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Exposures constitute a dense network of the environment: 
exposome. Here, we argue for embracing the exposome 
paradigm to investigate the sum of nongenetic “risk” and 

show how predictive modeling approaches can be used to 
construct an exposome score (ES; an aggregated score of 
exposures) for schizophrenia. The training dataset consisted 
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of patients with schizophrenia and controls, whereas the in-
dependent validation dataset consisted of patients, their 
unaffected siblings, and controls. Binary exposures were 
cannabis use, hearing impairment, winter birth, bullying, 
and emotional, physical, and sexual abuse along with phys-
ical and emotional neglect. We applied logistic regression 
(LR), Gaussian Naive Bayes (GNB), the least absolute 
shrinkage and selection operator (LASSO), and Ridge 
penalized classification models to the training dataset. ESs, 
the sum of weighted exposures based on coefficients from 
each model, were calculated in the validation dataset. In 
addition, we estimated ES based on meta-analyses and a 
simple sum score of exposures. Accuracy, sensitivity, spec-
ificity, area under the receiver operating characteristic, 
and Nagelkerke’s R2 were compared. The ESMeta-analyses 
performed the worst, whereas the sum score and the ESGNB 
were worse than the ESLR that performed similar to the 
ESLASSO and ESRIDGE. The ESLR distinguished patients from 
controls (odds ratio [OR] = 1.94, P < .001), patients from 
siblings (OR = 1.58, P < .001), and siblings from controls 
(OR = 1.21, P = .001). An increase in ESLR was associated 
with a gradient increase of schizophrenia risk. In reference 
to the remaining fractions, the ESLR at top 30%, 20%, and 
10% of the control distribution yielded ORs of 3.72, 3.74, 
and 4.77, respectively. Our findings demonstrate that pre-
dictive modeling approaches can be harnessed to evaluate 
the exposome.

Key words:   schizophrenia/psychosis/predictive modeling/ 
machine learning/risk score/environment/childhood 
trauma/cannabis/winter birth/hearing impairment

Introduction

Several environmental exposures have been associated 
with psychosis spectrum disorder.1,2 Knowledge on this 
association has thus far been deduced from hypothesis-
driven selective one-exposure to one-outcome studies, 
akin to the candidate-gene approach.3 However, each 
exposure constitutes a fraction of a dense network of 
exposures: the exposome.4 Here, we argue for embracing 
the exposome paradigm to investigate the sum of the 
nongenetic “risk” and show how a predictive modeling 
approach can be used to construct an exposome score 
(ES) for schizophrenia, a single metric of aggregated en-
vironmental load similar to polygenic risk score.5

Approach

Guided by the predictive modeling methods for 
constructing cumulative environmental exposure scores,6,7 
we used 2 independent datasets to, first, build a predic-
tive model in the training dataset (the Work-package 6 of 
the European Network of National Networks studying 
Gene-Environment Interactions in Schizophrenia 
[EUGEI]2) and, second, construct and test the ES in 

the validation dataset (the Genetic Risk and Outcome 
of Psychosis [GROUP] study8). We examined the fol-
lowing widely evaluated environmental factors that we 
also recently investigated individually within the context 
of gene-environment interaction9: hearing impairment, 
winter birth, cannabis use, and childhood adversities 
(bullying, emotional, physical, and sexual abuse along 
with emotional and physical neglect).10 Our analysis was 
limited to the environmental exposures that were reli-
ably measured and equally available in both datasets. 
These environmental factors were defined according to 
previous studies.9 The detailed description of each en-
vironmental exposure is provided in the supplementary 
file. We used 4 prediction models to determine to what 
degree cumulative environmental exposure contributes 
to the liability for schizophrenia in a case-control de-
sign. Logistic regression (LR), Gaussian Naive Bayes 
(GNB), and penalized logistic regression (least absolute 
shrinkage and selection operator [LASSO] and Ridge) 
were applied to data with complete information on envi-
ronmental exposures. The description of the models and 
the distribution of exposures are provided in the supple-
mentary file. For each model, the dependent variable was 
the binary case-control status, whereas binary environ-
mental exposures were features (independent variables). 
First, we estimated coefficients of binary exposures in 
the training dataset including 1241 healthy controls and 
747 patients with a diagnosis of schizophrenia spectrum 
disorders. Second, we calculated the weighted sum of the 
exposures according to each predictive model in an in-
dependent validation dataset with 323 healthy controls, 
463 patients with a diagnosis of schizophrenia spectrum 
disorders, and 542 unaffected siblings of the patients. To 
compare the performance of ES from each model, we 
also generated an environmental sum score by simply 
adding each binary exposure per individual as 0 = absent 
and 1 = present (the sum score is ranging from 0 to 9) and 
a cumulative environmental score weighted by the meta-
analytical estimates for each exposure,11–14 conforming to 
a previous study.15 Finally, we tested the performance of 
ESs derived from each model by applying logistic regres-
sion in a case-control design in the independent validation 
dataset by evaluating the area under the receiver oper-
ating characteristic (ROC), accuracy (ACC), sensitivity, 
specificity, and Nagelkerke’s pseudo R2. In this regard, 
we prioritized models with better sensitivity than spec-
ificity as our main concern was to avoid misclassifying 
individuals diagnosed with schizophrenia.

Prediction in the Training Dataset

The coefficients of individual models (see figure  1a 
and supplementary table S2) indicate that cannabis use 
(coefficients ranging from 1.31 to 1.53), hearing impair-
ment (coefficients: 1.10–1.19), and bullying (coefficients: 
1.30–1.57) received the highest weights in the training 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz054#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz054#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz054#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz054#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz054#supplementary-data
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dataset. The lowest weight was attributed to winter birth 
with coefficients between 0.01 and 0.06. In comparison with 
the GNB model, which assumes independence between 
predictors, the LR, Ridge, and LASSO models yielded 
lower weights for emotional abuse, sexual abuse, emotional 
neglect, physical neglect, and bullying. Further, although 
physical abuse was a strong positive predictor in the GNB 
model, its predictive value was lost and even yielded a neg-
ative weight when using predictive model approaches that 
account for dependence between the predictors. This is in 
line with evidence that exposures are weakly to moderately 
correlated with each other.3,16–18 Consequently, coefficients 
are overestimated when independence is assumed.

Constructing and Testing the Performance of Exposome 
Score in an Independent Dataset

The ROC was used to estimate the performance of the 
calculated ESs in predicting the case-control status in the 
validation dataset (figure  1b and supplementary table 
S3). The ES based on meta-analytical estimates (the 
ESMeta-analyses), ESGNB, and the environmental sum score 
yielded the lowest ROC, 0.69, 0.71, and 0.71, respec-
tively, whereas all other ESs (ESLR, ESRIDGE, and ESLASSO) 
had ROC ranging from 0.73 to 0.74. With a chance level 
of 0.5 (as patients and controls were in balance in the 
training sample; see supplementary file), all ESs indicated 

Fig. 1.  (a) Coefficients profile for each exposure derived from different classification methods in the training dataset, GNB: Gaussian 
Naive Bayes, LR: logistic regression. (b) The area under the receiver operating characteristic for the different exposome scores in the 
validation dataset. (c) The histogram of the ESLR (exposome score based on logistic regression) for patients, siblings, and controls in the 
validation dataset. For visualization, a Gaussian distribution was fit to histogram counts by adjusting mean and standard deviations. 
(d) The risk strata plot of the ESLR on case-control status: The ESLR was divided into 5 quintiles (X-axis) of the control distribution and 
logistic regression was applied to case-control status as the dependent variable. The third quintile includes the median and was used as 
reference. The Y-axis represents odds ratios and the error bars show confidence intervals.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz054#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz054#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz054#supplementary-data
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an ACC above chance level (ACC: 0.62–0.68) with speci-
ficity between 0.42 and 0.72 and sensitivity between 0.56 
and 0.86. Compared to the ESLR, ESRIDGE, and ESLASSO, 
the ESs derived from the models assuming independence 
between exposures (ESGNB, environmental sum score, 
and ESMeta-analyses) performed worse on sensitivity and had 
more false negatives as they incorrectly classified patients 
as healthy. Given that our priority was reducing false 
negatives rather than reducing false positives and that 
the ESLR, ESRIDGE, and ESLASSO performed similarly well 
(figure 1b and supplementary table S3), we reported fur-
ther analyses with the ESLR, which was constructed on 
the basis of a widely available and commonly used statis-
tical model, logistic regression.

To examine whether the ESLR reflects schizophrenia li-
ability in the validation dataset, we evaluated the ESLR in 
patients, siblings, and controls (see figure 1c for an illus-
tration and supplementary table S4 for the other models). 
The ESLR discriminated patients from controls (odds ratio 
[OR]  =  1.94; 95% confidence interval [CI]  =  1.71–2.20;  
P < .001, Nagelkerke’s pseudo R2  =  0.21), also after 
adjusting for age and sex (OR = 1.87; 95% CI = 1.64–2.14;  
P < .001) in the validation dataset. Similarly, logistic re-
gression analysis showed higher ESLR in patients compared 
to siblings (OR  =  1.58; 95% CI  =  1.43–1.74; P < .001; 
adjusted for age and sex: OR = 1.55; 95% CI = 1.40–1.72; 
P < .001) and in siblings compared to controls (OR = 1.21; 
95% CI = 1.08–1.36; P = .001; adjusted for age and sex: 
OR = 1.23; 95% CI = 1.09–1.38; P < .001).

To visually represent the risk stratification properties 
of the ESLR, we categorized the ESLR using the quintiles 
of the control distribution and measured the case-control 
ORs using the middle quintile (median ESLR) as the 
reference. With an increase of the ESLR, we noticed a 
gradient increase in the risk for schizophrenia. In com-
parison with the median, the fifth quintile had a higher 
OR (OR  =  3.47; 95% CI  =  2.22–5.41; P < .001 and 
age- and sex-adjusted OR = 3.78; 95% CI = 2.34–6.09;  
P < .001) and the first quintile had a lower OR (OR = 0.30; 
95% CI = 0.17–0.53; P < .001 and age- and sex-adjusted 
OR = 0.34; 95% CI = 0.19–0.62; P < .001; figure 1c). We 
then dichotomized the ESLR with cutoff  points at 70%, 
80%, and 90% of the control distribution. Comparing the 
top and the bottom part translated to ORs of 3.81, 3.96, 
and 5.11 (age- and sex-adjusted ORs of 3.72, 3.74, and 
4.77) for 70%, 80%, and 90% of the distribution, respec-
tively (supplementary table S5).

Discussion

For the first time, we applied a predictive modeling 
approach to construct the ES for schizophrenia by 
leveraging 2 large independent datasets (training and val-
idation data) with similar assessment protocols for envi-
ronmental exposures. Our findings suggest that predictive 

modeling can be used to estimate environmental loading 
of a range of exposures. We found that the ESLR, ESRIDGE, 
and ESLASSO performed similarly well, whereas the ESs de-
rived from the models assuming independence performed 
worse. Of the ESGNB, ESMeta-analyses, and the simple sum-
mation of exposures, the ESMeta-analyses, relying on the ex-
ternal sources for extracting estimates for environmental 
exposures, showed the worst performance.

The low performance of the ES driven by meta-analyses 
might be related to the fact that meta-analytical estimates 
are derived from different studies that use different 
assessments, different definitions, and different cutoff  
points for exposures in different study populations,3 which 
might not be completely compatible with the dataset at 
hand. The availability of similar training and validation 
datasets plays a major role in prediction power—for in-
stance, the predictive performance of polygenic scores 
for schizophrenia is considerably lower in non-Caucasian 
ancestry samples.19 Therefore, a similar situation exists 
in estimating genetic liability, which, however, has the 
advantage of using more concrete, uniformly measured 
genetic variation for prediction in comparison to envi-
ronmental assessment. Generating a uniform “environ-
mental risk score” is even more challenging. For instance, 
cannabis use could be scored positive if  participants 
smoke daily, or at least weekly, or at least monthly for 
lifetime use or exposure during adolescence, whereas 
childhood adversities could similarly be measured by var-
ious methods. Therefore, as weights are determined by 
how strict or lenient the cutoff  points are, it is likely that 
the inconsistency between sampling and measurement 
strategies would introduce bias. Further, when individual 
coefficients from meta-analyses are used for a weighted 
environmental score, correlations between exposures are 
ignored, and weights may be overestimated.3 In line with 
this, we also show that GNB, which assumes independ-
ence between predictors, produces higher weights for 
exposures than the other data-driven models.

Similar to current results, previous studies show that 
more contemporary algorithms do not necessarily translate 
into superior performance over logistic regression for clin-
ical prediction modeling.20,21 However, it should be noted 
that our analysis did not involve a complex data struc-
ture with many predictors. Penalized classification models 
might have led to performance improvement if more com-
plex structures had to be considered (eg, increasing the 
number of predictors and adding pairwise interactions). 
Researchers likewise need to be cautious about overfitting 
models and be aware that, if environmental exposures are 
correlated, the initial simple model with a few predictors 
will show the highest portion of improvement. However, 
each sequentially added predictor would result in less and 
less improvement in model performance.21

The ESs assuming independence between predictors 
(sum score, ESMeta-analyses, and ESGNB) had lower sensitivity 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz054#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz054#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz054#supplementary-data
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than the rest. The ESMeta-analyses indicated the lowest sensi-
tivity (56%). The sensitivity of an environmental score de-
rived from meta-analytical estimates in a previous study 
was even lower, only around 7%–9%.15 In other words, 
predictive models that do not assume independence be-
tween exposures may more accurately classify patients 
as positive by decreasing false negatives. The ESs from 
the models assuming independence, however, had higher 
specificity and were better in decreasing false positives. As 
our main concern was to avoid misclassifying individuals 
diagnosed with schizophrenia, we chose sensitivity over 
specificity. Further, if  more environmental exposures 
were to be included in the ES, thus introducing more cor-
relation, the models not assuming independence between 
predictors (ESLR, ESRIDGE, and ESLASSO) would perform 
increasingly better than the models assuming independ-
ence (sum score, ESMeta-analyses, and ESGNB).

The ESLR, generated using an easily accessible method 
(logistic regression), achieved similar performance results 
compared with the ESRIDGE and ESLASSO. We used the ESLR 
to further explore the characteristics of the ES in the fol-
low-up analyses. In general, patients had higher ESLR than 
both controls and siblings, whereas siblings had higher 
ESLR than controls. The ESLR explained more variance 
(Nagelkerke R2 = 0.21) than the ESMeta-analyses (Nagelkerke 
R2  =  0.13). In accordance with our previous findings 
showing an additive effect for environmental factors,22,23 
our results indicate that the ESLR shows a dose-response 
effect: the odds of schizophrenia increase as a function of 
the ESLR. Eventually, an individual with ESLR in the top 
10% of the control distribution was around 5 times more 
likely to have schizophrenia compared to an individual 
below that cutoff.

Limitations of Exposome Score

Our analysis was limited to the environmental exposures 
that were reliably measurable and equally available in 
both datasets. The ES can be extended to include other 
environmental exposures (eg, obstetric and pregnancy 
complications and urban environment). We included 
winter birth as an exposure in the current analyses as 
previous studies suggest an association between winter 
birth and psychosis.14 However, summer birth was also 
previously associated with deficit schizophrenia and 
might therefore be evaluated as an exposure as well.24,25 
Considering evidence showing that common environ-
mental factors (eg, childhood adversity) are not specific 
to the psychosis phenotype but instead are more gener-
ally related to psychopathology,26,27 the ES would likely 
(to a degree) be associated with other mental disorders 
in mixed samples. Therefore, a low discriminant capacity 
for the ES should be anticipated. Given the nature of ob-
servational studies, causality claims should be avoided. 
Finally, it should be noted that although aggregating 

exposures leads to an increase in the predictive power 
and may be particularly beneficial in exploring shared 
mechanisms, the inherent heterogeneity of a single score 
may lead to information loss and biological impreci-
sion. Considering the reasons described earlier, we have 
avoided using the term “risk” and opted for a neutral al-
ternative: ES.

Conclusion

Our findings demonstrate that predictive modeling 
approaches can be harnessed to evaluate the exposome. 
In the future, we aim to explore models by including more 
exposures as well as interaction terms and test the predic-
tive power of the ES in epidemiologically representative 
general population cohorts.
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