
Prairie View A&M University Prairie View A&M University

Digital Commons @PVAMU Digital Commons @PVAMU

All Dissertations Dissertations

8-2023

Deep Learning For Resource Constraint Devices Deep Learning For Resource Constraint Devices

Sheikh Rufsan Reza

Follow this and additional works at: https://digitalcommons.pvamu.edu/pvamu-dissertations

https://digitalcommons.pvamu.edu/
https://digitalcommons.pvamu.edu/pvamu-dissertations
https://digitalcommons.pvamu.edu/dissertations
https://digitalcommons.pvamu.edu/pvamu-dissertations?utm_source=digitalcommons.pvamu.edu%2Fpvamu-dissertations%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages

DEEP LEARNING FOR RESOURCE CONSTRAINT DEVICES

A Dissertation

by

SHEIKH RUFSAN REZA

Submitted to the Ofce of Graduate Studies of
Prairie View A&M University

in partial fulfllment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2023

Major Subject: Electrical Engineering

DEEP LEARNING FOR RESOURCE CONSTRAINT DEVICES

A Dissertation

by

SHEIKH RUFSAN REZA

Submitted to the Ofce of Graduate Studies of
Prairie View A&M University

in partial fulfllment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Xishuang Dong John Fuller
Committee Chair Committee Member

Xiangfang Li Lijun Qian
Committee Member Committee Member

Lin Li Annamalai Annamalai
Committee Member Interim ECE Department Head

Pamela Obiomon Tyrone Tanner
Dean, Dean, Graduate Studies
Roy G. Perry College of Engineering

August 2023

Major Subject: Electrical Engineering

ABSTRACT

Deep Learning for Resource Constraint Devices

(August 2023)

Sheikh Rufsan Reza, PhD EE., Prairie View A & M University;

Chair of Advisory Committee: Dr. Xishuang Dong

The amount of Internet-of-things (IoT) devices is rapidly expanding. This also trig-

gered the necessity of smart IoT devices which are capable of conducting any task

by itself. Deep learning techniques are also booming due to the increased comput-

ing power and refned algorithms. The advantage of deep learning is that it can be

tuned into any application without the manual feature extraction process. Now, the

combination of deep learning with smart IoT devices/edge devices can result in any

application that can be used in machine vision, vision inspection, autonomous ve-

hicle, and many more. These applications can be automated which requires human

operation. Now, combining deep learning and edge device together and running the

application can be a difcult task. The main reason is that deep learning requires

large computation power and edge devices does not have that capability. This study

focused on this problem. Ie used techniques to encrypt and compress data which is

essential for the edge devices. In addition, we developed novel methods to protect

user privacy for data collection and learning on edge devices. Also, we conducted a

study to evaluate diferent edge devices for diferent application purposes with certain

compression technique of the models. Lastly, we conducted a real life experiment of

collecting data, creating diferent models and evaluating it on diferent edge devices.

index terms - IoT, computer vision, deep learning, machine learning, quantization,

autoencoder, mobilenet v1, mobilenet v2, inception v3, face mask detection

iii

DEDICATION

To the GOD ALMIGHTY, my saviour and redeemer.

v

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my advisor, Dr. Xishuang Dong, for

his utmost support, tutelage, guidance and patience in the course of my research.

His experience, knowledge, advice, encouragement, and inspiration have had a great

impact on me.

I would also like to thank Dr. Xiangfang Li, Dr. John Fuller, Dr. Lijun Qian,

Dr. Lin Li, who are members of my advisory committee for their support during the

entire program. I also like to thank Dr. Richard Wilkins, the graduate coordinator,

Dr. Annamalai Annamalai, the ECE department head, and Dr. Pamela Obiomon,

the Dean of the College of Engineering.

This research work is supported by the United States Ofce of the Under Secre-

tary of Defense for Research and Engineering (OUSD(RE)) under agreement number

FA8750- 15-2-0119. I am also grateful to Electrical and Computer Engineering De-

partment and Prairie View AM University.

Lastly, I am deeply grateful to my family for supporting me during this journey.

vi

NOMENCLATURE

AI Artifcial Intelligence

ML Machine Learning

ANN Artifcial Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

API Application Program Interface

FN False Negative

FP False Positive

TN True Negative

TP True Positive

MLP Multi-Layer Perceptron

DL Deep Learning

DNN Deep Neural Network

KNN K Nearest Neighbor

LSTM Long Short Term Memory

OpenCV Open Source Computer Vision Library

WLAN Wireless Local Area Network

IoT Internet of Things

ReLU Rectifed Linear Unit

TPU Tensor Processing Unit

WLAN Wireless Local Area Network

SSD Singel Shot Multibox Detection

URL Uniform Resource Locator

vi

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . v

ACKNOWLEDGEMENTS . vi

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xiii

1. INTRODUCTION . 1

1.1 Deep Learning . 2
1.1.1 Deep Learning Basics . 3
1.1.2 Workfow . 4

1.2 Computer Vision . 5
1.2.1 Convolutional Neural Network 5
1.2.2 Existing Model and Dataset 6

1.3 Machine Learning on Edge Devices 7
1.3.1 Edge Devices . 8
1.3.2 Existing Research . 8

1.4 Problem Statement and Contribution 9
1.5 Outline of the Dissertation . 9

2. EFFICIENT PRIVACY PRESERVING EDGE COMPUTING FRAME-
WORK FOR IMAGE CLASSIFICATION 11

2.1 Introduction . 11
2.2 Proposed Framework . 15

2.2.1 Training Stage . 16
2.2.2 Inference Stage . 18

2.3 Experiments . 18
2.3.1 Dataset Description . 18
2.3.2 Deep Learning Model Design and Training Strategy 19

vii

2.3.3 Training Stage . 21
2.3.4 Experimental setup . 25

2.4 Results and analysis . 26
2.4.1 Efect on Test Accuracy . 27
2.4.2 Efect on Number of Parameters 30
2.4.3 Efect on Testing and Training Time 31

2.5 Discussion and Related Works . 31
2.6 Conclusions . 34

3. INFERENCE PERFORMANCE COMPARISON OF CONVOLUTIONAL
NEURAL NETWORKS ON EDGE DEVICES 36

3.1 Introduction . 36
3.2 Deep Learning Models and Tools . 40

3.2.1 Convolutional neural network models 40
3.2.2 Model compression . 43
3.2.3 Software tools . 43

3.3 Edge Devices . 44
3.4 Experiment . 47

3.4.1 Dataset . 47
3.4.2 Evaluation Metrics . 47
3.4.3 Results and Analysis . 49

3.5 Related Work . 51
3.5.1 Model compression . 51
3.5.2 Deep learning inference on edge devices 51

3.6 Conclusion . 52

4. ROBUST FACE MASK DETECTION USING DEEP LEARNING ON
IOT DEVICES . 53

4.1 Introduction . 53
4.2 Deep Learning Models . 56
4.3 IoT Device with Mobile GPU . 58
4.4 Experiment . 58

4.4.1 Dataset . 58
4.4.2 Experiment setup . 65
4.4.3 Tools for Implementation . 65
4.4.4 Result Analysis . 65

4.5 Related Work . 68
4.6 Conclusion . 69

5. CONCLUSIONS AND FUTURE WORK 70

5.1 Conclusions . 70
5.2 Future Work . 70

viii

REFERENCES . 71

VITA . 80

ix

LIST OF FIGURES

FIGURE Page

1.1 Relationship between artifcial intelligence, machine learning and deep
learning. Machine learning is a subfeld of artifcial intelligence. Deep
learning is a subfeld of machine learning 3

1.2 Diference between traditional programming and machine learning.
Machine learning uses data and output to create a model whereas
traditional programming uses data and model to create output. . . . 4

1.3 The fow of building machine learning models.The frst step is to
fgure out what sort of problem to solve. Then collecting data and
preprocessing. The next step is to train the model and fnally testing
the model on a separate data. 5

1.4 The architecture of convolutional neural network. The main blocks are
the convolution layer and pooling layer. A series of this is followed by
a fully connected layer which makes the model ready for fnal prediction. 6

2.1 Challenges incurred when uploading all data from edge devices to the
cloud. 12

2.2 The proposed efcient privacy preserving framework for image classi-
fcation in edge computing systems. Here xi is the raw image, zi is the
compressed latent vector, and xi is the reconstructed image. 13

2.3 The training for the proposed autoencoder at edge device. 17

2.4 The training for the proposed CNN classifer at the server. 17

2.5 Details of an encoder model for compression size of 4 using CIFAR10
dataset. 20

2.6 The Transfer Learning Model Block (Model-C) 22

2.7 Comparison of the testing accuracy of the vanilla models for the
original dataset (compression ratio =1) and compressed dataset
(latent variables) with compression ratio = 4, 8, 16. 28

x

2.8 Testing accuracy of the transfer learning based model (Model-C) using
diferent base models for the ImageNet dataset with compression ratio
= 4. 28

2.9 Comparison of the normalized number of vanilla model parameters vs.
data compression ratio . 30

2.10 Comparison of the normalized testing time and training time of
the vanilla models for various compression ratios for CIFAR10 and
ImageNet datasets. 32

3.1 Processing IoT data in cloud . 37

3.2 (a): Regular convolution operation (RCO), (b): Point-wise convolution
operation (PCO) [1] . 42

3.3 TensorRT workfow [2] . 44

3.4 Left: Jetson TX2, Right (Top): Jetson Nano, Right (Bottom): Google
Coral TPU USB Accelerator . 45

3.5 TPU USB accelerator workfow [3] 46

4.1 Diferent risk of transmission between infected person (left column)
and uninfected person (right column). 54

4.2 The diagram of a face mask detection system. As an example, the
proposed system is mounted on a door to remind people to wear face
mask when entering a room. It consists of a camera, a mobile GPU,
and an alarm. The image/video captured by the camera will be input
to the mobile GPU and the pre-trained CNN will determine whether
the person wears face mask. If not, an alarm such as “Face Mask
Required” will sound. 55

4.3 The fow of building face mask detector. 57

4.4 NVIDIA Jetson Nano (left) and NVIDIA Jetson TX2 (right) 59

4.5 Example images from the datatset. The frst row contains example
images with face mask, where the frst three images have one face with
face mask occupying the most part of the image, while the latter three
images having multiple faces with mask and people on the background.
The second row contains example images without face mask under
diferent background. 60

4.6 Training Loss over 100 epochs for MobileNet V2 60

xi

4.7 Training Loss over 100 epochs for ResNet 50 61

4.8 Training Loss over 100 epochs for Inception V3 61

4.9 Training Loss over 100 epochs for VGG 16 62

4.10 Training Accuracy over 100 epochs for MobileNet V2 62

4.11 Training Accuracy over 100 epochs for ResNet 50 63

4.12 Training Accuracy over 100 epochs for Inception V3 63

4.13 Training Accuracy over 100 epochs for VGG 16 64

xii

LIST OF TABLES

TABLE Page

2.1 Information on the CIFAR10 and ImageNet (IMGNETA and
IMGNETB) Datasets. 16

2.2 The Deep Learning Models and the Dataset used in Training the Models 22

2.3 The architecture of the vanilla model for CIFAR10 dataset (Model-A) 23

2.4 The architecture of the vanilla model for Imagenet dataset (Model-B) 25

2.5 The Architecture of the Transfer Learning Model for Imagenet datasets
(Model-C)) . 27

3.1 Edge Device Comparison . 47

3.2 Performance Comparison on Various Edge Devices with MobileNet V1. 48

3.3 Performance Comparison on Various Edge Devices with MobileNet V2. 49

3.4 Performance Comparison on Various Edge Devices with Inception V3. 49

4.1 Comparison Between NVIDIA Jetson TX2 and NVIDIA Jetson Nano 59

4.2 Comparison of Accuracy and Training Loss of Four Models MobileNet
V2, ResNet 50, Inception V3, and VGG 16. 60

4.3 Comparison of Precision, Recall, and Fscore 64

4.4 Performance comparison on face mask detection on Jetson TX2 and
Jetson Nano. FPS refers to the number of images processed per

V2, R denotes ResNet 50, I denotes Inception V3 and V denotes VGG
second. The frst column denotes the models. M denotes MobileNet

16. 66

xiii

1

1

CHAPTER 1

INTRODUCTION

The expansion of Internet of things (IoT) devices has resulted in producing a huge

amount data. IoT refers to devices which can establish an internet connection and can

interact with one other [4]. The internet has revolutionized the entire communication

system. In almost every aspect of life it has become essential. Some popular mentions

are education [5], workplace, industry, healthcare [6] and many more. The popularity

and desideratum of the internet has paved the widespread use of IoT devices. These

devices can be found from industrial equipment to home appliances. For example,

any IoT industrial equipment is more preferred than a regular equipment. The IoT

device can be controlled and observed remotely where the regular device does not have

that capability. Home appliances are also becoming IoT compatible for the similar

reason. It is expected that the number of IoT devices will increase signifcantly

with time. These devices are producing a lot data. These data are mostly in text

format and some other formats are images and videos. It is crucial and can be used

to learn predictive behavior. It makes any product more user friendly, easy and

fast to use. Artifcial Intelligence, namely machine learning is playing a huge role

in procurement of this data. Also there has been a surge to make the IoT devices

smarter with incorporation with artifcial intelligence. One fundamental function of

AI is that it can generate insights that can shape any application to user specifcation.

This is making applications efcient, user-friendly and cost-efective. Moreover it is

expanding in many sectors such as education, healthcare, city, home, energy, banking,

1This thesis follows the style of IEEE.

2

industry and many more. In details in the banking sector AI is helping to detect fraud

and credit scoring [7]. Smart city is being designed with efcient energy usage [8]. AI

is helping to get insight of disease, selecting more accurate treatment and medicine

for individual patients. AI is also making the manufacturing industry more accurate

and smart. Process automation and robotics is where AI is helping to improve the

productivity signifcantly. The trend is now to make the IoT devices more smart and

faster using AI. However in order to make the devices smarter, they must learn the

predictive behavior from data. So, high computational resource is essential to procure

this huge amount of data. Even after creating the AI model, it is not easy to deploy

those on IoT devices because in most cases the devices does not have that sufcient

resources to execute. Now the model on edge devices must be lighter to support the

confguration of the device. Some trending advanced research that are helping AI

models to be lighter are pruning, quantization, compression, knowledge transfer and

many more.

1.1 Deep Learning

Deep learning is the most advanced version of machine learning. It is considered

as a sub-feld of machine learning [9]. Now machine learning is the idea to automate

a system or predict the future. Machine learning is also a subsection of AI. AI is

the science which focuses on building machines or systems that do task that requires

human intelligence. In simple words AI is the study of building a machine that can

learn a task by itself. Then it can provide solution based on its learning. So, it

can learn better if the amount of data is huge. It also provides a complete solution

where the learning is not required to tuned manually. Fig. 1.1 shows the relationship

between felds. One main diference is that deep learning can perform better on large

datasets. Also, machine learning requires manual feature extraction whereas deep

learning does not. The aim is to achieve high level semantic information from huge

Artificial Intelligence

Machine Leaming

Deep Leaming

3

complex data. This method is very convenient as it is mostly automated. It makes

easier to extract information from huge dataset.

Fig. 1.1. Relationship between artifcial intelligence, machine learning and deep
learning. Machine learning is a subfeld of artifcial intelligence. Deep learning is
a subfeld of machine learning

1.1.1 Deep Learning Basics

Deep learning learns the pattern or function of a task with huge amounts of

data which comes in diferent forms such as images, videos and texts. It uses the

computational method to learn a function or model from the data. This method is

diferent from the traditional programming. Traditional programming requires data

and methods to get the desired output. Machine learning uses data and output to

create the method as shown in Fig. 1.2. Predictive analysis such as classifcation,

clustering and forecast are some of the popular models. Deep learning introduces

multi-layer concepts to learn from its data. These layers are the building blocks of a

neural network. The function of this layer is to take an input and then learn patterns

Input ~

Program~

Input ~

Output~

Traditional
Programming

Machine
Leaming

Output

Program

4

by using non-linear functions. Finally, it passes the output to the next layer. The

series of layers are constructed using this technique. Usually, regular models have two

to three layers but deep learning models can have as many as but not limited to 150

layers. These deep layers can solve very complex problem and require large data. It

is capable of directly extracting features without human interaction, making it more

efcient than machine learning. Moreover it requires a high graphics processing unit

(GPU) to train the model.

Fig. 1.2. Diference between traditional programming and machine learning. Ma-
chine learning uses data and output to create a model whereas traditional program-
ming uses data and model to create output.

1.1.2 Workfow

Deep learning follows a standard workfow. Consider a problem where the ob-

jective is to identify two objects such as cats and dogs, then data in the form of

images of the two classes is required. Even distribution of both classes ensures a

more stronger and accurate model. Data collection is an integral part and can be

obtained in many ways. The vast use of IoT devices has made it easier to produce

huge quantities of data. Data preprocessing is required for clean and enhanced data.

Cleaning or formatting is performed at this stage to eliminate noise. The size of

Problem Data Data
Defining

r

Collection
r

Preprocessing

J Model
Deployment --..... - -

Training

5

individual images needs to be same before feeding them into the model. Afterwards,

the model is trained and diferent hyperparameters are tuned to get the maximum

desired results. Backpropagation is used in a feed forward the network in order to

learn. After training, a separate test set which is not used during training is used to

examine the performance of the model. It is illustrated in Fig. 1.3.

Fig. 1.3. The fow of building machine learning models.The frst step is to fgure
out what sort of problem to solve. Then collecting data and preprocessing. The
next step is to train the model and fnally testing the model on a separate data.

1.2 Computer Vision

Computer vision is another subset of artifcial intelligence which is associated with

the study of high-level understanding of digital images or videos. Some of these appli-

cations are class recognition, object detection, autonomous driving, object tracking,

semantic representation and many more. It goes in the category of supervised learn-

ing. The model learns how to predict each class from its labeled dataset. It is mostly

used for predictive task. Another category is the unsupervised learning. It does not

require labeled dataset and is used to learn pattern or structure.

0 Cat
0
0
0 Dog
0

~
0

Lion 0
0

I
I

0 I
0

----►
0
0
0 Plane
0
0 Chair 0

Image Convolution Pooling FC Lay er Output

6

1.2.1 Convolutional Neural Network

In this work we focus on image classifcation task. It is the idea of extracting

high-level information about diferent classes from an image. Convolutional neural

network [10] is the most common approach for this sort of learning. The most com-

mon building blocks are: convolution layer, pooling layer and fully connected layer.

Feature maps are used in the convolution layer to extract relevant information of an

image. The convolution operation is mainly the matrix multiplication of the image

with the feature vector. Then pooling layer is used the reduce the size of the vector.

The fully connected layer makes the matrix fatten and prepare for the fnal predic-

tion. It is illustrated in Fig. 1.4. Moreover, if we consider X as data and K as the

flter and i,j are the dimensions, then convolution operation can be expressed by S as

shown in equation 1.1.

Fig. 1.4. The architecture of convolutional neural network. The main blocks are the
convolution layer and pooling layer. A series of this is followed by a fully connected
layer which makes the model ready for fnal prediction.

XX
S(i, j) = (K ∗ X)(i, j) = X(i − m, j − n)K(m, n) (1.1)

m n

7

1.2.2 Existing Model and Dataset

MNIST [11] is the frst dataset having hand-written grey color images for classif-

cation. It has a total of ten classes representing zero to nine numbers. Then Cifar10

is another popular image dataset having ten classes of color images containing 10

diferent objects. The most popular image dataset is ImageNet which consists of 1.2

million images and over 1000 classes. The most commonly used pre-trained mod-

els such as AlexNet, VGG-16, ResNet, Inception, MobileNet are all trained on this

dataset. Using a pre-trained model is a popular technique as this is working on top of

a popular trained model which can perform certain tasks. The idea is simple, it im-

plements the learning from one task into another. This is extremely useful in real life

problems as it requires very less data. Also, the time becomes very less. For example,

a pre-trained model that can classify between cats and dogs can be used to generalize

diferent breeds of cats and dogs. This saves time and makes the training process

much faster. All the pre-trained models have their own uniqueness. For example,

AlexNet and VGG-16 were created to see depthness efects the performance of a DL

model. The model architecture of MobileNet was created for a resource constraint

embedded device. ResNet introduced residual learning which addresses the vanishing

gradient problem by adding shortcuts to a model while adding more layers.

1.3 Machine Learning on Edge Devices

The main objective of machine learning on edge devices is to make smarter IoT

devices. In recent times we do not only want smart IoT to do its application, but also

to make smart decisions. For example, in most workplaces, CC tv cameras are used to

monitor the security. A smart IoT camera can actually detect an outsider or visitor.

Every company has an employee database. An object detection classifer trained on

employee databases can detect each employee entering the facility. Usually these

8

applications are run on a workstation. If this model can be executed on the smart

IoT device, then it works as a real time alarming system. It will notify the authorities

if someone from outside enters the facility. Moreover this research is associated with

both hardware and the model. The most common approach is making the model

lighter for edge devices.

1.3.1 Edge Devices

Machine learning on edge is becoming popular as more and more diferent types of

embedded devices are being developed. Some of these devices have small lightweight

GPU with the ability to process data at a higher speed. For example, NVIDIA has

four Jetson embedded devices:TX1, TX2, Nano and Xavier specially for AI comput-

ing. These are the most popular models used for edge deployment. NVIDIA Jetson

TX2 can be mounted on top of a drone which can track an object in real time. All

the Jetson models have their own specifc design and memory which can be used for

diferent case studies. Also, Google introduced Coral Edge TPU which has specialized

ASIC for AI purposes. Intel has introduced Field programmable Gate Array (FPGA)

which aims to replace GPUs for faster execution.

1.3.2 Existing Research

Traditional training of machine learning model is created using high computing

resources such as GPU. For example, an image classifer can classify two objects such

as cats and dogs. After training it can be used for deployment. A new image or a set

of images not used during training is passed through the classifer and the classifer

yields whether it is cat or dog. This part is called testing. Normally in most cases even

testing is not possible on edge devices or it can perform at a slow speed. In order to

execute these in real time, the model must be made lightweight. Diferent techniques

such as pruning, quantization, knowledge transfer, and knowledge distillation are

9

some of the popular methods. The common tradeof is between speed and accuracy.

If a model is made lighter, it losses its accuracy. Now the main focus of this is to

make the model lighter without losing much accuracy. Moreover, MobileNet models

from Google are designed to make it most suitable for embedded devices.

1.4 Problem Statement and Contribution

In recent time, the demand to execute deep learning (DL) models on edge devices

is booming as it preserves privacy and safety from any sort of adversarial attack

during data transmission. However, deep learning is not usually compatible with

resource-constrained devices. The requirement of high computation power makes it

difcult to execute them on edge devices. In addition, DL models are too complex to

be deployed on edge devices directly. Therefore, how to make the DL models faster

and lighter is the core problem to this application. For example, how to make the

model lighter while preserving most of its efectiveness is a key problem. Moreover,

how these lighter models perform on diferent edge devices is another key problem.

Finally, how to apply this technique to build real applications, such as face mask

detection in public using IoT and DL, is an interesting problem. Main contributions

are summarized below:

• Quantize three DL models to three diferent levels of compression and execute

those models in various edge devices.

• Compare their performance for all cases which can serve as a benchmark to

identify model, compression level and edge devices for diferent applications.

• Apply model compression techniques to build face mask detector on edge de-

vices.

• Investigate privacy preserving techniques for deep learning models on edge de-

vices.

10

1.5 Outline of the Dissertation

The rest of the study is outlines as follows. Chapter 2 presents a novel approach

on privacy preserving edge computing framework for image classifcation. Inference

performance of CNNs on various edge devices are compared in Chapter 3 and a bench-

mark to identify model, compression level and edge devices for diferent applications

is provided. Chapter 4 presents an important application of edge intelligent DL for

face mask detection on IoT. Chapter 5 concludes the study and presents future works.

11

CHAPTER 2

EFFICIENT PRIVACY PRESERVING EDGE

COMPUTING FRAMEWORK FOR IMAGE

CLASSIFICATION

2.1 Introduction

Emerging technologies such as the Internet of Things (IoT) and 5G networks will

add a huge number of devices and new services, and as a result, a huge amount of data

will be generated in real time. One of the important data types is image data, since

many applications involve images and videos such as in video surveillance. In order to

take advantage of the “big image data”, data analytics must be performed to extract

knowledge from the data. One way to handle the data would be uploading all data

from edge devices to the cloud or remote data centers for processing and knowledge

extraction [12]. However, as highlighted in Fig. 2.1, there are several factors that may

render this practice infeasible: 1) the sheer volume of the images may overwhelm the

uplink with limited bandwidth; 2) the uplink may not be always available especially

when wireless communications is used due to weather (for example., for mmWave),

distance, or jamming; 3) proprietary images may need encryption that introduce

additional delay and 4) the end users may have concerns about the security and

privacy of their images, thus they may not agree to upload raw images that may

contain private information. Furthermore, uploading is subject to eavesdropping,

interceptions, or other unauthorized access.

In order to address these challenges, a novel efcient privacy preserving frame-

work for image classifcation in edge computing systems is proposed in this study.

Cam_1

I
°"' ""'"

Cam_2

I
•• ♦♦· •M •· ·•·•

.. ·,

f~• \
...................

Cam_4 Cam_n

I I I

12

Fig. 2.1. Challenges incurred when uploading all data from edge devices to the
cloud.

Specifcally, the large raw data was processed locally at the edge by a pre-trained au-

toencoder. Then, instead of uploading the raw image, only compressed latent vector

that contained critical features learned from the raw image were uploaded through

the access point or hub to the cloud for further processing. The framework is high-

lighted in Fig. 2.2. It demonstrated that the learning performance of extracting

knowledge at the cloud had very little degradation when the compression ratio was

not large (for example, below 16 in the test cases). Furthermore, the raw images could

be reconstructed with very small error at the cloud using the pre-trained decoder if

needed.

Compared to traditional source coding like zip, using autoencoder has the follow-

ing advantages: 1) instead of only reducing the redundancy in the raw data as in

source coding or traditional data compression, autoencoder will extract critical fea-

tures in the raw data and encode the features in a compact form, the latent vector. In

...
A A · •.

X1 • • • • • • Xm ~

Data

!Reconstruction •
_ 21 • • • • • • Zm ,.: ..

edge server

latent vectors

edge devices

prediction

.·- ·· ···· · t

FC

Conv

Conv

CNN

Classifier

. I 1.;onv ,.' •............ ···························•·'

..
.-··· Jetson Nano Zm

14t o •
: Camera ~ :
\ Xm ,:

13

Fig. 2.2. The proposed efcient privacy preserving framework for image classifca-
tion in edge computing systems. Here xi is the raw image, zi is the compressed la-
tent vector, and xi is the reconstructed image.

14

other words, the encoderperforms initial learning at the edge devices; 2) in addition to

compressing the data, autoencoder also “encrypts” the data by transforming the raw

data into latent vectors, which enhance the security of data. For example, a zipped

fle can easily be unzipped by an adversary if not encrypted. On the contrary, an

adversary could not reconstruct the raw data from the latent vector without knowing

the structure (that is, number of layers, number of nodes in each layer) and all the

weights of the pre-trained autoencoder (the decoder part to be exact). It is shown

in [13] that autoencoder provides a similar level of security to normal encryption -

assuming that the decoder is not shared; (3) even if the edge device is captured by an

adversary, it is very difcult for the adversary to deduce the decoder part from the

encoder part on the edge device. The proposed framework has some similar charac-

teristics such as taking advantage of large diverse data from many edge devices and

data locality at each device as in federated learning [14]-[15]. However, compared to

federated learning, the proposed framework had the following advantages: 1) in fed-

erated learning, the server and the end users (edge devices) train the same model. As

a result, the complexity of the model is constrained by the computing capability and

storage of the edge device. On the contrary, in the proposed framework, the training

of the classifer was done at the cloud server only, thus it could be very deep and

complex if needed, and it was not subject to the constraints of the edge devices. 2)

in federated learning, the edge device must rely on the server to update the gradients

and train the model. In the proposed framework, the training of the autoencoder

can be done independently at each edge device without any server involvement, 3)

in federated learning, the privacy of the end users’ data is protected by applying

diferential privacy schemes [16] or through secure aggregation [17], thus introduce

additional cost due to encryption or secret sharing. In the proposed framework, the

privacy of the end users’ data is protected by transmitting latent vectors without

15

additional cost of encryption.

2.2 Proposed Framework

The proposed efcient privacy preserving framework for image classifcation in

edge computing systems is shown in Fig. 2.2. It has two levels: the edge devices

and the edge server. It is assumed that the nodes of the edge devices contain sen-

sors such as cameras and embedded computing devices such as Google edge TPU

[18] or NVIDIA Jetson Nano [19]. The edge server is assumed to have strong com-

putational capacity and large storage. The edge segment of the framework mainly

contains the various edge devices of interest and the pre-trained encoder. The server

mainly contains the hub, the pre-trained classifer and the pre-trained decoder. We

only considered supervised learning in this study and it was assumed that the train-

ing dataset was labeled. The data from each of the edge devices were passed to the

corresponding encoder attached to it. Unique pre-trained encoder is used for each of

the edge devices in order to take advantage of the data locality at each device. The

function of the pre-trained encoder, which is in the inference mode, is to extract the

most important and critical features in the data. The encoder also ensures dimension

reduction of the input data by a pre-determined amount. The extracted critical fea-

tures (latent vectors, or feature maps when the data are images) are then transmitted

to the hub at the server. The two major functions at the server are the classifcation

task and the data reconstruction task (recover a copy the original image from the la-

tent vectors). In other words, the latent vectors are input to the pre-trained classifer

for prediction and they are also input to the corresponding decoder at the server for

the reconstruction of the images.

16

Table 2.1. Information on the CIFAR10 and ImageNet (IMGNETA and
IMGNETB) Datasets.

Training
Dataset Image size # of images # of classes Comments

Testing Ration
Cifar10 32 ∗ 32 ∗ 3 60,000 5:1 10
ImageNet-A 256 ∗ 256 ∗ 3 13,000 7:3 10 similar images
ImageNet-B 256 ∗ 256 ∗ 3 13,000 7:3 10 similar images

2.2.1 Training Stage

The dataset collected at each edge device is used to train an autoencoder for the

corresponding device. This is done to take advantage of the data locality at each

devices. Autoencoders are generative models where an artifcial neural network is

trained to reconstruct its own input in an unsupervised way. Fig. 2.3 illustrates

all the components of an autoencoder and the training process. It is made up by

two main blocks which are the encoder and the decoder [20], [21]. The encoder

compresses the input X into a low dimensional representation of pre-determined size,

called the latent vector denoted by Z that contains the most important features in

the data. When the input data are images, Z will be the corresponding feature maps.

The decoder then tries to reconstruct the original data from the latent vector Z.

The reconstructed data obtained at the decoder output is denoted by Xˆ. It should

be noted that an autoencoder is a lossy network as the original image will not be

fully recovered. However, it is expected that the critical features will remain in the

recovered image.

The autoencoder achieves the proper training of the encoder and decoder by min-

imizing the diferences between original input and the reconstructed input. This is

achieved by the use of the mean square error loss function or any other loss func-

tion. After the training of the autoencoder, the encoder part of the autoencoder is

then extracted, deployed in the inference mode on the edge device, and then used

I\ I\
X1 ■ ■ ■ ■ ■ ■ Xm

Decoder

21 • • • • • • Zm

(latent vectors)

X1 • • • • ■ ■ Xm

I\

y

/~ ·------ ------- ---- ----·· ····
' ' ' '

Conv
■

■

' '

Loss

I\
Loss (Y, Y)

:~-~--..../ ■

conv
' . . . Conv

.

Z 1 • • • ■ ■ ■ ZmlY
(latent vectors I labels)

Optimizer

Optimizer

17

Fig. 2.3. The training for the proposed autoencoder at edge device.

Fig. 2.4. The training for the proposed CNN classifer at the server.

18

to generate the latent vector Z. Hence, the dataset is transformed from [X, Y] to

[Z, Y] where Y are the labels. The latent vectors and the corresponding labels are

then aggregated at the hub and they are used for training a classifer on the cloud

in a supervised manner as shown in Fig. 2.4. The type of classifer on the cloud is

determined by the nature or type of supervised task to be done. The most common

type of classifer used for image dataset is the convolutional neural network (CNN)

and it uses the cross entropy loss function.

2.2.2 Inference Stage

In this stage,the pre-trained encoder, decoder and classifer are deployed in the

inference mode. The data X from the edge device is fed to the corresponding pre-

trained encoder attached to it. The encoder then transforms the data X to a latent

vector Z which represents the most critical feature in X. The latent vector Z, which

is smaller than X by a pre-determined ratio, is then transmitted to the cloud. At the

cloud server, the latent vector Z is then fed into the pre-trained classifer and predict

a label Yˆ . In situations where the original data is needed on the cloud, say I want

to see a copy of the original image, the latent vector Z is also fed into the input of

the corresponding decoder and the estimated data is obtained.

2.3 Experiments

2.3.1 Dataset Description

The result in this work was generated using three diferent datasets summarized in

Table 2.1. These datasets were from the Canadian Institute For Advanced Research

dataset (CIFAR10) [22] and the ILSVRC (ImageNet) 2012 datasets [23]. 1) Canadian

Institute For Advanced Research (CIFAR10)is a dataset contains 60,000 color images,

and is a subset of about 80 million labeled but tiny images. The dataset is further

divided into 50,000 training samples and 10,000 testing samples. It has about 10

19

classes which are mutually exclusive and there is no semantic overlaps between images

from diferent classes. 2) ILSVRC (ImageNet) 2012: The original ILSVRC 2012

dataset contain about 1.2 million color images of diferent sizes across about 1,000

classes. The 1,000 classes are either internal or leaf nodes but do not overlap. Two

subsets of the ILSVRC 2012 dataset termed IMGNET-A and IMGNET-B were used

in this work. Each subset contained about 13,000 images each resized to a dimension

256 × 256, spanning 10 classes. The images in each subset was further divided into

training samples and testing samples with ratio 7:3. The diference between the two

subsets lay in the type of nodes they contained. The IMGNET-A subset contains

images from 10 diferent leaf nodes (diverse images) while IMGNET-B contained 10

child nodes from a single leaf node (similar images).

2.3.2 Deep Learning Model Design and Training Strategy

The autoencoder for the edge devices and the classifer at the edge server were

chosen such that the autoencoder was optimized for feature extraction and the clas-

sifer was optimized for image classifcation. The autoencoder design and training

strategywas afected by the type of images and the compression ratio. For instance,

the model architecture for CIFAR10 dataset for compression ratios four and eight

were diferent. This also applied for compression ratio four for the IMGNET-A and

CIFAR10 datasets. Hence, diferent models were developed across several edge de-

vices, compression ratios and datasets. Fig. 2.5 shows the model architecture for an

autoencoder designed for CIFAR10 dataset for compression ratio of four. The model

contained a mix of convolutional (same padding), max pooling, and upsampling lay-

ers. The relu function was used as the activation function for all layers except the last

layer where the sigmoid function was used. The models were trained from scratch

using glorot-uniform method as initializer, mean square error as the cost function

and rmsprop optimization algorithm as the optimizer. After the convergence of the

1CIFAR10, 32 32*3

+
Co1nv·: 16 , 3•3, (filters) + RELU j

+
Conv: a m 3*,3 (filters) + RELU 7

+
C1onv: 4 , 3*3 (f1lt.ers) + RELU

+
Max Pooling 1(2,2),

20

Fig. 2.5. Details of an encoder model for compression size of 4 using CIFAR10
dataset.

21

autoencoder model during training process, the encoder part of the autoencoder was

then used in the inference mode to compress all the images.

2.3.3 Training Stage

1. Classifer Design: the convolutional neural network (CNN) models were used

in this work. CNNs are well suited for image processing applications and other

grid-like data [21]. They are more computationally efcient than the dense deep

neural network thus reducing the memory usage. Using the flters, CNNs fnd

and extract meaningful features from the images and preserve spatial relations.

Three diferent CNN classifers, denoted Model-A, Model-B and Model-C as

listed in Table 2.2, were used in this work.

• Model-A and Model-B: Model-A and Model-B are considered to be vanilla

models because they were trained from scratch. Model-A and Model-B

were specifcally designed for the original input image and feature maps

of CIFAR10 dataset and ImageNet dataset, respectively. The detailed

CNN architecture of Model-A and Model-B are shown in Tables 2.3 and

2.4, respectively. The models contained a mix of convolutional, max pool-

ing, and fully connected layers and relu and softmax activation functions.

Furthermore, the models also contained some dropout layer in order to

prevent over-ftting. The diferences between Model-A and Model-B lay

in the number of the diferent layers used and the use of padding in the

convolutional layer of Model-A.

The models were trained from scratch with the aim of minimizing the

diference between the labels (ground truth) and the predicted labels. This

was achieved by the use of glorot-uniform method as initializer, categorical

cross entropy as the loss function and adams optimization algorithm as the

+§op-
Layer

'-------'

Base-Layer

Model-C

Base-Layer Top­
Layer

22

Fig. 2.6. The Transfer Learning Model Block (Model-C)

Table 2.2. The Deep Learning Models and the Dataset used in Training the Models

Cifar10 ImageNet-A ImageNet-B
Vanilla Model-A x - -
Model Model-B - x x
Transfer
Model

Model-C - x x

optimizer. Data augmentation was also used during the training process to

mitigate overftting due to the small quantity of the datasets. It should be

stated that each classifer was trained with their respective original image

and the feature maps (compressed images).

• Model-C: Model-C is a transfer learning based model designed specifcally

for the ImageNet dataset in this work. The CIFAR10 version was not

presented in this work because of poor performance when used with the

feature maps (compressed image) of CIFAR10 which can be attributed to

its small dimension.

The block diagram of the model is shown in Fig 2.6. Model-C is divided

into two parts: the base layer and the top layer. The base layer is a

pre-trained layer of other standard deep learning models without the fully

connected layer that has been trained with data similar to the Imagenet

23

Table 2.3. The architecture of the vanilla model for CIFAR10 dataset (Model-A)

Vanilla Model For CIFAR10 Dataset
Conv2D, Filter Size=3*3, No of Filters=32, Stride=1*1,Padding

Activation Layer (Relu)
Conv2D, Filter Size=3*3, No of Filters=32, Stride=1*1, Padding

Activation Layer (Relu)
Max Pooling, Pool Size = 2*2,Stride = 1*1, Padding

Dropout(0.25)
Conv2D, Filter Size = 3*3, No of Filters = 64,Stride = 1*1, Padding

Activation Layer (Relu)
Conv2D, Filter Size = 3*3, No of Filters = 64,Stride = 1*1, Padding

Activation Layer (Relu)
Max Pooling,Pool Size = 2*2,Stride = 1*1, Padding

Dropout(0.25)
Flatten

Dense(512)
Activation(Relu)
Dropout(0.5)
Dense(10)

Activation(Softmax)

https://Dropout(0.25
https://Dropout(0.25

24

data and achieved better performance. By using this pre-trained models,

the excellent feature extracting property of the standard model was being

leveraged to achieve better performance. Furthermore, it also comple-

mented data augmentation in training decent model in situations where

datasets are limited. VGG16, VGG19, InceptionV3, InceptionResnetV2

and Resnet50 pretrained models [24] were used as base models for Model-

C. The details of the top layer used for this work is shown in Table 2.5.

It should be noted that the frst dense layer of the top layer in Model 5

is smaller than that of the other models. This is because Model 5 was

overftting if the number of neurons in the frst layer was 256, the same

number used in the other models. Hence, the size of the dense layer was

reduced to reduce overftting and achieve good performance. A two-stage

training method was used for the transfer learning model to minimize the

error between the ground truth labels and the predicted labels. This ap-

proach was diferent from the training approach used for Model-A and

Model-B which were trained from scratch. In the frst stage, the base layer

was fxed while the fully connected top layer was trained using the Adam

optimizer after being initialized using the glorotuniform method. This was

done in order to initialize the weight of the top layer close to the weight

of the base layer. Thereafter, the whole model was retrained using the

stochastic gradient descent (SGD) with momentum optimizer in order to

tune the whole weight of the model appropriately. SGD with momentum

was used because it is less aggressive than the adam optimizer as the use

of an aggressive optimizer in the second step might cause the information

in the base layer to be signifcantly eroded or lost. The binary categorical

entropy was used as the cost function in the entire training process.

25

Table 2.4. The architecture of the vanilla model for Imagenet dataset (Model-B)

Vanilla Model For ImageNet Dataset
Conv2D, Filter Size=3*3, No of Filters=32, Stride=1*1,Padding

Activation Layer (Relu)
Conv2D, Filter Size=3*3, No of Filters=32, Stride=1*1, Padding

Activation Layer (Relu)
Max Pooling, Pool Size = 2*2,Stride = 1*1, Padding

Dropout(0.25)
Conv2D, Filter Size = 3*3, No of Filters = 64,Stride = 1*1, Padding

Activation Layer (Relu)
Conv2D, Filter Size = 3*3, No of Filters = 64,Stride = 1*1, Padding

Activation Layer (Relu)
Max Pooling,Pool Size = 2*2,Stride = 1*1, Padding

Dropout(0.25)
Flatten

Dense(512)
Activation(Relu)
Dropout(0.5)
Dense(10)

Activation(Softmax)

2.3.4 Experimental setup

This work sought to propose a new approach to design and implement deep learn-

ing models for distributed systems without compromising on data privacy and se-

curity. It achieved this by extracting the most important/critical machine features

intelligible yet human unintelligible features from the dataset. These features were

then transmitted across the communication network from the edge devices to the

edge server where they are aggregated and used to train a classifer. The experimen-

tal methods, performance metrics and tools used in validating the proposed frame-

https://Dropout(0.25
https://Dropout(0.25

26

work is explained in this section. The experimental method: involved a two-stage

methodology was used to validate the proposed framework and this method was the

same irrespective of the type of dataset or model used. In the frst stage, the original

training set of the original input dataset (uncompressed images) was used to train the

classifer. Thereafter, the test set was then used to obtain the needed performance

metric in order to set the baseline. In second the stage, the training set of the feature

maps (compressed images of the dataset used in the frst stage), is used to train the

same classifer model. The feature map, which is smaller than the original image by a

pre-determined factor, is obtained by passing the original dataset through the encoder

of the autoencoder. Thereafter, the performance metric of the classifer is obtained

using the test set of the feature maps and the performance compared to the baseline.

For the performance metric, the efectiveness of the framework was assessed using a

simple classifcation task. The test accuracy of the model obtained after the training

process was used as the primary performance metric. Furthermore, the efect of the

proposed method on the training and testing time, and the number of model param-

eters were also investigated. Regarding software and hardware, The design, training

and testing of the deep learning models (autoencoders and cnn classifers) were im-

plemented using Keras deep learning framework on TensorFlow backend, running on

a NVIDIA Tesla P100-PCIE-16GB GPU.

2.4 Results and analysis

The results of the experimental work are presented in this section. The perfor-

mance of the proposed framework was compared with the baseline using the perfor-

mance metrics stated in Section III-D2 above. The baseline performance was rep-

resented by compression ratio 1 and was synonymous with using the uncompressed

image to test our various models. Furthermore, it should be noted that the vanilla

model for the CIFAR10 and ImageNet datasets were diferent as stated in Section

27

Table 2.5. The Architecture of the Transfer Learning Model for Imagenet datasets
(Model-C))

Model 1 Model 2 Model 3 Model 4 Model 5
Base

VGG16 VGG19 InceptionV3 InceptionResNetV4 ResNet50
Layer

Dense(256) Dense(256) Dense(256) Dense(256) Dense(50)
Top Activation(Relu) Activation(Relu) Activation(Relu) Activation(Relu) Activation(Relu)
Layer Dense(10) Dense(10) Dense(10) Dense(10) Dense(10)

Activation(Softmax) Activation(Softmax) Activation(Softmax) Activation(Softmax) Activation(Softmax)

III-D.

2.4.1 Efect on Test Accuracy

Fig. 2.7 shows the testing accuracy of vanilla CNN Classifers (Model-A and

Model-B) when trained and tested with compressed and uncompressed CIFAR10 and

Imagenet datasets. The testing accuracy for the compression ratio 1 (uncompressed

images), representing the baseline, was highest across all the cases, as expected.

This was because all features in the raw images could be used for classifcation.

Furthermore, the testing accuracy for IMGNET-A is higher than that of IMGNET-

B. The diferences in performance can be attributed to the very close similarity in the

images in IMGNET-B, as classifying such images is a much more difcult classifcation

task as compared to classifying images in IMGNET-A.

A general degradation in the testing accuracy is observed in Fig. 2.7 as the

compression ratio was increased, although the rate of reduction varied across the

models used for the three datasets. The rate of degradation of the testing accuracy

of the model tested for CIFAR10 dataset is the highest for all the compression ratios.

This was because of the small dimension of the CIFAR10 images (32*32), implyinh

that the amount of features needed to perform a classifcation task was even smaller

when compressed. Furthermore, the rate of degradation of the testing accuracy for

IMGNET-A dataset was very modest across all the compression ratios. However,

similar performance was not observed in IMGNET-B, particularly for compression

80

70 - CIFARlO
- IMGNET-A

I 60 - IMGNET-8

>
u
:: 50 ,
u
u
< 40
" C ·a 30 • ..

20

10

0
1 4 8 16

COllll)fE!SSiOn Ratio

100 - - - --
I• -,. .. . MG'IET-&_l

80

l
- ~IT~i
- ""-" " .a - •
- IM{i'4[f..._,.

> u • - 60 ,
u
u
<
"' !
~

~

~o

20

0,. ... ' ..,.
"

..,.
vc:;ca• vGGl-' --• 11t-v l tnu,pt,11,.a,.,;.,,..Vl'

oa-.se Laver

28

Fig. 2.7. Comparison of the testing accuracy of the vanilla models for the original
dataset (compression ratio =1) and compressed dataset (latent variables) with com-
pression ratio = 4, 8, 16.

Fig. 2.8. Testing accuracy of the transfer learning based model (Model-C) using
diferent base models for the ImageNet dataset with compression ratio = 4.

29

ratios 8 and 16 despite having the same image dimension (256*256). The bigger

degree of degradation observed in the case of IMGNET-B for compression ratios eight

and sixteen was due to the complexity of the classifcation task. This was because of

the similarities in the images that made up the various classes in IMGNET-B, unlike

IMGNET-A where the the images that made up the classes were very diferent.Hence,

the complexity of its classifcation task means it requires a lot more features than that

of IMGNET-A. Furthermore, bigger compression ratio also means the model has less

amount of features to make a classifcation decision. The testing accuracy of transfer

learning based model (Model-C) for the ImageNet dataset compressed by a factor of

four, using diferent base models, is shown in Fig. 2.8. The transfer learning model

was not designed and trained (see Fig. 2.8) Testing accuracy of the transfer learning

based model (Model-C) using diferent base models for the ImageNet dataset with

compression ratio = 4. using the CIFAR10 datasets as its performance was poor with

the compressed images. The poor performance can be attributed to the very deep

nature of the transfer learning based model leaving inadequate number of features

available at the beginning of the fully connected layer (top layer) where classifcation

took place. The same reason also explains why the transfer learning model was only

designed and tested with ImageNet dataset with compression ratio one and four only.

The testing accuracy of the transfer learning model across diferent base models for

IMGNET-A and IMGNET-B datasets at compression ratio one (baseline) and four is

higher than the corresponding performance of the vanilla model (Model-A and Model-

B). This performance can be attributed to the powerful feature extraction property of

the diferent base layer used. However, the rate of degradation in the testing accuracy

for compression ratio four was higher than what was observed for the vanilla models.

This can also be attributed to the very deep nature of the transfer learning models as

a small amount of information/features left was not distinct enough to make accurate

- CIFARl O

- IMGNET

1 4 8 16

30

Fig. 2.9. Comparison of the normalized number of vanilla model parameters vs.
data compression ratio

classifcation.

2.4.2 Efect on Number of Parameters

The number of parameters in a convolutional neural network is determined by

many factors such as the flter size, the number of flters, the size of the input data,

and the number and type of hidden layers, etc. Hence, reduction in the number of

parameters can be achieved by reducing the size of the input data. The relationship

between the normalized number of parameters in the vanilla model for the CIFAR10

and ImageNet datasets versus the compression ratio is shown in Fig. 2.9. It can be

observed that for the same compression ratio, the rate of reduction in the normalized

number of parameters of the vanilla model for the ImageNet dataset was bigger than

that for the CIFAR10 dataset.

The bigger rate of reduction can be attributed to the size of the image, and in

31

turn, the number of features, which impacted the number of parameters in the fully

connected layers of the model. It was also observed that the rate of reduction in the

normalized number of parameters for each model appeared to be fat after a certain

compression ratio which varied from model to model. The fatness was due to the

reduction in the signifcance of the fully connected layer to impact on the number of

parameters, as the number of features reduces below a certain point.

2.4.3 Efect on Testing and Training Time

Fig. 2.10 shows the comparison of the normalized testing time and training time of

the vanilla models for various compression ratios for CIFAR10 and ImageNet datasets.

Fig. 2.10 show the normalized amount of time required for testing and training,

respectively, of the vanilla models for various compression ratios for CIFAR10 and Im-

ageNet datasets. A reduction in the amount of training and testing time was observed

across the compression ratios and the models. The reduction can be attributed to

the decreasing size of the input data and the smaller number of parameters to learn,

when compression ratio increased.

2.5 Discussion and Related Works

There are several methods proposed in the literature to address the privacy and

security concerns associated with data used for training deep learning models. Exam-

ples of popular approaches include homomorphic encryption [25], diferential privacy

[12], [26] and secure multiparty computation [27]. Despite the successes of these

methods, some issues remain such as performance degradation, non-trivial overhead

or limited application [28]–[29]. The use of collaborative deep learning method, such

as federated learning, has been introduced in recent years to solve the problem of

data privacy. Federated learning is a type of machine learning where the goal is

to train a high quality centralized model while the data remains distributed over a

- CIFARl O
- IMGNET

1 4 8 16

(a) Comparison of the normalized testing time

1.0

41 0.8
E

- CIFARl O
- IMGNET

;=

"' i 0.6
• ~
~ • N

~ 0.4
E
0
z

0 .2

0.0
1 4 8 16

Com 1>1·ession Ratio

(b) Comparison of the normalized training time

32

Fig. 2.10. Comparison of the normalized testing time and training time of the
vanilla models for various compression ratios for CIFAR10 and ImageNet datasets.

33

large number of clients [14]. It involves the sharing of model parameters and model

gradients through a parameter server without sharing their local data. Federated

learning is based on an iterative model averaging and it is robust to unbalanced data

and non-i.i.d. data distribution. Federated learning has been applied to mobile key-

board prediction, vocabulary word learning and google keyboard query suggestions

improvement [30]– [31]. Federated learning may be viewed as an extension of the idea

discussed in [32] that stochastic gradient descent can be implemented in parallel and

asynchronously. Federated learning may sufer from non-trivial communication cost.

To deal with the high communications cost, an efcient multi-objective evolutionary

algorithm, based on a scalable network connectivity encoding method, was proposed

in [33]. To help reduce the uplink communication bottleneck, the use of structured

and sketched updates was introduced in [34]. Federated learning may also sufer from

security/privacy issues due to the need to communicate the model parameters to the

central server. One recent study showed potential security/privacy issues due to the

possibility of reconstructing original data from the shared gradient [35]. Secure ag-

gregation, a type of secure multi-party computation algorithm for federated learning

was introduced in [36]. This helps guarantee the privacy of data used in generating

gradients shared by each model and improve communication efciency. Furthermore,

it was observed that federated learning performs poorly when the data distributed

across the training center is strictly noni.i.d. of a single class. This statistical chal-

lenge was resolved by creating and using a small subset of data which is globally

shared between all the edge devices [30] or adopting a multitask learning approach

[37]. Autoencoder has been applied to address data privacy concerns in several recent

works [13], [38], [39]. In [38], a convolutional autoencoder that perturbs an input face

image to impart privacy to a subject is proposed. It is shown the method can protect

gender privacy of face images. A proof-of concept study was performed in [13] to use

34

an autoencoder for preserving video privacy, especially when non-healthcare profes-

sionals were involved. A modifed sparse denoising autoencoder has been applied in

[39] to reduce the sparsity and denoise the data. Then a three-class classifcation is

performed on the reconstructed data from the autoencoder and it is shown that the

classifer can classify the original black class data as the transformed gray class data.

Although autoencoder has been used to address data privacy concerns, this work is

the frst in the use of autoencoder for addressing privacy concerns, communication

cost, and deep learning efciency associated with mobile edge computing systems

with large number of edge devices. This was achieved by using the autoencoder to

extract human unintelligible but machine intelligible features from the data. The

features or latent vectors were then used to train the classifer. Furthermore, the

proposed approach comes with the added advantage of reducing the dimensionality

of data needed to be transmitted, thus reducing the communication cost and the

number of model parameters, as well as training and inference time. This approach

did not sufer from leaking gradient problem associated with federated learning [35].

2.6 Conclusions

A novel edge computing framework for designing and implementation of privacy

preserving image classifcation models was proposed in this work. The proposed

framework provides 1) fexibility of training autoencoder at each edge device individ-

ually, thus protecting data privacy of end users because raw data is not transmitted

at any time; 2) after the training of autoencoder was complete, raw data was “com-

pressed” and “encrypted” by the encoder before transmitting to the edge server, and

this will reduce the communications cost and further protect the data privacy and

security; 3) the autoencoder provided features to the classifer at the server, thus

allowing the classifer to be trained on the features with less and controlled dimen-

sions; 4) the decoupling of the training of the autoencoder at the edge devices and the

35

training of the classifer at the edge server relaxed the frequent communications re-

quirement between edge devices and edge server. Experiments have been carried out

using CIFAR10 and ImageNet datasets, and detailed analysis of the tradeof between

classifer accuracy, dimensionality of data, compression ratio and diferent choice of

classifers have been given to provide benchmark and insights on the proposed scheme.

For future work, comparison with federated learning in terms of classifer performance

versus the communications cost and model complexity will be carried out for image

classifcation tasks. This helped quantify the pros and cons of the proposed approach.

Furthermore, the use of other types of autoencoder to extract latent variables and use

of knowledge distillation to help mitigate the reduction in the model accuracy were

explored.

36

CHAPTER 3

INFERENCE PERFORMANCE COMPARISON OF

CONVOLUTIONAL NEURAL NETWORKS ON EDGE

DEVICES

3.1 Introduction

The Internet of Things (IoT) is responsible for generating a large amount of data

using diferent devices with an unprecedented speed. Any artifcial intelligent appli-

cation can be created to make it more user friendly and fast. This dataset was used to

train an algorithm for predictive analysis. Usually this is computationally expensive

and data center/cloud is used to perform this computation. Now it is necessary to

process the data on local device as it protects user privacy and makes it more secure.

It also reduces communication cost by saving bandwidth by not sending the data into

the cloud. This section will cover how diferent popular and widely used pre-trained

convolutional neural networks performs on three popular IoT devices. These IoT

devices are specially designed for machine learning purposes. The experiment had a

common test dataset which was used for each case. Three pre-trained models such

as MobileNetV1 & V2 and Inception V3 were used for image classifcation task on

NVIDIA Jetson TX2, Jetson Nano, and Google Coral Edge TPU USB Accelerator.

Moreover, the model complexity has been reduced using quantization. This made

the model more lighter and faster and to some extent, more suitable for low com-

putational edge devices. The results will serve as a benchmark for practitioners of

real-time and local learning for this type of task.

Pervasive interconnected smart devices interacting with one another have become

User Interface Cloud Processing ~ Edge Side

• • I • II • loT
Sensor

Storage User Edge Model

a Privacy

ii (·~ End user

Gateway
~ • loT Hub App Services

Sensor
Device

V 9 End User

ML Model Sensor
Container Training

Instances

37

very popular as the development of low-cost sensor, wireless communication tech-

nologies and new internet techniques [40] have become rapid. It is formally known as

Internet of Things and these devices are booming for their functionality and low-cost.

There are already a huge number of IoT devices producing a huge amount of data

which needs to be processed. In this circumstances, deep learning methods can be

used to create models which can process data and a commonly followed method of

this is shown in Fig. 3.1. IoT sensors and devices are responsible for creating a huge

number of data and machine learning algorithms can be used to process to make fu-

ture predictions. Typically, these sorts of method requires high computational power

to train and evaluate the model.

Fig. 3.1. Processing IoT data in cloud

Recently, the proliferation of IoT and the advancement of artifcial intelligence

increased the incentive for an intelligent edge device that can operate on real-time

and locally. Although centralized procurement of big data is a formal method, it is

sometimes not feasible to transmit the data due to privacy, bandwidth or adversarial

38

attack. Sometimes the delay in the transmission may break the tolerance level of

the time-sensitive applications [41]. One reason can be limited wireless bandwidth

availability due to exceedingly amount of edge devices. Moreover. transmitting pri-

vate and confdential data is a big concern when the transmission method is not

secure [42]. This triggers mobile edge computing where the aim is to perform the

computation closer to the data [41]. Highly sophisticated network and client nodes

is provided by the present wireless edge networks. It is also equipped with powerful

sensors, larger computation and a good amount of storage resources. Considering

these aspects, there is a huge opportunity to deploy mobile edge devices as learning

engines. These devices can use on-device collected data or local data from the edge

nodes in forms if audio, video or text and procure local learning models (edge model,

see Fig. 3.1) without sending the original data through the cloud to the central pro-

cessing zone. This approach signifcantly reduces the bandwidth cost, reduces latency

and protects data privacy more so than the conventional learning solutions.

There are several examples where it is essential to process the data locally. A

surveillance camera of an ofce can be an example. These cameras are the main

equipment to monitor the security of a certain area. Normally these cameras are

deployed at high number and requires a good amount of human resource to monitor

all of them. Machine learning models can leverage the human resource required for

this job. These models can be trained to detect any adversarial attack or an unfamiliar

personal. Usually the data needs to be transferred to a high computational station

where it can be procured. For this real-time application, any latency or bandwidth

unavailability may be impractical. Running the model locally is a solution for this

situation. The camera connects to an IoT device capable of locally running deep

learning models without the need to transfer the data to a central station. The

model will raise alarm or alert the authority for any unfamiliar personal. This saves

39

a lot of time, bandwidth, human resource and computational cost.

However, limited computational power and energy resources on edge devices are

the biggest challenge for practical accomplishment. The enhancement of complexity

of the DNNs is also another concern. The model is becoming more complex as the

DNN models are providing solution to more complex problems. Some recent studies

can also be found covering inference performance of popular machine learning models

on IoT devices. It has been realized that Jetson Nano can run MobileNet V1 model at

64 FPS for images with resolution 300 × 300 on TensorFlow framework, and also can

process larger image size of (960 × 544) at 5 FPS on a ResNet-18 SSD backbone [43].

This section covers a comprehensive comparison of inference performance of three

convolutional neural networks (CNN) models, namely, MobileNet V1 [1], MobileNet

V2 [44], and Inception V3 [45] by running image classifcation tasks on the same

dataset. It used three edge devices specially designed for machine learning appli-

cations, NVIDIA Jetson TX2, NVIDIA Jetson Nano, and Google Edge TPU based

on quantization. These machines did not have high computational power and the

models needed to be lighter or compressed before execution. Extensive research was

conducted on these techniques such as pruning [46], quantization [47, 48], binarized

neural network [49, 50], and tensor decomposition [51] to reduce the model complexity

and faster execution. The aim was to benchmark the advantages and disadvantages of

deep learning models when running those models considering their performance and

speed. This provides a guidance of practical choices of compressed DNNs over edge

devices to achieve certain specifcations of applications specially for delay-sensitive

applications.

40

3.2 Deep Learning Models and Tools

3.2.1 Convolutional neural network models

Convolutional neural network (CNN) [10] is a category of multilayer neural net-

work that was been chosen for the image classifcation task for this section. It was

formed with three main components: convolution layer, pooling layer as well as non-

linear activation layer and fnally the fully connected layer. In general the convolu-

tional layer extract features by parsing diferent size flters across the image. Pooling

layer is for making the computation faster by decreasing the size of the input. It also

lowers the risk of overftting by selecting certain features. The fully connected layer

was the fnal layer where the main prediction was made by getting the probability of

the image belonging to a certain class by sending it through an softmax activation

function. In image classifcation top-1 and top-5 accuracy is defned in many cases

where top-1 refers to the highest probability score of the class which is same as the

output class. On the other hand top-5 accuracy means that the actual output be-

longs to the either of the top 5 classes with the highest probability. CNN is not only

limited to image classifcation task [52], but can be used for object detection [53],

object tracking [54] and other applications also.

This section utilized three pre-trained models: MobileNet V1 [1], MobileNet V2

[44] and Inception V3 [45] for performance comparison. These models are popular

for image classifcation task. Moreover, quantization method was used to tune these

models into more lighter versions. It made the models compatible for edge devices

without losing too much performance. MobileNet [1] is a popular model which is

suitable for mobile and embedded devices for its state-of-the art architecture. The

architecture ensures a faster execution of the model and also can be executed with

very limited computational power. It breaks down the standard convolution into

41

into parts knows as depthwise convolution and pointwise convolution. Also width

and resolution multipliers are used to tune the width of the image for version 1.

This signifcantly reduces the computation and makes it faster. Equation (3.1) shows

regular convolution operation (RCO) and Equation 3.2 shows depthwise followed by

pointwise convolution operation (PCO) [1].

CostRCO = DK ∗ DF ∗ M ∗ N ∗ DK ∗ DF (3.1)

CostPCO = DK ∗ DF ∗ M ∗ DK ∗ DF + M ∗ N ∗ DF ∗ DF (3.2)

where DK and DK are the height and width of flter while DF and DF are the height

and width of input feature map size. Moreover, M is the number of input channel and

N is the number of output channel. The comparison between these two convolution

operations results in 1/N + 1/DK
2 , which means PCO has less computation than the

RCO [1].

MobileNet V2 is the more advanced version which can perform better than the

previous version. One key diference is that version 2 has a new layer which is called

the projected layer. It is used more like an expansion of the layer.Residual connections

are introduced in this version to address the overftting problem of the model. The

architecture used convolution layer with 32 flters. 19 residual layers were followed

after this layer and ReLU6 is utilized as the activation function. Kernel size was kept

standard at 3×3. The entire model was trained using 16 GPU and a batch size pof 96

was chosen. MobileNet V2 performed faster than MobileNet V2 to some extent [44].

Inception V3 [45] uses approaches such as factorizing convolution, auxiliary clas-

sifer, grid size reduction to build a more robust and lighter model. The model

architecture refected more accurate performance than the MobileNet models. For

example, a large 5 × 5 flter is replaced by two 3 × 3 flters. This reduces the number

DF * DF * M

DF * DF * M

DK* DK* I

• •
M

DK* DK* M

• •

(a)

DF * DF * M

(b)

N

DF * DF * N

I * I * M

• •
N

DF * DF * N

42

Fig. 3.2. (a): Regular convolution operation (RCO), (b): Point-wise convolution
operation (PCO) [1]

43

of parameter from 25 to 18. Moreover, a 3 × 3 flter was replaced by 3 × 1 and 1 × 3

flter. This also reduced the parameter number from 9 to 6.

3.2.2 Model compression

CNN models require high computational resources for execution. In contrast edge

devices have very limited computational and memory resources. Simplifying the CNN

models into more lighter model is essential before deploying in edge devices [55]. The

advantage of making the model lighter is that it makes the model faster but it also

reduces the performance [56]. The weights in the DNN require huge memory for

procurement and the aim is to reduce that requirement. Pruning [46], quantization

[48], and data compression [57] are some of the popular model compression techniques.

The main concept of pruning is to fnd the less important neurons [46]. Then the

weight value can be either made zero or ignored in the network. Quantization refers

to the method where the size of the foating point operation is reduced in order to

make it faster and less resourceful [48]. It is extremely popular for speeding up the

process as lesser computation is required between memory and network. The memory

consumption can also be reduced without losing much performance. For example,

binarized neural network is a version of quantization where the activation and weights

are represented in binary, making it easily compatible for memory constrained devices

[49]. Data compression is also an example of model compression. Parameters that

were tuned can be stored in compressed form and can be decompressed during the

execution [57].This also adds an extra layer of security in the data as it becomes

encrypted during the compression technique.

3.2.3 Software tools

This research is based on evaluating diferent device and software libraries. Ten-

sorFlow was the main software used for this experiment. TensorRT was another

i [Kerns

~ p~:~;:h ~ ----------,
-:::: ~ Frozen
~ 1Jensmi1ow --~ Inference
~ L Matlab Graph

£ /
8 J Custom
~ ~ amework
u

TensorRT
Optimizer TensorRT

Optimized
Graph

Run Inference
using

TensorRT
Graph

44

Fig. 3.3. TensorRT workfow [2]

software kit that was used which has high performance deep learning interface based

on CUDA [2]. Maximum throughput can be achieved with lower latency by this tool.

Another advantage of TensorRT is that it can be made compatible with other frame-

works such as TensorFlow or MATLAB and supports APIs such as PyTorch, Keras

and Cafe [58]. This entire information can be viewed in Fig. 3.3. It is compatible

to provide the reduced bit point operation for computer vision, natural language pro-

cessing and so forth [2, 59]. In this experiment we used three types of foating point

operation: 32-bit, 16-bit and 8-bit operation. The 32-bit point operation was created

directly from Keras applications. Keras is popular deep learning API which runs on

top of TensorFlow [60]. Moreover, it gives user the fexibility to design any model by

its simplicity and ease of use. TensorRT was used to convert the 32-bit operation into

16-bit operation. Lastly the 8-bit operation was directly derived from TensorFlow

Lite model [3].

3.3 Edge Devices

Fig. 3.4 shows the devices used for this experiment. Two NVIDIA Jetson devices

were selected for this part. It gives a good platform for machine learning tasks.

45

Specially these have a lightweight GPU installed making deep learning models run

fuently. NVIDIA Jetson TX2 and Nano were selected where both of these have a

4-core ARM A57 core. TX2 performs at 2 GHz. Also both of these have 256-core

and 129-core Pascal respectively.

Fig. 3.4. Left: Jetson TX2, Right (Top): Jetson Nano, Right (Bottom): Google
Coral TPU USB Accelerator

Google Coral Edge TPU USB Accelerator is the third device used for the ex-

periment. It is specially designed for deep learning task and cannot operate regular

computer programs. Multiple applications such as machine vision, robotics, medi-

cal, retail and many more [61] can be deployed using this interface. It uses Tensor

Processing Units (TPUs) which is a custom-developed application-specifc integrated

circuits (ASICs) designed for machine learning task by Google Inc. Google has this

Quantization
Aware

Training

Tensorflow
Lite

Model

Tensorflow
Model

Edge TPU
Model

Frozen
Graph

Inference
Using Edge
TPU Model

46

technology in both cloud and edge devices. The edge devices are called Coral De-

velopment Board and USB Accelerator. This experiment used USB Accelerator and

referred as Edge TPU as shown in Fig. 3.4. It is based on TensorFlow Lite and the

hardware was designed in such way that machine learning models could be executed

at faster speeds than other devices. This research utilized 8-bit foating point opera-

tion and the workfow as illustrated in Fig. 3.5. The diference between Dev Board

and the USB Accelerator is that the Board has its own CPU and the other does not.

The USB Accelerator needs a support machine to operate. A special type of training

method named quantize-aware training is needed for the creation of 8-bit pre-trained

model. The processing is designed such way that hundreds of thousands of operation

of matrix multiplication can be performed where a conventional GPU can only do

tens of thousands. It does the multiplication and addition instantly without sending

those into the memory making them faster [3]. The comparison can be viewed in

Table 3.1.

Fig. 3.5. TPU USB accelerator workfow [3]

47

Table 3.1. Edge Device Comparison

Jetson TX2 Jetson Nano
Google Coral TPU
USB Accelerator

Memory 8 GB 4 GB NA
Storage 32 GB 16 GB eMMC NA

Processor
Quad-Core ARM

Cortex-A57 MPCore
Quad-core ARM

Cortex-A57 MPCore
NA

AI Accelerator 256 Cuda Core (Pascal) 128 Cuda Cores (Maxwell) Edge TPU

3.4 Experiment

3.4.1 Dataset

ImageNet is the most popular dataset for computer vision tasks. It is consists of

1.2 million images with 1,000 classes [62]. All the popular pre-trained models are also

created using this dataset. We employed ImageNet 2012 validation dataset which had

50,000 images of 1,000 classes. The goal was to test the performance using pre-trained

models based on TensorFlow and use diferent edge devices for comparison.

3.4.2 Evaluation Metrics

We utilized diferent evaluation metrics for performance comparison. They are

listed below.

• FP denotes foating point operation taken 32 bit and 16 bit for Jetson devices

and 8 bit operation for Edge TPU.

• Accuracy refers to the ratio of number of correct predictions to the total number

of testing samples.

• Memory denotes how much dynamic memory has been allocated by the python

thread in mebibyte or MiB (1 MiB = 1024 × 1024 bytes).

• Load denotes the pre-trained model loading time in seconds.

48

• Time denotes the total time python script requires to execute the task.

• Average Inference (Avg Inf) is the average inference time of a single image in

seconds.

• FPS (inf) represents the frame per second which is how many images can this

model run in one second. FPS (inf) shows the rate of processing image while

only considering inference whereas the last column FPS shows the rate of pro-

cessing image while taking model loading, image preprocessing and inference

into consideration.

Frame per second (FPS) and Frame per second (inf) are given in equation (3.3) and

(3.4).
N

F P S = , (3.3)P50000M + (Pn + In)n=1

N
F P S(inf) = . (3.4)P50000 Inn=1

Here N denotes the 50,000 validation images. M in the denominator is the model

loading time, P is the time for preprocessing of images, and I is inference time. The

model loading occurs only once but preprocessing and inference occurs for all 50,000

images.

Table 3.2. Performance Comparison on Various Edge Devices with MobileNet V1.

Device

TX2
TX2
Nano
Nano
TPU

FP

32 bit
16 bit
32 bit
16 bit
8 bit

Accuracy

0.68364
0.68374
0.68362
0.68372
0.68008

Memory
(MiB)
1595.426
2267.48
1147.215
2136.59
108.516

Load (sec)

30.98
363.11
20.04
82.95
3.06

Time (sec)

2582.42
2033.77
4591.97
2151.96
1235.07

Avg Inf
(ms)

40
20
70
20

9.43

FPS (inf)

25
50

14.29
50

106.04

FPS

19.36
24.58
10.89
23.23
40.48

49

Table 3.3. Performance Comparison on Various Edge Devices with MobileNet V2.

Memory Avg Inf
Device FP Accuracy Load (sec) Time (sec) FPS (inf) FPS

(MiB) (ms)
TX2 32 bit 0.68048 1818.398 53.95 2799.24 40 25 17.86
TX2 16 bit 0.68048 1914.27 187.56 2278.44 20 50 21.94
Nano 32 bit 0.68048 1546.164 28.93 5471.34 90 11.11 9.14
Nano 16 bit 0.68084 2102.309 78.96 2206.76 20 50 22.66
TPU 8 bit 0.69026 103.078 3.07 1315.2 11.28 88.65 38.02

Table 3.4. Performance Comparison on Various Edge Devices with Inception V3.

Memory Avg Inf
Device FP Accuracy Load (sec) Time (sec) FPS (inf) FPS

(MiB) (ms)
TX2 32 bit 0.76276 1674.637 88.99 8860.52 150 6.67 5.64
TX2 16 bit 0.76284 3656.887 1945.94 4302.21 20 50 11.62
Nano 32 bit 0.76276 1044.277 47.38 17752.81 320 3.13 2.82
Nano 16 bit 0.76264 3213.441 469.4 4191.77 50 20 11.93
TPU 8 bit 0.7705 147.883 3.13 25463.41 490 2.04 1.96

3.4.3 Results and Analysis

Three models named: MobileNet V2, MobileNet V2 and Inception V3 were eval-

uated using three diferent foating point operations. The 32-bit, 16-bit and 8-bit op-

erations were tested on three devices respectively on NVIDIA Jetson TX2, NVIDIA

Jetson Nano and Google Coral Edge TPU. The Jetson devices were used for 32-bit

and 16-bit operation whereas Edge TPU was used for 8-bit operation.

Table 3.2 refects the result of MobileNet V1. the 16-bit took more model loading

time but lesser execution time for the entire program than the 32-bit operation. The

32-bit foating point operation was obtained from Keras applications and 8-bit from

TensorFlow Lite original hub. Both of these used their own platform to execute the

model, making it efcient. However, the 16-bit operation was derived from the 32-

bit pre-trained model and executed on newly developed platform. This made the

https://25463.41
https://17752.81

50

loading of the model in the 16-bit more time consuming than the other two. Only

considering average inference time of a single image, the 16-bit was better or faster

than the 32-bit foating point operation. The execution time of the entire task and

memory consumption was more for the TensorRT interface.

MobileNet V2 showed the same trend of result as MobileNet V1 shown in Table 3.3

for diferent devices. The memory consumption was more for the TensorRT platform

or 16-bit operation probably because the converted model required more memory for

initial loading. It was also visible in the model loading time column. It was observed

that Jetson TX2 in 32-bit operation is almost 12 times faster. Moreover, due to some

hardware issue the test dataset was loaded in SD card for all TX2 experiments. The

inference time was better in TensorRT platform in Jetson TX2. However, The Edge

TPU outperformed all other by a good margin in for MobileNet models in accuracy,

memory consumption, execution time and FPS.

Lastly Table 3.4 evaluated the performance of Inception V3 model on various

devices. The network structure of Inception was much more complicated and robust

than the MobileNet V1 and V2. It had more layers and larger input image size. Now,

the saved model in h5 format of Inception V3 is 25.1 MB whereas MobileNet V2

was only 4.5 MB. This model had more weights and parameters than the other two

giving higher accuracy but slower time in the testing environment. The Edge TPU

was connected through the USB 2.0 ports. In a separate environment the same model

was connected with a USB 3.00 port to another host computer with USB accelerator.

The average inference time was about 43.6 ms, or 22.94 FPS, almost two times faster

than NVIDIA Jetson TX2 and Nano.

51

3.5 Related Work

3.5.1 Model compression

Model compression is a popular research for accelerating the speed of the deep

learning models by reducing model complexity. For example, the convolution archi-

tecture was redesigned in MobileNet which was able to reduce the parameter numbers

by seve times by only losing one percent accuracy. If the number of parametner of

MobileNet is compared to another model like VGG 166, then it is reduced by almost

35 times [1]. Moreover, the procurement of data is a few times faster because of

lower computation. Jiaxiang et al. [47] presented that quantization was able to speed

up the inference process by four to six times and drastically reduce the number of

parameters 15 to 20 times. Han et al. [63] presented an efcient three-stage pipeline

of a CNN containing pruning, quantization and hufman coding which can reduce the

famous CNN model AlexNet’s size from 240 MB to 6.9 MB.

3.5.2 Deep learning inference on edge devices

This section demonstrated that complex deep learning models can be accommo-

dated using compression techniques on resource constraint devices. The results were

consistent with the literature review. Recent studies show that NVIDIA Jetson Nano

runs MobileNet V2 at 64 FPS where Google Coral Dev Board runs it at 130 FPS [43].

Also single 64-bit Intel Xeon Gold 6154 CPU at 3.00 GHz as the host machine with

TPU USB Accelerator can complete inference ar 2.4 ms for MobileNet models. Also

the dev board can take up to 53 ms and 51 ms to do inference for MobileNet V1 and

V2 [64]. Taylor et al. [65] also presented a research work on edge devices where more

than seven times accuracy improvement and one and a half times reduce time were

observed for an adaptive deep learning model selection.

52

3.6 Conclusion

This section showed a comprehensive comparison of testing performance of three

pre-trained CNN model on three edge devices. Specifcally, MobileNet V1 and V2 and

Inception V3 models were used on NVIDIA Jetson TX2, Jetson Nano, and Google

Coral Edge TPU USB Accelerator for image classifcation task. Moreover. quanti-

zation technique was applied to observe how the model reacted to diferent bit-point

operation. It was applied to reduce the model complexity thus making it lighter and

easier for edge devices. Experimental results indicated faster inference time and more

accurate results for Edge TPU than the NVIDIA Jetson devices. However, the USB

Accelerator could not work independently and required a host to run the model. In

addition NVIDIA Jetson TX2 performed better than Jetson Nano in most cases. It

was expected as Jetson TX2 have more computational resource than the Nano. This

experiment drew a line for model selection for two diferent tasks: speed and accuracy.

MobileNet models are suitable for speed where Inception refects more accurate per-

formance. The work demonstrated that specifc model and edge devices were suitable

for specifc applications. This work will serve as a benchmark for researchers or users

to measure the DNN models, compression techniques and edge devices for diferent

applications.

53

CHAPTER 4

ROBUST FACE MASK DETECTION USING DEEP

LEARNING ON IOT DEVICES

4.1 Introduction

Covid-19 had catastrophic efect on this world and became a global pandemic [66].

The spread of this disease was difcult to control and one measure was by using face

masks in public. The masks stopped the respiratory droplets from spreading which

was the main carrier of the disease [67]. Face mask detection is a new concept in this

era and this idea can be incorporated with IoT devices to track and warn people to

wear masks. This section utilized this idea of detecting face mask on IoT devices using

deep learning. Specifcally, four convolutional neural networks, namely, MobileNet

V2, Inception V3, VGG 16, and ResNet 50 were deployed for face mask detection

and tested by IoT devices such as NVIDIA Jetson TX2 and Nano. Both devices

had mobile GPU mounted on top of their system making computation efcient and

faster. Performance comparisons were measured using diferent training dataset size.

The experimental results showed that face detection was possible in real time on IoT

devices.

The spread of viruses can be controlled by wearing a face mask can easily be

understood in Fig. 4.1. It refects the risk factor between an infected person and

an uninfected person. A person infected with coronavirus has a high possibility of

infecting another person if no one is wearing a mask. The possibility is slightly less if

one of them is wearing a mask. However, it is lowest when both of them are wearing a

mask [68] (the third row). As coronavirus spreads by the respiratory droplets, if it can

be prevented from going out, then there is a high chance of controlling the disease.

Infected Person Healthy Person

8 High Risk of Transmission 8
Without Mask Without Mask

A Low Risk of Transmission 8
With Mask Without Mask

A Lower Risk of Transmission A
With Mask With Mask

54

Fig. 4.1. Diferent risk of transmission between infected person (left column) and
uninfected person (right column).

Also it is difcult reminding wearing a mask in public. Face mask detection [69] with

deep learning can be used to monitor whether people are wearing masks. Moreover,

deployment of this model ensures that IoT devices can be used for this application

at real-time in almost most cases.

This section will demonstrate some research experiments of face mask detection

using deep learning models on edge devices. This application can detect face mask

in public in real-time. For example, some workplaces and businesses are mandating

face mask wearing on their premises. A smart IoT camera capable of running DL

models can detect and raise alarm if someone is not wearing a mask without human

intervention. Mobile GPU such as NVIDIA Jetson devices can perform this tasks

using a camera. It saves human resources and reduces cost making it benefcial and

efcient for any company.

I

55

ConvertorCarmera Mobile GPUs

Face Mask
Required

Artifitifical Neural
Networks

Face Mask Alarm

Face Mask Detector A Speech Reminder

Fig. 4.2. The diagram of a face mask detection system. As an example, the pro-
posed system is mounted on a door to remind people to wear face mask when enter-
ing a room. It consists of a camera, a mobile GPU, and an alarm. The image/video
captured by the camera will be input to the mobile GPU and the pre-trained CNN
will determine whether the person wears face mask. If not, an alarm such as “Face
Mask Required” will sound.

Fig. 4.2 shows the diagram of a face mask detection system on controlling the

entrance to a room based on the result of face mask detection. The proposed research

was to build an algorithm based on deep learning that could run on IoT devices

with mobile GPUs, which can be used implement the setup shown in the diagram.

We implemented four convolutional neural networks (CNN), namely, MobileNet V2,

Inception V3, VGG 16, and ResNet 50. Moreover, these models were verifed by

running inference on mobile GPUs including NVIDIA Jetson TX2 and NVIDIA Jetson

Nano. Specially, we examined the model robustness by training small sizes of data,

which is key to real world applications to emerging events such as COVID-19 outbreak,

because usually we cannot collect big data for training due to few samples available

and high annotation costs. Experimental results demonstrated that these models

can achieve promising detection performance on IoT devices and robustly detect face

mask even being trained on very small size of data.

56

4.2 Deep Learning Models

Face mask detection can be viewed as a binary image classifcation problem [69].

We deployed four popular CNN, namely, MobileNet V2, Inception V3, VGG 16, and

ResNet 50 to check their performance. MobileNet is the most popular model for edge

device for its lightweight. Smaller model size and less computational expensive were

the main themes behind its design making it very suitable for resource constraint

devices. One major design is that it breaks up the traditional computation expensive

convolution operation into two parts. These are named depthwise and pointwise

convolution [70]. The idea is to break up the complex matrix multiplication into

two simple matrix multiplication. MobileNet V2 [71] is more advanced version of

V1 which has an additional convolution layer and residual connection like ResNet.

Width multiplier and resolution multiplier are fne tuned to control the resolution of

the input.

Inception V3 [72] is another widely used image classifcation network for DL appli-

cations. The number of connections was reduced using factorized convolution while

keeping a strong performance. It also has diferent version and version 3 is the most

used. It is also computationally efcient in terms of older models. Smaller convolu-

tion, factorized convolution, auxiliary classifer, lower grid size, factorized convolution

are the main techniques used to design this model.

VGG-16 [73] is a 16 layer CNN introduced to observe how a model deals with

vanishing gradient problem as depth increases. The vanishing gradient refers to higher

training errors observed as layer is increased. However, if a CNN gets deeper, it should

be capable to accord with more complex learning. Also, a better performance was

expected but the performance decreased rapidly. Performance dropped drastically as

learning was saturated. VGG 16 had 13 convolutional layer and 3 fully connected

layer. One disadvantage was that it was slow to train and weights were quite large

~ ~ I ,

1
j

l
-, ,

57

and 134M parameters needed to be trained.

ResNet model [74] addressed the vanishing gradient problem by applying residual

learning into the network. Identity mapping, adds a layer which skips one or two

layers in the model. The skipped connection tries to solve a residual function using

H(x) = F(x) + x for a few stacked layer instead of conventional mapping. One reason

is rather than mapping F(x), it is easier to get F(x) = 0. Moreover stride of two

is used to make computation lesser. Also the number of trainable parameters was

only 23M, which made it faster than VGG-16. This research used ResNet-50 for this

application.

We select transfer learning approach as DL models for image classifcation tasks

tend to perform better when they are trained from an existing popular trained model.

Training from scratch does not yield good performance all the time. All the pre-

trained models used to classify 1,000 classes from ImageNet [75]. It takes less time

and efort to train a new model which can detect these 1,000 classes. It is very

popular concept and widely used. The features learned from the previous task were

transferred into the new classifer. All the pre-trained models used here are trained

on ImageNet. The size of the input image is diferent. For example, MobileNet,

ResNet and VGG-16 used image size 224 × 224 × 3, whereas Inception V3 used a size

of 299 × 299 × 3.

Load Training Data Fine-tune Pretrained
Deep Learning Models

Face Mask
Detector

Load Testing Data Face Mask Detection Evaluate Detection
Results

Fig. 4.3. The fow of building face mask detector.

58

Fig. 4.3 shows the overall plan of this research, which was particularly based

on transfer learning. The training was been done on NVIDIA TITAN V GPU, and

tested on NVIDIA Jetson devices. The pre-trained model was loaded frst. Then the

last layer is changed according to research which was a binary classifer. The training

was done for separate models and for separate cases. In terms of testing, the model

was saved in Keras format. In the edge devices, the model was loaded along with the

testing dataset. The performance was evaluated with various evaluation metrics.

4.3 IoT Device with Mobile GPU

In recent times deploying DL models on edge device is getting a lot of attention.

The urge is to make the devices smarter which can predict based on learning. Tra-

ditional DL models are computationally expensive and require GPUs to train and

test. In contrast edge devices have only limited computation resources. Lightweight

GPU, mounted on top of an edge device have the ability to run DL models. NVIDIA

Jetson devices are types of devices which are widely used for local deployment of AI

models. Moreover, edge devices are also getting some computational capacity and

DL models are getting lighter which refects a promising advancement in this area.

NVIDIA Jetson TX2 and Nano were selected for this part of research as test devices.

We ran the same model with same test data to observe which one performed better.

There was a signifcant diference between these two devices, which is explained in

details in table 4.1 and Fig. 4.4 shows the two models.

4.4 Experiment

4.4.1 Dataset

We used a public dataset for this part as this was a relatively new topic and limited

dataset were available. This dataset had 1,916 images with face masks and 1,930

images without face masks. However, some data had some diferent characteristics.

59

Fig. 4.4. NVIDIA Jetson Nano (left) and NVIDIA Jetson TX2 (right)

Table 4.1. Comparison Between NVIDIA Jetson TX2 and NVIDIA Jetson Nano

Jetson TX2 Jetson Nano

CPU
Dual-Core NVIDIA
Denver 2 64-Bit CPU

Quad-core ARM
Cortex-A57 MPCore

processor

GPU
256-core Pascal
@1300 MHz

NVIDIA Maxwell
architecture with 128 NVIDIA

CUDA® cores
Memory 8GB 128-bit LPDDR4 4 GB 64-bit LPDDR4
Storage 32GB eMMC 5.1 16 GB eMMC 5.1

.
I

VI
VI

.9

0.4-

0.3 -

0.2 -

0.1 -

~

- train_loss
I I

0 20

Training Loss

I I I I

40 60 80 100

Epoch#

60

Fig. 4.5. Example images from the datatset. The frst row contains example images
with face mask, where the frst three images have one face with face mask occupy-
ing the most part of the image, while the latter three images having multiple faces
with mask and people on the background. The second row contains example images
without face mask under diferent background.

Fig. 4.6. Training Loss over 100 epochs for MobileNet V2

Table 4.2. Comparison of Accuracy and Training Loss of Four Models MobileNet
V2, ResNet 50, Inception V3, and VGG 16.

Models
Training
Accuracy

Training
Loss

Testing
Accuracy

MobileNet V2 0.9727 0.0781 0.9149
ResNet 50 0.9927 0.0212 0.9867
Inception V3 0.9666 0.0858 0.9894
VGG 16 0.9987 0.0027 0.9987

Training Loss
0.35 -

0.30 -

0.25 -

0.20 -
V,
V,

.3
0.15 -

0.10 -

0.05 -

0.00 -
0 20 40 60 80 100

Epoch #

Training Loss

0.45 -

0.40 -

0.35 -

V,
0.30 -

V,

.3 0.25 -

0.20 -

0.15 -

0.10 -
train_loss

0 20 40 60 80 100

Epoch #

61

Fig. 4.7. Training Loss over 100 epochs for ResNet 50

Fig. 4.8. Training Loss over 100 epochs for Inception V3

Training Loss

1.0 -

0.8 -

0.6 -

"' "' _g
0.4 -

0.2 -

0.0 - train_loss

0 20 40 60 80 100

Epoch #

Accuracy

0.975 -

0.950 -

0.925 -

>- 0.900 -
u
~
:::, 0.875 -u
~

0.850 -

0.825 -

0.800 -

train_acc
0.775 -

0 20 40 60 80 100

Epoch #

62

Fig. 4.9. Training Loss over 100 epochs for VGG 16

Fig. 4.10. Training Accuracy over 100 epochs for MobileNet V2

Accuracy
1.00 -

0.98 -

0.96 -

>, 0.94 -
u
~
:::, 0.92 -u
:,j_

0.90 -

0.88 -

0.86 -

t rain_acc

0 20 40 60 80 100

Epoch #

Accuracy
0.975 -

0.950 -

0.925 -

>- 0.900 -
u
~

0.875 -:::,
u
:,j_

0.850 -

0.825 -

0.800 -

0.775 - t rain_acc

0 20 40 60 80 100

Epoch #

63

Fig. 4.11. Training Accuracy over 100 epochs for ResNet 50

Fig. 4.12. Training Accuracy over 100 epochs for Inception V3

Accuracy

1.00 -

0.95 -

>,

~ 0.90 -
::::,
u
:J.

0.85 -

0.80 -

train_acc

0 20 40 60 80 100

Epoch #

64

Fig. 4.13. Training Accuracy over 100 epochs for VGG 16

Table 4.3. Comparison of Precision, Recall, and Fscore

Models Class Precision Recall Fscore
MobileNet V2 With Mask 0.99 0.83 0.90

Without Mask 0.86 0.99 0.92
ResNet 50 With Mask 1.00 0.96 0.98

Without Mask 0.96 1.00 0.98
Inception V3 With Mask 1.00 0.98 0.99

Without Mask 0.98 1.00 0.99
VGG 16 With Mask 1.00 1.00 1.00

Without Mask 1.00 1.00 1.00

65

Eighty percent of the data was used for training and the rest was for testing. 1

4.4.2 Experiment setup

The learning rate was 0.0001 with a batch size of 10. We kept the batch size lower

so that it could be trained on limited memory. We kept a standard epoch size of 100.

Cross entropy was selected as the loss function as it was a classifcation task.

4.4.3 Tools for Implementation

Tensorfow [76] which is an open source software was the main software for this

section. One beneft of this software was the ability to operate at many processing

units such as multicore CPUs, GPUs and Tensor Processing Unit (TPU) [77]. It

supported a good number of applications and provided fexibility to design ML model.

Moreover Keras [78] API was used, which runs on top of tensorfow. Keras application

was used to directly import the pre-trained models. Then the classifer was trained

on top of it.

4.4.4 Result Analysis

We implemented face detection with MobileNet V2, VGG 16, Inception V3 and

ResNet 50, where diferent performance is shown in Tables 4.4, 4.2 and 4.3. The

results show that VGG 16 outperformed others regarding accuracy, precision, recall,

and fscore. The learning curve of this model also showed faster improvement than

others. The intuition was that VGG has fxed kernels than others. As the problem

was binary and the dataset showed a similar trend, this dense network was able to

perform better than other. Table 4.2 refects one scenario. VGG 16 was able to

get the highest training and testing accuracy with lowest loss score. ResNet 50 and

Inception V3 had only one percent diference in accuracy than VGG 16. Figure 4.10

and 4.6 shows the learning curves of MobileNet V2 in terms of training accuracy and

1https://github.com/chandrikadeb7/Face-Mask-Detection

https://1https://github.com/chandrikadeb7/Face-Mask-Detection

66

Table 4.4. Performance comparison on face mask detection on Jetson TX2 and Jet-
son Nano. FPS refers to the number of images processed per second. The frst col-
umn denotes the models. M denotes MobileNet V2, R denotes ResNet 50, I denotes
Inception V3 and V denotes VGG 16.

Training Testing on TX2 Testing on Nano
Ratios Number

Inference Inference
of of Training Testing Testing

Loss time FPS time FPS
training training accuracy accuracy accuracy

(ms) (ms)
data images
1% 30 0.107 0.9776 0.6957 26.97 37.27 0.6926 42.40 23.58
5% 150 0.095 0.9733 0.7685 25.10 39.86 0.7659 42.00 23.80

M 10% 300 0.114 0.9622 0.7842 25.10 39.87 0.7801 42.90 23.31
20% 601 0.136 0.9490 0.7735 25.53 39.14 0.7699 43.03 23.24

1% 30 0.071 0.9666 0.5000 70.90 14.11 0.7433 195.05 5.13
5% 150 0.050 0.9845 0.7976 71.00 14.09 0.8023 176.45 5.67

R 10% 300 0.035 0.9900 0.7976 70.13 14.25 0.7962 173.05 5.78
20% 601 0.027 0.9927 0.8651 71.00 14.08 0.8599 173.65 5.76

1% 30 0.167 0.9556 0.8275 89.27 11.21 0.8275 187.00 5.35
5% 150 0.136 0.9578 0.8704 87.80 11.41 0.8713 188.53 5.31

I 10% 300 0.136 0.9445 0.9066 92.33 10.85 0.9057 905.72 5.22
20% 601 0.167 0.9379 0.8972 89.57 11.17 0.8977 192.77 5.19

1% 30 0.089 0.9667 0.6857 2138.77 0.47 0.6761 239.37 4.18
5% 150 0.006 0.9978 0.9231 2139.60 0.47 0.9173 245.23 4.08

V 10% 300 0.010 0.9956 0.9370 2136.00 0.47 0.9325 236.17 4.23
20% 601 0.006 0.9994 0.9607 2139.57 0.47 0.9580 237.70 4.21

67

loss. VGG 16 was able to reduce the loss drastically within less than 20 epochs. The

other three models were also able minimize loss function but VGG showed the most

smoothest transition. The learning curve in terms of accuracy also showed that VGG

16 was able to get a good training accuracy in a short time. Also the other models

indicated a good training accuracy. Table 4.3 gives further evaluation of the models.

VGG 16 showed a perfect score in precision, recall and f-score followed by Inception

V3 and ResNet 50. The precision to detect face with mask was done well by all the

models.

In addition, we examined how the size of training samples efected the perfor-

mance. For emerging tasks like face mask detection, it is difcult to obtain a huge

dataset for training and testing. Therefore, lacking of data will be a big challenge for

similar tasks. We applied diferent ratios of training data to examine the performance

shown in Table 4.4. Experimental results indicated that MobileNet V2 was the fastest

model and could process almost 40 images per second in Jetson TX2 while VGG 16

represented the highest accuracy. If we train the model while taking only one percent

of the training data and keeping the testing data same, Inception performed better

when considering the lowest amount of training data. It had a testing accuracy score

of 0.8275. Although the training and testing accuracy diference showed the model

was overftting, it was able to recover as we kept increasing the data. Utilizing only

fve percent of the training data showed an accuracy of 0.76, 0.79, 0.87 and 0.92 for

MobileNet, ResNet, Inception and VGG 16. This showed that the models were robust

as they showed good performance on limited data. As we kept increasing the training

data to 10 and 20 percent, the performance of all models started improving. VGG

showed the maximum accuracy and MobileNet showed the lowest accuracy while con-

sidering 20 percent of the data. ResNet and Inception gave close performance in this

case. The overftting problem was addressed as the dataset samples kept increasing.

68

The table showed slight variation in some cases. For example, MobileNet and Incep-

tion performed slight better with 10 percent dataset than 20 percent. Our intuition

could be the dataset features because the dataset have some complex images. We saw

some exceptions in this Table. For example, ResNet 50 showed an accuracy of around

0.50 and 0.75 in Jetson TX2 and Nano. The diference was huge but the same model

and same dataset was used for both cases. In Addition, VGG 16 was nine times faster

in Nano than TX2. Hardware specifcation of individual device could be the reason

behind this scenario. Overall VGG 16 showed the best result. One disadvantage was

that it is extremely slow and required more high computing resources than others. It

refected the lowest speed in every case. In terms of speed MobileNet V2 showed the

better performance as it was designed to perform faster and efciently. One trade of

of this model for being faster was accuracy. It was the reason it showed less accuracy

in most cases than others. Jetson TX2 demonstrated faster results than the Nano.

Although Nano was relatively close in terms of speed despite having half the memory

than TX2.

4.5 Related Work

Face mask detection has been a popular topic due to the recent pandemic situa-

tion. This can be treated as either object detection or an image classifcation task.

Object detection methods were used in [79] and [80]. One stage face mask detector

was proposed by Mingjie Jiang et al. and pre-trained ResNet is used for transfer

learning and feature extraction [79]. It detected the mask feature using a novel con-

text attention. Medical face mask detection was created by Loey et al. [80] using

object detection method. ResNet and YOLO V2 were combined in order to make the

mask detector.

This task was also treated as an image classifcation problem in [81, 82, 83], where

pre-trained face detector was used to extract the face and then classifcation model

69

was applied to check the mask. Lippert et al. presented a face mask detector using

OpenCV pre-trained face detector and VGG16 was used to train the model. Madhura

Inamdar et al. proposed a face mask detecting model using eight layers which perform

the same task [81].

The methods mentioned above were created using DL models and in high per-

formance computers with GPUs. However, this task is difcult if it is to be run in

the cloud because bandwidth and security issues. Bandwidth can be unstable and

transmission of private data is also a concern. The research showed a way to overcome

this problem. The models were run on edge devices and could be used in real-time

applications. This does not require any wireless or wired internet connection, and

can be deployed almost anywhere. Moreover, we showed how it reacted to diferent

models, devices and training sets.

4.6 Conclusion

This section showed the performance of four deep learning models, namely, Mo-

bileNet V2, Inception V3, VGG 16, and ResNet 50 for face mask detection. The

testing devices were NVIDIA Jetson TX2 and Nano. The results indicated that Mo-

bileNet was the fastest in terms of speed, however the accuracy was low. The other

models performed almost the same with good prediction results. The prediction was

faster in TX2 than Nano. It was predicted as TX2 had twice the memory than Nano.

However, Nano gave a closer performance compared to TX2. We also showed the

robustness of the model by reducing the training sample. The intuition was that

in real-time data was not always labeled. The future plan is to use semi-supervised

learning to process raw data and then build the classifer. Also methods like prun-

ing, quantization and knowledge transfer can be used to make the model lighter and

efcient.

70

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This research explored techniques designed for deployment of Deep Learning (DL)

models on IoT devices that have limited computing resource and storage. Specifcally,

• novel quantization methods have been studied that can be utilized to compress

DL models;

• methods that allow DL models to perform efciently on small amount of data

were investigated;

• novel privacy preserving techniques for DL on edge devices were explored.

The efectiveness of the research was demonstrated through multiple experiments

such as face mask detection using IoT devices. It gives an overall idea about how

in the near future IoT devices will take advantage of DL. NVIDIA Jetson TX2 and

Nano were used in the experiments which are popular mobile GPUs for edge devices.

5.2 Future Work

This research holds some promising advancement. The next step is to evaluate

energy efciency of the DL models in diferent platforms. Energy efciency is also

another major aspect of research for deploying models on edge devices. For exam-

ple, any edge device that is operating on battery power would require high energy

efciency. In addition, semi-supervised learning will be considered as well when the

amount of labeled data is limited, especially in IoT applications.

71

REFERENCES

[1] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam, “Mobilenets: Efcient convolutional neural networks for

mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[2] “Deep learning sdk documentation.” url= https://docs.nvidia.com/deeplearning/sdk/tensorrt-

developer-guide/index.html.

[3] “Tensorfow models on the edge tpu.” urlhttps://coral.ai/docs/edgetpu/models-

intro/#compatibility-overview.

[4] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Com-

puter networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[5] L. McRae, K. Ellis, and M. Kent, “Internet of things (iot): education and tech-

nology,” Relatsh. between Educ. Technol. students with Disabil. Leanne, Res,

pp. 1–37, 2018.

[6] A. Ukil, S. Bandyoapdhyay, C. Puri, and A. Pal, “Iot healthcare analytics:

The importance of anomaly detection,” in 2016 IEEE 30th international confer-

ence on advanced information networking and applications (AINA), pp. 994–997,

IEEE, 2016.

[7] J. Kingdon, “Ai fghts money laundering,” IEEE Intelligent Systems, vol. 19,

no. 3, pp. 87–89, 2004.

[8] S. Khan, D. Paul, P. Momtahan, and M. Aloqaily, “Artifcial intelligence frame-

work for smart city microgrids: State of the art, challenges, and opportunities,”

in 2018 Third International Conference on Fog and Mobile Edge Computing

(FMEC), pp. 283–288, IEEE, 2018.

https://docs.nvidia.com/deeplearning/sdk/tensorrt

72

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifcation with deep

convolutional neural networks,” in Advances in neural information processing

systems, pp. 1097–1105, 2012.

[11] L. Deng, “The mnist database of handwritten digit images for machine learning

research [best of the web],” IEEE Signal Processing Magazine, vol. 29, no. 6,

pp. 141–142, 2012.

[12] R. Ramesh, “Predictive analytics for banking user data using aws machine learn-

ing cloud service,” pp. 210–215, 2017.

[13] D. J. e. a. D’Souza M, Van Munster CEP, “Autoencoder as a new method for

maintaining data privacy while analyzing videos of patients with motor dysfunc-

tion: Proof-of-concept study.,” 2017.

[14] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated learning

of deep networks using model averaging,” CoRR, vol. abs/1602.05629, 2016.

[15] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept

and applications,” CoRR, vol. abs/1902.04885, 2019.

[16] R. C. Geyer, T. Klein, and M. Nabi, “Diferentially private federated learning:

A client level perspective,” CoRR, vol. abs/1712.07557, 2017.

[17] K. A. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,

D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for federated

learning on user-held data,” CoRR, vol. abs/1611.04482, 2016.

[18] “Google edge tpu.” https://coral.ai/docs/edgetpu/faq/.

[19] “Jetson nano developer kit.” https://developer.nvidia.com/embedded/

jetsonnano-developer-kit.

https://developer.nvidia.com/embedded
https://coral.ai/docs/edgetpu/faq
http://www.deeplearningbook.org

73

[20] M. Maggipinto, C. Masiero, A. Beghi, and G. A. Susto, “A convolutional au-

toencoder approach for feature extraction in virtual metrology,” Procedia Man-

ufacturing, vol. 17, pp. 126–133, 2018. 28th International Conference on Flex-

ible Automation and Intelligent Manufacturing (FAIM2018), June 11-14, 2018,

Columbus, OH, USAGlobal Integration of Intelligent Manufacturing and Smart

Industry for Good of Humanity.

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[22] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny im-

ages,” Master’s thesis, Department of Computer Science, University of Toronto,

2009.

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet

Large Scale Visual Recognition Challenge,” International Journal of Computer

Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[24] F. Chollet, Deep Learning with Python. Manning, Nov. 2017.

[25] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, and M. Naehrig,

“Crypto-nets: Neural networks over encrypted data,” 2014.

[26] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and

L. Zhang, “Deep learning with diferential privacy,” in Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, ACM,

oct 2016.

[27] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network predictions via

minionn transformations,” in Proceedings of the 2017 ACM SIGSAC Conference

http://www.deeplearningbook.org

74

on Computer and Communications Security, CCS ’17, (New York, NY, USA),

p. 619–631, Association for Computing Machinery, 2017.

[28] H. Bae, J. Jang, D. Jung, H. Jang, H. Ha, H. Lee, and S. Yoon, “Security and

privacy issues in deep learning,” 2018.

[29] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proceedings

of the 22nd ACM SIGSAC Conference on Computer and Communications Secu-

rity, CCS ’15, (New York, NY, USA), p. 1310–1321, Association for Computing

Machinery, 2015.

[30] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ramage, and

F. Beaufays, “Applied federated learning: Improving google keyboard query sug-

gestions,” 2018.

[31] F. S. Beaufays, M. Chen, R. Mathews, and T. Ouyang, “Federated learning of

out-of-vocabulary words,” 2019.

[32] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed

synchronous sgd,” 2016.

[33] H. Zhu and Y. Jin, “Multi-objective evolutionary federated learning,” CoRR,

vol. abs/1812.07478, 2018.

[34] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,

“Federated learning: Strategies for improving communication efciency,” CoRR,

vol. abs/1610.05492, 2016.

[35] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” 2019.

[36] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,

D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-

preserving machine learning,” in Proceedings of the 2017 ACM SIGSAC Con-

75

ference on Computer and Communications Security, CCS ’17, (New York, NY,

USA), p. 1175–1191, Association for Computing Machinery, 2017.

[37] V. Smith, C. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-task learn-

ing,” CoRR, vol. abs/1705.10467, 2017.

[38] V. Mirjalili, S. Raschka, A. Namboodiri, and A. Ross, “Semi-adversarial net-

works: Convolutional autoencoders for imparting privacy to face images,” 2017.

[39] R. Alguliyev, R. Aliguliyev, and F. Abdullayeva, “Privacy-preserving deep learn-

ing algorithm for big personal data analysis,” Journal of Industrial Information

Integration, vol. 15, 07 2019.

[40] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Comput.

Netw., vol. 54, pp. 2787–2805, Oct. 2010.

[41] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge

computing: The communication perspective,” IEEE Communications Surveys &

Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[42] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani, “De-

mystifying iot security: An exhaustive survey on iot vulnerabilities and a frst

empirical look on internet-scale iot exploitations,” IEEE Communications Sur-

veys and Tutorials, vol. 21, pp. 2702–2733, thirdquarter 2019.

[43] “Jetson nano: Deep learning inference benchmarks.”

urlhttps://developer.nvidia.com/embedded/jetson-nano-dl-inference-

benchmarks.

[44] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:

Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 4510–4520, 2018.

https://urlhttps://developer.nvidia.com/embedded/jetson-nano-dl-inference

76

[45] C. Szegedy, V. Vanhoucke, S. Iofe, J. Shlens, and Z. Wojna, “Rethinking the in-

ception architecture for computer vision,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 2818–2826, 2016.

[46] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning con-

volutional neural networks for resource efcient inference,” arXiv preprint

arXiv:1611.06440, 2016.

[47] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional

neural networks for mobile devices,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 4820–4828, 2016.

[48] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quan-

tization: Towards lossless cnns with low-precision weights,” arXiv preprint

arXiv:1702.03044, 2017.

[49] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta, and

Z. Zhang, “Accelerating binarized convolutional neural networks with software-

programmable fpgas,” in Proceedings of the 2017 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, pp. 15–24, 2017.

[50] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized

neural networks: Training deep neural networks with weights and activations

constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

[51] C. Tai, T. Xiao, Y. Zhang, X. Wang, et al., “Convolutional neural networks with

low-rank regularization,” arXiv preprint arXiv:1511.06067, 2015.

[52] A. G. Howard, “Some improvements on deep convolutional neural network based

image classifcation,” arXiv preprint arXiv:1312.5402, 2013.

77

[53] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unifed multi-scale deep

convolutional neural network for fast object detection,” in European conference

on computer vision, pp. 354–370, Springer, 2016.

[54] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning discrimina-

tive saliency map with convolutional neural network,” in International conference

on machine learning, pp. 597–606, 2015.

[55] K. Yanai, R. Tanno, and K. Okamoto, “Efcient mobile implementation of a cnn-

based object recognition system,” in Proceedings of the 24th ACM international

conference on Multimedia, pp. 362–366, 2016.

[56] X. Li, Y. Zhou, Z. Pan, and J. Feng, “Partial order pruning: For best speed/ac-

curacy trade-of in neural architecture search,” in The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2019.

[57] A. Makhzani and B. J. Frey, “Winner-take-all autoencoders,” in Advances in

neural information processing systems, pp. 2791–2799, 2015.

[58] H. Vanholder, “Efcient inference with tensorrt,” 2016.

[59] “Real-time natural language understanding with bert using tensorrt.” url=

https://devblogs.nvidia.com/nlu-with-tensorrt-bert/.

[60] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and Tensor-

Flow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly

Media, 2019.

[61] “Internet of things.” url= https://cloud.google.com/edge-tpu.

[62] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A

large-scale hierarchical image database,” in 2009 IEEE conference on computer

vision and pattern recognition, pp. 248–255, Ieee, 2009.

https://cloud.google.com/edge-tpu
https://devblogs.nvidia.com/nlu-with-tensorrt-bert

78

[63] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural

networks with pruning, trained quantization and hufman coding,” arXiv preprint

arXiv:1510.00149, 2015.

[64] “Edge tpu performance benchmarks.” url= https://coral.ai/docs/edgetpu/benchmarks/.

[65] B. Taylor, V. S. Marco, W. Wolf, Y. Elkhatib, and Z. Wang, “Adaptive

deep learning model selection on embedded systems,” ACM SIGPLAN Notices,

vol. 53, no. 6, pp. 31–43, 2018.

[66] S.-C. Cheng, Y.-C. Chang, Y.-L. F. Chiang, Y.-C. Chien, M. Cheng, C.-H. Yang,

C.-H. Huang, and Y.-N. Hsu, “First case of coronavirus disease 2019 (covid-19)

pneumonia in taiwan,” Journal of the Formosan Medical Association, 2020.

[67] T. Jeferson, C. B. Del Mar, L. Dooley, E. Ferroni, L. A. Al-Ansary, G. A.

Bawazeer, M. L. Van Driel, S. Nair, M. A. Jones, S. Thorning, et al., “Physical

interventions to interrupt or reduce the spread of respiratory viruses,” Cochrane

database of systematic reviews, no. 7, 2011.

[68] A. N. Desai and P. Patel, “Stopping the spread of covid-19,” Jama, vol. 323,

no. 15, pp. 1516–1516, 2020.

[69] M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, “A hybrid deep

transfer learning model with machine learning methods for face mask detection

in the era of the covid-19 pandemic,” Measurement, vol. 167, p. 108288, 2020.

[70] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam, “Mobilenets: Efcient convolutional neural networks for

mobile vision applications,” 2017.

[71] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:

Inverted residuals and linear bottlenecks,” 2019.

https://coral.ai/docs/edgetpu/benchmarks

79

[72] C. Szegedy, V. Vanhoucke, S. Iofe, J. Shlens, and Z. Wojna, “Rethinking the

inception architecture for computer vision,” 2015.

[73] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” 2015.

[74] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion,” 2015.

[75] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A

large-scale hierarchical image database,” in 2009 IEEE conference on computer

vision and pattern recognition, pp. 248–255, Ieee, 2009.

[76] M. Abadi and A. A. and, “TensorFlow: Large-scale machine learning on hetero-

geneous systems,” 2015. Software available from tensorfow.org.

[77] M. Abadi, “Tensorfow: learning functions at scale,” in Proceedings of the 21st

ACM SIGPLAN International Conference on Functional Programming, pp. 1–1,

2016.

[78] F. Chollet et al., “Keras.” https://github.com/fchollet/keras, 2015.

[79] M. Jiang, X. Fan, and H. Yan, “Retinamask: A face mask detector,” arXiv

preprint arXiv:2005.03950, 2020.

[80] M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, “Fighting against

covid-19: A novel deep learning model based on yolo-v2 with resnet-50 for med-

ical face mask detection,” Sustainable Cities and Society, p. 102600, 2020.

[81] M. Inamdar and N. Mehendale, “Real-time face mask identifcation using face-

masknet deep learning network,” Available at SSRN 3663305, 2020.

[82] C. L. et al, “Face mask detector,” 07 2020.

[83] G. J. Chowdary, N. S. Punn, S. K. Sonbhadra, and S. Agarwal, “Face mask

detection using transfer learning of inceptionv3,” 2020.

https://github.com/fchollet/keras
https://tensorflow.org

80

CURRICULUM VITA

SHEIKH RUFSAN REZA

EDUCATION

PhD. Student in Electrical Engineering, Prairie View A&M University, Prairie

View, Texas 77446, USA, Aug 2017 - till date

M.Sc. University of Massachusetts Lowell, USA, May 2016

B.Sc. Electrical and Electronics Engineering, North South University, Bangladesh

May 2013

WORK EXPERIENCE

Graduate Research Assistant, ECE Department, Prairie View A&M University,

Prairie View, Texas 77446, USA, October 2017 - till date

Graduate Research Assistant, University of Massachusetts Lowell, USA Aug 2015

- Dec 2015

PUBLICATIONS

1. Sheikh Rufsan Reza, Yuzhong Yan, Xishuang Dong and Lijun Qian, “Inference

Performance Comparison of Convolutional Neural Networks on Edge Devices”,

EAI Edge-IoT 2020.

2. Sheikh Rufsan Reza, Xishuang Dong and Lijun Qian, “Robust Face Mask Detec-

tion using Deep Learning on IoT Devices”, 2021 IEEE International Conference

on Communications Workshops (ICC Workshops).

81

3. Omobayode Fagbohungbe, Sheikh Rufsan Reza, Xishuang Dong and Lijun Qian,

“Efcient Privacy Preserving Edge Computing Framework for Image Classifca-

tion”, IEEE Transactions on Emerging Topics in Computational Intelligence.

2021.

	Deep Learning For Resource Constraint Devices

Accessibility Report

		Filename:

		S. Reza FINAL Dissertation 9.25.23.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 1

		Passed manually: 1

		Failed manually: 0

		Skipped: 0

		Passed: 27

		Failed: 3

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Failed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Failed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Failed		Appropriate nesting

Back to Top

