
Journal of Engineering Research Journal of Engineering Research 

Volume 6 Issue 5 Article 21 

2022 

DeepLab V3+ Based Semantic Segmentation of COVID -19 DeepLab V3+ Based Semantic Segmentation of COVID -19 

Lesions in Computed Tomography Images Lesions in Computed Tomography Images 

Merihan Mohamed Abdalwahab Eissa Abdalwahab, Sameh Napoleon, Amira S. Ashour 

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/erjeng 

Recommended Citation Recommended Citation 
Mohamed Abdalwahab Eissa Abdalwahab, Sameh Napoleon, Amira S. Ashour, Merihan (2022) "DeepLab 
V3+ Based Semantic Segmentation of COVID -19 Lesions in Computed Tomography Images," Journal of 
Engineering Research: Vol. 6: Iss. 5, Article 21. 
Available at: https://digitalcommons.aaru.edu.jo/erjeng/vol6/iss5/21 

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for 
inclusion in Journal of Engineering Research by an authorized editor. The journal is hosted on Digital Commons, an 
Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo, 
u.murad@aaru.edu.jo. 

https://digitalcommons.aaru.edu.jo/erjeng
https://digitalcommons.aaru.edu.jo/erjeng/vol6
https://digitalcommons.aaru.edu.jo/erjeng/vol6/iss5
https://digitalcommons.aaru.edu.jo/erjeng/vol6/iss5/21
https://digitalcommons.aaru.edu.jo/erjeng?utm_source=digitalcommons.aaru.edu.jo%2Ferjeng%2Fvol6%2Fiss5%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.aaru.edu.jo/erjeng/vol6/iss5/21?utm_source=digitalcommons.aaru.edu.jo%2Ferjeng%2Fvol6%2Fiss5%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.elsevier.com/solutions/digital-commons
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo


Vol. 6, No. 5 – 2022                                                                                                                                  Journal of Engineering Research (ERJ) 

184 

DeepLab V3+ Based Semantic Segmentation of 

COVID -19 Lesions in Computed Tomography 

Images 
Merihan M. Eissa*, Sameh A. Napoleon, Amira S. Ashour 

Department of Electronics and Electrical communication Engineering, Faculty of Engineering, Tanta University, Egypt 
email: merihan.eissa@f-eng.tanta.edu.eg 

 

Abstract- Coronavirus 2019 spreads rapidly worldwide 

causing a global epidemic. Early detection and diagnosis of 

COVID-19 is critical for treatment as it causes respiratory 

syndrome appears in the chest medical images, such as 

computed tomography (CT) images, and X-ray images. The CT 

images are more sensitive and have more details compared to 

the X-ray images. Thus, automated segmentation plays an 

imperative role in detecting, diagnosing, and determining the 

spreading of COVID-19. In this paper, the DeepLabV3+ 

combined with MobileNet-V2 model was implemented. To 

validate this combination, we conducted a comparative study 

between the DeepLabV3+ variants by its combination with 

MobileNet-V2 against DeepLabV3+ combined with different 

CNN, namely ResNet-18, and ResNet50. Also, a comparative 

study with the basic traditional U-Net and modified Alex for 

segmentation was carried out. The experimental results showed 

the superiority of the using DeepLabV3+ combined with 

MobileNet-V2 for COVID-19 segmentation by achieving 97.5% 

mean accuracy, 95.2% sensitivity, 99.7% specificity, 99.7% 

precision, 99.3 % weighted Jaccard coefficient, and 97.5% 

weighted dice coefficient. 

Keywords- COVID-19, semantic segmentation, DeepLabV3+, 

MobileNet-V2, depth-wise separable convolution layer. 

1.INTRODUCTION 

Coronavirus spreads rapidly causing death and negatively 

affecting the public health as it is considered a global 

pandemic. The diagnosis and screening of COVID-19 reduce 

its spread and improve the ability of treatment [1] Medical 

imaging techniques like X-ray and computed tomography 

(CT) scans are considered robust solutions to diagnosis and 

determine the severity of the COVID-19 infection[2,3]. The 

CT imaging provides a 3D scan which provides more details 

compared to X-ray imaging. Also, CT scans are sensitive and 

able to detect irregularities region in lung and have a high 

spatial resolution [1,4]. Accordingly, several studies have 

been conducted to develop automatic segmentation models 

for detecting COVID-19. One of these models is using 

semantic segmentation which is based on pixel-wise image 

classification, where each pixel in the image is classified into 

one of the predetermined classes. Its architecture is divided 

into two main parts, namely the encoder for features 

extraction, and the decoder part for generating the predicted 

segmented image from the extracted information [5]. 

The DeepLabV3+ network is based on redesigned 

convolutional neural network (CNN) model, such as 

pretrained ResNet-18, ResNet-50, and MobileNet-V2 as 

encoder part in the semantic segmentation [4]. On the other 

hand, MobileNetV2 is a CNN network that consists of 

inverted residuals, and linear bottlenecks blocks based on 

depth-wise separable convolution layer [6]. The depth-wise 

separable convolutional layer is used instead of the standard 

convolutional layer as it consists of depth-wise convolution 

layer and point-wise convolution layer that reduces the 

number of parameters for faster network [8].  
Several researches applied deep learning networks for 

segmentation using DeepLabV3+, for example in [5] it was 

designed based on Res-Net 50, and Atrous Spatial Pyramid 

Pooling (ASPP) module with minor modification in its 

dilated rate. Small dilated rates, including 4, 8, and 12, were 

used instead of 6, 12, and 18, to capture small morphological 

details. This model was used to segment three classes: 

background, lung, covid-19 lesions in CT chest images, 

which achieved 88.1%, 80%, 90%, and 97.8% dice 

coefficient, Jaccard coefficient, sensitivity, and specificity, 

respectively. In addition, a 3D CU-Net was designed by 

Zheng et al.[7] for CT covid-19 segmentation based on the 

standard 3D U-Net.  Skip connections were placed between 

the encoders and their corresponding decoders using attention 

gate to improve the feature map representation. Moreover, a 

pyramid fusion module with dilated convolutions was used to 

create multiscale information.  

The Tversky loss function was applied to resolve irregular 

distribution and the size of lesions. This 3D CU-Net realized 

96.3%, and 77.8% dice similarity coefficients in lung, and 

COVID-19 lesions, respectively. Double U-Net was 

implemented by Jha et al. [8], which consists of two 

consecutive U-Nets. The architecture of the first stage U-Net 

used the pretrained VGG-19 network as an encoder to 

capture efficient information, then a ASPP module was 

applied between encoder and decoder to capture high 

resolution feature maps. The input of the second stage U-Net 

is the multiplication of the original image and the predicted 

output of the first network. The decoder of the second 

network used a skip connection from encoders of the two 

networks. This DoubleU-Net achieved superior performance 

compared to single U-Net especially in the case of the CVC-

Clinic DB as realized 92.39% Dice coefficient, and 86.11% 

mean Jaccard.  

A MSDC-Net implemented by [9] for COVID-19 lesions 

segmentation by using U-Net as a backbone, and a multiscale 

feature capture block to segment different lesions size. 

Different feature maps from downsampling path were 

aggregated by multilevel feature aggregate (MLFA) module 

to improve the performance of the segmentation network. Al-

Eiadeh [10] implemented a DeepLabV3 with ResNet-18 for 

Chest X-ray lung segmentation using ASPP module to 

provide rich and multi-scale spatial information. This model 

achieved 96.9%, and 94.1% dice, and Jaccard, respectively. 

Jabber et al. [10] used chest x-ray image to detect COVID-19 

patients, Different classification network, namely, Inception 

V3, ResNet50, Mobile Net, and Xception, were used to 
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evaluate their performance. Mobile Net achieved the best 

performance of 98.6% accuracy, 99.3% specificity, and 

87.8% precision.  

The previous studies showed that the dilated convolution 

helps to capture information of multi scale and segment 

lesions of different size. Thus, the ASPP module helps to 

improve the performance of network, the Mobile Net proved 

its ability to classified COVID-19 patient which by extracting 

the significant features. The DeepLabV3+ redesigned with a 

CNN as an encoder to improve its accuracy. Therefore, in 

this paper, the DeepLabV3+ was integrated with the 

MobileNet-V2, then conduced a comparative study between 

using different CNN, namely ResNet-18, and ResNet-50 with 

DeepLabV3+ for segmentation. Also, we compared these 

models with the modified AlexNet for segmentation, and the 

basic U-Net structure.  

2.MATERIAL AND METHODS 

A. Material 

In this study, a public COVID-19 CT image dataset 

consists of 20 labelled COVID-19 volumetric CT scan for 

each patient. Each CT scan has nii extension format. The, 2D 

images of each patient are extracted from their corresponding 

volumetric CT form leading to   3436 CT slices [11].  The 

sizes of the original images area 512*512 or 630*630. The 

CT images and their ground truth are 256 gray levels images 

as they are 8-bits images. In this paper, the most significant 

CT images/slices that show obviously the infection lesions 

2D images from the CT scans were selected, which are 120 

CT images. These selected images are used for the 

augmentation process. Fig. 1 shows samples of COVID-19 

lung CT images, and their corresponding ground-truth. 

 

  

  

  

(a) (b) 

 
Figure 1. Sample images from the used dataset, where (a) COVID-19 

lung CT images, and (b) their corresponding ground-truth of the 

infected lesion. 

B. Methodology  

Semantic segmentation divides the image into regions 

based on the features, such as grayscale, geometric shapes, 

and colour. The encoding part is responsible of feature 

extraction, where several CNN architectures can be used. 

Typically, the CNN includes encoder and decoder parts for 

segmentation, however, the model’s architecture has an effect 

on extracted features [12]. Also, increasing number of layers 

for deeper network and meaningful features may cause 

overfitting problem. In this paper, a DeepLabV3+ integrated 

with MobileNet-V2 was implemented. In addition, 

comparisons between this combination against using other 

different CNNs with DeepLabV3+ were conducted, 

including DeepLabV3+ with Resnet18, and DeepLabV3+ 

with Resnet50. Furthermore, a comparison with the 

traditional AlexNet, and traditional U-Net was conduct to 

evaluate the superiority of the proposed network for 

segmenting COVID-19 lesions. 

The DeepLabV3+ combined with MobileNet-V2 consists 

of encoder and decoder parts, where i) the encoder is based 

on MobileNet-V2 as inverted residuals and linear bottlenecks 

that consist of depth-wise separable convolutions to extract 

feature using few number of weights achieving low 

computational cost, ii) the Atrous Spatial Pyramid Pooling 

(ASPP) module, and the iii) decoder. The different stages in 

the implemented model are as follows. 

a. Pre-processing stage  

An augmentation process was applied on the 120 selected 

CT images by rotating a set of the original images at different 

angles, namely 10, 20, 30, 180, -10, -20, and -30 to obtain 

960 images, as the seven rotation angles providing 840 

augmented images from the 120 CT images. In addition, a 

resizing to 224×224  of all used images (i.e. CT images, and 

their corresponding ground-truth ones) was conducted. 

Besides, the dataset was split randomly into 70% training 

subset, and 30% (15% validation subset and 15 % testing 

subset). 

b. The combined DeepLabV3+ and MobileNet-V2 for 

COVID-19 segmentation 

In this section, the main component of the combined 

DeepLabV3+ and MobileNet-V2 is described to explain its 

advantages. The combined model architecture consists of 

inverted residuals and linear bottlenecks as an encoder, ASPP 

module, and a decoder. 

1. Inverted residuals and linear bottlenecks encoder  

(a) Depth-wise separable convolutions  

The depth-wise separable convolutions are the main 

components of MobileNet by replacing and factorizing the 

standard convolution layer by two separated convolution 

layers, namely, depth-wise convolution layer, and point-wise 

convolution layer. The depth-wise convolution layer (DW) 

applies a 2D kernel to filter each channel of the input feature 

map using number of the required kernels equals to the 

number of input channels. Then, the point-wise convolution 

layer (PW) applies a 1×1  convolution layer along the depth 

(channel) to combine the output C. The main advantage of 

using the depth-wise separable convolution instead of the 

standard convolution is the reduction of the computational 

cost[13]. Fig. 2 describes the used kernel at the standard 

convolution layer, and for the depth-wise separable 

convolution layer. 
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(a) (b.1) (b.2) 

Figure 2. The size of the used kernel in: (a) the standard convolution 

layer, and (b) the depth-wise separable convolution layer, where (b.1) 

the depth-wise convolution layer, and (b.2) the point-wise convolution 

layer. 

 

Figure 2 (a) illustrates that if the standard convolution 

layer applies N numbers of kernels size K×K×M  on the 

input feature map with size H× W×M , it produces an 

output C of size H×W×N .  Thus, the computational cost of 

the standard convolution C
1  is defined as follows [13] 

C = K × K × M× N× H× W
1

 (1) 

where H , W  are the height and width of the input feature 

map, respectively, M is the number of channel in the input 

feature map, N  is number of kernels, K is the height and 

width of the applied filter at S = 1 , S  is the stride (step size) 

which the  kernel used to shift over the input feature map. In 

addition, if the depth-wise separable convolution is used, the 

depth-wise convolution layer with M number of kernels size 

K×K×1 as shown in Fig. 2 (b.1) on the input feature map 

with size H× W×M , an output size H× W×M  is produces 

assuming also that S = 1  with applying the same 

convolution. Afterward, the PW layer is applied on the output 

of DW layer with N  number of kernels size 1×1×M  as 

shown in Fig. 2 (b.2), which produces an output size 

h × w × N  assuming S = 1  and apply same convolution. The 

computational cost of the depth-wise separable convolution 

C
2  is defined as [14] 

   C = K× K×1× M× H× W + 1×1× M× N× H× W
2

 (2) 

For determining the reduction percentage of computational 

cost R , divide C
2  by C

1  as [15] 

1 1
R% = + 100

2N K


 
 
 

 (3) 

By assuming N = 32 , and K = 3 , the depth-wise separable 

convolution requires only 14.2% of the require computation 

in the case of standard convolution. Consequently, the 

consumption time is approximately seven times faster than 

the standard convolution. 

(b) Inverted residuals and linear bottlenecks 

For using real input images, the layer activations sets can 

be represented as a manifold of interest in low- dimensional 

subspaces to reduce the dimension space along the network 

for reducing the computational cost. The problem of reducing 

the channel numbers appears due to the use of non-linear 

transformation, such as Relu  activation function, which 

transforms negative values to zero causing information loss. 

Nevertheless, using large lot number of channels will lead to 

saved information in other channels [6].   

To solve the trade-off between the computational cost and 

the performance, a width multiplier parameter α  is used, 

which has the range   0,1 . This α  parameter represents the 

amount of reduction in the channels number; thus, the 

number of kernels is reduced by α  factor. So, the 

computational cost after applies channel shrinking 
α

C  is 

defined as follows [16]. 

Using mathematical approximations, the width parameter 

reduces the computational cost by a factor 
2
α  as follows: 

   α
C = K× K×1×αM× H× W + 1×1×αM×αN× H× W

 

(4) 

α 2
C = α C

2
 (5) 

The low dimension channel is able to describe the 

necessary information, but to prevent the information loss 

due to the nonlinear transformation, a lot of channels is 

required. So, a linear bottleneck block is designed as shown 

in Fig. 3. 

Figure 3 shows the start and the end of the block, which 

acts as bottlenecks. It consists of convolution layer with low 

number of channels, but in the middle of the block an 

expansion process is applied by PW layer to increase the 

number of channel and apply nonlinear transformation 

without information loss. Another PW layer is applied at the 

end of block to reduce number of channels again, where d  is 

the reduced number of channels, t  is the expansion factor.  

 
Figure 3. Inverted residuals and linear bottlenecks. 
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As the input dimension of the block equal the output 

dimension of the block, a residual connection is applied over 

the block to solve the vanishing and exploding Gradients 

problem in the deeper network. It is called inverted residual 

as the residual connection is applied between two thin 

(bottlenecks) maps, unlike, in the traditional residual, where 

it is applied between the thick maps. 

Since the more complex and deeper network are more 

accurate, when using depth-wise separable convolution layer 

instead of the standard convolution layer, the DW separates 

from the PW layer by batch normalization layer and Relu

activation function. The batch normalization layer and Relu

activation function are applied two times in the depth-wise 

separable convolution layer, which compensates the 

reduction of complexity due to the reduction of weights. 

2. Atrous Spatial Pyramid Pooling (ASPP) module 

The output of the encoder represents a small feature map 

which is suitable for classification problem, but the spatial 

information about small region usually lost. Although, in the 

case of segmentation problem, it requires increased feature 

maps resolution and receptive field of neurons. So, an Atrous 

convolution (Dilated convolution) is used to insert zero 

values between the weights of the filters for increasing the 

resolution of the image without the need to increase the 

number of parameters [5]. Fig. 4 describes the ASPP module. 

Figure 4 shows that The ASPP is applied on the output of 

the encoder, which consists of four parallel dilated depth-

wise separable convolution layers, each with different dilated 

rate. It helps in capturing multi-scale information and 

patterns depending on the different filter’s views. The outputs 

of the four parallel branches are concatenated. In the 

proposed model, the dilated rates in the DeepLabV3+ 

combined with MobileNet-V2 are 6, 12, and 18. 

3. Decoder 

The DeepLabV3+ decoder is employed to restore the 

image size for producing the segmented image. Figure 5 

describes the decoder architecture inside the DeepLabV3+ 

combined with MobileNet-V2. 

Figure 5 shows that the output feature map of the ASPP 

module subject to convolution layer, then unsampled by a 

factor 4 using transpose convolution layer. Subsequently, this 

upsampled feature map concatenated with low level feature 

map from the earlier block which subjected to convolution 

layer to improve the efficiency of training process. The low-

level feature maps are used due to its high level of spatial 

information. The output of concatenation subject to the 

depth-wise separable convolution and applies upsampled by a 

factor 4. Finally, a SoftMax and pixel classification layer are 

applied to generate the final segmented image [17]. 

4. Performance Metrics 

     The segmentation networks are evaluated different 

performance metrics to compare the output segmented 

images and their corresponding ground-truth masks. A 

confusion matrix is used which represents the True Positive 

(TP), True Negative (TN), False Positive (FP), and False 

Negative (FN). The positive class represents COVID-19 

pixel, and the negative class represents background pixel. 

The global accuracy denotes to the ratio between the 

number of correctly predicted pixels whether COVID-19 

lesion class or non-COVID-19 (background) class to the total 

number of pixels along the whole number of images. It can 

be formulated as follows [18]: 

TP + TN
Global Accuracy = 

TP + TN + FP + FN
 

(6) 

 

Figure 4. Atrous Spatial Pyramid Pooling (ASPP) module. 
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Figure 5. The construction of the DeepLabV3+ combined with MobileNet-V2. 

 

The sensitivity represents the number of positive class 

pixels which predicted correctly, the specificity represents 

the number of negative class pixels which predicted 

correctly, the precision refers to the number of pixels 

predicted in the positive class and are really in positive 

class, which is given in [18]: 

TP
Sensitivity =

TP + FN
 

(7) 

TN
Specificity =

TN + FP
 

(8) 

TP
Precision =

TP + FP
 

(9) 

The Jaccard and the dice indexes measure the similarity 

between output segmented images and their corresponding 

ground-truth masks, which is given in [19]: 

TP
Jaccard =

TP + FP + FN
 

(10) 

2TP
Dice =

2TP + FP + FN
 

(11) 

 

 

3. EXPERMINTEL RESULTS 

In this section, an experimental evaluation of the 

DeepLabV3+ based segmentation network was conducted 

to segment COVID-19 lesions compare to the 

corresponding ground-truth. MATLAB R2021a was used 

for implementing and training the network on PC with the 

following specifications: AMD Ryzen 7 5800H processor 

with Radeon Graphics 3.20 GHz (16 GB RAM), and 

NVIDIA GeForce RTX 3060 GPU (6 GB RAM) using 

Microsoft Windows10 operating system. The pre-

processed output CT images after augmentation using 

rotation of the image clockwise around its centre point by 

different rotation angles are shown in Fig.6. 

A. Using the DeepLabV3+ combined with 

MobileNet-v2 for segmentation  

In this section, the results of using the combined 

DeepLabV3+ with MobileNet-v2 are reported. This model 

was trained using the training dataset, where network was 

trained along eight epoch and eight minimum batches. 

Table 1 describes the parameters and their settings, which 

are used in the proposed model. Fig. 7 shows the model’s 

convergence analysis, including the accuracy and loss 

function rates of the proposed model along the training and 

validation stages. The blue line represents the accuracy 

along different epochs during training stage, the red line 

represents the loss function value during the training stage, 

and the dash line represents accuracy and loss function 

during the validation stage. 

Figure 7 demonstrates that the validation accuracy 

reaches 99.61%, and the cross-entropy loss function 

reaches about 0.01 as the network’s weights are updated 

along the training phase to reduce the loss function.  

 
Table 1. The used parameters and settings in the 

DeepLabV3+MobileNet-v2 model. 

Parameter  

Learning rate 0.001 

Optimizer  Adam  

Loss Function Cross-entropy 

Number of epochs 8 

Min Batch size  8 

Dilated rates used in ASPP module 6,12,18 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 6. The pre-processed output CT images after augmentation, where: (a) original COVID-19 lung CT image, (b) CT image rotated by angle 180 

degree, (c) CT image rotated by angle 10 degree, (d) CT image rotated by angle -10 degree, (e) CT image rotated by angle 20 degree, (f) CT image 

rotated by angle -20 degree, (g) CT image rotated by angle 30 degree, and (h) CT image rotated by angle -30 degree. 

 

Figure 7. The accuracy and loss function rates of the DeepLabV3+ combined with MobileNet-v2 along different epochs during the training and 

validation phases. 

Table 2. Performance metrics of the DeepLabV3+ MobileNet-v2. 

Network 
Global 

Accuracy 

Mean 

Accuracy 

Mean 

IoU 

Weighted 

IoU 

Mean 
BF 

Score 

weighted 

Dice 
Sensitivity Specificity Precision 

Dice Jac 

Mean ± STD Mean ± STD 

Combined 

DeepLabV3+ 

with 

Mobilenetv2 

99.6% 97.5% 89.7% 99.3% 92.4% 97.5% 95.2% 99.7% 99.7% 83.7% ± 4.9% 72% ±6.8% 

 

B. Visual results of DeepLabV3+MobileNet v2         

segmentation-based deep learning network   

The DeepLabV3+ combined with MobileNet-V2 

trained for COVID-19 lesions segmentation. Figure 8 

demonstrates the output of the proposed network showing 

the segmented COVID-19 lung CT original /augmented 

images, and their corresponding ground-truth.  

Figure 8 illustrates that the dice coefficients showing 

the similarity between the predicted segmented images in 

Fig. 8 (c1-c3) and their corresponding ground-truth masks 

in Fig. 8(d1-d3) are 94%, 90%, and 92%, respectively. In 

addition, Table 1 demonstrates the performance evaluation 

metrics of the DeepLabV3+ combined with MobileNet-

V2. 

Table 2 shows the performance metrics, including the 

global accuracy, mean accuracy, mean IOU, weighted 

IOU, mean BF score, weighted dice, sensitivity, 

specificity, precision, dice, and Jac. The implemented 

model achieves a reliable performance of 95.2% 

sensitivity, which means that 95.2% of COVID-19 lesion 

pixels are correctly segmented. Also, 99.7% specificity, 

which means that 99.7% of background pixels are 

correctly segmented. Moreover, high values of weighted 

IOU and weighted dice of 99.3%, and 97.5%, respectively, 

were realized.   

C. Comparative study with other well-known deep 

learning networks 

A comparative study was conducted between the 

DeepLabV3+ combined with MobileNet-V2 against other 

well-known deep learning networks, namely DeepLabV3+ 

with Resnet18, DeepLabV3+ with Resnet50, AlexNet, and 

U-Net. Figure 9 demonstrates visually the segmented 

output using the previous segmentation models, and their 

ground-truth masks. 
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D.     
(a1) (b1) (c1) (d1) 

    

(a2) (b2) (c2) (d2) 

    
(a3) (b3) (c3) (d3) 

Figure 8. The outputs of the proposed segmentation network on 

original/augmented CT images, where: (a) COVID-19 lung CT 

image, (b) ground-truth corresponding to each CT image, (c) the 

segmented COVID-19 lesion output using the proposed system, and 

(d) the segmented lesion laid on the original CT image. 

 

The visual comparison between the predicted images 

and ground-truth masks is shown in Fig. 9 proving that the 

combined DeepLabV3+ with MobileNet-V2 model 

outputs are the most compatible segmented images to their 

corresponding ground-truth masks. Fig. 9 (c) is the 

segmented lesion using the DeepLabV3+ with Resnet18 

showing smooth outputs, but large number of COVID-19 

pixels were not classified correctly. Fig. 9 (d) shows that 

the DeepLabV3+ with Resnet 50 has the ability to classify 

larger number of COVID-19 pixels during the 

segmentation of the lesion as this network is deeper than 

DeepLabV3+ with Resnet18. However, the segmented 

lesions’ borders does not achieve the perfect match with 

the ground-truth borders and does not segment the small 

lesions. Fig. 9 (e) illustrates that the segmented lesion 

using modified Alex has the worst output between models 

as it classifies falsely most pixel as COVID-19 which is 

unacceptable. Fig. 9 (f) shows that the segmented lesion 

using U-Net appears as discrete points and fails to segment 

the COVID-19 lesion. Fig. 9 (g) is the segmented lesion 

using the combined DeepLabV3+ with MobileNet-V2 laid 

on the CT image, the segmented lesions are smooth and 

closely matches their ground-truth masks, and 

DeepLabV3+ with MobileNet-V2 can segment the small 

lesions. Moreover, Table 2 illustrates a comparative study 

in terms of the performance evaluation metrics of the 

different combinations with the combined DeepLabV3+ 

with MobileNet-V2. 

The comparison in Table 3 by measuring the 

performance metrics illustrates that using the combined 

DeepLabV3+ with MobileNet-V2 model improved the 

dice index to 84% with a small standard deviation value 

4.9%, and the Jac index is also improved to 72% with a 

standard deviation 6.8%. Also, 97.5% mean accuracy and 

95.2% sensitivity were achieved. These results are the 

highest compared to the other models except Alex model 

which achieved 96.9% sensitivity. Although Alex model is 

unacceptable due to the low value of specificity 93.4%. So, 

the combined DeepLabV3+ with MobileNet-V2 solves the 

trade-off between the sensitivity 95.2%, and the specificity 

99.7%.  

4. DISCUSSION 

A comparison between the combined DeepLabV3+ 

with MobileNet-V2 model and other existing studies used 

the same dataset is carried out to assess the performance 

of the semantic segmentation model. A semantic 

segmentation network based on U-Net was presented by 

Khalifa et al. [18] using a network consisted of 3 encoder 

and decoder stage and start with 64 number filters. A two 

sequential segmentation networks designed by Xie et al. 

[19] to segment the lung in CT images using the first 

network and segment the COVID-19 lesion from the 

segmented lung by the second network.  

       

       

       

(a) (b) (c) (d) (e) (f) (g) 

 

Figure 9. The segmented output using of the different models, where: (a) COVID-19 lung CT images, (b) ground-truth masks, (c) segmented lesion of  

DeepLabV3+ with Resnet18 laid on the CT image, (d) segmented lesion of DeepLabV3+ with Resnet50 laid on the CT image, (e) segmented lesion of 

modified Alex laid on the CT image, (f) segmented lesion of U-Net laid on the CT image, and (g) segmentation of lesions using the  DeepLabV3+ with 

MobileNet-V2 laid on the CT image. 
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Table 3. Performance metrics of the combined DeepLabV3+ with MobileNet-v2, Resnet18, Resnet50, Alex, and U-Net. 

Network 
Global 

Accuracy 

Mean 

Accuracy 

Mean 

IoU 

Weighted 

IoU 

Mean 

BF 
Score 

weighted 

Dice 
Sensitivity Specificity Precision 

Dice Jac 

Mean ± STD Mean ± STD 

DeepLabV3+ 
with Resnet18 

99.5% 86.9% 85.2% 99% 91.1% 88.3% 73.8% 99.9% 99.9% 67% ± 9.3% 0.51 ± 10% 

DeepLabV3+ 
with Resnet50 

99.6% 89.1% 87.8% 99.2% 91.3% 90.1% 78.3% 99.9% 99.9% 7% ± 10% 0.54 ± 12% 

 Modified Alex  93.4% 95.2% 56.4% 92.1% 58.1% 95.1% 96.9% 93.4% 93.6% 39% ± 14.3% 0.25 ± 11% 

U-Net 99% 82% 75% 98% 80% 98.4% 63% 99.6% 99.4% 58%±16% 0.43±15% 

Combined 

DeepLabV3+ 

with 

Mobilenetv2 

99.6% 97.5% 89.7% 99.3% 92.4% 97.5% 95.2% 99.7% 99.7% 84% ±4.9% 72% ±6.8% 

Table 4. Comparison between the DeepLabV3+ with MobileNet-V2 model and existing studies used the same dataset. 

Method Accuracy % Dice % IOU % Precision % Sensitivity % Specificity % 

Khalifa et al. [18] 99.00 97.00 98.86 99.00 95.00 Not given 

Xie et al. [19] 99.06 87.06 77.09 Not given 90.84 99.58 

Combined 

DeepLabV3+ with 

Mobilenetv2 

99.60 97.50 99.30 99.70 95.20 99.70 

 

 To assess the performance of the semantic 

segmentation model in the comparison previous studies 

different performance parameters, such as the global 

accuracy, precision, sensitivity, specificity, dice 

coefficient, and Jaccard coefficient, were measured in 

Table 4. Table 3 indicates that the performance of the 

model by Khalifa et al. [18] achieved 99% accuracy, 97% 

dice, 98.86% IOU, 99% precision, and 95% sensitivity 

due to using the direct skip connection which affected 

relatively the performance of the network as the skip 

connection transmit low features maps from earlier layer. 

Also, in the model designed model by Xie et al. [19] the 

performance affected by the complexity of model 

architecture 99.06% accuracy, 87.06% dice, 77.09% IOU, 

90.84% sensitivity, and 99.58% specificity. 

By comparing the results of the DeepLabV3+ with 

MobileNet-V2 model and existing studies used the same 

dataset, the comparison indicates that the proposed model 

achieves the best segmentation performance as indicated 

in all the performance metrices. It achieves 99.6% 

accuracy, 97.5% dice, 99.3% IOU, 99.7% precision, 

95.2% sensitivity, and 99.7% specificity. The 

DeepLabV3+ with MobileNet-V2 model provides the 

ability to predict 95.2% of covid-19 pixels correctly. 

Also, 99.7% of background pixels correctly which 

achieves a high dice coefficient 97.5%.  

The combined DeepLabV3+ with MobileNet-V2 

model has high performance due to its structure as it uses 

MobileNet-V2 as encoder for extract features which 

based on inverted residuals and linear bottlenecks that 

used the depth-wise separable convolution layers to 

decrease numbers of learnable parameter and make 

network faster, and also has a residual connection along 

the block which solve the problem of overfitting. A ASPP 

module which consist of parallel branches of dilated 

convolution layers with dilated rate 6, 12, and 18 to 

capture multi-scale information and increase feature maps 

resolution. 

5. CONCLUSION 

Due to the rapid spreading of COVID-19 virus in all 

over the world. A need for a method that diagnosis 

infected patients earlier and take precautions measures as 

earlier as possible to reduce the spreading. Chest CT 

scans represent 3D representation of lung and also covid-

19 lesions appear in it. As CT scans has a high sensitivity, 

availability, and low cost compared to RT-PCR kits. So, 

researchers become interested to design an automatic 

semantic segmentation network by the help of chest CT 

images to segment COVID-19 lesion.   

The combined DeepLabV3+ with MobileNet-V2 

model is a semantic segmentation model that combines 

between MobileNet-V2 (classification network), and 

DeepLabV3+ (segmentation network). The MobileNet-

V2 was used as an encoder for extracting features and the 

inverted residuals and linear bottlenecks of MobileNet-V2 

reduce number of learnable parameter due to the use of 

depth-wise separable convolution layers instead of 

standard convolution. and solve the problem of vanishing 

and exploding Gradients as it has a residual connection 

between the thin bottlenecks of each block.  

Then DeepLabV3+ was used the extracted features 

from encoder part to produce the predicted segmented 

image. It applies ASPP module to capture a multi scale 

information, the makes up-sampling process to reach to 

the segmented output image with the help of earlier 

feature maps that has a highly sensitive spatial 

information. 

By solving the trade-off between all performance 

metrics, the experimental results proved that The Proposed 

DeepLabV3+ MobileNet-V2 model achieves the best 

performance along all metrics. It achieves 99.6% accuracy, 

97.5% dice, 99.3% IOU, 99.7% precision, 95.2% 

sensitivity, and 99.7% specificity. 
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