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Abstract: The nonlinear Navier-Stokes equations are converted to the linear diffusion equations by Mohammadein (Appl. 
Math. & Info. Sci. Lett. (2020). The analytical solutions of linear Navier-Stokes equations only are obtained. In this paper, 
the pressure gradient is redefined by using Bernoulli concept. The peristaltic incompressible viscous Newtonian fluid flow 
in a horizontal tube is described by Navier-Stokes equations. The stream function described the flow patterns (laminar, transit 
and turbulent) for different values of wave lengths. The linear and nonlinear Navier-Stokes equations are satisfied   by the 
obtained analytical solutions based on pressure gradient definition.  
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1 Introduction  
French physicist engineer  Claude-Louis Navier and Anglo-
Irish physicist and mathematician George Gabriel Stokes  
developed the certain nonlinear partial differential equations 
(Navier–Stokes equations) which describes the motion 
of viscous fluid substances over several decades of 
progressively building the theories, from 1822 (Navier) to 
1842–1850 (Stokes). The solution of nonlinear Navier-
Stokes equations is considered as one problem of the 
"millennium" problems proposed on the Internet at the 
site http://claymath.org/. and not solved until now. 

                   
Claude-Louis Navier                George Stokes 

The Navier–Stokes equations may be used to model the 
weather, ocean currents, water flow in a pipe and air flow 
around a wing. Moreover, in their full and simplified forms 
they help with the design of aircraft and cars, the study of 
blood flow, the design of power stations, the analysis of 
pollution, and many other things [1-14]. There are many 
problems can be formulated by the nonlinear partial 
differential equations, which face some difficulties in the 
way of analytical solutions and numerical solutions 
[8,10,11,17] Many physical problems in terms of nonlinear 
partial differential equations are solved for special cases of 
fluid and flow properties. 

Recently. A finite-difference method for solving the time-
dependent Navier-Stokes equations for an incompressible 
fluid is introduced by Alexandre Chorin [3]. An exact 
solution of the three-dimensional incompressible Navier-
Stokes equations with the continuity equation is produced by 
Gunawan Nugroho [7]. Mats et al. [10] derived a solution to 
the Navier–Stokes equation by considering vorticity 
generated at system boundaries. The transformation of the 
Navier-Stokes equations to the Schrödinger equation 
performed by application of the Riccati equation [4]. A 
particular class of solutions of nonlinear differential 
equations can be obtained by several procedures [14,17-18] 
is obtained [14, 18].  

Vladimir assumed that fluid velocity vector is a conservative 
field, and the Cole-Hopf transformation is applicable to the 
Navier- Stokes equation for an incompressible flow and 
allows reducing the Navier-Stokes equation to the 
Schrödinger equation [19]. The peristaltic motion of viscous 
fluid in different shapes of tubes and plates is obtained for 
long wavelength and low Reynolds number as given by [5, 
6,14]. 

In the last two years, the nonlinear Partial differential 
equations are transformed to the linear diffusion ones on the 
basis of a linear velocity operator concept which was 
proposed by Mohammadein et al. [15-16]. In fluid 
mechanics, the fluid state is described by Lagrange and Euler 
[9] as a particle and point in space, respectively. The fluid 
state is considered as a particle in the point of view of 
Lagrange. Moreover, acceleration is defined as a total 
differentiation of particle velocity like classical mechanics. 
Euler proposed that acceleration of fluid state consists of 
local acceleration!"

!#
 and nonlinear convective acceleration 
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$v. ∇(v	; performs a strong obstacle against the analytical 
solutions of Navier-Stokes equations up to date. The 
definition of total operator *…

*#
  with local and convective 

terms in fluid mechanics has the form 

   *…
*#,

#-#./	01234.#341		

= !…
!#⏟

/-7./	01234.#341

+ $v9. ∇(… ..
7-:417#341	#12	

            (1)      

The new definition of total operator *…
*#

  with local and linear 
diffusion terms in fluid mechanics assumed by 
Mohammadein theory [15] in the form  

  *…
*#,

#-#./	01234.#341		

= !…
!#⏟

/-7./	01234.#341

+ 𝑀∗ 	∇= …>?@
03AABC3-:	01234.#341

						(2)   

The linear velocity operator [15] is modified in terms of the 
physical parameter M* as follows  

          v9⏟
/3:1.2	41/-73#D	-E12.#-2

= −𝑀∗∇,                               (3) 

where	𝑀∗ is called Mohammadein parameter. The nonlinear 
acceleration of fluid in the point of view of Euler has the 
form 

*"
*#⏟

#-#./	.771/12.#3-:

= !"
!#⏟

/-7./	.771/12.#3-:

+ $v9. ∇(v>?@ 																				(4)
7-:417#341	.771/12.#3-:

   

is converted to the linear acceleration as follows 

                         *"
*#
= !"

!#
− ν	∇=v.                                       (5) 

         In this paper, the pressure gradient is performed in a 
physical form on the basis of Bernoulli equation. The 
continuity and linear Navier-Stokes equations reformulated 
in the mathematical model, which are valid for many 
physical models of fluid flow.  

The analytical solution of continuity and linear Navier-
Stokes equations in terms of stream function and fluid 
velocity components are obtained. As a physical application, 
the present mathematical model is used for studying the 
peristaltic flow of an incompressible Newtonian viscous 
fluid in a horizontal tube. Moreover, the analytical solutions 
of continuity and linear Navier-Stokes equations are 
obtained for different values of Reynolds number, wave 
lengths 𝜆 and flow patterns (laminar, transit and turbulent 
flow). The linear and nonlinear Navier- Stokes equations are 
satisfied by the obtained analytical solutions in this work. 

In sec,2,1, the pressure gradient concept on the basis of 
Bernoulli by using Mohammadein theory [15] is 
reformulated.  The Navier-Stokes equations formulated in 
the vector form under the effect of surface and body forces 
in sec, 2,2. Moreover, the incompressible and viscous 
Newtonian fluid motion in 2D cartesian coordinates is 
formulated by continuity and Navier-Stokes equations and 
the analytical solution is obtained. The discussion of 
analytical solution and conclusions of the proposed model 
are introduced in section 2.3. In section 3. For a first time, 

the unsteady incompressible and viscous Newtonian fluid 
flow in a horizontal tube for different wave lengths (𝜆 ≠
0	𝑎𝑛𝑑	𝛿 ≠ 0) are described by linear Navier-Stokes 
equations. The results and graphs are discussed in detail. 
Finally, in section 4, the concluded remarks are tabulated. 

2 Analysis 

In this section, the pressure gradient in Navier-Stokes 
equations is adjusted. In current work, the mathematical 
model is formulated in two dimensional cartesian 
coordinates (x, y). 

2.1. Pressure gradient concept 

The pressure gradient represents a surface force, which is a 
dominant parameter for the fluid flow. The gradient of 
pressure on the basis of Bernoulli equation has the form 

∇𝑃 = −𝜌$v. ∇(v − 𝜌𝑔	𝑛9                                                   (6) 

The above formula of pressure gradient based on the theory 
[15] which becomes 

∇𝑃 = 𝜂∇=𝑉 − 𝜌	𝑔	𝑛9.                                                         (7) 

2.2. Linear Navier-Stokes Equations 

Consider an incompressible viscous fluid flow under the 
effect of surface and body forces, which are described by 
continuity and nonlinear Navier-Stokes equations in the 
vector form 

	∇. v = 0,                                                                            (8) 

𝜌(	!W
!#
+ $v. ∇(v) = −∇𝑃 + ∇. 𝜏3Y,                                     (9) 

where ∇𝑃 is the gradient of pressure, and 𝜏3Y is the shearing 
stress for two different kinds of fluids (Newtonian and non-
Newtonian fluids). 

where 

∇. 𝜏3Y = Z
𝜂	∇=v										𝑓𝑜𝑟	Newtonian	fluids

∇. 𝜏3Y											𝑓𝑜𝑟	Non	Newtonian	fluids
. 

On the basis of the above equation (7) and the linear 
acceleration form (5), the vector Navier- Stokes equation (9) 
becomes 
!W
!#
= 𝜈∇=v + 𝑔	𝑛9.                                                             (10) 

The Navier- Stokes equations in two dimensional cartesian 
coordinates has the form 

𝑢m + vD = 0 ,                                                                   (11) 
!B
!#
= 	𝜈(𝑢mm + 𝑢DD)+𝑔m,                                                  (12) 

!"
		!#

= 	𝜈$vmm + vDD( + 𝑔D,                                               (13) 

The above linear system called linear Navier-Stokes 
equations and can be solved by Picard method [16] as an 
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analytical way under the proposed physical initial and 
boundary conditions.                  

The stream function  Ψ(x, y, t)   is obtained   by using both 
relations               	𝑢 = !r

!D
					𝑎𝑛𝑑			v = −!r

!m
. 

when 𝑔m and 𝑔D are considered. The linear stream function 
equation becomes 

    	𝜓# = 𝜈$𝜓mm + 𝜓DD(                                                    (14) 

And the solution of above equation (14) becomes 

       Ψ(𝑥, 𝑦, 𝑡) = −wx
7y
𝑒{$7xy|7yy(#}(7xm|7yD) − 𝑔𝑡,         (15) 

where 𝑐�,𝑐=, and 𝐴�are constants. The obtained analytical 
solution (15) in terms of stream function and fluid velocity 
components are satisfied by continuity and linear Navier-
Stokes equations (11-13).  

2.3 Discussion of analytical solution of linear system of 
Navier-Stokes equations 

On the basis of pressure gradient concept (7), the nonlinear 
system of Navier-Stokes equations for Newtonian fluid is 
transformed to the linear diffusion equations (11-13) on the 
basis of New treatment theory [15]. The analytical solutions 
(15) are satisfied the continuity and linear system of Navier-
Stokes equations in case of two-dimensional flow.  

The discussion of results concluded the following points: 

1.The analytical solution of continuity and linear Navier-
Stokes equations is obtained in a simple way.   

2.The parameter M*represents the kinematic viscosity 𝜈 of 
nanofluid state in case of Navier-Stokes equations. 

3. When fluid acceleration is equal to zero, the fluid velocity 
has a constant value in the point of view of Lagrange and 
Euler description. On contrary, in this treatment [16], the 
fluid flow velocity still existed in unsteady states, in both 
cases of motion and rest.  

4.The fluid velocity components and stream function 
perform the same order of magnitude in plane (x, y) with   
constant difference between their values.  

In the next section, the problem of peristaltic flow of an 
unsteady incompressible and viscous Newtonian fluid flow 
in a horizontal tube is described by continuity and linear 
Navier-Stokes equations with analytical solution as an 
application of Mohammadein theory [15]. 

3 Peristaltic flow of unsteady incompressible 
and viscous Newtonian fluid flow in a 
Horizontal Tube for different values of wave 
lengths (𝛌 ≠ 𝟎	𝐚𝐧𝐝	𝛅 ≠ 𝟎) 

3.1 Introduction 

Most of the previous problems are described by the nonlinear 
Navier-Stokes equations, which are approximately solved 

for long wavelength 𝛿 = 0 and low Reynolds number [1-14]. 
In the present application, the proposed problem is solved 
analytically. Moreover, the stream function and fluid 
velocity components are obtained for different values of 
wave lengths 𝜆 and Reynolds number values. 

3.2 The Physical and Mathematical Description 

The peristaltic motion of fluid flow is described by many 
authors [2, 14] in case of long wave lengths. In the follows, 
we consider the peristaltic flow of an incompressible 
Newtonian viscous fluid in a horizontal tube (see Fig. 1). The 
flow is caused by infinite sinusoidal wave train moving 
ahead with constant velocity c along the walls of the tube. 
The gravity force is ignored in our case. The peristaltic 
boundary condition has the form 

             𝐻 = 𝑎 + 𝑏	sin	(=�
�
	(𝑥 − 𝑐𝑡)),                       (16)   

where		𝑎 is the tube half width, 𝑏 is the wave amplitude, 𝜆 is 
the wave length and t is the time.  

 
Fig. 1. Sketch of the problem. 

Method of solution 

The mathematical model for the fluid flow can be written in 
the form 

Continuity equation   

                          !B
!m
+ !"

!D
= 0,                                          (17)  

Navier-Stokes equations    

   x:  !B
!#
+ 𝑢 !B

!m
+ v !B

!D
= − �

�
!E
!m
+ 𝜈(!

yB
!my

+ !yB
!Dy
),           (18) 

        y:   !"
!#
+ 𝑢 !"

!m
+ v !"

!D
= − �

�
!E
!D
+ 𝜈(!

y"
!my

+ !y"
!Dy
),       (19) 

where ∇𝑃 = −𝜌$v9. ∇(v − 𝜌𝑔	𝑛9. 

Applying the new treatment theory [15] for the above system 
(17-19), in the frame (𝑥, 𝑦), then  

       !B
!m
+ !"

!D
= 0,                                                            (20) 

𝑥 
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      !B
!#
= 	𝜈(!

yB
!my

+ !yB
!Dy
),                                                    (21) 

    !"
!#
= 	𝜈 �!

y"
!my

+ !y"
!Dy
�,                                                     (22) 

where 𝑢 =	 !�
!D

 and v = −	!�
!m

. 

The nondimensional parameters in terms of dimensional 
ones have the form 

𝑥 = 𝜆𝑥, 𝑦 = 𝑎𝑦,			𝑢 = 𝑐𝑢,				v = 𝑐𝛿v,			𝛿 = .
�
,		𝑡 = �

7
t,  

 𝜓 = 𝑎	𝑐𝜓	,	𝑒 = �
.
,		 and    ℎ = �

.
                                      (23) 

The above equations (20-22) by using the above 
transformations (23) in frame (x, y) introduces a linear 
partial differential equation in terms of stream function 𝜓 in 
the form  

      𝑅1	𝛿	𝜓# = (𝛿=𝜓mm + 𝜓DD).                                    (24) 

The analytical solution by using Picard method [16] of above 
linear partial differential equation (24) has the form 

    𝜓(𝑥, 𝑦, 𝑡) = 𝐴�𝑒
�

��	�
$7xy	�y|7yy(	}(7xm|7yD).                (25) 

under the effect of initial and boundary conditions  

 𝜓(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦) = 𝑒}(7x	m|	7y	D)	 

𝜓(0, 𝑦, 𝑡) = 3                                                                                     
𝜓(𝐿�, 𝑦, 𝑡) = 1                                                       

𝜓(𝑥, 0, 𝑡) = 5,        𝜓(𝑥, ℎ�, 𝑡) =1,                             (26) 

where 𝑐�, 𝑐= and 𝐴� are constants can be estimated from 
the initial and boundary conditions (26) as follows: 
𝑐� = 	

�
�x
ln 3,				𝑐= = 	

�
�
ln 5, 𝐴� = 1,  

  ℎ = 1 + 𝑒	sin	(2𝜋(𝑥 − 𝑡)),𝐿� = 5                            (27) 

3.3 Discussion of Results 

The peristaltic flow of an incompressible Newtonian fluid in 
a horizontal tube is described by continuity and linear 
Navier-stokes equations on basis of pressure gradient 
definition (7). The system of linear partial differential 
equations (20-22) is transformed to the non-dimensional 
linear equation (24). The analytical solution is obtained by 
Picard method [16] in terms of stream function. The obtained 
solution in terms of wave lengths and Reynolds number. The 
stream function (25) is obtained graphically for three 
different values of time and wave lengths as a function of the 
physical parameters. 

In the follows, numerical values, which are used in 
calculations of solutions and graphs are considered for flow 
patterns at Tube radius a=10, b=0.1, e=0.01,  𝑅1 = 7.as 
shown in Figs. 2-3 such that, each group of alphabetically 
lettered figures are put in one row so that all parameters are 
fixed except one parameter.  

In Figs. 2a-f, the streamlines are plotted when 𝛿 = 0.1 for 
time intervals t=0.0,1,5,10,15,20 respectively. In Fig. 2a, the 
streamlines form straight lines and uniform at time t=0.0. It 
means that, the streamlines represent a laminar flow. By 
increasing the time t=1 in Fig. 2b, the streamlines behave a 
weak peristaltic laminar flow. In Fig. 2c streamlines 
represent a transitional flow at time t=5. In Fig. 2d, the 
streamlines transformed to a weak turbulent flow at t=10.In 
Figs. 2e and 2f, the streamlines transformed to a turbulent 
flow at time t=15 and t=30. Moreover, the trapped bolus 
appears for a large value of time where the formation of 
internally circulating bolus of fluid by the closed streamlines 
is known as trapping. It is noted that, the transformation of 
flow patterns from laminar, transit to turbulent flow is 
proportional directly with increasing time at constant value 
of parameter  𝛿 = 0.1. 

In Figs. 3, the streamlines are plotted at time t=5 for different 
wave lengths values of parameter 𝛿 =
0.5, 0.3,0.1,0.05,0.03,0.01  respectively. In the Figs. 3a-b, 
the streamlines are straight and uniform at  𝛿 = 0.5,	 and  
𝛿 = 0.3  ;which the laminar and weak laminar flow is 
observed respectively. In the Figs. 3c-d, the streamlines 
represent the transitional and weak turbulent flow at  𝛿 =
0.1, and 𝛿 = 0.05 is observed respectively. In the Figs. 3e-f, 
the streamlines represent the turbulent and strong turbulent 
flow at  𝛿 = .003  and 𝛿 = 0.01   is observed respectively. 
It is noted that, the transformation of flow patterns from 
laminar, transit to turbulent flow is inversely proportional 
with parameter 𝛿 at constant time t=5s.   

          
   (2a) stream lines at t=0              (2b) stream lines at t=1 

               
   (2c) stream lines at t=5              (2d) stream lines at t=10                

         
    (2e) streamlines at t=15             (2f) stream lines at t=30 

           Figs. 2. Streamlines at 	𝛿 = 0.1 for different times t 
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(3a) stream lines at 𝛿 = 0.5      (3b) stream lines at 𝛿 = 0.3 

        
(3c) streamlines at 𝛿 = 0.1      (3d) stream lines at 𝛿= 0.05 

        
(3e) stream lines at 𝛿 = 0.03  (3f) stream lines at 𝛿 = 0.01.  

Figs. 3. Streamlines at time t=5 for different values of 𝛿 

4 Conclusions 

The peristaltic flow of an incompressible and Newtonian 
viscous fluid in a horizontal tube is studied as application of 
linear Navier-Stokes equations. The linear system of Navier-
Stokes equations (20-22) is obtained based on New treatment 
theory [15]. The stream function 𝜓 and fluid velocity 
components u and v are obtained as an analytical solution of 
equation (25). The discussion of results and figures 
concluded the following remarks: 

1. The peristaltic motion of Newtonian fluid flow in 
horizontal tube is studied.  

2. The analytical solution in terms of stream function and 
velocity components is obtained for laminar, transit and 
turbulent flows in terms of parameter 𝛿.  

3. The stream function and fluid velocity components are 
obtained for different values of wave lengths 𝜆  and 
Reynolds number Re. 

4. The time of transformation of flow patterns stages 
(laminar, transit and turbulent) is proportional directly with 
the different values of parameter  𝛿. 

5. The fluid velocity has a constant value in the point of view 
of Lagrange when fluid acceleration equal to zero. On 
contrary, in this new treatment [16], the fluid flow velocity 
still existed in an unsteady state in both cases of motion and 
rest. 

6. The fluid velocity components are similar to the stream 
function in plane (x, y) with small difference between them 
in calculation values. 

7. The fluid flow takes more time to transform from laminar 
to turbulent flow when parameter 𝛿 increases. 

8. The equation (5) represents the third formulation of fluid 
mechanics in a linear acceleration diffusion form. 

9. The linear Navier-Stokes equations can be solved for 
different cases of fluid and flow as a future prospect. 
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