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Abstract: In the field of machine learning, the confusion matrix 

is a specific table adopted to describe and assess the performance 

of a classification model (e.g. an artificial neural network) for a 

set of test data whose actual distinguishing features are known. 

The learning algorithm is thus of the supervised learning 

category. For an n-class classification problem, the confusion 

matrix is square with n rows and n columns. The rows represent 

the class actual samples (instances) which are the inputs to the 

classifier, while the columns represent the class predicted 

samples, the classifier outputs. (The converse is also valid, i.e. the 

two dimensions 'actual' and 'predicted' can be assigned to 

columns and rows, respectively). Binary as well as multiple-class 

classifiers can be dealt with. It is worth noting that the term 

'matrix' here has nothing to do with the theorems of matrix 

algebra; it is regarded just as an information-conveying table. 

The descriptive word ‘confusion’ stems from the fact that the 

matrix clarifies to what extent the model confuses the classes — 

mislabels one as another. The essential concept was introduced 

in 1904 by the British statistician Karl Pearson (1857 — 1936). 

Keywords— Machine Learning; Confusion matrix; 

Accuracy; Recall; Specificity; Precision; True Negative; False 

Positive, Balanced Accuracy. 

1. BINARY CLASSIFICATION 

We begin with the basic and relatively simple situation of 

a binary classifier, where we have two classes (n= 2) and a 

2x2 confusion matrix. See Fig. 1. Let the matrix in this figure, 

as an illustrative example, belong to a medical test conducted 

on a number of persons (patients) for the presence or absence 

of a certain disease. The labels 'positive' (+ve) and ‘negative’ 

(-ve) are used to identify these two distinct cases, respectively, 

which are treated as two classes in a classification problem. 

(Other labels such as ‘1’ and ‘0’, 'yes' and ‘no’, or ‘event’ and 

‘not event’ can likewise be used). With such labeling, 

attention is sometimes focused on the positive class, and its 

classification outcomes are considered the decisive 

characteristics of the classifier. 

   
  Predicted 

  +ve -ve 

Actual 

+ve 100 5 

-ve 10 90 

Fig. 1. Confusion matrix for binary classifier 

The confusion matrix of Fig. 1 tells us that: 

 The label 'positive' means the person has the disease, 

and the label 'negative' means the person does not. 

 A total of 205 (= 100 +5+ 10+ 90) persons were tested. 

 Out of the 205 persons, the classifier predicted as 

‘positive’ 110 (= 100+ 10) times and as ‘negative’ 95 

(=5 + 90) times (regardless whether the predictions are 

correct or not).  

 In actuality, 105 (= 100 +5) persons in the test set have 

the disease and 100 (= 10 + 90) persons do not. 

More conclusive information can be drawn from the 

confusion matrix, as elucidated below. 

A. Building blocks: TP, TN, FP, and FN 

Formally, a comparison of the actual classifications with 

the predicted classifications reveals that four well-defined 

outcomes emerge: 

 The actual classification is positive and the predicted 

classification is positive. This outcome is referred to as 

‘true positive’, abbreviated TP, because the positive 

sample is correctly identified by the classifier.  

 The actual classification is negative and the predicted 

classification is negative. This is a “true negative” (TN) 

outcome because the negative sample is correctly 

identified by the classifier.  

 The actual classification is negative and the predicted 

classification is positive. This is a 'false positive' (FP) 

outcome because the negative sample is incorrectly 

identified by the classifier as positive.  

 The actual classification is positive and the predicted 

classification is negative. This is a ‘false negative' (FN) 

outcome because the positive sample is incorrectly 

identified by the classifier as negative. 

These four outcomes, with the above interpretation, 

pertain in fact to the positive class, provided this class is 

particularly important and deserves emphasis; it 

accommodates what can be called ‘relevant’ samples, while 

the negative class is regarded as ‘irrelevant’.  

The outcomes TP, TN, FP, and FN are of prime 

significance and are termed the ‘building blocks’, since they 

are employed to formulate all performance measures as will 

be evident in Section 3.  

The building blocks appear naturally as the elements of the 

confusion matrix, as shown in Figs. 2 and 3. Note that the true 

outcomes TP and TN occupy the two diagonal cells of the 

matrix. The false outcomes FP and FN occupying the two off-

diagonal cells imply errors; FP is a type I error and FN is a 

type II error. In our example of ill and healthy persons, FP 

represents persons who are healthy and classified as ill while, 

on the contrary, FN represents persons who are ill and 

classified as healthy. The latter case (type II error) is normally 

more dangerous than the former (type I error). 

Returning to Fig. 1, the building blocks are seen to be TP 

= 100, TN= 90, FP =10, FN =5. Ideally, FP and FN would 

both be of zero values, representing a perfect classifier. 
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  Predicted 

  +ve -ve 

Actual 
+ve TP FN 

-ve FP TN 

Fig. 2. Building blocks of positive class as elements of 2X2 confusion 

matrix  

  Predicted 

  +ve -ve 

Actual 
+ve TP FN 

-ve FP TN 

 

Fig. 3. True outcomes in diagonal cells and false outco mes in off-

diagonal cells 

But, in practice, there is a challenge of how to minimize 

FP and FN (i.e. maximize TP and TN). Bear in mind that the 

building blocks are all whole positive numbers (counts); they 

cannot be fractions or percentages. 

It is to be noted that the positive and negative classes can 

be interchanged, so that the confusion matrix appears as in Fig. 

4. In comparison with Fig. 2, we find that TP and TN are 

merely interchanged and so are FP and FN. 

 
  Predicted 
  -ve +ve 

Actual 
-ve TN FP 
+ve FN TP 

Fig. 4. Interchanging positive and negative classes 

Furthermore, we can write: 

Number of positive samples in the test set, 

N+ = TP + FN      (1) 

Number of negative samples in the test set, 

N_ = FP + TN     (2) 

Total number of tested samples, 

N = TP + FN + FP + TN = N+ + N_     (3) 

Number of samples predicted as positive, 

P+ = TP + FP    (4) 

Number of samples predicted as negative, 

P = FN + TN = N - P+    (5) 

Example 1 

Consider a set of 12 persons, numbered as 1 through 12. 

Persons 1 through 8 suffer from the covid disease and belong 

to class 1, while persons 9 through 12 are covid-free and 

belong to class 0. A binary classifier for this set made 9 correct 

predictions and 3 incorrect ones. Persons 1 and 2 were 

predicted as covid-free and person 9 was predicted as having 

covid. 

(a) Determine the building blocks for class 1. 

(b) Construct the confusion matrix of the classifier. 

Solution 

The classification situation is illustrated in Fig. 5. Labels 

‘1' and ‘0' for the two classes corresponding to 'positive' and 

'negative', respectively. From Fig. 5, the building blocks for 

class 1 are 

TP = 6, TN = 3, FP = 1, FN = 2 

The confusion matrix of the classifier is shown in Fig. 6. 

 
  Predicted 

  1 0 

Actual 
1 6 2 

0 1 3 

Fig. 6. Confusion matrix for Example 1 

Example 2 

A set of 1000 pens contains 650 pens of the Parker brand 

and the remaining pens are of other brands. A binary classifier 

correctly identified the 650 Parker pens anal incorrectly 

identified 57 non-Parker pens as Parker. 

(a) How many non-Parker pens were correctly identified? 

(b) Construct the confusion matrix of the classifier. 

Solution 

There are two classes: Parker class (positive) and non-

Parker class (negative). We also have 

N  = 1000      ,    N+ = 650 

TP = 650      ,     FP = 57 

From Eq. (3), 

N_ = N – N+ = 1000 - 650 = 350 

From Eq. (1), 

FN = N+ —TP = 650 - 650 = 0 

From Eq. (2), 

TN = N_ - FP = 350 - 57 = 293 

That is, the number of non-Parker pens correctly identified 

is 293. The confusion matrix, based on the building blocks for 

the Parker class, is shown in Fig. 7. 

 
  Predicted 
  Parker Non-Parker 

Actual 
Parker 650 0 

Non-Parker 57 293 

Fig. 7. Confusion matrix for Example 2 

B. Building blocks for individual classes 

When the two classes handled by a binary classifier are 

nearly of the same importance, the two sets of their building 

blocks, with foreseen interrelations, are to be equally 

studied. We identify the individual classes with arbitrary 

labels, and no preference is given to one class over the other. 

Figure 8 shows a confusion matrix for two classes labeled A 

and B, where it is seen that: 

 
Person's number 1 2 3 4 5 6 7 8 9 10 11 12 

Actual 
classification 

1 1 1 1 1 1 1 1 0 0 0 0 

Predicted 
classification 

0 0 1 1 1 1 1 1 1 0 0 0 

Outcome FN FN TP TP TP TP TP TP FP TN TN TN 

Fig. 5. Outcomes for Example 1 

Type II error 

Type I error 
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  Predicted  

  A B  

Actual 

A 215 25 NA=240 

B 40 190 NB=230 

Fig. 8. A confusion matrix of binary classifier with classes A and B  

Number of tested class-A samples, 

NA = 215 + 25 = 240 

Number of tested class-B samples, 

NB = 40 + 190 = 230 

Total number of tested samples, 

N = NA + NB = 240 +230 = 470 

Here, the descriptors 'positive' and 'negative' do not appear, 

but their intended meanings are implicit. If we consider class 

A, we understand that: 

 Class-A samples correctly classified are TPA, true 

positives for class A; TPA = 215. 

 Class-B samples correctly classified are TNA, true 

negatives for class A; TNA = 190. 

 Class-B samples incorrectly classified as class A 

are FPA, false positives for class A; FPA = 40. 

 Class-A samples incorrectly classified as class B 

are FNA, false negatives for class A; FNA = 25. 

Considering class B, on the other hand, we understand 

that: 

 Class-B samples correctly classified are TPB, true 

positives for class B; TPB = 190.  

 Class-A samples correctly classified are TNB, true 

negatives for class B; TNB = 215.  

 Class-A samples incorrectly classified as class B are 

FPB, false positives for class B; FPB = 25. 

 Class-B samples incorrectly classified as class A are 

FNB, false negatives for class B; FNB = 40. 

For easy reference and remembrance, the building blocks 

for classes A and B are represented symbolically in Fig. 9. The 

directed symbol A  A, for example, means when the input 

to the classifier is A, the classifier output is A. 

A little thought ensures that: 

TPA = TNB 

TNA = TPB  

FPA = FNB  

FNA = FPB 

     } 
}        (6) 

which are intrinsic relationships between the building blocks 

of class A and those of class B. Note that the symbols P and 

N are just interchanged when transferring from class A to 

class B and vice versa. This implies an interesting result that 

once the building blocks of one class are determined, the 

building blocks of the other class are readily known with no 

additional calculations. In Fig. 8, we already have 

TPA = TNB = 215   ,   TNA = TPB = 190 

FPA = FNB = 40     ,    FNA = FPB = 25 

It is also obvious from relationships (6) that, for classes A 

and B, the sum of true positives is equal to the sum of true 

negatives, 

TPA + TPB = TNA + TNB                     (7) 

and the sum of false positives is equal to the sum of false 

negatives , 

FPA + FPB = FNA + FNB                     (8) 

From another perspective, under conditions (6), the confusion 

matrix of a binary classifier with classes A and B can take 

either of the two forms shown in Fig. 10. In Fig.10a, the first 

row (column) is assigned to class A and, in Fig. 10b, the first 

row (column) is assigned to class B. The two forms are of 

course equivalent; they convey the same pieces of information. 

The confusion matrix in Fig. 8 can thus take an alternative 

(equivalent) form of Fig. 11, by interchanging classes A and 

B. From either form, we immediately realize that: 

 215 class_A samples are correctly classified. 

 190 class_B samples are correctly classified. 

 40 class-B samples are incorrectly classified as class 

A. 

 25 class_A samples are incorrectly classified as class 

B. 

TPA : A  A 

TNA : B  B  

FPA : B  A  

FNA : A  B 

TPB : B  B  

TNB : A  A 

FPB  : A  B  

FNB : B  A 

Class A  Class B 

Fig. 9. Symbolic representation of building blocks for two classes 

 
  Predicted  

  B A  

Actual 
B 190  40 NB=230 

A 25 215 NA=240 

Fig. 11. Another form for confusion matrix of Fig. 8 

 
  Predicted 

  A B 

Actual 

A TPA = TNB FNA = FPB 

B FPA = FNB TNA = TPB 

(a) 

  Predicted 

  B A 

Actual 

B TPB = TNA FNB = FPA 

A FPB = FNA TNB = TPA 

(b) 

Fig. 10. Two forms for confusion matrix of binary classifier through interchange of classes 
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Example 3 

A binary classifier has the confusion matrix of Fig. 12 for 

classes K and L. 

(a) For class K, how many samples are correctly 

classified and how many are incorrectly classified? 

(b) Repeat part (a) for class L. 

(c)  

(d) How many class-K samples are tested?  

(e) How many class-L samples are tested? 

(f) Determine the building blocks for classes K and L. 

(g) Construct another equivalent form for the classifier 

confusion matrix. 

  Predicted 

  K L 

Actual 

K 510 70 

L 100 660 

Fig. 12. Confusion matrix for Example 3 

Solution 

Number of class-K samples correctly classified, 

TPK = 510                           (= TNL) 

Number of class-K samples incorrectly classified, 

FNK = 70   (= FPL) 

Number of class-L samples correctly classified, 

TPL = 660   (= TNK) 

Number of class-L samples incorrectly classified, 

FNL = 100   (= FPK) 

Number of tested class-K samples, 

NK = 510 + 70 = 580 

Number of tested class-L samples, 

NL = 100 + 660 = 760 

The building blocks for classes K and L are given in Fig. 

13. Another equivalent form for the confusion matrix is shown 

in Fig. 14, obtained. From Fig. 12 by interchanging classes K 

and L. 

 
 TP TN FP FN 

Class K 510 660 100 70 

Class L 660 510 70 100 

Fig. 13. Building blocks for classes K and L in Example 3 

 
  Predicted 

  L K 

Actual 
L 660 100 

K 70 510 

Fig. 14. Another form for confusion matrix in Example 3 

 
  Predicted  

  A B  

Actual 
A 990 10 NA=1000 

B 48 2 NB=50 

Fig. 15. Confusion matrix for two imbalanced datasets 

 

2. PERFORMANCE MEASURES FOR BINARY 

CLASSIFICATION 

Based on the confusion matrix, we define a group of 

different performance measures (metrics) for the evaluation 

of binary classification models. The most-widely used 

measures are discussed in Subsections 3.1 through 3.6. 

Generally, as the value of the measure gets larger, the 

classifier becomes better. 

A. Accuracy 

The accuracy of a binary classification model is the ratio 

of the number of correctly classified samples (true outcomes) 

to the total number of tested samples. Referring to Fig. 2, the 

model accuracy is  

Accuracy =
TP+TN

N 
=

TP+TN 

TP+TN+FP+FN 
                (9) 

In Fig.1, for example, since TP=100, TN=30, and N = 20S, 

then 

Accuracy =
100+90

205 
= 0.927                       (92.7%) 

This indicates that 92.7% of the tested samples are correctly 

classified or, equivalently, the classification error is 7.3%. 

In terms of two classes A and B, the model accuracy takes the 

forms 

Accuracy =
TP𝐴+TN𝐴

N 
=

TP𝐵+TN𝐵

N 
            (10a) 

which can also be written as 

Accuracy =
TP𝐴+T𝑃𝐵

N 
=

TN𝐴+TN𝐵

N 
            (10b) 

In view of relationships (6) and Fig. (10), the four 

(apparently different) forms of Eqs.(10) are the same in value. 

It is interesting to think in a like manner of the accuracy of the 

individual classes. For class A, AccuracyA = 
TP𝐴+TN𝐴

N 
 and for 

class B, AccuracyB = 
TP𝐵+TN𝐵

N 
. This implies that the model 

accuracy is the same as the accuracy of either of the two 

classes. 

In Fig. 8, TPA = TNB = 215, TNA = TPB = 190, and N = 

470. Therefore, 

Accuracy = AccuracyA = AccuracyB  

= (215 +190)/470 = 0.862 

In spite of the formality of the accuracy measure, it is 

unfortunately reliable only if the two classes have balanced 

datasets. Two datasets are said to be balanced when they have 

nearly the same number of samples. Otherwise, the datasets 

are imbalanced and the accuracy measure can be misleading. 

To demonstrate, suppose class A has NA = 1000 samples and 

class B has NB = 50 samples (only 5% of class A). Here the 

classification model will be 'biased' to class A which has the 

majority of samples. The confusion matrix in this case may 

have the form of Fig. 15. 

The model accuracy, by Eq. (10), is calculated as  

Accuracy = (990 + 2)/1050 = 0.945 (94.5 %) 

which can be judged as an acceptably high level of accuracy; 

992 samples are correctly classified out of 1050 samples. 

However, when we examine the outcomes of the individual 

classes, we find out that while 990 class-A samples are 
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correctly classified out of 1000 samples with a percentage as 

high as 99% (taken as TPA/NA), only two class-B samples are 

correctly classified out of 50 samples with a very low 

percentage of 4% (TPB/NB). These results warn us that the 

94.5 % accuracy cannot be relied upon; it deceptively 

describes the classification reliability of individual classes 

with dataset imbalance. One other measure, called balanced 

accuracy, will be specified in Subsection 3.5 for imbalanced 

datasets. 

Example 4 

A binary classification model is used for two classes A and 

B. The number of samples classified as class A is 169 and the 

number of samples classified as class B is 157. The type I and 

type II errors are recorded to be 39 samples and 46 samples, 

respectively. 

(a) What is the percentage of correctly classified 

samples in class A? class B? 

(b) Determine the accuracy of the model. 

Solution 

The data given is represented in the confusion matrix of 

Fig. 16, and we have 

  Predicted  

  A B  

Actual 
A TPA  FNA = 46 NA  

B FPA = 39 TNA  NB  

  PA = 169 PB = 157  

Fig. 16. Confusion matrix for Example 4 

N = PA + PB = 169 + 157 = 326 

TPA = PA - FPA = 169 - 39 = 130 

TNA = PA - FNA = 157 - 46 = 111   (= TPB) 

NA = TPA + FNA = 130 + 46 = 176 

NB = FPA + TNA = 39 + 111 = 150 

Percentage of correctly classified samples in class A, 

TP𝐴 

𝑁𝐴
∗ 100 =

130∗100

176
= 73.9%                  (11) 

Percentage of correctly classified samples in class B, 

TP𝐵 

𝑁𝐵
∗ 100 =

111∗100

150
= 74%                      (12) 

Model accuracy, by Eq. (10), 

TP𝐴+TN𝐴 

𝑁
=

130+111

326
= 0.739%      (73.9%)     (13) 

The difference in the values of (11), (12), and (13) is really 

slight. The reason is that the datasets of the two classes are 

balanced. 

B. Precision 

The precision is the ratio of the number of samples 

correctly classified as positive to the number of all samples 

classified as positive. Considering the first column of Fig. 2, 

we have 

Precision =
TP

𝑃+ 
=

TP

TP + FP 
                     (14) 

For example, in Fig. 1, where TP=100 and FP = 10, 

Precision =
100

100+10 
 = 0.909          (90.9 %) 

In an ideal case when FP = 0, the precision reaches its 

maximum value of 1.0. This means that all samples predicted 

as positive actually belong to the positive class (TP = P+); the 

type I error is of zero value. See Fig. 17. Strictly speaking, 

expression (14) is the precision of the positive class.  

  Predicted 

  +ve -ve 

Actual 
+ve TP = P+  FN 

-ve FP = 0 TN  

  P+  P_  

Fig. 17. Maximum precision 

For two classes A and B, we write 

Precision𝐴 =
TP𝐴

𝑃𝐴 
=

TP𝐴

TP𝐴 + FP𝐴 
                     (15) 

Precision𝐵 =
TP𝐵

𝑃𝐵 
=

TP𝐵

TP𝐵 + FP𝐵 
                     (16a) 

See the two forms of confusion matrix in Fig. 18. In 

expression (15), two class-A building blocks TPA and FPA 

(first column in Fig. 18a) are used and, similarly, two class-B 

building blocks TPB and FPB (first column in Fig. 18b) are 

used in expression (16a). In words, the precision of a certain 

class is the ratio of the number of samples of the class 

correctly classified as belonging to this class (true positives) 

to the number of all samples classified, correctly or incorrectly, 

as belonging to the same class (true positives plus false 

positives). 

 

Precision𝐴 =
TP𝐴

𝑃𝐴 
=

TP𝐴

TP𝐴  +  FP𝐴 
 

Predicted 

A B 

Actual 

A TPA  FNA 

B FPA TNA  

  PA PB 

(a) Class A 

 

Precision𝐵 =
TP𝐵

𝑃𝐵 
=

TP𝐵

TP𝐵  + FP𝐵 
 

Predicted 

B A 

Actual 

B TPB  FNB 

A FPB TNB  

  PB PA 

(b) Class B 

Fig. 18. Precisions of classes A and B as obtained from two forms of 

confusion matrix 

By virtue of relationships (6), PrecisionB in (16a) can also 

be expressed in terms of two class-A building blocks TNA and 

FNA (second column in Fig. 18a) as 

Precision𝐵 =
TN𝐴

TN𝐴 + FN𝐴 
                     (16b) 

That is, one form of confusion matrix, as that in Fig. 18a, can 

give us both PrecisionA and PrecisionB by considering the two 

columns of the matrix, respectively, as illustrated in Fig. 19. 

Similar arguments apply to the other form in Fig. 18b. 

In Fig. 8, TPA = 215, FPA = 40, FNA = 25, and TNA = 190. 
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Precision𝐴 =
TP𝐴

TP𝐴  +  FP𝐴 
 

Predicted 
Precision𝐵 =

TN𝐴

TN𝐴  +  FN𝐴 
 

A B 

Actual 

A TPA  FNA  

B FPA TNA   

Fig. 19. Precisions of classes A and B as obtained from one form of 

confusion matrix 

Therefore, 

PrecisionA = 215/(215 + 40) = 0.843 

PrecisionB = 190/(190 + 25) = 0.884 

A crucial question is: What is the precision of the binary 

classification model as a whole? This is determined through 

some sort of averaging of the precisions of the two individual 

classes. There are three methods to define an average 

precision; namely, 

 Macro-average 

 Micro-average 

 Weighted-average 

The values calculated from these methods generally differ 

from each other, especially for imbalanced datasets, 

depending on the individual class precisions. 

The macro-average precision of a model with classes A 

and B is 

Precision𝑚𝑎𝑐𝑟𝑜 =
Precision𝐴+Precision𝐵

2 
        (17) 

i.e. the arithmetic average (mean) of the two precisions, with 

equal weights of unity. 

The micro-average precision is 

Precision𝑚𝑖𝑐𝑟𝑜 =
TP𝐴 +TP𝐵 

TP𝐴 +TP𝐵+FP𝐴 +FP𝐵 
        (18a) 

where the true positives and false positives for class A are 

amalgamated with their counterparts for class B. Since the 

four-term sum in the denominator of expression (18a) is equal 

to N, we can also write 

Precision𝑚𝑖𝑐𝑟𝑜 =
TP𝐴 +TP𝐵 

𝑁 
                          (18b) 

It is to be noted in the meantime that expression (18b) is 

the same as the model accuracy defined in (10), and thus 

Precisionmicro = Accuracy                         (18c) 

The weighted-average precision is 

Precisionweighted =
NA(PrecisionA)+NB(PrecisionB)

N 
        (19a) 

or, by Eqs. (15) and (16a), 

Precisionweighted =

NA
PA

(TPA)+
NB
PB

(TPB)

N 
        (19b) 

where PrecisionA and PrecisionB are weighted by NA and NB, 

respectively. 

In Fig. 8, classes A and B have balanced datasets. Since 

PrecisionA = 0.843 and PrecisionB = 0.884, 

Precision𝑚𝑎𝑐𝑟𝑜 =
0.843 +0.884

2 
=  0.864         

Since TPA = 215, TPB = 190, and N= 470,  

Precision𝑚𝑖𝑐𝑟𝑜 =
215 + 190

470 
=  0.862          (= Accuracy) 

Since NA = 240 and NB = 230, 

Precisionweighted =
240(0.843) + 230(0.884)

470
= 0.863 

Example 5 

From the confusion matrix of Fig. 15, determine the 

macro-, micro-, and weighted-average precisions of the 

classification model. 

Solution 

The classes A and B in Fig. 15 have imbalanced datasets. 

We have 

PrecisionA = 990/(990 + 48) = 0.954 

PrecisionB = 2/(2 + 10) = 0.167 

Using Eqs. (17), (18b), and (19), we obtain 

Precisionmacro = (0.954 + 0.167)/2 = 0.561 

Precisionmicro = (990 + 2)/1050 = 0.945 

Precisionwieghted = [1000(0.954)+ 50(0.167)]/1050 = 0.917 

 

C. Recall (Sensitivity) 

The recall (also termed sensitivity) is the ratio of the 

number of samples correctly classified as positive to the 

number of all actual positive samples. From the first row of 

Fig. 2, we have 

Recall =
TP

N+
=

TP

TP + FN 
                (20) 

In Fig. 1, where TP =100 and FN =5, 

Recall = 100/(100+5)  = 0.952              (95.2 %) 

In an ideal case when FN=0, the recall attains its maximum 

value of 1.0, meaning that all actual samples of the positive 

class are correctly classified (TP=N+), with zero type II error. 

See Fig. 20. Specifically, expression (20) is the recall of the 

positive class. 
  Predicted  

  +ve -ve  

Actual 

+ve TP = N+  FN=0 N+  

-ve FP  TN  N-  

Fig. 20. Maximum recall 

For two classes A anal B, we write 

Recall𝐴 =
TP𝐴

𝑁𝐴 
=

TP𝐴

TP𝐴 + FN𝐴 
                     (21) 

Recall𝐵 =
TP𝐵

𝑁𝐵 
=

TP𝐵

TP𝐵 + FN𝐵 
                     (22a) 

See Fig. 21. In expression (21), two class-A building 

blocks TPA and FNA (first row in Fig. 21a) are used and, 

similarly, two class-B building blocks TPB and FNB (first row 

in Fig. 21b) are used in expression (22a). The recall of a 

certain class is thus the ratio of the number of samples of the 

class correctly classified as belonging to this class (true 

positives) to the number of all actual samples of the same class 

(true positives plus false negatives ). 

By relationships (6), RecallB in (22a) can also be 

expressed in terms of two class-A building blocks TNA and 

FPA (second row in Fig. 21a) as  

Recall𝐵 =
TN𝐴

TN𝐴 + FP𝐴 
                     (22b) 
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Recall𝐴 =
TP𝐴

TP𝐴  +  FN𝐴 
 

Predicted  

A B  

Actual 

A TPA  FNA NA 

B FPA TNA  NB 

  PA PB  

(a) Class A 

Recall𝐵 =
TP𝐵

TP𝐵  +  FN𝐵 
 

Predicted 

B A 

Actual 
B TPB  FNB 

A FPB TNB  

  PB PA 

(b) Class B 

Fig. 21 Recalls of classes A and B as obtained from two forms of 

confusion matrix 

 

hat is, both RecallA and RecallB can be obtained from the 

form of confusion matrix in Fig. 21a alone, by considering the 

two rows of the matrix, respectively, as Fig. 22 illustrates. 

Similar arguments apply Fig. 21b. 

In Fig. 8, TPA = 215, FNA = 25, TNA = 190, and FPA = 40 

and therefore 

RecallA = 215/(215 + 25) = 0.896 

RecallB = 190/(190 + 40) = 0.826 

Recall𝐴 =
TP𝐴

TP𝐴  + FN𝐴 
 

Predicted  

A B 

Actual 

A TPA  FNA 
Recall𝐵 =

TN𝐴

TN𝐴  + FP𝐴 
 

B FPA TNA  

  PA PB  

Fig. 22. Recalls of classes A and B as obtained from one form of 

confusion matrix 

 

Often, there exists an inverse relationship between 

precision and recall in the sense that it is possible to increase 

one at the cost of decreasing the other. Brain surgery provides 

a comprehensible situation of the implied trade-off. Consider 

a surgeon removing cancer tumour from a patient’s brain. The 

surgeon is keen to remove all tumour cells because any such 

cells left would regenerate the tumour. At the same time, the 

surgeon should avoid removing any healthy cells not ta cause 

the patient to suffer from impaired brain functions. 

Nevertheless, in the careful endeavor to ensure that all tumour 

cells have been removed, the surgeon mistakenly may remove 

some (a small number ϵ1) of healthy cells. This is a case of 

decreasing precision and increasing recall.   

On the other hand, the surgeon is keen to ensure that no 

healthy cells have been removed, but by mistake, some (ϵ2) 

tumour cells may not be removed. This is a case of decreasing 

recall and increasing precision. That is to say, low precision 

(high recall) guarantees the removal of all tumour cells but 

gives an opportunity for some healthy cells to be removed also.  

B contrast, high in precision (low recall) guarantees that 

all healthy cells are not removed but some tumour cells may 

not be removed as well. See Fig. 23 for a corresponding 

confusion matrix, where two classes are identified:  A Tumour 

(positive) class which has the tumour cells and a healthy 

(negative) class which has the healthy cells. 

 

  Predicted 

  Removed Not removed 

Actual 
Tumour TP   FN=0 

Healthy FP=ϵ1 TN  

 (a) Case 1: Low precision, high recall 

  Predicted 
  Removed Not removed 

Actual 
Tumour TP   FN=ϵ2 

Healthy FP=0 TN  

)b) Case 2: High precision, low recall 

Fig. 23 Trade-off between precision and recall  

Here, TP is the number of tumour cells correctly removed, 

FP is the number of healthy cells incorrectly removed, FN is 

the number of tumour cells incorrectly not removed, and TN 

is the number of healthy cells correctly not removed. Figure 

23a represents case 1, that of low precision anal high recall 

(FP = ϵ1, FN = 0; non-zero type I error), while Fig. 23b 

represents case 2, that of high precision and low recall (FP = 

0 , FN = ϵ2; non-zero type II error). 

Paying attention to the Tumour class, Fig. 23a gives 

Precision(case 1)tumour =
TP

TP + ϵ1 
                (<1) 

Recall(case 1)tumour =1                 (maximum) 

and Fig. 23b gives 

Precision(case 2)tumour = 1          (maximum)            

Recall(case 2)tumour = 
TP

TP + ϵ2 
                    (<1) 

LE is conceivable that precision is an indication of 'quality' 

and recall is an indication of 'quantity', as implied by the 

definitions of precision in Eq. (14) and recall in Eq. (20). In 

the example of brain surgery, Fig. 23a shows that the precision 

is the number of tumour cells removed out of the total number 

of cells removed. This indicates the quality of surgery success. 

The recall, on the other hand, is the number of tumour cells 

removed out of the total number of tumour cells. This is the 

quantity of successful surgery results. 

Moving on to the recall of the classification model, we 

define the macro-, micro-, and weighted-average recalls. In 

line with Eqs. (17), (18), and (19) for average precisions of 

two classes A and B, we have  

Recall𝑚𝑎𝑐𝑟𝑜 =
Recall𝐴 +Recall𝐵  

2 
                                  (23) 

Recall𝑚𝑖𝑐𝑟𝑜 =
TP𝐴 +TP𝐵 

TP𝐴 +TP𝐵+FN𝐴 +FN𝐵 
=

TP𝐴 +TP𝐵 

𝑁 
       (24) 

Recallweighted =
NA(RecallA)+NB(RecallB)

N 
                 (25) 

It is, however, to be noted that 

Recall𝑚𝑖𝑐𝑟𝑜 = Recall𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑                                    (26) 

as is deduced by substituting for RecallA and RecallB from Eqs. 

(21) and (22a), respectively, into Eq.(25) 

Recall𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
N𝐴(

𝑇𝑃𝐴

𝑁𝐴
) + N𝐵(

𝑇𝑃𝐵

𝑁𝐵
)

N 
=  

TP𝐴  + TP𝐵 

𝑁 
=  Recall𝑚𝑖𝑐𝑟𝑜 
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It is also evident from Eqs. (24) and (18b) that 

Recall𝑚𝑖𝑐𝑟𝑜= Precision 𝑚𝑖𝑐𝑟𝑜              (27) 

and moreover by Eq. (8c), 

Recall𝑚𝑖𝑐𝑟𝑜 = Accuracy                               (28) 

Combining Eqs. (26), (27), and (28), we can write 

Accuracy = Precision 𝑚𝑖𝑐𝑟𝑜 = Recall𝑚𝑖𝑐𝑟𝑜 =
Recall𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑     (29) 

In Fig. 8, since RecallA = 0.896 and RecallB = 0.826, 

Recall𝑚𝑎𝑐𝑟𝑜 =
0.896 + 0.826

2
= 0.861 

Since TPA = 215, TPB = 190, and N = 470, 

Recall𝑚𝑖𝑐𝑟𝑜 =
215 + 190

470
= 0.862 

Since NA = 240 and NB = 230, 

Recall𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
240(0.896) + 230(0.826)

470
= 0.862 

Equation (29) is already satisfied, where 

Accuracy = Precision 𝑚𝑖𝑐𝑟𝑜 = Recall𝑚𝑖𝑐𝑟𝑜 =
Recall𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑= 0.862 

Example 6 

For the confusion matrix of Fig. 15, determine the macro-, 

micro, and weighted-average recalls of the classification 

model. 

Solution 

From Eqs. (21) and (22a),  

RecallA = 990/(990 + 10) = 0.99 

RecallB = 2/(2 + 48) = 0.04 

From Eqs. (23), (24), and (27), 

Recallmacro = (0.99 + 0.04)/2 = 0.515 

Recallmicro = (990 + 2)/1050 = 0.945 

Recallweighted = Recallmicro = 0.945 

 

We remark that two other expressions, related to recall, are 

used as performance measures. These are TPR (true positive 

rate) and FNR (false negative rate). The TPR is the same thing 

as recall, Eq. (20), 

TPR =
TP

N+ 
=

TP

TP + FN 
= Recall               (30) 

and the FNR is 

FNR = 1 − TPR =
FN

N+ 
=

FN

TP + FN 
               (31) 

i.e. the ratio of the number of samples incorrectly classified as 

negative to the number of all actual positive samples. 

Example 7 

In Example 6, determine  

(a) TPR and FNR of each of the two classes A and B. 

(b) TPRmacro and FNRmacro of the classification model. 

Solution 

Using definitions (30) and (31) and results of Example 6, 

we obtain for class A, 

TPRA = RecallA = 0.99 

FNRA = 1 - TPRA = 1 - 0.99 = 0.01 

and for class B, 

TPRB = RecallB = 0.04 

FNRB = 1- TPRB = 1 - 0.04 = 0.96 

For the classification model, 

TPRmacro = Recallmacro = 0.515 

FNRmacro = 1 - TPRmacro = 1 - 0.515 = 0.485 

D. Specificity 

The specificity is the ratio of the number of samples 

correctly classified as negative to the number of all actual 

negative samples. From the second row of Fig. 2, we have 

Specificity =
TN

N− 
=

TN

TN + FP 
                    (32) 

In Fig.1, where TN =90 and FP = 10, 

Specificity = 90/(90 + 10) = 0.9 

In an ideal case when FP = 0 (zero type I error), the 

specificity has its maximum value of 1.0, meaning that all 

actual samples of the negative class are correctly classified 

(TN = N_). Remember that the same condition FP = 0, Fig. 

17, makes the precision also at its maximum value of 1.0. See 

Fig. 24. Expression (32) is in fact the specificity of the positive 

class. 

For two classes A and B, 

Specificity𝐴 =
TN𝐴

N𝐵 
=

TN𝐴

TN𝐴 + FP𝐴 
                    (33) 

Specificity𝐵 =
TN𝐵

N𝐴 
=

TN𝐵

TN𝐵 + FP𝐵 
                    (34a) 

 
  Predicted  

  +ve -ve  

Actual 
+ve TP  FN N+  

-ve FP=0  TN= N-  N-  

Fig. 24. Maximum specificity (maximum precision) 

See Fig.25. In expression (33), two class-A building 

blocks TNA and FPA (second row in Fig. 25a) are used, and 

two class-B building blocks TNB and FPB (second row in Fig. 

25b) are used in expression (34a). The specificity of one class 

is thus the ratio of the number of samples of the other class 

correctly classified as belonging to the other class (true 

negatives) to the number of all actual samples of the other 

class (true negatives plus false positives).  

By relationships (6), SpecificityB in (34a) can also be 

expressed in terms of two class-A building blocks TPA and 

FNA (first row in Fig. 25a) as  

Specificity𝐵 =
TP𝐴

N𝐴 
=

TP𝐴

TP𝐴 + FN𝐴 
                    (34b) 

Therefore, both SpecificityA and SpecificityB can be 

obtained from one form of confusion matrix, that of Fig. 25a, 

by considering the two rows of the matrix, respectively. See 

Fig. 26. Similar arguments apply to Fig. 25b. 
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  Predicted 
Specificity𝐴 =

TN𝐴

TN𝐴  + FP𝐴 
 

  A B  

Actual 

A TPA  FNA NA  

B FPA  TNA  NB  

(a) Class A 

  Predicted 
Specificity𝐵 =

TN𝐵

TN𝐵  + FP𝐵 
 

  B A 

Actual 

B TPB  FNB NB  

A FPB  TNB  NA  

(b) Class B 

Fig. 25. Specificities of classes A and B as obtained from two forms of 

confusion matrix 

 

Specificity𝐵 =
TP𝐴

TP𝐴  + FN𝐴 
 

Predicted  

A B 

Actual 

A TPA  FNA 
Specificity𝐴 =

TN𝐴

TN𝐴  + FP𝐴 
 

B FPA TNA  

Fig. 26. Specificities of classes A and B as obtained from one form of 

confusion matrix 

By comparison, it is clear that Eqs. (33) and (22b) are 

identical and so are Eqs. (34b) and (21), providing the results 

SpecificityA = RecallB   (35) 

SpecificityB = RecallA    (36) 

i.e. the specificity of one class is nothing but the recall of the 

other class. 

In Fig. 8, RecallA = 0.896 and RecallB = 0.826 and 

therefore 

SpecificityA = 0. 826    ,  SpecificityB = 0.896 

The macro-, micro-, and weighted-average specificities 

are defined in analogy to both average precisions and average 

recalls. The first two average specificities take several forms 

based on previously derived relationships. We have 

Specificity𝑚𝑎𝑐𝑟𝑜 =
Specificity𝐴 +Specificity𝐵 

2 
=

Recall𝐴  +Recall𝐵 

2 
           

(37) 

implying that 

Specificity𝑚𝑎𝑐𝑟𝑜 =  Recall𝑚𝑎𝑐𝑟𝑜              (38) 

Specificity𝑚𝑖𝑐𝑟𝑜 =
TN𝐴 +TN𝐵 

TN𝐴 +TN𝐵+FP𝐴 +FP𝐵 
=

TN𝐴 +TN𝐵 

𝑁 
=

TP𝐴 +TN𝐴 

𝑁 
       (39) 

implying that 

Specificity𝑚𝑖𝑐𝑟𝑜 = Recall𝑚𝑖𝑐𝑟𝑜 = Precision𝑚𝑖𝑐𝑟𝑜      (40) 

It turns out that Specificitymicro is to be incorporated in Eq. 

(29), so that we can write 

Accuracy = Precision𝑚𝑖𝑐𝑟𝑜 = Recall𝑚𝑖𝑐𝑟𝑜  

= Recall𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = Specificity𝑚𝑖𝑐𝑟𝑜 (41) 

The weighted-average specificity is 

Specificityweighted =
NA(SpecificityA)+N𝐀(SpecificityB)

N 
      (42a) 

or, by Eqs. (33) and (34a), 

Specificity𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =

NA
NB

(TNA)+
NB
NA

(TNB)

N 
        (42b) 

Example 8 

For the confusion matrix of Fig. 15, determine the macro-, 

micro-, and weighted-average specificities of the 

classification model. 

Solution 

Using results of Example 6, we obtain 

SpecificityA = RecallB = 0.04 

SpecificityB = RecallA = 0.99 

Specificitymacro = Recallmacro = 0.515 

Specificitymicro = Recallmicro = 0.945 

From Eq. (42), 

Specificityweighted = [1000(0.04) + 50(0.99)]/1050 = 0.085 

In addition to TPR and FNR expressed along with recall 

at the end of Subsection 3.3, we here define TNR (true 

negative rate) and FPR (false positive rate). The TNR is the 

same thing as specificity, Eq. (32), 

TNR =
TN

N− 
=

T𝑁

TN + FP 
= Specificity               (43) 

and the FPR is 

FPR = 1 − TNR =
F𝑃

N− 
=

FP

TN + FP 
               (44) 

i.e. the ratio of the number of samples incorrectly classified as 

positive to the number of all actual negative samples. 

Example 9 

In Example 6, determine 

(a) TNR and FPR of each of the two classes A and B. 

(b) TNRmicro and FPRmicro of the classification model. 

Solution 

Using definitions (43) and (44) and results of Example 8, 

we obtain for class A, 

TNRA = SpecificityA = 0.04 

FPRA = 1 - TNRA = 1 - 0.04 = 0.96 

and for class B, 

TNRB = SpecificityB = 0.99 

FPRB = 1 – TNRB = 1 - 0.99 = 0.01 

For the classification model, 

TNRmicro = Specificitymicro = 0.945 

FPRmicro = 1 – TNRmicro = 1 - 0.945 = 0.055 

E. Balanced accuracy 

In Subsection (A), we emphasized the fact that the 

accuracy measure of a binary classifier can be misleading 

when the datasets of the two classes are imbalanced. A 

performance measure, known as balanced accuracy, is thus 

introduced. It combines recall and specificity in the form  
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Balanced accuracy =
Recall +Specificity 

2 
    (45) 

i.e. the arithmetic average of recall and specificity. Remember 

that recall, TP/N+, deals with only the positive class while 

specificity, TN/N-, deals with only the negative class. A 

combination of these two measures proves advantageous, 

especially for imbalanced datasets. 

In Fig. 1, where Recall = 0.952 and Specificity = 0.9, 

Balanced accuracy = (0.952 + 0.9)/2 = 0.926 

For two classes A and B, the balanced accuracy of the 

model is the arithmetic average of recall and specificity of 

either class A or class B; 

Balanced accuracy =
𝑅𝑒𝑐𝑎𝑙𝑙 𝐴+Specificity𝐴 

2 
=

𝑅𝑒𝑐𝑎𝑙𝑙 𝐵+Specificity𝐵 

2 
     (46) 

Make sure that the two expressions in Eq. (46), by Eqs. 

(35) and (36), are identical. 

In Fig. 8, where RecallA = SpecificityB = 0.896 and RecallB 

= SpecificityA = 0.826, 

Balanced accuracy = (0.896 + 0.826)/2 = 0.861 

Equation (46) can alternatively be written as 

Balanced accuracy =
𝑅𝑒𝑐𝑎𝑙𝑙 𝐴+𝑅𝑒𝑐𝑎𝑙𝑙 𝐵

2 
=

Specificity𝐴+Specificity𝐵 

2 
     (47) 

This provides a noticeable result that the balanced 

accuracy is the same as the macro-average recall of classes A 

and B or the macro-average specificity of the two classes, 

Balanced accuracy = Recallmacro = Specificitymacro    (48) 

Example 10 

For the confusion matrix of Fig. 15, determine the 

balanced accuracy of the classification model. 

Solution 

Using the value of the macro-average recall, or the macro-

average specificity, in the solution of Example 8, Eq. (48) 

yields 

Balanced accuracy = 0.515 

A comparison between balanced accuracy and accuracy is 

in order. Consider a binary classifier with the confusion 

matrix of Fig. 27, where the datasets of classes A and B are 

balanced (NA = 195, NB = 192). The accuracy, by Eq. (10a), 

is  

Accuracy = (185 + 10)/(195 +192) = 0.943 

The recalls of classes A and B, by Eqs. (21) and (22b), are 

RecallA = 185/195 = 0.949 

RecallB = 180/192 = 0.938 

Therefore, the balanced accuracy, by Eq. (47), is 

  Predicted  

  A B 

Actual 

A 185 10 NA = 195 

B 12 180 NB = 192 

Fig. 27. Confusion matrix with balanced datasets 

 

Balanced accuracy = (0.945 + 0.938)/2 = 0.944 

The values of accuracy and balanced accuracy are seen to 

be approximately the same. The reason is that the datasets of 

the two classes are balanced. 

However, for a binary classifier with the confusion matrix 

of Fig. 28, where the datasets of the two classes are 

imbalanced (NA = 10, NB = 190), we have 

Accuracy = (0 + 190)/(10 +190) = 0.95            (95%) 

 
  Predicted  

  A B 

Actual 

A 0 10 NA = 10 

B 0 190 NB = 190 

Fig. 28. Confusion matrix with imbalanced datasets 

 

The accuracy is calculated to be of a high value (95%), 

giving an impression that the classifier performs quite 

properly. But this is far from reality. Although the classifier 

correctly predicts all samples of class B (FNB = 0), it does not 

correctly predict any sample of class A (TPA = 0). The 

classifier has a deficiency in performance, not detected by 

accuracy. In other words, the 95% accuracy is misleading and 

cannot be relied upon. Balanced accuracy can be taken into 

account instead. Since 

RecallA = 0/10 = 0 

RecallB = 190/190 = 1 

then  

Balanced accuracy = (0 + 1)/2 = 0.5  (50%) 

which is considerably less than the value of accuracy and may 

thus be reliable. The difference in the values of accuracy and 

balanced accuracy is due to the imbalance of datasets. 

F. Fβ measure and F1 score 

The precision and recall are commonly combined to 

provide a performance measure called Fβ measure, defined as 

Fβ =
1

β

Precision
+

1−β

Recall

=
Recall×Precision

β(Recall)+(1−β)Precision
          (49) 

This means that Fβ is the weighted harmonic average of 

precision and recall. Here, B is a positive fractional factor, 0 

< β <1, which reflects the importance of precision and recall 

with respect to each other. The greater β is, the greater 

importance is given to precision and, conversely, the smaller 

β is, the greater importance is given to recall. Indeed, there 

should be a trade-off between precision and recall, relying on 

the particulars of the classification problem at hand; cf. the 

example of brain surgery in Subsection 3.3. 

Substituting for precision and recall from Eqs. (14) and 

(20), respectively, into Eq. (49) , Fβ is formulate as 

Fβ =
TP

TP+ β(FP)+(1−β)FN
    (50) 

Note the similarity in form among the expressions of 

precision in Eq. (14), recall in Eq. (20), and Fβ in Eq. (50), 

where in the respective denominators, FP is replaced by FN 

and both (FP and FN) are replaced by the weighted sum of FP 

and FN. 
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The special case  

β  = 0.5     (51) 

is of particular interest, where precision and recall are of equal 

weight (importance). The Fβ measure under condition (51) is 

referred to as the F1 score which, by Eq. (49), takes the form  

F1 =
2

1

Precision
+

1

Recall

    =
2×Precision×Recall

Precision+ Recall
    (52) 

That is, F1 is the harmonic average of precession and 

recall. See Fig. 29 or a graphical representation. The distance 

h is equal to 0.5 F1, and is less than the smaller of precision 

and recall. The proof is a simple geometric exercise. 

 

 
Fig. 29. Harmonic average of precision and recall 

 

Equation (52), in view of Eq. (50) with β =0.5, becomes 

F1 =
TP

TP+ 0.5(FP+FN)
    (53) 

where the arithmetic average of FP and FN replaces FP in 

Eq.(14) and FN in Eq. (20). 

In Fig. 1, where Precision = 0.909 and Recall = 0.952, Eq. 

(49) for β = 0.8 (as an example) and Eq. (52) yield  

Fβ=0.8 =
0.952 × 0.909

0.8(0.952) + (1 − 0.8)0.909
= 0.917 

F1 =
2 × 0.909 × 0.952

0.909 + 0.952
= 0.93 

The same results are of course produced by the equivalent 

expressions (50) and (53). 

For two classes A and B, we have for class A,  

FβA =
Precision𝐴 × Recall𝐴

β(Recall𝐴) + (1 − β)Precision𝐴
 

=
TP𝐴

TP𝐴+ β(FP𝐴)+(1−β)FN𝐴
        (54) 

F1A =
2 × Precision𝐴  × Recall𝐴

Precision𝐴 +Recall𝐴
 

=
TP𝐴

TP𝐴+ 0.5(FP𝐴+FN𝐴)
        (55) 

and similar expressions apply to class B. In certain 

classification problems, FβA, and FβB as well as F1A, and F1B, 

pertaining to the individual classes, can be useful in their own 

right. 

For the classification model, we have  

Fβmodel =
Precisionmodel × Recallmodel

β(Recallmodel)+(1−β)Precisionmodel
         (56) 

 

F1model =
2×Precisionmodel×Recallmodel

Precisionmodel+ Recallmodel
       (57) 

Equations (56) and (57) represent the macro-, micro, or 

weighted-average Fβ and F1 of the model, respectively, where 

Precisionmodel is correspondingly the macro-, micro-, or 

weighted-average precision of the model, and Recallmodel is 

defined in a similar way. We should always take Eqs. (56) and 

(57) into account when we calculate the average Fβ and F1 for 

the model. For example, F1macro is not the arithmetic average 

of F1A and F1β but it is, by definition, the harmonic average 

of Precisionmacro and Recallmacro. 

For the micro-average, Fβmicro reduces to F1micro, 

Fβmicro = F1micro     (58) 

and the effect of β ceases to exist. In this case, 

Fβmicro = F1micro = Precisionmicro = Recallmicro (59) 

which follows in view of Eq. (27). Remember the fact that the 

harmonic average of two equal values is the same as either 

value.  

Aggregating Eqs. (41) and (53) leads to 

Accuracy = Precisionmicro = Recallmicro 

= Recallweighted = Specificitymicro 

= Fβmicro = F1micro =  
TP𝐴+TP𝐵

N
   (60) 

and we find out (remarkably) that seven measures are defined. 

by one and the same expression, 
TP𝐴+TN𝐴

N
. 

Example 11 

For the confusion matrix of Fig 15, determine 

(a) F1 score of class A and that of class B. 

(b) Macro-, micro-, and weighted-average F1 scores of the 

classification model. 

Solution 

Collecting results of Examples 5 and 6, 

PrecisionA = 0.954, PrecisionB = 0.167, RecallA = 0.99, 

RecallB = 0.04, Precisionmacro = 0.561 , Recall macro = 0.515, 

Precision micro = Recall micro = Recallweighted = 0.945, 

Precisionweighted = 0.917 

From Eq. (55), 

F1A =
2 × 0.954 × 0.99

0.954 + 0.99
= 0.972 

F1B =
2 × 0.167 × 0.04

0.167 + 0.04
= 0.065 

From Eqs. (57) and (59), 

F1macro =
2 × Precisionmacro × Recallmacro

Precisionmacro + Recallmacro
 

=
2 × 0.561 × 0.515

0.561 + 0.515
= 0.537 

F1micro  = Precisionmicro = 0.945 

F1weighted =
2 × Precisionweighted × Recallweighted

Precisionweighted+Recallweighted
 

=
2 × 0.917 × 0.945

0.917 + 0.945
= 0.931 

III. SUMMARY OF RESULTS FOR BINARY 

CLASSIFICATION 
Table 1 lists the expressions of the performance measures and 

their interrelationships for binary classification with two 

classes A and B. The subscript 'class' in rows 5 and 6 

symbolizes either class A or class B, and the subscript ‘model’ 

Precision Recall 

Half of average harmonic 

h 
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in rows 17 and 16 symbolizes either macro, micro-, or 

weighted-average.  

 

Table 1. Performance measures for binary classification with two 

classes A and B 

# 
Measure 

1  

Accuracy =
TP + TN

N 
 

2  

Precision =
TP

TP +  FP 
 

3  
Recall =

TP

TP + FN 
      (Sensitivity) 

4  
Specificity =

TN

TN +  FP 
 

5  

Fβclass =
Precisionclass × Recallclass

β(Recallclass) + (1 − β)Precisionclass

 

=
TPclass

TPclass +  β(FPclass) + (1 − β)FNclass

 

6  

F1class =
2 × Precisionclass × Recallclass

Precisionclass + Recallclass

 

=
TPclass

TPclass +  0.5(FPclass + FNclass)
 

7  

Balanced Accuracy =
Recall + Specificity 

2 
 

8  
Precision𝑚𝑎𝑐𝑟𝑜 =

Precision𝐴+Precision𝐵

2 
         

9  

Recall𝑚𝑎𝑐𝑟𝑜 =
Recall𝐴 + Recall𝐵

2 
 

10  

Specificity𝑚𝑎𝑐𝑟𝑜 =
Specificity𝐴 + Specificity𝐵

2 
 

11  

Precision𝑚𝑖𝑐𝑟𝑜 =
TP𝐴  + TP𝐵  

2
= Accuracy 

12  
Recall𝑚𝑖𝑐𝑟𝑜 = Precision𝑚𝑖𝑐𝑟𝑜 

13  
Specificity𝑚𝑖𝑐𝑟𝑜 = Precision𝑚𝑖𝑐𝑟𝑜 

14  
Precisionweighted 

=
𝑁𝐴(Precision𝐴) + 𝑁𝐴(Precision𝐵)

N 
 

=

NA

PA
(TPA) +

NB

PB
(TPB)

N 
 

15  

Recallweighted =
NA(RecallA) + NA(RecallB)

N 
  

=  
TP𝐴  + TP𝐵  

𝑁 
=  Accuracy 

16  
Specificityweighted 

=
NA(SpecificityA) + NB(SpecificityB)

N 
 

=

NA

NB
(TNA) +

NB

NA
(TNB)

N 
 

17  
Fβmodel 

=
Precisionmodel × Recallmodel

β(Recallmodel) + (1 − β)Precisionmodel

 

18  

F1model =
2 × Precisionmodel × Recallmodel

Precisionmodel + Recallmodel

 

19  
Specificity𝐴 = Recall𝐵 

Specificity𝐵 = Recall𝐴 

20  
Specificity𝑚𝑎𝑐𝑟𝑜 = Recall𝑚𝑎𝑐𝑟𝑜 

21  

Balanced accuracy =
RecallA + SpecificityB 

2 
 

= Recallmacro =
SpecificityA + SpecificityB 

2 
 

= Specificitymacro 

22  
Fβmicro = F1micro = Precisionmicro 

23  

Accuracy = Precisionmicro = Recallmicro  

= Recallweighted = Specificitymicro  

= Fβmicro = F1micro = 
TP𝐴+TP𝐵

N
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