https://25463.41
https://17752.81
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loading of the model in the 16-bit more time consuming than the other two. Only 

considering average inference time of a single image, the 16-bit was better or faster 

than the 32-bit foating point operation. The execution time of the entire task and 

memory consumption was more for the TensorRT interface. 

MobileNet V2 showed the same trend of result as MobileNet V1 shown in Table 3.3 

for diferent devices. The memory consumption was more for the TensorRT platform 

or 16-bit operation probably because the converted model required more memory for 

initial loading. It was also visible in the model loading time column. It was observed 

that Jetson TX2 in 32-bit operation is almost 12 times faster. Moreover, due to some 

hardware issue the test dataset was loaded in SD card for all TX2 experiments. The 

inference time was better in TensorRT platform in Jetson TX2. However, The Edge 

TPU outperformed all other by a good margin in for MobileNet models in accuracy, 

memory consumption, execution time and FPS. 

Lastly Table 3.4 evaluated the performance of Inception V3 model on various 

devices. The network structure of Inception was much more complicated and robust 

than the MobileNet V1 and V2. It had more layers and larger input image size. Now, 

the saved model in h5 format of Inception V3 is 25.1 MB whereas MobileNet V2 

was only 4.5 MB. This model had more weights and parameters than the other two 

giving higher accuracy but slower time in the testing environment. The Edge TPU 

was connected through the USB 2.0 ports. In a separate environment the same model 

was connected with a USB 3.00 port to another host computer with USB accelerator. 

The average inference time was about 43.6 ms, or 22.94 FPS, almost two times faster 

than NVIDIA Jetson TX2 and Nano. 
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3.5 Related Work 

3.5.1 Model compression 

Model compression is a popular research for accelerating the speed of the deep 

learning models by reducing model complexity. For example, the convolution archi-

tecture was redesigned in MobileNet which was able to reduce the parameter numbers 

by seve times by only losing one percent accuracy. If the number of parametner of 

MobileNet is compared to another model like VGG 166, then it is reduced by almost 

35 times [1]. Moreover, the procurement of data is a few times faster because of 

lower computation. Jiaxiang et al. [47] presented that quantization was able to speed 

up the inference process by four to six times and drastically reduce the number of 

parameters 15 to 20 times. Han et al. [63] presented an efcient three-stage pipeline 

of a CNN containing pruning, quantization and hufman coding which can reduce the 

famous CNN model AlexNet’s size from 240 MB to 6.9 MB. 

3.5.2 Deep learning inference on edge devices 

This section demonstrated that complex deep learning models can be accommo-

dated using compression techniques on resource constraint devices. The results were 

consistent with the literature review. Recent studies show that NVIDIA Jetson Nano 

runs MobileNet V2 at 64 FPS where Google Coral Dev Board runs it at 130 FPS [43]. 

Also single 64-bit Intel Xeon Gold 6154 CPU at 3.00 GHz as the host machine with 

TPU USB Accelerator can complete inference ar 2.4 ms for MobileNet models. Also 

the dev board can take up to 53 ms and 51 ms to do inference for MobileNet V1 and 

V2 [64]. Taylor et al. [65] also presented a research work on edge devices where more 

than seven times accuracy improvement and one and a half times reduce time were 

observed for an adaptive deep learning model selection. 
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3.6 Conclusion 

This section showed a comprehensive comparison of testing performance of three 

pre-trained CNN model on three edge devices. Specifcally, MobileNet V1 and V2 and 

Inception V3 models were used on NVIDIA Jetson TX2, Jetson Nano, and Google 

Coral Edge TPU USB Accelerator for image classifcation task. Moreover. quanti-

zation technique was applied to observe how the model reacted to diferent bit-point 

operation. It was applied to reduce the model complexity thus making it lighter and 

easier for edge devices. Experimental results indicated faster inference time and more 

accurate results for Edge TPU than the NVIDIA Jetson devices. However, the USB 

Accelerator could not work independently and required a host to run the model. In 

addition NVIDIA Jetson TX2 performed better than Jetson Nano in most cases. It 

was expected as Jetson TX2 have more computational resource than the Nano. This 

experiment drew a line for model selection for two diferent tasks: speed and accuracy. 

MobileNet models are suitable for speed where Inception refects more accurate per-

formance. The work demonstrated that specifc model and edge devices were suitable 

for specifc applications. This work will serve as a benchmark for researchers or users 

to measure the DNN models, compression techniques and edge devices for diferent 

applications. 
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CHAPTER 4 

ROBUST FACE MASK DETECTION USING DEEP 

LEARNING ON IOT DEVICES 

4.1 Introduction 

Covid-19 had catastrophic efect on this world and became a global pandemic [66]. 

The spread of this disease was difcult to control and one measure was by using face 

masks in public. The masks stopped the respiratory droplets from spreading which 

was the main carrier of the disease [67]. Face mask detection is a new concept in this 

era and this idea can be incorporated with IoT devices to track and warn people to 

wear masks. This section utilized this idea of detecting face mask on IoT devices using 

deep learning. Specifcally, four convolutional neural networks, namely, MobileNet 

V2, Inception V3, VGG 16, and ResNet 50 were deployed for face mask detection 

and tested by IoT devices such as NVIDIA Jetson TX2 and Nano. Both devices 

had mobile GPU mounted on top of their system making computation efcient and 

faster. Performance comparisons were measured using diferent training dataset size. 

The experimental results showed that face detection was possible in real time on IoT 

devices. 

The spread of viruses can be controlled by wearing a face mask can easily be 

understood in Fig. 4.1. It refects the risk factor between an infected person and 

an uninfected person. A person infected with coronavirus has a high possibility of 

infecting another person if no one is wearing a mask. The possibility is slightly less if 

one of them is wearing a mask. However, it is lowest when both of them are wearing a 

mask [68] (the third row). As coronavirus spreads by the respiratory droplets, if it can 

be prevented from going out, then there is a high chance of controlling the disease. 



Infected Person Healthy Person 

8 High Risk of Transmission 8 
Without Mask Without Mask 

A Low Risk of Transmission 8 
With Mask Without Mask 

A Lower Risk of Transmission A 
With Mask With Mask 
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Fig. 4.1. Diferent risk of transmission between infected person (left column) and 
uninfected person (right column). 

Also it is difcult reminding wearing a mask in public. Face mask detection [69] with 

deep learning can be used to monitor whether people are wearing masks. Moreover, 

deployment of this model ensures that IoT devices can be used for this application 

at real-time in almost most cases. 

This section will demonstrate some research experiments of face mask detection 

using deep learning models on edge devices. This application can detect face mask 

in public in real-time. For example, some workplaces and businesses are mandating 

face mask wearing on their premises. A smart IoT camera capable of running DL 

models can detect and raise alarm if someone is not wearing a mask without human 

intervention. Mobile GPU such as NVIDIA Jetson devices can perform this tasks 

using a camera. It saves human resources and reduces cost making it benefcial and 

efcient for any company. 
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ConvertorCarmera Mobile GPUs

Face Mask
Required

Artifitifical Neural
Networks

Face Mask Alarm

Face Mask Detector A Speech Reminder

Fig. 4.2. The diagram of a face mask detection system. As an example, the pro-
posed system is mounted on a door to remind people to wear face mask when enter-
ing a room. It consists of a camera, a mobile GPU, and an alarm. The image/video 
captured by the camera will be input to the mobile GPU and the pre-trained CNN 
will determine whether the person wears face mask. If not, an alarm such as “Face 
Mask Required” will sound. 

Fig. 4.2 shows the diagram of a face mask detection system on controlling the 

entrance to a room based on the result of face mask detection. The proposed research 

was to build an algorithm based on deep learning that could run on IoT devices 

with mobile GPUs, which can be used implement the setup shown in the diagram. 

We implemented four convolutional neural networks (CNN), namely, MobileNet V2, 

Inception V3, VGG 16, and ResNet 50. Moreover, these models were verifed by 

running inference on mobile GPUs including NVIDIA Jetson TX2 and NVIDIA Jetson 

Nano. Specially, we examined the model robustness by training small sizes of data, 

which is key to real world applications to emerging events such as COVID-19 outbreak, 

because usually we cannot collect big data for training due to few samples available 

and high annotation costs. Experimental results demonstrated that these models 

can achieve promising detection performance on IoT devices and robustly detect face 

mask even being trained on very small size of data. 
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4.2 Deep Learning Models 

Face mask detection can be viewed as a binary image classifcation problem [69]. 

We deployed four popular CNN, namely, MobileNet V2, Inception V3, VGG 16, and 

ResNet 50 to check their performance. MobileNet is the most popular model for edge 

device for its lightweight. Smaller model size and less computational expensive were 

the main themes behind its design making it very suitable for resource constraint 

devices. One major design is that it breaks up the traditional computation expensive 

convolution operation into two parts. These are named depthwise and pointwise 

convolution [70]. The idea is to break up the complex matrix multiplication into 

two simple matrix multiplication. MobileNet V2 [71] is more advanced version of 

V1 which has an additional convolution layer and residual connection like ResNet. 

Width multiplier and resolution multiplier are fne tuned to control the resolution of 

the input. 

Inception V3 [72] is another widely used image classifcation network for DL appli-

cations. The number of connections was reduced using factorized convolution while 

keeping a strong performance. It also has diferent version and version 3 is the most 

used. It is also computationally efcient in terms of older models. Smaller convolu-

tion, factorized convolution, auxiliary classifer, lower grid size, factorized convolution 

are the main techniques used to design this model. 

VGG-16 [73] is a 16 layer CNN introduced to observe how a model deals with 

vanishing gradient problem as depth increases. The vanishing gradient refers to higher 

training errors observed as layer is increased. However, if a CNN gets deeper, it should 

be capable to accord with more complex learning. Also, a better performance was 

expected but the performance decreased rapidly. Performance dropped drastically as 

learning was saturated. VGG 16 had 13 convolutional layer and 3 fully connected 

layer. One disadvantage was that it was slow to train and weights were quite large 
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and 134M parameters needed to be trained. 

ResNet model [74] addressed the vanishing gradient problem by applying residual 

learning into the network. Identity mapping, adds a layer which skips one or two 

layers in the model. The skipped connection tries to solve a residual function using 

H(x) = F(x) + x for a few stacked layer instead of conventional mapping. One reason 

is rather than mapping F(x), it is easier to get F(x) = 0. Moreover stride of two 

is used to make computation lesser. Also the number of trainable parameters was 

only 23M, which made it faster than VGG-16. This research used ResNet-50 for this 

application. 

We select transfer learning approach as DL models for image classifcation tasks 

tend to perform better when they are trained from an existing popular trained model. 

Training from scratch does not yield good performance all the time. All the pre-

trained models used to classify 1,000 classes from ImageNet [75]. It takes less time 

and efort to train a new model which can detect these 1,000 classes. It is very 

popular concept and widely used. The features learned from the previous task were 

transferred into the new classifer. All the pre-trained models used here are trained 

on ImageNet. The size of the input image is diferent. For example, MobileNet, 

ResNet and VGG-16 used image size 224 × 224 × 3, whereas Inception V3 used a size 

of 299 × 299 × 3. 

Load Training Data Fine-tune Pretrained
Deep Learning Models

Face Mask 
Detector

Load Testing Data Face Mask Detection Evaluate Detection
Results

Fig. 4.3. The fow of building face mask detector. 
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Fig. 4.3 shows the overall plan of this research, which was particularly based 

on transfer learning. The training was been done on NVIDIA TITAN V GPU, and 

tested on NVIDIA Jetson devices. The pre-trained model was loaded frst. Then the 

last layer is changed according to research which was a binary classifer. The training 

was done for separate models and for separate cases. In terms of testing, the model 

was saved in Keras format. In the edge devices, the model was loaded along with the 

testing dataset. The performance was evaluated with various evaluation metrics. 

4.3 IoT Device with Mobile GPU 

In recent times deploying DL models on edge device is getting a lot of attention. 

The urge is to make the devices smarter which can predict based on learning. Tra-

ditional DL models are computationally expensive and require GPUs to train and 

test. In contrast edge devices have only limited computation resources. Lightweight 

GPU, mounted on top of an edge device have the ability to run DL models. NVIDIA 

Jetson devices are types of devices which are widely used for local deployment of AI 

models. Moreover, edge devices are also getting some computational capacity and 

DL models are getting lighter which refects a promising advancement in this area. 

NVIDIA Jetson TX2 and Nano were selected for this part of research as test devices. 

We ran the same model with same test data to observe which one performed better. 

There was a signifcant diference between these two devices, which is explained in 

details in table 4.1 and Fig. 4.4 shows the two models. 

4.4 Experiment 

4.4.1 Dataset 

We used a public dataset for this part as this was a relatively new topic and limited 

dataset were available. This dataset had 1,916 images with face masks and 1,930 

images without face masks. However, some data had some diferent characteristics. 
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Fig. 4.4. NVIDIA Jetson Nano (left) and NVIDIA Jetson TX2 (right) 

Table 4.1. Comparison Between NVIDIA Jetson TX2 and NVIDIA Jetson Nano 

Jetson TX2 Jetson Nano 

CPU 
Dual-Core NVIDIA 
Denver 2 64-Bit CPU 

Quad-core ARM 
Cortex-A57 MPCore 

processor 

GPU 
256-core Pascal 
@1300 MHz 

NVIDIA Maxwell 
architecture with 128 NVIDIA 

CUDA® cores 
Memory 8GB 128-bit LPDDR4 4 GB 64-bit LPDDR4 
Storage 32GB eMMC 5.1 16 GB eMMC 5.1 
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Fig. 4.5. Example images from the datatset. The frst row contains example images 
with face mask, where the frst three images have one face with face mask occupy-
ing the most part of the image, while the latter three images having multiple faces 
with mask and people on the background. The second row contains example images 
without face mask under diferent background. 

Fig. 4.6. Training Loss over 100 epochs for MobileNet V2 

Table 4.2. Comparison of Accuracy and Training Loss of Four Models MobileNet 
V2, ResNet 50, Inception V3, and VGG 16. 

Models 
Training 
Accuracy 

Training 
Loss 

Testing 
Accuracy 

MobileNet V2 0.9727 0.0781 0.9149 
ResNet 50 0.9927 0.0212 0.9867 
Inception V3 0.9666 0.0858 0.9894 
VGG 16 0.9987 0.0027 0.9987 
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Fig. 4.7. Training Loss over 100 epochs for ResNet 50 

Fig. 4.8. Training Loss over 100 epochs for Inception V3 
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Fig. 4.9. Training Loss over 100 epochs for VGG 16 

Fig. 4.10. Training Accuracy over 100 epochs for MobileNet V2 
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Fig. 4.11. Training Accuracy over 100 epochs for ResNet 50 

Fig. 4.12. Training Accuracy over 100 epochs for Inception V3 
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Fig. 4.13. Training Accuracy over 100 epochs for VGG 16 

Table 4.3. Comparison of Precision, Recall, and Fscore 

Models Class Precision Recall Fscore 
MobileNet V2 With Mask 0.99 0.83 0.90 

Without Mask 0.86 0.99 0.92 
ResNet 50 With Mask 1.00 0.96 0.98 

Without Mask 0.96 1.00 0.98 
Inception V3 With Mask 1.00 0.98 0.99 

Without Mask 0.98 1.00 0.99 
VGG 16 With Mask 1.00 1.00 1.00 

Without Mask 1.00 1.00 1.00 
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Eighty percent of the data was used for training and the rest was for testing. 1 

4.4.2 Experiment setup 

The learning rate was 0.0001 with a batch size of 10. We kept the batch size lower 

so that it could be trained on limited memory. We kept a standard epoch size of 100. 

Cross entropy was selected as the loss function as it was a classifcation task. 

4.4.3 Tools for Implementation 

Tensorfow [76] which is an open source software was the main software for this 

section. One beneft of this software was the ability to operate at many processing 

units such as multicore CPUs, GPUs and Tensor Processing Unit (TPU) [77]. It 

supported a good number of applications and provided fexibility to design ML model. 

Moreover Keras [78] API was used, which runs on top of tensorfow. Keras application 

was used to directly import the pre-trained models. Then the classifer was trained 

on top of it. 

4.4.4 Result Analysis 

We implemented face detection with MobileNet V2, VGG 16, Inception V3 and 

ResNet 50, where diferent performance is shown in Tables 4.4, 4.2 and 4.3. The 

results show that VGG 16 outperformed others regarding accuracy, precision, recall, 

and fscore. The learning curve of this model also showed faster improvement than 

others. The intuition was that VGG has fxed kernels than others. As the problem 

was binary and the dataset showed a similar trend, this dense network was able to 

perform better than other. Table 4.2 refects one scenario. VGG 16 was able to 

get the highest training and testing accuracy with lowest loss score. ResNet 50 and 

Inception V3 had only one percent diference in accuracy than VGG 16. Figure 4.10 

and 4.6 shows the learning curves of MobileNet V2 in terms of training accuracy and 

1https://github.com/chandrikadeb7/Face-Mask-Detection 

https://1https://github.com/chandrikadeb7/Face-Mask-Detection
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Table 4.4. Performance comparison on face mask detection on Jetson TX2 and Jet-
son Nano. FPS refers to the number of images processed per second. The frst col-
umn denotes the models. M denotes MobileNet V2, R denotes ResNet 50, I denotes 
Inception V3 and V denotes VGG 16. 

Training Testing on TX2 Testing on Nano 
Ratios Number 

Inference Inference 
of of Training Testing Testing 

Loss time FPS time FPS 
training training accuracy accuracy accuracy

(ms) (ms)
data images 
1% 30 0.107 0.9776 0.6957 26.97 37.27 0.6926 42.40 23.58 
5% 150 0.095 0.9733 0.7685 25.10 39.86 0.7659 42.00 23.80 

M 10% 300 0.114 0.9622 0.7842 25.10 39.87 0.7801 42.90 23.31 
20% 601 0.136 0.9490 0.7735 25.53 39.14 0.7699 43.03 23.24 

1% 30 0.071 0.9666 0.5000 70.90 14.11 0.7433 195.05 5.13 
5% 150 0.050 0.9845 0.7976 71.00 14.09 0.8023 176.45 5.67 

R 10% 300 0.035 0.9900 0.7976 70.13 14.25 0.7962 173.05 5.78 
20% 601 0.027 0.9927 0.8651 71.00 14.08 0.8599 173.65 5.76 

1% 30 0.167 0.9556 0.8275 89.27 11.21 0.8275 187.00 5.35 
5% 150 0.136 0.9578 0.8704 87.80 11.41 0.8713 188.53 5.31 

I 10% 300 0.136 0.9445 0.9066 92.33 10.85 0.9057 905.72 5.22 
20% 601 0.167 0.9379 0.8972 89.57 11.17 0.8977 192.77 5.19 

1% 30 0.089 0.9667 0.6857 2138.77 0.47 0.6761 239.37 4.18 
5% 150 0.006 0.9978 0.9231 2139.60 0.47 0.9173 245.23 4.08 

V 10% 300 0.010 0.9956 0.9370 2136.00 0.47 0.9325 236.17 4.23 
20% 601 0.006 0.9994 0.9607 2139.57 0.47 0.9580 237.70 4.21 
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loss. VGG 16 was able to reduce the loss drastically within less than 20 epochs. The 

other three models were also able minimize loss function but VGG showed the most 

smoothest transition. The learning curve in terms of accuracy also showed that VGG 

16 was able to get a good training accuracy in a short time. Also the other models 

indicated a good training accuracy. Table 4.3 gives further evaluation of the models. 

VGG 16 showed a perfect score in precision, recall and f-score followed by Inception 

V3 and ResNet 50. The precision to detect face with mask was done well by all the 

models. 

In addition, we examined how the size of training samples efected the perfor-

mance. For emerging tasks like face mask detection, it is difcult to obtain a huge 

dataset for training and testing. Therefore, lacking of data will be a big challenge for 

similar tasks. We applied diferent ratios of training data to examine the performance 

shown in Table 4.4. Experimental results indicated that MobileNet V2 was the fastest 

model and could process almost 40 images per second in Jetson TX2 while VGG 16 

represented the highest accuracy. If we train the model while taking only one percent 

of the training data and keeping the testing data same, Inception performed better 

when considering the lowest amount of training data. It had a testing accuracy score 

of 0.8275. Although the training and testing accuracy diference showed the model 

was overftting, it was able to recover as we kept increasing the data. Utilizing only 

fve percent of the training data showed an accuracy of 0.76, 0.79, 0.87 and 0.92 for 

MobileNet, ResNet, Inception and VGG 16. This showed that the models were robust 

as they showed good performance on limited data. As we kept increasing the training 

data to 10 and 20 percent, the performance of all models started improving. VGG 

showed the maximum accuracy and MobileNet showed the lowest accuracy while con-

sidering 20 percent of the data. ResNet and Inception gave close performance in this 

case. The overftting problem was addressed as the dataset samples kept increasing. 
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The table showed slight variation in some cases. For example, MobileNet and Incep-

tion performed slight better with 10 percent dataset than 20 percent. Our intuition 

could be the dataset features because the dataset have some complex images. We saw 

some exceptions in this Table. For example, ResNet 50 showed an accuracy of around 

0.50 and 0.75 in Jetson TX2 and Nano. The diference was huge but the same model 

and same dataset was used for both cases. In Addition, VGG 16 was nine times faster 

in Nano than TX2. Hardware specifcation of individual device could be the reason 

behind this scenario. Overall VGG 16 showed the best result. One disadvantage was 

that it is extremely slow and required more high computing resources than others. It 

refected the lowest speed in every case. In terms of speed MobileNet V2 showed the 

better performance as it was designed to perform faster and efciently. One trade of 

of this model for being faster was accuracy. It was the reason it showed less accuracy 

in most cases than others. Jetson TX2 demonstrated faster results than the Nano. 

Although Nano was relatively close in terms of speed despite having half the memory 

than TX2. 

4.5 Related Work 

Face mask detection has been a popular topic due to the recent pandemic situa-

tion. This can be treated as either object detection or an image classifcation task. 

Object detection methods were used in [79] and [80]. One stage face mask detector 

was proposed by Mingjie Jiang et al. and pre-trained ResNet is used for transfer 

learning and feature extraction [79]. It detected the mask feature using a novel con-

text attention. Medical face mask detection was created by Loey et al. [80] using 

object detection method. ResNet and YOLO V2 were combined in order to make the 

mask detector. 

This task was also treated as an image classifcation problem in [81, 82, 83], where 

pre-trained face detector was used to extract the face and then classifcation model 



69 

was applied to check the mask. Lippert et al. presented a face mask detector using 

OpenCV pre-trained face detector and VGG16 was used to train the model. Madhura 

Inamdar et al. proposed a face mask detecting model using eight layers which perform 

the same task [81]. 

The methods mentioned above were created using DL models and in high per-

formance computers with GPUs. However, this task is difcult if it is to be run in 

the cloud because bandwidth and security issues. Bandwidth can be unstable and 

transmission of private data is also a concern. The research showed a way to overcome 

this problem. The models were run on edge devices and could be used in real-time 

applications. This does not require any wireless or wired internet connection, and 

can be deployed almost anywhere. Moreover, we showed how it reacted to diferent 

models, devices and training sets. 

4.6 Conclusion 

This section showed the performance of four deep learning models, namely, Mo-

bileNet V2, Inception V3, VGG 16, and ResNet 50 for face mask detection. The 

testing devices were NVIDIA Jetson TX2 and Nano. The results indicated that Mo-

bileNet was the fastest in terms of speed, however the accuracy was low. The other 

models performed almost the same with good prediction results. The prediction was 

faster in TX2 than Nano. It was predicted as TX2 had twice the memory than Nano. 

However, Nano gave a closer performance compared to TX2. We also showed the 

robustness of the model by reducing the training sample. The intuition was that 

in real-time data was not always labeled. The future plan is to use semi-supervised 

learning to process raw data and then build the classifer. Also methods like prun-

ing, quantization and knowledge transfer can be used to make the model lighter and 

efcient. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

This research explored techniques designed for deployment of Deep Learning (DL) 

models on IoT devices that have limited computing resource and storage. Specifcally, 

• novel quantization methods have been studied that can be utilized to compress 

DL models; 

• methods that allow DL models to perform efciently on small amount of data 

were investigated; 

• novel privacy preserving techniques for DL on edge devices were explored. 

The efectiveness of the research was demonstrated through multiple experiments 

such as face mask detection using IoT devices. It gives an overall idea about how 

in the near future IoT devices will take advantage of DL. NVIDIA Jetson TX2 and 

Nano were used in the experiments which are popular mobile GPUs for edge devices. 

5.2 Future Work 

This research holds some promising advancement. The next step is to evaluate 

energy efciency of the DL models in diferent platforms. Energy efciency is also 

another major aspect of research for deploying models on edge devices. For exam-

ple, any edge device that is operating on battery power would require high energy 

efciency. In addition, semi-supervised learning will be considered as well when the 

amount of labeled data is limited, especially in IoT applications. 
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