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Abstract: In the present article, we introduce a new true integer valued autoregressive model of order one TPDINAR(1) for data sets

on Z and either positive or negative correlations based on the Poisson difference (Skellam) marginal distribution and using a random

walk variable (It). Properties of the model are derived. We consider several methods for estimating the unknown parameters of the

model, and their properties are discussed. Simulations are carried out for the performance of these estimators for illustrative purposes.

Finally, the analysis of real life time series data is presented, and its performance is compared to two different INAR(1) models that

may also be used over the observed data.
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1 Introduction

Integer valued time series models have received considerable attention in the literature in the last years. This is partially
due to the occurrence in many real life situations and application fields. In each of these examples an element of the
process at time t can be either the existence of an element of the process at previous times, or an arrival (innovation)
sequence which has a specific discrete distribution. The majority of non-negative integer valued time series models are
based on thinning operators of Steutel and van Harn [1] and several marginal distributions.

In many applications in real life we may face time series data with positive and negative integer values and positive and
negative autocorrelation functions. Some of these data are also obtained when the difference operator is applied to a non-
stationary count data. By using the signed binomial thinning operator and focusing on the case where the innovation has
the Skellam distribution, Karlis and Anderson [2] demonstrated the ZINAR process as an expansion of the INAR model
(difference between two independent Poisson processes).According to Freeland [3], TINAR(1) is the difference between
two INAR processes, which requires observation of the two processes. Barreto-Souza and Bourguignon [4] introduced a
stationary first order integer valued autoregressive process on Z with skew discrete Laplace marginal (difference between
two independent geometric processes), named a skew true INAR(1) model ( STINAR ). Alzaid and Omair [5] defined the
extended binomial thinning operator and studied the Poisson difference integer valued autoregressive model of order one.
For a review, see for example, ([6], [7]).

The rest of the paper is arranged as follows: Section 2 includes a new true Skellam integer valued autoregressive
model of order one (denoted by TPDINAR(1)) using a random walk variable It(α). The properties of this model are
also considered, and we have proved that the TPDINAR(1) process is second order stationary and strictly stationary in
this section. In Section 3, the estimation of the model parameters is considered by using three methods of estimation,
conditional least square method, Yule Walker method, and conditional maximum likelihood method. And in section 4,
we use real life time series data of annual increases in the Swedish population (per thousand people) over the 1750–1849
century [4] to apply these methods.
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2 TPDINAR(1)

A Skellam process is defined as

X(t) = N(1) (t)−N(2)(t), t ≥ 0

where N(1) (t), t ≥ 0 and N(2)(t), t ≥ 0 are two independent Poisson processes with parameters µ
1
> 0 and µ

2
> 0,

respectively.

The probability mass function of X(t) is given by Alzaid, and Omair [8] as

P(X(t) = x) = e−(µ1+µ2)(µ1µ2)
x/2B|x|(2

√
µ1µ2),

for all x ∈ Z = {0,±1,±2, ...},µ1,µ2 > 0 where Br (y) is the modified Bessel function of the first kind see (Abramowitz
and Stegun [9]) given by

Br(y) = (
y

2
)r

∞

∑
k=0

( y2

4
)k

k!(r+ k)!
.

The mean and the variance of X(t) are

E(X(t)) = µ1 − µ2 = µm and Var(X(t)) = µ1 + µ2 = µp.

The moment generating function (MGF) of the Skellam process is

MX(u) = e−(µ1+µ2)+µ1eu+µ2e−u

,

and its moments are

m1 = E[εt ] = µm.

m2 = E[ε2
t ] = µ2

m + µp.

m3 = E[ε3
t ] = µm(1+ 3µp+ µ2

m).

m4 = E[ε4
t ] = µ2

m(4+ 6µp+ µ2
m)+ 3µ3

m+ µp.

Now, we present a new integer valued autoregressive process of order 1, which can accommodate both positive and
negative autocorrelations and can handle both negative and positive integer valued time series. TPDINAR(1), or True
Poisson Difference INteger valued AutoRegressive of order 1, is the name of this process.

Definition 1.Let {εt} be a sequence of i.i.d. random variables with the Poisson difference (Skellam) distribution PD(

µ1,µ2). The TPDINAR (1) process {Zt} is defined by

Zt = It(α)Zt−1 + εt , (1)

where It(α) , Zt−1, and εt are independent random variables and It(α) be a random variable, defined for any α ∈ (0,1),
as

It(α) =Ut(α)− 1 =







−1 for prob. (1−α)2

0 for prob. 2α (1−α)
1 for prob. α2

,

and Ut (α) be i.i.d. binomial random variables Bin(2,α) for each given t so that,

E[Ik
t (α)] =

{

2α − 1 k = 1,3,5, ...
1− 2α (1−α) k = 2,4,6, ...

and var(It(α)) = 2α(1 − α).

Since there is movement in both directions instead of just rising, this process differs slightly from counting processes.
Thus, this process is similar to a random walk with discrete steps of size one and Skellam innovations. This model is
suitable to fit the change in a commodity’s price, stock or other applications in finance and economics. The sample path
of the process (1) having PD(µ1,µ2) as marginal with several and different values of µ1 and µ2 are plotted in Figure 1.
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Fig.1(a) Series(1) and its autocorrelations with α = 0.2, µ1 = .8 and µ2 = 1.

Fig.1(b) Series(2) and its autocorrelations with α = 0.8, µ1 = .8 and µ2 = 1.

The mean, variance and the autocorrelation functions of stationay {Zt} are given by

E [Zt ] = µZ =
µm

2(1−α)
, (2)

γ0 = E[Z2
t ] =

2αµ2
m + 2µp (1−α)

4α (1−α)2
, (3)

G0 = Var (Zt) =
αµ2

m + 2µp (1−α)

4α (1−α)2
, and (4)

ρk = (2α − 1)k
, k ≥ 0. (5)

Clearly, for 0 < α < 0.5, ρk is negative for odd k and positive otherwise.

We now investigate the second order stationarity of the process (1) with 0 < α < 1.
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Consider the process (1) with 0 < α < 1

E [Zt ] = E[It(α)Zt−1 + εt ]

= E[It(α)It−1(α)Zt−2 + It(α)εt−1 + εt

= E

[

t

∏
j=1

I j(α)Z0 +
t−1

∑
k=1

(

t

∏
j=k+1

I j(α)

)

εk + εt

]

= E

[

η1Z0 +
t−1

∑
k=1

ηk+1εk + εt

]

= (2α − 1)tE[Z0]+
t−1

∑
k=1

(2α − 1)t−kµm + µm

= (2α − 1)tE[Z0]+
(2α − 1)(1− (2α − 1)t−1)

1− (2α − 1)
µm + µm

= (2α − 1)t

[

E[Z0]−
µm

2(1−α)

]

+
µm

2(1−α)

where ηl = ∏t
j=l I j(α) and by virtue of the independence of It(α)′s we have E[ηl ] = E[It(α)]t−l+1 = (2α − 1)t−l+1.

So, in order the mean of {Zt} to be free of t, we must have E[Z0] =
µm

2(1−α) and in this case E[Zt ] =
µm

2(1−α) = E[Z0].

E
[

Z2
t

]

= E[(It(α)Zt−1 + εt)
2]

= E[I2
t Z2

t−1 + 2ItεtZt−1 + ε2
t ]

= E[I2
t [I

2
t−1Z2

t−2 + 2It−1εt−1Zt−2 + ε2
t−1]+ 2Itεt Zt−1 + ε2

t ]

= E





(

I2
t I2

t−1 · · · I2
1

)

Z2
0 + 2

(

I2
t I2

t−1 · · · I2
2

)

I1ε1Z0 + 2
(

I2
t I2

t−1 · · · I2
3

)

I2ε2Z1

+ · · ·+ 2I2
t It−1εt−1Zt−2 + 2ItεtZt−1

+
(

I2
t I2

t−1 · · · I2
2

)

ε2
1 +
(

I2
t I2

t−1 · · · I2
3

)

ε2
2 + · · ·+ I2

t ε2
t−1 + ε2

t





= β tE[Z2
0 ]+

t−1

∑
k=1

β t−k (2α − 1)

(1−α)
µ2

m +
(2α − 1)

(1−α)
µ2

m

+
t−1

∑
k=1

β t−k(µp + µ2
m)+ (µp + µ2

m).

= β tE[Z2
0 ]+

β (1−β t−1)

1−β

(2α − 1)

(1−α)
µ2

m +
(2α − 1)

(1−α)
µ2

m

+
β (1−β t−1)

1−β
(µp + µ2

m)+ (µp + µ2
m)

= β t

(

E[Z2
0 ]−

2αµ2
m + 2(1−α)µp

4α(1−α)2

)

+
2αµ2

m + 2(1−α)µp

4α(1−α)2

where β = E[I2
t (α)] = (1− 2α + 2α2) and E[η2

l ] = E[I2
t (α)]t−l+1 = (1− 2α + 2α2)t−l+1 = β t−l+1.

Var(Zt) = β t

(

(E[Z2
0 ]− (E[Z0])

2)+
µ2

m

4(1−α)2
− 2αµ2

m + 2(1−α)µp

4α(1−α)2

)

+
2αµ2

m + 2(1−α)µp

4α(1−α)2
− µ2

m

4(1−α)2

= β t

(

Var(Z0)−
αµ2

m + 2(1−α)µp

4α(1−α)2

)

+
αµ2

m + 2(1−α)µp

4α(1−α)2

So, in order the variance of {Zt} to be free of t, we must have

Var(Z0) =
αµ2

m + 2(1−α)µp

4α(1−α)2
and in this case Var(Zt) =

2αµ2
m + 2(1−α)µp

4α(1−α)2
=Var(Z0). (6)
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Similarly we can prove that cov(Zt ,Zt−k) is free of t.
Since 0<α < 1, the mean, variance and autocovariances of {Zt} are free of t, then the process TPDINAR(1) is second

order stationary.

Theorem 1 The TPDINAR(1) process is strictly stationary and ergodic.

Proof.The process {Zt} given by Definition 1, can be written as

Zt =







−Zt−1 + εt for prob. (1−α)2

εt for prob. 2α (1−α)
Zt−1 + εt for prob. α2

From which it is obvious that the Markovian property is conducted. Based on Definition 3.1 and since {εt} is an
i.i.d. sequence, the conditional distribution of Zt+1 given Zt and Zt+s+1 given Zt+s are equal for any t,s ∈ N. This, with
the assumption that the random variables are equally distributed, and the Markovian property of the process implies that
the joint distribution of (Z1,Z2, . . . ,Zt ) and (Zk+1,Zk+2, . . . ,Zk+t ) are equal for any t,s ∈ N, therefore the process {Zt} is
strictly stationary. The ergodic property of the process can be obtained by the same way of Ristić and Nastic [10].

2.1 Conditional statistical measures

The conditional statistical measures of a stationary TPDINAR(1) process are derived as follows: From Equation (1) and

because of the stationarity of the process and the independence of It(α)
′
s, and ε

′
t s, the one step ahead conditional mean

and variance are calculated as,

E[Zt |Zt−1] = E[(It(α)Zt−1 + εt)|Zt−1] = (2α − 1)Zt−1 + µm.

and

Var[Zt |Zt−1] =Var[(It(α)Zt−1 + εt)|Zt−1] = 2α(1−α)Z2
t−1 + µp.

Theorem 2 Consider that Zt be stationary process and when k approaches very large values (k→∞), the conditional

mean and the conditional variance of the process k+1 steps ahead returns to the unconditional mean and variance of the

process (1).

Proof.Repeating the recursive substitution t + k times of Equation (1) , we obtain

Zt+k = It+k(α)Zt+k−1 + εt+k

= It+k(α)It+k−1(α)Zt+k−2 + It+k(α)εt+k−1 + εt+k

= It+k(α)It+k−1(α)It+k−2(α)Zt+k−3 + It+k(α)It+k−1(α)εt+k−2 + It+k−1(α)εt+k−1 + εt+k

...

= ζk+1Zt−1 +
k−1

∑
j=0

ζk− jεt+ j + εt+k. (7)

where ζm = ∏k
j=k−m+1 It+ j(α) , m = 1,2, . . . ,k+ 1.

Note that E[ζm] = E[It(α)]m = (2α − 1)m. and E[ζ 2
m] = E[I2

t (α)]m = β m.

From the expected value properties and given that {It(α)} and {εt} are two independent i.i.d. sequences of random
variables, one has

E[Zt+k|Zt−1] = (2α − 1)k+1Zt−1 +
1− (2α − 1)k+1

2(1−α)
µm.

when k → ∞, we find that

E[Zt+k|Zt−1]→
µm

2(1−α)

which is the unconditional mean of the process (1) given by Equation (2). That is, when k approaches very large values,
the conditional mean of the process k+ 1 steps ahead returns to the unconditional mean of the process.

To find the conditional variance k+ 1 steps ahead, we first evaluate the conditional expectation of Z2
t+k.
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Squaring both sides of Equation (7) and taking the conditional expectation, we obtain

E[Z2
t+k|Zt−1] = β k+1Z2

t−1 +

(

1+
k

∑
j=1

β j

)

(µp + µ2
m)+ 2

(

k

∑
j=1

ν jβ k− j

)

µmZt−1 +

2

[(

k

∑
j=1

ν jβ k− j

)

+

(

k

∑
j=1

ν jβ k− j

)

+ ...+ν

]

µ2
m

= β k+1Z2
t−1 + 2

(

k

∑
j=1

ν jβ k− j+1

)

µmZt−1 +
1−β k+1

1−β
(µp + µ2

m)+ 2

[

k−l

∑
l=0

k

∑
j=1

ν jβ k− j−l

]

µ2
m

= β k+1Z2
t−1 +νβ k

(

1− (ν/β )k

2(1−α)2

)

µmZt−1 +
1−β k+1

1−β
(µp + µ2

m)+
2ν

β −ν

[

β −β k

1−β
− ν −νk

1−ν

]

where ν = E[It(α)] = (2α − 1) and β < 1 (note that (ν/β )k → 0, as k → ∞ since ν < β ). When k → ∞, we find that

E[Z2
t+k|Zt−1]→

1

1−β
(µp + µ2

m)+
2ν

β −ν

[

β

1−β
− ν

1−ν

]

=
µp

2α(1−α)
+

µ2
m

2(1−α)2

which is the unconditional expectation of Z2
t given by Equation (7) .

Theorem 3 The MGF(Moment Generating Function ) of Zt is given by

MZ(u) =
φu[2(1−β )− 2νφ−u]+ψu

2− (β +ν)[φu +φ−u]+ψu

,

where ψu = 2νβ e−2(µ1+µ2)+µ1(e
u+e−u)+µ2(e

u+e−u) and φu = e−(µ1+µ2)+µ1eu+µ2e−u
.

Proof.The MGF of Zt is given by

MZ(u) = E[euZt ] = E[eu(It (α)Zt−1+εt)]

= Mε(u)E[(1−α)2e−uZt−1 + 2α(1−α)+α2euZt−1 ]

= Mε(u)[(1−α)2MZ(−u)+ 2α(1−α)+α2MZ(u)]

[1−α2Mε(u)]MZ(u) = (1−α)2Mε(u)MZ(−u)+ 2α(1−α)Mε(u)

MZ(u) =
(1−α)2Mε(u)MZ(−u)+ 2α(1−α)Mε(u)

1−α2Mε(u)
. (8)

Replace each u in Equation (8) by −u we obtain

MZ(−u) =
(1−α)2Mε(−u)MZ(u)+ 2α(1−α)Mε(−u)

1−α2Mε(−u)
,

substituting in Equation (8), we obtain

MZ(u) =
(1−α)2Mε (u)

1−α2Mε (u)

(1−α)2Mε (−u)MZ(u)+ 2α(1−α)Mε(−u)

1−α2Mε(−u)
+

2α(1−α)Mε(u)

1−α2Mε(u)

[(1−α2Mε (u))(1−α2Mε (−u))]MZ(u) = (1−α)4Mε(u)Mε(−u)MZ(u)+ (1−α)22α(1−α)

Mε(u)Mε(−u)+ [(1−α2Mε(−u))](2α(1−α)Mε(u))

[(1−α2Mε(u))(1−α2Mε(−u))− (1−α)4Mε(u)Mε(−u)]MZ(u)

= (1−α)22α(1−α)Mε(u)Mε(−u)+ [(1−α2Mε(−u))](2α(1−α)Mε(u)).

c© 2024 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 13, No. 1, 435-447 (2024) / www.naturalspublishing.com/Journals.asp 441

Calculations are done, and the results are

MZ(u) =
(1−β )Mε(u)[1−νMε(−u)]

1− (β+ν)
2

[Mε(u)+Mε(−u)]+νβ Mε(u)Mε(−u)

=
2(1−β )Mε(u)[1−νMε(−u)]

2− (β +ν)[Mε(u)+Mε(−u)]+ 2νβ Mε(u)Mε(−u)

=
φu[2(1−β )− 2νφ−u]+ψu

2− (β +ν)[φu +φ−u]+ψu

.

3 Parameter Estimation

Assume that the stationary TPDINAR (1) procedure has produced n+1 observations. Three parameters in the TPDINAR
(1) process need to be estimated: α , µ1, and µ2. In this part, conditional least squares method, the Yule Walker method,
and conditional maximum likelihood approach will all be discussed.

3.1 Conditional least squares

Let’s think about estimating the unknown parameters, α, µ1 and µ2 using conditional least squares (CLS). Considering
the conditional expectation E[Zt |Zt−1] = (2α −1)Zt−1+µm, then there are two normal equations only in α̂ and µ̂m. Thus,
we’ll employ conditional least squares in two steps. First, we find the CLS estimators α̂ and µ̂m, and next, we find the
CLS estimator µ̂p. From the CLS µ̂m = (µ̂1 − µ̂2) and µ̂p = (µ̂1 + µ̂2) we obtain the CLS estimators µ̂1 and µ̂2.

Theorem 4 The CLS estimators are

α̂ =
1

2

[

1+
∑N

t=2 ZtZt−1 − 1
N−1

(∑N
t=2 Zt)(∑

N
t=2 Zt−1)

∑N
t=2 Z2

t − 1
N−1

(∑N
t=2 Zt−1)2

]

,

µ̂m =
1

N − 1

[

N

∑
t=2

Zt − (2α̂ − 1)
N

∑
t=2

Zt−1

]

.

Proof.In the CLS method we minimize the quadratic function

Q =
N

∑
t=2

[Zt −E[Zt |Zt−1]]
2

=
N

∑
t=2

[Zt − (2α − 1)Zt−1 − µm]
2

(9)

solving ∂Q
∂α = 0 and ∂Q

∂ µm
= 0, we obtain

α̂ =
1

2

[

1+
∑N

t=2 ZtZt−1 − 1
N−1

(∑N
t=2 Zt)(∑

N
t=2 Zt−1)

∑N
t=2 Z2

t − 1
N−1

(∑N
t=2 Zt−1)2

]

(10)

µ̂m =
1

N − 1

[

N

∑
t=2

Zt − (2α − 1)
N

∑
t=2

Zt−1

]

. (11)

Next, we will derive the asymptotic properties of the previously obtained CLS estimators of the unknown parameters α
and µm.

The following theorem establishes the estimators’ consistency and asymptotic distribution.
Theorem 5 The CLS estimators α̂ and µ̂m given by Equations (10) and (11) of a stationary TPDINAR(1) process

have the following asymptotic distribution

√
N

(

α̂ −α
µ̂m − µm

)

d→ N

([

0
0

]

, [D]

)

.
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Proof.Let Z1,Z2, . . . ,ZN be a sample of the TPDINAR(1) defined by Equation (1). First we will check whether the
regularity conditions of Theorems 3.1 and 3.2 of (Klimko and Nelson [11]) are satisfied. Denote θ = (θ1,θ2) = (α,µm)

and g(θ ,Zt−1) = E[Zt |Zt−1] = (2α − 1)Zt−1 + µm. Since
∂g
∂α = 2Zt−1,

∂g
∂ µm

= 1, and
∂ 2g

∂α2 = ∂ 2g
∂α∂ µm

= ∂ 2g

∂ µ2
m
= 0, then all

conditions on [11] are satisfied. From Theorem 3.2 of Klimko and Nelson, we obtain

D =V−1WV−1.

where

V = E













(

∂g

∂α

)2 (

∂g

∂α

)(

∂g

∂ µ

)

(

∂g
∂α

)(

∂g
∂ µ

) (

∂g
∂ µ

)2













= E

[[

4Z2
t−1 2Zt−1

2Zt−1 1

]]

=

[

4γ0 2µZ

2µZ 1

]

.

|V |= 4
(

γ0 − µ2
Z

)

= 4Var(Zt) = 4g0, thus

V−1 =
1

4g0

[

1 −2µZ

−2µZ 4γ0

]

.

and

W = E






Var[Zt |Zt−1]







(

∂g
∂α

)2 (

∂g
∂α

)(

∂g
∂ µ

)

(

∂g
∂α

)(

∂g
∂ µ

) (

∂g
∂ µ

)2













= E

[

(

2α(1−α)Z2
t−1 + µp

)

[

4Z2
t−1 2Zt−1

2Zt−1 1

]]

= (1−β )E

[[

4Z4
t−1 2Z3

t−1

2Z3
t−1 Z2

t−1

]]

+(m2 −m2
1)E

[[

4Z2
t−1 2Zt−1

2Zt−1 1

]]

.

After some calculations, we obtain

E[Z3
t−1] = µ3 =

3γ0m1 +F1

1−ν
,

E[Z4
t−1] = µ4 =

6γ0m2 +F2

1−β
,

where F1 = 4m3
1 − 3m1m2 +m1 + 3(m2 − 2m1)µZ , F2 = m1[(1− 3ν)µ3 +A− 3γ0m1], and A = 5m3

1 − 3m1m2 − 1+(4−
3(m2 −m2

1)− 5m2
1)µZ.

Then

W =

[

γ0(28m2 − 4m1)+ 4F2 2
(1−β )
(1−ν) (3γ0m1 +F1 + 2(m2 −m2

1)µZ)

2
(1−β )
(1−ν) (3γ0m1 +F1 + 2(m2 −m2

1)µZ) (1−β )γ0 +(m2 −m2
1)

]

.

The second stage is when the unknown parameter µp is estimated. Define the random variable Vt as

Vt = [Zt −E[Zt |Zt−1]]
2 = [Zt − (2α − 1)Zt−1 − µm]

2.

Note that E[Vt |Zt−1] =Var(Zt |Zt−1) = 2α(1−α)Z2
t−1 + µp.

Now, the CLS estimator of µp is obtained by minimizing the quadratic function

Q =
N

∑
t=2

[Vt −E[Vt |Zt−1]]
2

=
N

∑
t=2

[

Vt − 2α(1−α)Z2
t−1 − µp

]2
.
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By solving
∂Qp

∂ µp
= 0, we obtain

µ̂p =
1

N − 1

n

∑
t=2

[Zt − (2α − 1)Zt−1 − µm]
2 − 2α(1−α)

N − 1

n

∑
t=2

Z2
t−1, (12)

solving Equation (11) and Equation (12) we obtain the CLS of µ̂1 and µ̂2 as

µ̂1 =
1

2
(µ̂m + µ̂p), and µ̂2 =

1

2
(µ̂p − µ̂m).

3.2 Yule Walker method

The Yule Walker (YW) equation can be solved by substituting the sample autocorrelation function for ρ̂1 to obtain an
estimation for α .

ρ̂1 = (2α̂ − 1)

then α̂ = ρ̂1+1
2

, and we can use the following two equations to obtain µ1 and µ2 estimators

µZ =
µm

2(1−α)
.

G0 =
αµ2

m + 2µp (1−α)

4α (1−α)2
,

thus,

µ̂m = 2(1− α̂)µZ ,

µ̂p =
g0(4α̂ (1− α̂)2)− µ̂mα̂

2(1− α̂)

since

µm + µp = 2µ1

then

µ̂1 =
µ̂m + µ̂p

2
, and µ̂2 = µ̂1 − µ̂m.

3.3 Conditional maximum likelihood method

Consider the conditional maximum likelihood (CML) estimation of the unknown parameters α̂, µ̂1 and µ̂2.

L(x,θ ) =
n

∏
t=1

P(Xt = xt |Xt−1 = xt−1)

where L(x,θ ) is the conditional likelihood function. Let us denote xt−1 by x1 and xt by x2. Then

L∗(x,θ ) = logL(x,θ ) =
n

∑
t=1

logP(Xt = x2|Xt−1 = x1)

Now;

P(Xt = x2|Xt−1 = x1) = ∑P(It(α)x1 = x2 − k)P(εt = k)

for x1 = 0, reduces to

P(Xt = x2|Xt−1 = 0) = P(εt = x2)
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and for x1 6= 0,

P(It(α)x1 = x2 − k) = P(It(α) =
x2 − k

x1

)

= P(Ut =
x2 − k

x1
+ 1)

= Binom(
x2 − k

x1

+ 1,α,2)

=

(

2
x2−k

x1
+ 1

)

α
x2−k

x1
+1
(1−α)

1− (x2−k)
x1 .

where k has values x2 − x1,x2,x2 + x1 : Numerical maximization of the log-likelihood function (i.e. minimization of
− logL(x;θ )) can be performed using the optimization Matlab toolbox, the function ”fminunc” is a minimization function
for ”− logL(x;θ )”.

3.4 Monte Carlo Results

In this section, we compare the obtained estimators. 500 series of size N = 100,300 and 500 are simulated from the
stationary TPDINAR(1) process with parameters (α,µ1,µ2) = (0.4,0.8,1),(0.7,0.8,1),(0.8,0.8,1),(0.4,2,1), (0.7,2,1),
and (0.8,2,1). In each case the mean and the Standard Deviation (SD) of the estimators are calculated. The results are
presented in these Tables 1 and 2.

The results show that CLS, YW and CML estimators are close to each other. The mean of each estimated parameter
is close to the corresponding true value and the standard deviations are small in all cases.

4 Application of TPDINAR(1)

We now fit the stationary TPDINAR(1) model to a set of real life data in order to show the advantage of using it. We
compare here the new TPDINAR(1) model with the STINAR(1) and TINAR(1) models introduced by Barreto-Souza and
Bourguignon [4]. Consider the Zt time series of annual increases in the Swedish population (per thousand people) from
1750 to 1849, as shown in Thomas [12]. Recently, this data collection was applied in [4].

The Swedish population rates series are depicted in this table with some descriptive statistics. Since there are negative
integer values in the series, then only the true time series can be used in this case. The following Figures display the time
series data and associated sample autocorrelations.

Fig.2(a) The time series plot for the Swedish population rates series (per thousand people) for the century between 1750 - 1849.
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Table 1: Mean and SD of estimators for difference estimation methods for TPDINAR(1) with µ1 = 0.8 and µ2 = 1.

CLS YW CML

N α α̂CLS µ̂1CLS µ̂2CLS α̂YW µ̂1YW µ̂2YW α̂CML µ̂1CML µ̂2CML

0.4 0.4082 0.6892 0.8898 0.4089 0.7242 0.9242 0.4007 0.7765 0.9712

SD 0.0395 0.1819 0.1747 0.0394 0.1847 0.1767 0.0365 0.1876 0.1998

100 0.7 0.6818 0.6887 0.9098 0.6805 0.8277 1.0482 0.6676 0.7153 0.9695

SD 0.0255 0.2010 0.1968 0.0261 0.2011 0.1920 0.0398 0.1550 0.1331

0.8 0.7530 0.6259 0.8773 0.7444 0.8296 1.0844 0.7496 0.6946 0.9470

SD 0.0402 0.1742 0.1742 0.0437 0.1729 0.1560 0.0212 0.2089 0.1666

0.4 0.3950 0.7432 0.9414 0.3954 0.7794 0.9772 0.4042 0.7865 0.9706

SD 0.0296 0.1631 0.1578 0.0295 0.1613 0.1562 0.0296 0.0838 0.0654

300 0.7 0.7036 0.6807 0.8813 0.7030 0.8201 1.0193 0.7099 0.7707 0.9632

SD 0.0297 0.1434 0.1410 0.0299 0.1399 0.1371 0.0230 0.0896 0.0936

0.8 0.7660 0.7560 0.9904 0.7655 0.9932 1.2299 0.7894 0.7648 0.9715

SD 0.0343 0.2168 0.2292 0.0340 0.2153 0.2280 0.0270 0.0790 0.0872

0.4 0.3887 0.7618 0.9671 0.3889 0.7998 1.0041 0.3888 0.8155 1.0321

SD 0.0437 0.0834 0.0880 0.0436 0.0844 0.0885 0.0266 0.0803 0.0883

500 0.7 0.6914 0.7968 0.9970 0.6910 0.9291 1.1288 0.7017 0.7940 0.9953

SD 0.0278 0.1002 0.0985 0.0277 0.1012 0.1005 0.0212 0.0801 0.0784

0.8 0.8033 0.7707 0.9662 0.8023 1.0044 1.1990 0.8039 0.7894 0.9987

SD 0.0427 0.1543 0.1312 0.0435 0.1619 0.1382 0.0258 0.0677 0.0762

Fig.2(b) The autocorrelation function plot for the Swedish population rates series (per thousand people) for the century between 1750 - 1849.

In Table 4 We give three goodness-of-fit statistics too with the parameter estimates: RMS stands for ”root mean
square of differences between observed and predicted values,” MA for ”absolute mean of differences between observed
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Table 2: Mean and SD of estimators for difference estimation methods for TPDINAR(1) with µ1 = 2 and µ2 = 1.

CLS YW CML

N α α̂CLS µ̂1CLS µ̂2CLS α̂YW µ̂1YW µ̂2YW α̂CML µ̂1CML µ̂2CML

0.4 0.3880 2.2147 1.1491 0.3855 1.8720 0.8215 0.4612 1.9964 0.9301

SD 0.0785 0.6769 0.5719 0.0477 0.4285 0.5343 0.0717 0.4471 0.2155

100 0.7 0.6558 1.8008 0.6704 0.6539 1.8497 0.7133 0.6809 1.9618 0.9187

SD 0.0683 0.4606 0.4197 0.0670 0.5248 0.4243 0.0512 0.2018 0.1675

0.8 0.7652 2.0802 0.8431 0.7807 1.7753 0.6106 0.7488 2.0493 1.1289

SD 0.0378 0.5898 0.5807 0.0451 0.5780 0.7463 0.0573 0.2651 0.2557

0.4 0.3992 1.8823 0.8656 0.3996 1.8776 0.8611 0.4025 1.9618 0.9385

SD 0.0404 0.2801 0.2836 0.0404 0.2810 0.2798 0.0270 0.1717 0.1783

300 0.7 0.6837 1.9238 0.8809 0.6830 1.9371 0.8918 0.6993 1.9916 0.9859

SD 0.0438 0.4009 0.3728 0.0436 0.4316 0.3755 0.0264 0.2060 0.1731

0.8 0.7955 1.7207 0.6783 0.7947 1.7571 0.7110 0.7939 2.0153 0.9923

SD 0.0323 0.3001 0.3988 0.0325 0.2963 0.3039 0.0230 0.1425 0.1286

0.4 0.4108 2.0188 1.0349 0.4111 2.0106 1.0268 0.4037 2.0039 1.0158

SD 0.0314 0.2485 0.2483 0.0314 0.2496 0.2451 0.0182 0.1258 0.1344

500 0.7 0.6994 1.9852 0.9879 0.6991 1.9794 0.9808 0.6989 1.9585 0.9660

SD 0.0388 0.3576 0.3638 0.0388 0.3764 0.3575 0.0261 0.1244 0.1171

0.8 0.7920 1.8601 0.8467 0.7916 1.8716 0.8559 0.8032 1.9913 1.0109

SD 0.0265 0.4037 0.4233 0.0266 0.4184 0.4011 0.0179 0.1335 0.1548

Table 3: Descriptive statistics for the Swedish population rates series (per thousand people) for the century between 1750 and 1849.

Minimum Mean Median Variance ρ̂1 Maximum

-27 6.69 7.5 34.56 0.46 16

Table 4: Estimate of the TPDINAR(1), STINAR(1), and TINAR(1) processes’ parameters including the RMS, MA, and MD goodness of fit statistics.

Model Estimates RMS MA MD

TPDINAR(1) α̂ = 0.7300 5.1814 3.3976 2.4126

µ̂1 = 6.1762

µ̂2 = 2.5636

STINAR(1) α̂ = 0.465 5.2064 3.4200 2.4381

µ̂1 = 8.883

µ̂2 = 2.193

TINAR(1) α̂ = 0.465 5.2064 3.4201 2.4379

µ̂1 = 11.03

µ̂2 = 7.449
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and predicted values,” and MD for ”absolute median of differences between observed and predicted values”; Conditional
maximum likelihood parameters estimates and their standard errors are calculated. By comparing these values with the
results [4], it is generally believed that the best model to explain the data gives the smallest values for these quantities.

From Table 4 we observe that, based on the goodness-of-fit statistics, our TPDINAR(1) process produces a somewhat
better fit to the data than the other two models.

Remark.CLS, and YW parameters estimates and their standard errors are close to CML parameter estimates.
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