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Abstract- One of the most essential ship reactions to waves is roll 

motion. Due to the intricacy of ship wave interactions and their 

sensitivity, predicting such a reaction is extremely challenging. 

Because vibration motion is an undesirable occurrence, it must be 

removed, decreased, or controlled. A coupled Pitch- roll ship 

model with negative cubic velocity feedback control subjected to 

parametric excitations is premeditated and solved in this paper. 

The method of multiple time scales is applied to scrutinize the 

response of the two modes of the system neighbouring the 

simultaneous sub-harmonic, and internal resonance situation. 

Besides, the steady-state solution is determined through the Rung-

Kutta Method (RKM) of fourth order. Stability of the steady state 

solution near this resonance case is discussed and studied 

applying Lyapunov’s first indirect method and Routh- Hurwitz 

criterion. The influences of the different parameters on the steady 

state solution are reconnoitred and discussed. The controller 

effects on the stability are clarified. Simulation results are 

accomplished with the help of MATLAB and Maple software 

programs. 

Keywords: Resonance, active feedback controller, stability 

analysis. 

I.  INTRODUCTION 

After 1863, Froude [1] widely studied the coupled pitch-

roll ship model, writing that ships have unwanted roll 

features when the usual pitch frequency is indeed almost 

doubled the natural frequency of roll ships, three types of 

displacement (heave, sway or float, and surge) and three 

angular motions (yaw, pitch, and roll) can be involved, as 

seen in Figure 1. The general equations of motion are defined 

by either the Lagrange equation (see, for instance, [2–5]) or 

Newton's second law of motion (see, for instance, [6-8]).  

One of the basic necessities of ship construction is stability 

against tipping of heavy seas. Capsizing is interrelated with 

the ship and waves' intense motion. The roll swaying is the 

most extreme motion of the six ship movements that can 

result in the ship capsizing. The reaction of ships can be 

designated by a linear equation for small angles of roll 

movements. However, as the oscillation amplitude increases, 

nonlinear effects are inherited. Nonlinearity may spread 

minor excitation deviations to the point that capsizing is 

subsidised by the restoring power. The non - linearity is 

subject to the reconfigured nature of the moments and 

damping. The ecological loadings are non-linear and beyond 

the designer's control. Nonlinearity of the moment of 

reconstruction is based on the form of the diagram of the 

right arm. 

M. A. Abkowitz [9] presented a significant improvement in 

the forces that function on wave, sway, and yaw motions for 

the ship. He used the hydrodynamic powers of the Taylor 

series to extend the direction of forward movement. The 

formulation has contributed to an infinite set of parameters 

and can simulate powers to an arbitrary degree of accuracy. 

Linear and formal non - linearity motion equations can then 

be generalised. Abkowitz [10, 11], Hwang [12], and 

Kallstrom and Astrom [13] offered separate methodologies 

later to approximate the correlation coefficient of such 

models. Son and Nomoto [14] extended Abkowitz's [9] 

analysis to incorporate the motion of ship-roll while deriving 

the forces and moments acting on the ship. Ross [15] created 

the dynamical differential equations of a ship 

manoeuvrability across waves utilising Kirchhoff's 

convolution integral methodology of the mass attached [16]. 

Kirchhoff's formulas are a series of interactions that are used 

to interpret the motion formulas from the derivatives of the 

kinetic energy scheme. They are specific circumstances of 

Euler-Lagrange formulations. The consequential equations 

also provide, as in Miline-thomson, and Fossen [17, 18], the 

Coriolis and centripetal powers. 

Rong [19] proposed several of the challenges of weak and 

high non-linearity sea loads on floating maritime networks. 

Using a first order multiple-time scale method, including the 

basic explanation for the saturation phenomenon of ship 

motion, Nayfeh and Mook [20, 21] made a significant 

contribution to nonlinear dynamics. Pan et al. [22] reviewed 

the vibrating behaviours of the mathematical model for a 

pitch-roll ship with dynamic perturbation using the averaging 

procedure and two variations of the multi-scale method. For 

computational simulations, they found that all three 

theoretical findings were in good harmony. A modification to 

the saturation phenomenon was however, introduced by both 

strategies. They extended their research to the case of 

amplitude modulation sine wave perturbation for the same 

model in their other paper [23], focusing on the influence of 

modification on the device's performance and the stability of 

the algorithm with zero magnitude roll mode. Kamel [24] and 

Zhou et al. [25] suggested stability and bifurcation 

methodology through analytical and empirical means, 

respectively, in consideration of the combination resonance 

in the presence of internal resonance for the same model that 

describes the nonlinear partnered pitch-roll motion of ships 

under sinusoidal harmonic excitation. In other words, their 
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analysis centred specifically on the continuity of the two-

degree theory of freedom in the periodic solutions and the 

characteristics of local bifurcations.  

A nonlinear relating internal resonance analysis for shear 

roll and practical pitch output of a spar-specific framework 

through waves and vortex-induced packing was suggested by 

Li Wei et al. [26], where even the heave, roll and pitch 

frequency ratio is about 2:1:1. For the long - span mechanism 

within its control of first wave loads in the heave and pitch, 

and spiral driven loads in the roll, with respect to vastly 

differing wet terrain, the 3 DOFs structure of non - linearity 

formulas is created. 

 In Lihua Liang et al. [27], a ride control system (RCS) 

based on linear quadratic regulator (LQR) and genetic 

algorithm (GA) functionality is proposed to minimise wave 

penetrating catamarans (WPC) heave, roll and pitch 

modulation in beam waves (3 degrees of freedom geometry 

(3 DOF motion)). For the WPC vessel, a robust 3 DOF ride 

regulation model is expected, consisting of the coupling and 

separating interactions between spatial and transverse 

motion. And the complicated coefficients of hydrodynamics 

and disturbances caused by beam waves are being 

scrutinised. In addition, in the intermittent flapping 

procedure, the system is fitted with two stern flaps. In the 

controller architectural design, the GA approach-based LQR 

technique is used to greatly reduce the ship's 3 DOF motion. 

Weighting categories may be gathered to determine the 

optimal gain, based on the robust search process and the 

global optimum of GA. 

Liang et al. [28, 29], incorporated the 2-degrees of the 

principle of free movement (heave and pitch) of the Wave 

Piercing Catamarans (WPC) vessel and proposed for the ride 

control system (RCS) of the ship dependent on predictive and 

linear quadratic regulator (LQR) control approaches. 

Horizontal high-speed vibration elevator induced by rail 

roughness is solved by shunxin cao et al., A 6-degree of 

freedom, the model of horizontal vibration of the high-speed 

elevator car scheme is advanced and premeditated by taking 

into account the limitations of the active guide shoe's stroke 

and actuator strength. To decrease the vibration of the car 

structure, the H2 standard is chosen. By incorporating the 

Nonlinear Integral Positive Position Feedback (NIPPF) to 

control the vibrating system, the formulation of a combined 

Rayleigh-Van der Pol-Duffing oscillator was modified by 

Amer et al. [30]. A 3-degree-of - freedom (3-DOF) 

comprising the cubic nonlinear term and the external force is 

posed to the system. They supposed to apply the Multiple 

Scales Method (MSM) to really get the solution from the first 

approximation. 

 N. A. Saeed et al. [31] investigated and controlled the 

nonlinear dynamical behaviors of a nonlinear asymmetric 

rotating shaft system. They introduced a linear proportional-

derivative controller to suppress the lateral vibrations of the 

rotating shaft. Perturbation and numerical solution for 

vibrations analysis and controlling of a system which 

simulates the vibrations of a nonlinear composite beam 

model were discussed by M. sayed et al. [32]. The stability 

analysis of the system were obtained by frequency response 

(FR). They conducted Bifurcation analysis using various 

control parameters such as natural frequency, detuning 

parameter, feedback signal gain, control signal gain, and 

other parameters. 

 The nonlinear vibrations of a contact-mode atomic force 

microscopy (AFM) model subjected to multi excitations are 

controlled via a time-delayed positive position feedback 

(PPF) controller by Y.S. Hamed et al. [33]. To obtain the 

approximate nonlinear dynamical behaviour of the AFM 

system they applied the multiple time scales perturbation 

method. In addition, Y.S. Hamed et al. [34] investigated the 

nonlinear oscillations, stability and resonance of a cantilever 

beam system which carrying an intermediate lumped mass. 

The response of amplitudes and phases of the differential 

equation governing is derived applying the multiple scale 

perturbation (MSP) method. The nonlinear vibration control 

is analyzed using a new nonlinear modified positive position 

feedback (MPPF) approach. The nonlinear approximate 

solutions for this system up to and inclusive the second order 

approximation are solved.  

The aim of this research is to change the Xinye Li et al. 

[30] model by introducing a negative feedback controller for 

the cubic velocity signal. A 2-DOF device subjected to multi 

parametric excitations is described by this model. In order to 

achieve the semi-closed solution, MTSM is used to analyse 

the reaction of the modified device near to the synchronised 

internal and sub-harmonic resonance situation. The system's 

stability is explored by applying frequency response 

equations close this worst simultaneous resonance event. Any 

guidelines are recorded about the various device parameters 

and the effects of the controller on the actions of the device 

are provided numerically. Comparisons are stated with the 

numerical solution.  

 

 
Fig. 1. Ship simulation model presenting the 6-degrees of freedom. 

 

II.  SYSTEM MODEL AND MATHEMATICAL 

ANALYSIS 

 The mathematical model for the system is given in [30] as: 

2

1 1

2

2 1

2 2

2 1 2

( ) ( ) ( ( ) ( )

( ) ( ) ( )),

( ) ( ) ( ( ) cos( ) ),

U t U t U t V t

U t V t U t

V t V t U t F t V

  

 

   

 

 

    

           

(1)  

where ( )U t and ( )V t denote the roll and pitch orientations 

respectively,  is the encounter frequency, 1 2,   are 

internal frequencies, and   is a small perturbation 

parameter. Considering external parametric pitch and roll 

model excitation forces ( 1 2,F F ), and the impact of active 
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control of negative cubic velocity feedback be discussed. 

With this considerations system (1) will be: 
2 2

1 1 2

3

1 1 1 1

2 2

2 1 2 2 2

( ) ( ) ( ( ) ( ) ( ) ( )

( ) ( )cos( ) ),

( ) ( ) ( ( ) cos( ) ),

U t U t U t V t U t V t

U t F U t t G U

V t V t U t F t V

   



   

  

   

    

          (2) 

The second order approximation is given by applying the 

Multiple Time Scales (MTSM) procedure, so ( )U t and ( )V t  

in power series form will be: 
2

1 1 1 1

2

1 1 1 1

( , , ) ( , ) ( , ) ( ),

( , , ) ( , ) ( , ) ( ).

o o o o

o o o o

U T T U T T U T T O

V T T V T T V T T O

  

  

  

  
         (3) 

where the time derivative takes the values: 

2
2 2 2

0 1 0 12
( ), 2 ( ),o

d d
D D O D D D O

dt dt
                  (4) 

and , , 0,1.n

n n

n

T t D n
T




  


  

Switching equations (3), (4) into (2) and equating same 

power of  coefficients to take out: 
0( )O  : 

2 2

0

2 2

0

( ) 0,

( ) 0.

o o

o o

D U

D V





 

 
                                           (5) 

( )O  : 

   

2 2

1 1 1 1 1 1

2 3

1 2 1

( ) 2 cos( )o o o o o o

o o o o o o o

D U D D U D U F U t

U V U D V G D U

 

 

     

  
     (6) 

 
2 2

2 1 1 2

2

2 2 1

( ) 2

cos( ) .

o o o o o

o o

D V D D V D U

F V t U

 



   

  
                                   (7) 

 

Obviously solution of (5) is:  
1 0 1 0

2 0 2 0

0 1 1 1 1

0 1 1 1 1

( ) ( ) ,

( ) ( ) .

i T i T

i T i T

U A T e A T e

V B T e B T e

 

 





 

 
                                     (8)                                                                                                   

 

Substituting (8) for (6) and (7), we then have: 

1 1

1 1

2 2

1 1 1 1 1 1 1 1

1 1 1 1 1

( ) 2 o o

o o

i T i T

o

i T i T

D U i D A e i D A e

i A e i A e

 

 

  

  





     

    

 

 

 

1 1

1 1 2 2

1 1 2 2

1 1

1 1 1 1

1 1 1 1 1

2

2 1 1 2 1 2 1

3

1 1 1 1 1

cos( )

,

o o

o o o o

o o o o

o o

i T i T

o

i T i T i T i T

i T i T i T i T

i T i T

F T A e A e

A e A e B e B e

A e A e i B e i B e

G i A e i A e

 

   

   

 



  

 



 

 



    

        

    

 

 (9) 

2 2

2 2

1 1

2 2

2 2

2 1 2 1 1 2 1 1

2 2 1 2 1

2 22 2

1 1 1 1 1

2 2 1 1

( ) 2

2

cos( ) .

o o

o o

o o

o o

i T i T

o

i T i T

i T i T

i T i T

o

D V i D B e i D B e

i B e i B e

A e A e A A

F T B e B e

 

 

 

 

  

  











     

   

    

    

       (10)

 

Now, due to resonance case, we will study the system's 

severe operating approaches, this worst case at: 

1 1 1

2 1 2

2 ,

2 .

 

  

  

 
                                                      (11) 

Eliminating coefficients of all secular terms from (9) and 

(10), yields 
 
                                                                                       

2 1

1 1

1 1 1 1 1 1 1 1 1

2 3 2 1
2 1 1 1 2 1 1 1 1

2

3 0,
2

i T

i T

i A i D A A B e

f A
A B B iG A A e





   

  

  

   
             (12) 

2 12

2 2 1 2 1 1 1 12 0.
i T

i B i D B A e
    

                        (13)                        
 

Converting the functions 
1A and 

1B into the polar form: 

 

1

2

1
1

2
1

,
2

,
2

i

i

a
A e

a
B e









                                                               (14)                                                                                                                      

where 1 2,a a are the system amplitude and 1 2,   are the 

system phase. 

Introducing (14) into (12), (13), in the resulting equations, 

we compare the real and imaginary parts, then we get: 
2 3

1 1 1 1 2 2 1 1 1 1 1 1
1

1 1

sin( ) 3 sin( )
,

2 4 8 4

a a a G a F a
a

    

 
         (15)

           

                                                          
2 2

1 1 2 2 2 1 2 2 1 1 1
1 1 1 1

1 1 1

cos( ) cos( )
,

2 4 2

a a a a F a
a a

    
 

  
      (16)

                         
2

2 2 1 1 2
2

1

sin( )
,

2 4

a a
a

  


                                  (17)

                                                                                                        
2 3 2

1 2 2 2 2 2
2 2 2 2

1 1

2

1 2 1 1 1 2

1 1

cos( )

2 4

cos( ) cos( )
,

2 4

a a
a a

F a a

   
 

 

  

 

  

 

                       (18) 

where 

1 1 1 1

2 2 1 2 1

2 ,

2 .

T

T

  

   

 

  
                                               (19) 

A. Steady state solution         

The amplitude and phase steady state solution is obtained 

by substituting 

1 1 2 2 0a a      into Eq. (15)-(18), we get: 

 
2 2

1 1 1 1 1 1 1 1 2 2 2 1 2 2

1

cos( ) cos( )
,

2 2 4 8

F a a a a a a     



 
    

 
   (20)

 

                                                          
3 3

1 1 1 1 1 1 1 2 2 1 1 1
1

sin( ) 3
sin( ) ,

4 2 4 8

F a a a a G a    
             (21)    
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2 2 2
2 2

1 1

2
sin ( ) ,

a

a

 



                                                    (22)

                                                                                                                  
2 2 2 2

2 2

1 1

4 ( )
cos( ) .

a

a

  





                                                 (23)

                                                                                                         
 

Squaring and adding both sides of (21) and (22), gives  

 

4
2 1 1
2 22 2

2 2 1 2

.
4 4

a
a



   


  
 

                                           (24)                                                                                                    

Substituting from (22)-(24) into (20) and (21), squaring 

and adding the resultant equations to have the frequency 

response equation in the form: 

 

   

2 8 6 2 2 4

2 1 1 2 1 1 3 2 1 1 1

2 2
2 2 21 1

1 1 1 3 1 1 1 1 1

2

0,
4 16

a a a

F
a

 


     

       

      
          (25)   

where 

1 1 2 1
1 2 2

2 2 1 2

2

2 1
2 2 2

2 1 2

3

1 1 2 1 1
3 2 2

2 2 1 2

( )
,

4 4( )

,
32 4( )

3
.

88 4( )

G

   

   

 

  

   

   


 

   

 
   

  
   

                         (26) 

 

B. Stability analysis  

Linearizing equations (15)-(18) according to the Lyapunov 

first (indirect) form, given in Soltine et al. [35], Liang [36] to 

address the stability behaviour of these solutions, to give the 

following system: 

11 12 13 141 1

21 22 23 241 1

31 32 33 342 2

41 42 43 442 2

,

a a

a a

   

    

   

    

    
    
    
    
    

    

                               (27)

 

                                                                                             

 
where , { , 1,2,3,4}ij i j   are included in “appendix”.  

The stability of the steady-state solution therefore, depends 

on the Jacobian matrix's eigenvalues that can be obtained by 

solving the following characteristic equation: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0,

    

    

    

    










                              (28) 

or  

4 3 2

1 2 3 4 0            ,                                   (29) 

where   denotes the Jacobian matrix  J  eigenvalues, 

, 1: 4k k   are the characteristic equation coefficients 

depending on the parameters 1 2 1 2 1 2 1, , , , , ,and        

given in Appendix. As shown by the Routh-Huriwitz 

criterion the solution of the state is asymptotically stable if 

and only if it is:  

1

1

4

1 2 3

2

3 1 2 3 4

0,

0,

0,

( ) 0.

and





 

    





 

  

                                                 (30) 

Routh-Huriwitz conditions (30) are established numerically 

with the help of MATLAB software for estimating the stable 

and the unstable regions in the frequency response curves.  

III.  RESULTS AND DISCUSSION 

In this section, we demonstrate the behaviour of the 

amplitude and phase of the system in the resonance and the 

non-resonance states. To assess the numerical solution of the 

given scheme, the procedure of RK4 is being used, supposing 

the following parameters:
1 2 1 10.4, 1, 1, 1,        

2 1 2 15, 15, 9.6, 4,F F G    
1 26, 13.    The time 

response is seen in Figure 2 (a) and (b) for the magnitudes 

,U and V respectively
 
at non-resonant situation and without 

control ( 1 0G  ). Figure 3 (a), (b) shows the time response 

for the system without and with applying negative cubic 

velocity feedback active control (i.e. 1 10, 4G G  ) with 

sub-harmonic resonance instance 
1 1 12 ,    2   

1 22  . Figure 3 (c), (d) clarifies the system phase plane. 

Fig. 3 (a, b) demonstrated that the amplitude of the system is 

reduced to about 98% in U  direction and about 99.8%  in 

V direction under the effect of the negative feedback signal 

for the cubic velocity which represented by the coefficient of 

gain 1G . Liang et al (2017) measure the reduction ratio as 

(balanced amplitude before submission of control- balanced 

amplitude after submission of control) / steady amplitude 

before submission of control). 

 

 
Fig. 2. (a) The time response solution of u at 

1
0G  , at none 

resonance case. 
 

 
Fig. 2.  (b) the time response solution of v at 

1
0G  , at none 

resonance case. 
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Fig. 3. (a), (b) the time response solution at 

1 1
0, 4G G  , 

(c) and (d) system phase plane. 
 

 

In Figure 4, for controlled and uncontrolled processes, the 

response curve is shown. This curve shows that, in the event 

of an uncontrolled system, the equilibrium area (black curve) 

is very small compared with the unstable region (red curve). 

The use of the negative cubic velocity feedback control for 

the coupled pitch-roll system, as seen in Figure 5, improves 

the stable area. Figures 6-11 clarify the effects of input 

parameters on the response curves. We observe in figures 6, 7 

that system amplitude is proportional inversely with varying 

the damping parameters 1 2,  without shifting.  
      It is clear from Figure 8 that it increases positively or 

declines adversely 1G reduces the system amplitudes. 

Modifying the original natural frequency 1 of the system 

modes changes the amplitudes in the response curves 

inversely, as clarified in figures 9, 10, whilst the change of 

the external force 1F leads to a proportional change in 

system amplitude as illustrated in figure 11.  

-5 -4 -3 -2 -1 0 1 2
0

2

4

6

8

10

12




a
1

without control

with control

 
Fig. 4. Response curve for controlled and uncontrolled system, stability region 

(black curve) and unstable region (red curve). 

 

 
Fig. 5. Response curve for controlled system, stability region (black curve) 

and unstable region (red curve). 

 

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

a 1




 

 
Unstable region

Stable region













 

Fig. 6. Response curve  1a  versus 1 for controlled system with various 

values of damping coefficient 1 .  

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8
x 10

-4




a
2













 
Fig. 7. Response curve  2a  versus 2 for controlled system with various 

values of damping coefficient 2 .  
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0
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a 1

 

 

G
1
=4

G
1
=6

G
1
=2

 
Fig 8. Response curve  

1
a  versus 

1
 for controlled system with various 

values of the control gain 
1

G .  

 

Fig. 9. Response curve  1a  versus 1 for controlled system with various 

values of  1 .  

 
Fig. 10. Response curve  2a  versus 2  for controlled system with various 

values of 
1

 .  

 

Both solutions induced by (MTSM) and numerical solution 

using Rung-Kutta Method (RKM) of fourth order are 

matched in figures 12-14 for time history and frequency 

response curves for the system. Figure 12 shows good 

agreement between the approximate solution (blue curve) and 

the analytical outcome (red curve) of the resonance case 

active control scheme equation, and Figures 12 and 14 show 

good results for the frequency response between the two 

methods used (MTSM and RKM). 

 

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09




a
1

F
1
=15

F
1
=12

F
1
=10

 
Fig. 11. Response curve  

1
a  versus 

1
 for controlled system with various 

values of the force 
1

F .  

 
Fig. 12. Comparison between the amplitude induced (MTSM) and (RKM) of 

fourth order (time history). At resonance case 

1 1 1 2 1 2
2 , 2         and with control, 

1
4.G     

 

 
Fig. 13. Comparison between analytic and numerical solutions (response curve 

1a  versus 1 ). 

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-4




a
2

 
Fig. 14. Comparison between analytic and numerical solutions (response curve 

2a  versus 2 ). 

6

Journal of Engineering Research, Vol. 5 [2021], Iss. 2, Art. 5

https://digitalcommons.aaru.edu.jo/erjeng/vol5/iss2/5



Vol. 5 – 2021                                                                                                                Journal of  Engineering Research (ERJ) 

 

37 

 

 

IV.  CONCLUSION  

In this research, a coupled pitch-roll model was presented 

and solved using multiple time scales method and discussed 

the worst resonance cases of under negative cubic velocity 

feedback control. This worst resonance cases were 

instantaneous internal, and sub-harmonic resonance. The 

effect of negative cubic velocity feedback controller was 

illustrated and discussed. It was shown that control effect of 

the first mode was about 98% and about 99.8% in the second 

mode. A desired stability review has also been carried out 

and appropriate decisions have been found for the feedback 

benefits in order to reduce the peak amplitude. In addition, 

analytic solutions were compared with numerical 

approximation solutions using Rung-Kutta method, these 

comparisons gave a good agreement between analytic and 

numerical solutions. 
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