
*Corresponding author e-mail: hamdy2006x@gmail.com

© 2022 NSP
Natural Sciences Publishing Cor.

 Appl. Math. Inf. Sci. 16, No. 6, 899-909 (2022) 899

 Applied Mathematics & Information Sciences
An International Journal

 http://dx.doi.org/10.18576/amis/160606

Optimization Task Scheduling Bee Colony Algorithm for
Heterogeneous Cloud Computing Systems

Ahmed Y. Hamed, M. Kh. Elnahary and Hamdy H. El-Sayed*

Department of Computer Science, Faculty of Computers and Artificial Intelligence, Sohag University, Sohag, 82524,
Egypt

Received: 1 Aug. 2022, Revised: 22 Sep. 2022, Accepted: 24 Sep. 2022.
Published online: 1 Nov. 2022.

Abstract: The primary purpose of the task scheduler is to assign tasks to available processors to produce a minimum
Makespan without violating precedence constraints. In heterogeneous cloud computing resources, task assignments and
schedules significantly impact system operation. In the experimental task scheduling algorithm, a different mapping of the
process will result in a different maximum completion time of a batch of tasks (Makespan) on heterogeneous cloud
computing resources. Thus, a scheduling algorithm has to define a schedule considering the precedence of child tasks
depending on the resources required to reduce makespan. In this paper, we propose an Efficient Artificial Bee Colony
Optimization Algorithm (EABCOA) to solve heterogeneous cloud computing resources' task assignment and scheduling
problems. The basic idea of this process is to exploit the advantages of meta-heuristic algorithms to get the optimal
solution for makespan. We evaluate our algorithm's performance by applying it to three cases with a different number of
tasks and processors. The results show that the proposed approach significantly outperforms other methods in finding the
optimal solution for makespan.

Keywords: Heterogeneous processors, Artificial bee colony optimization algorithm, Task scheduling, multiprocessing,
cloud computing.

1 Introduction

Execution time is one of the key pre-performance
measurements of any computing system. in order to reduce
execution time, processors were developed faster. Still, they
had physical limitations, so a multiprocessing system was
used. In a multiprocessing system, the program is divided
into tasks to perform each task on one of the processors.
Assigning tasks and processors is called scheduling tasks in a
multiprocessing system. in order to Achieve optimal task
scheduling and processor utilization in a heterogeneous
multiprocessing system is a computationally challenging
goal. The term improvement may refer to several goals
combined. Usually, the main goal is to reduce the length of
the schedule (Makespan). Finding the optimal task schedule
is an NP [1,2] hard problem. Accordingly, meta-heuristic
algorithms are a good candidate to tackle this problem.

Many articles have applied the artificial bee colony
optimization algorithm to solve task scheduling. This paper
presents the proposed Efficient Artificial Bee Colony
Optimization Algorithm (EABCOA) for heterogeneous
cloud computing resources. Heterogeneous cloud computing

resources have different processing capabilities. The task
processing time can only be specified when assigned to a
specific processor; that is, the task processing time depends
on the processor. The proposed Efficient Artificial Bee
Colony Optimization Algorithm (EABCOA) is presented to
find the optimal task scheduler assigned to heterogeneous
cloud computing resources. The basic idea of this technique
is to exploit the advantages of meta-heuristic algorithms to
get the optimal solution for makespan. The proposed
algorithm assigns tasks to processors randomly, and the task
priority is generated randomly in order to preserve the
precedence constraints. We evaluate our algorithm's
performance by applying it to three cases with a different
number of tasks and processors. The results show that the
proposed approach succeeded in finding the optimal solution
for makespan.
The convergence speed of the Artificial Bee Colony
Optimization Algorithm (ABCOA) is slow. The algorithm
has strong exploration performance, but poor exploitation
performance since its solution update formula only alters one
component of the solution vector each time. In order to solve
the above drawbacks and accelerate the rate of convergence,

 900 A. Y. Hamed et al: Optimization Task Scheduling Bee …

© 2022 NSP
Natural Sciences Publishing Cor.

a new strategy is proposed to find novel candidate solutions
in the employed bee search step of the proposed EABCOA.
This strategy accelerates the convergence rate of the
algorithm and improves the algorithm's exploitation ability.
In this strategy, we use a method that randomly selects one
solution from an existing solution and generates random
numbers according to those generated numbers. It takes the
values from the randomly chosen solution and puts them into
the current solution without changing the randomly selected
solution. We present the same strategy in the onlooker bees
phase. This strategy improves the algorithm's exploitation
ability and enhances the solution's precision.
The rest of this paper is presented as follows. The notations
are given in Section 2. Section 3 presents some work related
to the problem of task scheduling for various systems
architectures. A description of the problem is given in section
4. In section 5, Artificial Bee Colony Optimization
Algorithm is described. Our EABCOA approach to finding
optimal task scheduling for heterogeneous cloud computing
resources is described in Section 6. The results were obtained
by applying EABCOA, and their comparison with other
results is presented in Section 7. Section 8 concludes the
paper and future work.

2 Notations

G A task graph
DAG A Directed Acyclic Graph
Ti Task i
Pi Processor i
M Number of processors
N Number of tasks
Ni Node i
C(Ti, Tj) Communication Cost between task i

and task j
ST(Ti, Pj) Start time of task i on a processor Pj
FT(Ti, Pj) Finish time of task i on a processor Pj
RT(Pi) Ready time of the processor i
LT A list of tasks according to the

topological order of DAG.
DAT(Ti, Pj) The Data Arrival Time of task i at

processor j
Pop_size Number of the initial population
Max_iter The maximum number of iterations

3 Related Work

Recently, cloud computing has emerged as a widely used
platform to supply compute, storage, and analytics services
to end-users and organizations on a pay-as-you-use basis,
with high skill, accessibility, scalability, and resiliency. It
allows people and organizations to access a large pool of
high-processing resources without establishing a high-
performance computing (HPC) platform. For the last few
years, task scheduling in cloud computing has been an

outstanding resource for researchers. The Task Aware
Scheduling Algorithm (TASA) and Proactive Simulation-
based Scheduling and Load Balancing (PSSLB) are
presented during this research work. The author investigated
and empirically compared some of the most prominent state-
of-the-art scheduling heuristics regarding Makespan,
Average Resource Utilization Ratio (ARUR), Throughput,
and energy consumption [3].
Cloud computing is an efficient technology to serve the
needs of big data applications. It minimizes the makespan of
the cloud system, whereas increasing resource utilization is
essential to reduce costs. In this case, task scheduling is
challenging to satisfy the requirement because it needs
effectiveness and efficiency. The particle swarm
optimization (PSO) algorithm with many discrete variants
was presented for task scheduling in cloud computing [4].
Cloud computing is an emerging distributed, low-cost
computing paradigm with a large collection of heterogeneous
autonomous systems. It provides on-demand, flexible, and
scalable services to customers on a pay-per-use basis. The
general performance of cloud infrastructure depends on task
assignment and scheduling. Efficient task scheduling
decreases the power consumption of the cloud infrastructure
and increases service providers' profit by reducing the
processing time of the user's job. An efficient task scheduling
algorithm using a multi-objective Artificial Bee Colony
Algorithm (TA-ABC) is presented. The algorithm optimizes
the cloud computing environment's energy, cost, resource
utilization, and processing time [5].
Task scheduling is one of the significant problems in a cloud
computing system. Efficient task scheduling is substantial for
achieving cost-efficient execution and improving resource
utilization. A particle swarm optimization (PSO) using
heuristic algorithms has been proposed [6]. In order to
initialize the PSO, an improved initialization of the longest
job to the fastest processor (LJFP) and minimum completion
time (MCT) algorithms are used. The performance of the
LJFP-PSO and MCT-PSO algorithms is evaluated by
minimizing the makespan, total execution time, degree of
imbalance, and total energy consumption metrics.
For the past few years, cloud computing has been considered
an attractive high-performance computing platform for
individuals and organizations. To accommodate the
requirements of cloud users, cloud service providers (CSPs)
are setting up their data centers with high-performance
computing resources. Users are mainly interested in response
time, whereas cloud service providers are more concerned
about revenue generation. Concerning these needs, the task
scheduling for the users' applications in cloud computing has
attained focus from the research community. A resource-
aware dynamic task scheduling approach is proposed and
implemented [7]. The DRALBA algorithm has revealed
significant improvements in attained ARUR, Throughput,
and Makespan.

Appl. Math. Inf. Sci. 16, No. 6, 899-909 (2022)/ http://www.naturalspublishing.com/Journals.asp 901

 © 2022 NSP
 Natural Sciences Publishing Cor.

With the rapid development of cloud computing and the
internet, load balancing techniques are becoming more and
more critical than ever. A good scheduling algorithm is a
significant way to resolve load balance problems. A new load
balance algorithm is proposed based on the ABC algorithm
[8], which can be seen as a new scheduling method based on
a swarm intelligence algorithm.
The combination of the Swarm Intelligence algorithm of an
artificial bee colony with a heuristic scheduling algorithm,
called Heuristic Task Scheduling with Artificial Bee Colony
(HABC), was proposed [9]. This algorithm enhances cloud
computing's virtual machines (VMS) scheduling solutions in
homogeneous and heterogeneous environments. It has been
introduced to minimize the makespan and balance the loads.
The general problem of multiprocessor scheduling can be
defined as scheduling a task graph on a multiprocessor
system so that the length of the schedule can be optimized.
Several exploratory approaches have been developed in the
literature that obtains suboptimal solutions in less polynomial
time. Recently, genetic algorithms have gained a lot of
awareness because they are powerful and guarantee a good
solution. In this paper, the author has developed a genetic
algorithm based on the principles of evolution found in
nature to find the optimal solution [10].

Constrained application scheduling takes precedence over
a distributed heterogeneous computing system to reduce
response or total execution time. The author designed and
studied the effectiveness of a micro Genetic Algorithm
(microGA) based scheduling algorithm [11].

Effective scheduling of tasks in heterogeneous computing
systems is paramount for implementing high-performance
programs. Programs are considered multiple sequences of
tasks presented as directed acyclic graphs (DAGs). Each task
has its execution timeline that incorporates various
processors. Furthermore, each edge on the graph represents
constraints between sequential tasks. The author proposes a
new list of scheduling algorithms that schedule tasks
represented in the processor DAG and that better reduce the
overall execution time by taking into account the limitations
of cross-processing. This goal will be achieved in two main
phases: (a) computing priorities for each task performed and
(b) selection of the processor who will take over each task
[12].

A new static scheduling algorithm, Communication
Leveled DAG with Duplication (CLDD), is proposed to
schedule tasks on heterogeneous distributed computing
systems efficiently. It solves most of the limitations of
existing algorithms. The algorithm focuses on reducing the
range and provides better performance than other algorithms
in acceleration, efficiency, and time complexity [13].
A new task scheduling algorithm for heterogeneous
computing, called HSIP (Heterogeneous Scheduling
Algorithm with Optimized Task Priority), whose function is
based on three pillars: (1) an optimized strategy for priority
tasks based on standard deviation with optimizing size as a

weight to calculate and weigh the delivery cost to make
scheduling priority more reasonable; (2) the policy of
choosing the duplication of the entry task to make the period
shorter; and (3) an improved optimization policy based on
the introduction of idle periods (ITS) to make task
scheduling more efficient [14].
Hybrid list-based task scheduling using the Duplication
(HLTSD) algorithm for heterogeneous processors. The
HLTSD algorithm has the same time complexity as modern
algorithms; however, it produces a lower cost schedule than
other related methods. This work also presents a
mathematical formulation for finding priority tasks. The
processor selection phase is improved through input task
repetition, insertion-based policy, primary task repetition at
other levels, and load balancing on each processor [15].
A proposed genetic algorithm (PGA) was presented to solve
homogeneous and heterogeneous multiprocessing task
attribution and scheduling problems. The basic idea of this
process is to exploit the advantages of heuristic algorithms to
reduce the search for space and time to get the best solution
[1].
A task scheduling algorithm based on a Genetic Algorithm
(GA) is presented [16] to assign and execute different tasks.
The algorithm aims to decrease both (Makespan) and
execution costs of tasks and increase resource utilization,
Speedup, and Efficiency.
Bee colony optimization (BCO) has been applied as a local
search in the proposed memory algorithm [17].
A quantum genetic algorithm with spin angle optimization is
presented in the literature for scheduling tasks based on
distributed systems such as cloud data centers [18].

4 Problem Description

The task scheduling model numbers in this work, which can
be described as N distributed tasks to be performed on M
processors, can be general processors with different
computing capabilities. A task graph can be set to describe
the structure of the problem. Task graph G is a directed
acyclic graph (DAG) consisting of tasks T1, T2, T3 ... Tn.
Each node in the graph is described as a task. A task is
supposed to be a set of instructions performed sequentially
on a particular processor. The task (node) may have the
necessary (input) data before it can be executed. When all
entries are received, the node can be run for execution.
These entries are expected to be delivered after some other
task has been completed, and these tasks are evaluated for
them. We call it task dependency. If the task (Ti) is
dependent on other essential data, we consider the tasks to be
tasks that act as significant parents (Tk) →	task (Ti) as their
child. A node that does not contain an entry node is called an
entry node, and a node that does not have a child is called an
end node [1]. The time required to perform a task is what we
call the computational cost. At any point, the cost of
calculating Ti is indicated by weight (Ti, Pj). The graph also

 902 A. Y. Hamed et al: Optimization Task Scheduling Bee …

© 2022 NSP
Natural Sciences Publishing Cor.

has straight E edges representing a partial order between the
tasks. The partial system introduces a DAG constrained by
precedence and means that if (Ti → Tj), then Tj is a child and
cannot start until the parent Ti ends. The weight on edge
represents the communication cost between the tasks
indicated by C(Ti, Tj), and the communication cost is only
considered if Ti and Tj are set on different processors;
otherwise, it is counted as zero, in which case Ti and Tj are
set on the processor itself. If node Ti is set on processor Pj,
the node's start and finish times are indicated by ST(Ti, Pj)
and FT(Ti, Pj), respectively. After scheduling the tasks into
the processors, the makespan is defined as the maximum
{FT(Ti, Pj)} across all processors.

The problem with task scheduling is finding the task
schedule in the processors so that the makespan is reduced
across the possible schedules, as task dependency constraints
are kept. Task dependency restrictions state that no task can
be started until all parents have completed it. Let the Pj be
the wizard in which the original Tk task was a cog from the
scheduled task Ti. The data arrival time (DAT) in the Pj
processor is the time that data is available for each required
to perform the task, as defined in [1] as follows:

DAT(Ti, Pj) = max{FT(Tk , Pj) + C(Ti, Tk)} (1)
where k=1, 2, … Number_Parent

ST(Ti, Pj) = max{RT(Pj), DAT(Ti, Pj)} (2)

FT(Ti, Pj)= ST(Ti, Pj)+weight(Ti, Pj) (3)

Makespan = max{FT(Ti, Pj)} (4)

where i=1, 2,…, N and j=1,2,…., M

5 Artificial Bee Colony Optimization
Algorithm

It is a definition guide for solving integrative optimization
problems. The behavior of bees in nature inspires the
Artificial Bee Colony Optimization Algorithm (ABCOA). In
a honeybee colony, bees search the environment for flower
paths and, if they find a good food source, share it with other
bees. When foraging bees return to the hive, they share the
information they have discovered about food sources through
a particular movement called an oscillation dance. Studies of
this type of bee dance show that in the center of this dance,
certain information, such as direction, distance, quantity, and
quality of the food source, is shared with other bees
[17,19,20].
ABCOA is a population-based algorithm. The artificial bee
community is looking for the perfect solution. Each artificial
bee generates one solution to the problem. The algorithm
consists of two alternating stages: forward pass and
backward pass. During each forward swipe, each bee

explores the search space. It applies a predetermined number
of movements, which build and improve the solution,
resulting in a new solution. After obtaining new partial
solutions, the bees return to the nest and begin the second
stage, the so-called back passage. During the back pass, all
the bees share information about their solutions.

In nature, bees would perform a dancing ritual, informing
other bees about the amount of food they found and the
patch's proximity to the nest. In the search algorithm, the
bees announce the quality of the solution, i.e., the value of
the objective function. During the backward pass, every bee
decides with a certain probability whether it will advertise its
solution. The bees with better solutions have more chances to
promote their solutions. The remaining bees have to decide
whether to continue exploring their solution in the next
forward pass or to start exploring the neighborhood of one of
the advertised solutions. Similarly, this decision is taken with
probability, so better solutions are more likely to be explored.
The two phases of the search algorithm, forward and
backward pass, are performed iteratively until a stopping
condition is met. To continue, this is the pseudo-code of the
ABCOA algorithm:
1. Initialization: every bee is set to an empty solution
2. For every bee, do the forward pass:
Evaluate all possible constructive moves
According to the evaluation, choose one move using the
roulette wheel
3. All bees are back in the hive
4. Sort the bees by their objective function value
5. Every bee decides randomly whether to continue its
exploration and become a recruiter or to become a follower
(bees with higher objective function values have a greater
chance to continue their exploration)
6. For every follower, choose a new solution from recruiters
by the roulette wheel
7. If the stopping condition is not met, Go To Step 2
8. Output the best result.

6 The Proposed Efficient Artificial Bee Colony
Optimization Algorithm

The proposed Efficient Artificial Bee Colony Optimization
Algorithm (EABCOA) starts with the first possible solutions.
Then, by applying some factors. The best solutions are
determined according to the value of the objective function.
In the proposed algorithm (EABCOA), we note that the six
components are: (1) an initialization method. (2) Priority
operation. (3) The objective function. (4) Employed phase.
(5) Onlooker phase. (6) The scout stage.

6.1 Initialization

The initialization is randomly generated according to the
number of processors. Suppose we have 3 processors, so the
generated schedule is between 1 and 3, as shown in Fig. 1.

Appl. Math. Inf. Sci. 16, No. 6, 899-909 (2022)/ http://www.naturalspublishing.com/Journals.asp 903

 © 2022 NSP
 Natural Sciences Publishing Cor.

Fig. 1: The proposed schedule

T4, T6, and T8 are scheduled into processor 1, T2, T5, and
T9 into processor 2, and T1, T3, and T7 are scheduled into
processor 3.

6.2 Priority Operation

Task priority plays a significant role in task scheduling and
calculating makespan. The proposed priority is randomly
generated in order to preserve the precedence constraints
{TEntry …………, TExit}.

6.3 The Objective Function

The main objective of the scheduling problem is to reduce
makespan. That is:
Objective_Function = Makespan (5)
Where makespan is calculated by Eq. 4.

Algorithm1: The pseudo-code for the task schedule in the
Standard Genetic Algorithm (SGA) [1] is as follows:
Input the schedule as shown in Fig. 1
Output Objective_function = Makespan
// ready time initialization for all processors
For all processors, Pj RT(Pj)=0
 For i = 1 to N
 {
 // LT is generated randomly in order that preserves

precedence constraints
 Remove the first task Ti form list LT
 For j = 1 to M
 {
 If Ti is scheduled to processor Pj
 // start time for the task
 ST(Ti, Pj) = max{RT(Pj), DAT(Ti, Pj)}
 // finish time for the task

 FT(Ti, Pj) = ST(Ti, Pj) + weight(Ti, Pj)
 // ready time for the processor
 RT(Pj) = FT(Ti, Pj)

 End If
 }
 }
Makespan=max{FT(Ti, Pj)}

6.4 The Proposed Operations

6.4.1 Employed Bee Phase

In this phase, the number of employed bees equals the food
sources and is applied to each solution. In addition, an

employed bee generates a food source at the current source
by the following steps:
Step 1: Select the current food source
Step 2: Select a food source randomly but not be the same as
the current food source
Step 3: Generate random numbers between 1 to the number
of tasks
Step 4: Copy from the randomly chosen food source without
changing the randomly chosen source and replace the values
of the current food source when it is equal to the generated
random numbers as shown in Fig. 2. Consider the generated
numbers to be {2, 6, 8, 9}

 Current food source

Randomly selected source

Fig. 2: New obtained source

Step 5: Calculate the objective function of the new obtained
source
Step 6: If the new source is better than the current source,
replace the current one. Or else increase the trial by one
Step 7: Apply the previous steps 1- 6 for each food source

6.4.2 Onlooker Bee Phase

In this phase, each onlooker bee selects an employed bee to
improve its solution, and the selection is made according to
fitness value.

Proi = !"#(")

∑ !"#(')(
)*+

 (6)

Where fit is a fitness function, and it is calculated as (7)
fit = 1/objective function (7)
Generate a random number if the value of that number is less
than the fitness value, then improve the solution as follows:

Step 8: Select the current food source
Step 9: Select a food source randomly but not be the same as
the current food source
Step 10: Generate random numbers between 1 to the number
of tasks
Step 11: Copy from the randomly chosen food source
without changing the randomly chosen source and

3 2 3 1 2 1 3 1 2

2 2 1 3 1 2 1 3 3

3 1 2 2 1 3 3 2 1

2 1 1 3 1 3 1 2 1

 904 A. Y. Hamed et al: Optimization Task Scheduling Bee …

© 2022 NSP
Natural Sciences Publishing Cor.

replace the values of the current food source when it
is equal to the generated random numbers as shown in
Fig. 3. Consider the generated numbers to be {1, 5, 7,
9}

 Current food source

Randomly selected source

Fig. 3: New obtained source.

6.4.3 Scout Bee Phase

In this phase, the employed bee becomes a scout bee, which
cannot improve its solution until the trial is equal to the limit.
If the trial is greater than or equal to the limit, it will generate
a new solution, as shown in Fig. 1.

Algorithm2: The whole EABCOA
Set the parameters pop_size, max_iter, trial, and limit
Input the DAG with computation cost, communication cost,
and number of processors
Generate the initial population (schedule) as in the
initialization section
Calculate the objective function for the initial population
(schedule) Algorithm 1
For iter=1 to max_iter
// Employed Bee Phase
 For i=1 to pop_size
 Select the current food source
 Select food source randomly but not be the same as

a current food source
 Generate random numbers between 1 and the

number of tasks //between{1, ….., (number of
tasks/2)}

 To obtain the new source copy from the randomly
chosen food source without changing the randomly
chosen source, replace the values of the current food
source when it is equal to the generated numbers, as
shown in Fig. 2

 Calculate the objective function for the new obtained
source by using Algorithm 1

 If the objective function of the new source <

objective function of the current source
 Update the current source with the new obtained

source
 Update the objective function of the current

source with the new objective function
 trial = 0
 Else
 trial = trial + 1
 End if
 End For
// Onlooker Bee Phase
 Calculate Proi according to Eq. 6
 For i=1 to pop_size
 If rand < Pro(i)
 Select the current food source
 Select food source randomly but not be the same as

a current food source
 Generate random numbers between 1 to the number

of tasks //between{1, ….., (number of tasks/2)}
 To obtain the new source copy from the randomly

chosen food source without changing the randomly
chosen source and replace the values of the current
food source when it is equal to the generated
number, as shown in Fig. 3

 Calculate the objective function of the new obtained
source by using Algorithm 1

 If the objective function of the new source <
objective function of the current source

 Update the current source with the new obtained
source

 Update the objective function of the current
source with the new objective function

 trial = 0
 Else
 trial = trial + 1
 End if
 End if
 End for
// Scout Bee Phase
 If trial >= limit
 Generate a new population and replace it with the old
 Calculate the objective function for the newly

generated population and replace it with the old
 End if
 Keep the best solution
End for

7 Evaluation of the Proposed Artificial Bee
Colony Optimization Algorithm

In this section, we show the effectiveness of the EABCOA
by applying it to three cases. The first case consists of 8 tasks
and three heterogeneous processors. The second case is 11
tasks and three heterogeneous processors. The third one
consists of 11 tasks and three heterogeneous processors.

3 2 3 1 2 1 3 1 2

1 3 3 1 3 2 2 1 3

1 2 3 1 3 1 2 1 3

Appl. Math. Inf. Sci. 16, No. 6, 899-909 (2022)/ http://www.naturalspublishing.com/Journals.asp 905

 © 2022 NSP
 Natural Sciences Publishing Cor.

EABCOA was implemented as a system by MATLAB 2016.
We run our system one more time with the initial values of
the parameters pop_size = 100, max_iter = 100, trial = 0,
limit = 10 for all cases.

7.1 Case 1
We consider a case of 8 tasks {T0, T1, T2, T3, T4, T5, T6,
T7} to be executed on three heterogeneous processors {P1,
P2, P3}. The execution cost of each task on different
processors is shown in [21]. The results obtained by the
proposed EABCOA are compared with those obtained by
Heterogeneous Earliest Finish Time (HEFT). It is a list-based
scheduling heuristic in which a task priority list is first built
so that optimal allocation decisions are made locally for
every task based on the task's estimated completion time
[22]. Critical Path on Processor (CPOP) is a listed-based
scheduling heuristic. It uses a different attribute for setting
the task priorities and different strategies for determining the
most effective processor for every selected task [22]. A Basic
Genetic Algorithm (BGA) [23] is a genetic algorithm based

on the principles of evolution found in nature to obtain an
optimal solution for task graph scheduling problems.
MicroGAS [11] is designed to investigate the effectiveness
of a micro genetic-based scheduling algorithm to resolve the
precedence task graph scheduling problem in distributed
computing systems. A Genetic Algorithm (GA) based on
Task scheduling to assign and execute different tasks. It aims
to decrease the makespan and execution cost of tasks and
increase resource utilization, Speedup, and Efficiency [16].
The results are shown in Table 1 and Fig. 4, with the
proposed task priority of EABCOA {T0, T4, T1, T2, T3, T6,
T5, T7}, task priority of HEFT {T0, T4, T1, T3, T2, T5, T6,
T7}, task priority of CPOP {T0, T4, T3, T2, T1, T6, T5, T7},
task priority of BGA {T0, T3, T2, T1, T4, T6, T5, T7}, task
priority of MicroGAS {T0, T3, T4, T1, T2, T6, T5, T7}, and
task priority of GA {T0, T1, T4, T3, T2, T6, T5, T7}.

7.2 Case 2

The results obtained by the proposed EABCOA are
compared with those obtained by GA [16] and Enhanced
Genetic Algorithm for Task Scheduling (EGA-TS) [25]. It
is a genetic-based algorithm and meta-heuristic technique
to handle static task scheduling for processors in
heterogeneous computing systems. Multiple Priority
Queues and a Memetic Algorithm (MPQMA) uses a
genetic algorithm (GA) along with hill climbing to assign a
priority to every subtask and to search for a solution for the

Table 1: Schedule obtained by EABCOA and other algorithms for case 1.

 HEFT CPOP BGA microGAS GA EABCOA

 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

 ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

T0 0-9 0-
11 0-

11 0-9 0-9 0-9

T1 20-
35 35-

46 22-
37 19-

30 20-
35 20-

30

T2 28-
42 28-

40 22-
31 26-

38 19-
33 26-

38

T3 23-
34 25-

35
11-
22 9-

19 9-
19 28-

38

T4 9-
28

11-
26 22-

41
20-
35 20-

35 9-
28

T5 53-
58 50-

55 54-
59 48-

53 48-
53 51-

56

T6 55-
65 48-

58 41-
54

35-
45 35-

45 38-
51

T7 78-
88

76-
87 59-

69 58-
68 58-

68 56-
66

Fig. 4: Comparison of results for case 1.

 906 A. Y. Hamed et al: Optimization Task Scheduling Bee …

© 2022 NSP
Natural Sciences Publishing Cor.

task to processor mapping, using a heuristic-based Earliest
Finish Time (EFT) approach. New Genetic Algorithm
(NGA) [24] to improve the task scheduling solutions in a
cloud computing environment, a powerful and improved
genetic algorithm is proposed. The algorithm uses the
evolutionary genetic algorithm's advantages and heuristic
approaches. The

7.3 Case 3

In this case, the number of tasks {T0, T1, T2, T3, T4, T5,
T6, T7, T8, T9, T10} to be executed on three
heterogeneous processors {P1, P2, P3}. The cost of
executing each task on different processors is shown in [26]
results obtained by the proposed EABCOA results are
shown in Table 2 and Fig. 5, with the proposed task priority
of EABCOA {T0, T2, T3, T4, T1, T6, T8, T7, T5, T9,
T10}, task priority of EGA-TS {T0, T4, T3, T1, T2, T5,

T8, T6, T7, T9, T10}, task priority of MPQMA {T0, T4,
T3, T2, T8, T1, T6, T5, T7, T9, T10}, task priority of NGA
{T0, T4, T3, T2, T8, T1, T6, T5, T7, T9, T10}, GA {T0,
T2, T6, T4, T1, T3, T8, T7, T5, T9, T10}.

The results obtained by the proposed EABCOA are
compared with those obtained by GA [16] and three
heuristic HEFT algorithms. Upward Ranking Priority
approach: Every subtask is assigned a weight from exit to
entry. In the Downward Ranking Priority approach, every
subtask is assigned a weight from the entry node to the exit
node. Level ranking Priority approach, every subtask is
placed in a sorting list based on its level value in increasing
order [27]. Quantum Genetic Algorithm with Rotation
Angle Refinement (QGARAR) for scheduling tasks based
on distributed systems such as cloud data centers [18]. The
results are shown in Table 3 and Fig. 6, with the proposed
task priority of EABCOA {T0, T1, T2, T5, T3, T4, T6, T9,
T8, T7, T10}, task priority of Level Priority {T0, T2, T1,
T6, T3, T5, T4, T9, T7, T8, T10}, task priority of Upward
Priority {T0, T2, T1, T6, T3, T5, T4, T7, T9, T8, T10},
task priority of Downward Priority {T0, T1, T2, T3, T5,
T6, T4, T7, T8, T9, T10}, task priority of QGARAR {T0,
T1, T4, T2, T3, T5, T6, T7, T8, T9, T10}, and task priority
of GA {T0, T1, T3, T4, T2, T5, T7, T6, T9, T8, T10}

Table 2: Schedule obtained by EABCOA and other algorithms for case 2.

 EGA-TS MPQMA NGA GA EABCOA

 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

 ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

T0 0-10 0-10 0-10 0-11 0-11

T1 35-
47 38-

51 38-
51

38-
49 36-

47

T2 38-
51 29-

37 29-
37 11-

19 11-
19

T3 20-
38 20-

38 20-
38 39-

49 19-
29

T4 10-
37 10-

37 10-
37 19-

39 29-
49

T5 47-
59 51-

69 51-
69

49-
64 47-

62

T6 61-
70 47-

56 47-
56 29-

38 29-48

T7 67-
79 67-

79 67-
79 49-

61 59-
71

T8 51-
66 37-

47 37-
47 28-

43 49-
59

T9 82-
94 79-

91 79-
91 73-

85 71-
83

T10 94-
104 91-

101 91-
101 85-

95 83-
93

Fig. 5: Comparison of results for case 2.

Appl. Math. Inf. Sci. 16, No. 6, 899-909 (2022)/ http://www.naturalspublishing.com/Journals.asp 907

 © 2022 NSP
 Natural Sciences Publishing Cor.

7.4 Discussion

According to the results in Fig. 4 and Table 1, it is found that
the Makespan of the proposed EABCOA is reduced by
(25%), (24.13%), (4.34%), (2.94%), (2.94%) about HEFT,
CPOP, BGA, microGAS, and GA, respectively. According
to the results in Fig. 5 and Table 2, it is found that the
Makespan of the proposed EABCOA is reduced by
(10.57%), (7.9%), (7.9%), (2.10%) about EGA-TS,
MPQMA, NGA, and GA, respectively. According to the
results in Fig. 6 and Table 3, it is found that the Makespan of
the proposed EABCOA is reduced by (13.92%), (10.52%),
(8.10%), (4.22%), (2.85%) about Level Ranking Priority,

Upward Ranking Priority, Downward Ranking Priority, GA,
and QGARAR, respectively.

8 Conclusion and Future Work

In order to get near-optimal results for the problem of task
scheduling in a cloud computing environment, efficient
strategies for the optimal mapping of the tasks are required.
This paper proposed an efficient artificial bee colony
optimization algorithm (EABCOA) to solve the task
scheduling problem in a cloud computing environment. The
system consisted of a limited number of fully connected
heterogeneous processors. The comparison of the algorithm
has been made against the algorithms in terms of makespan.
The comparative analysis explained that the performance of
the proposed algorithm is significantly better in all cases. In
our future work, we will develop an efficient task scheduling
algorithm using the Cuckoo search algorithm in a cloud
computing environment.

Conflicts of Interest
The authors declare that there are no conflicts of
interest regarding the publication of this paper.

Table 3: Schedule obtained by EABCOA and other algorithms for case 3.

 Level Upward Downward GA QGARAR EABCOA

 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

 ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

ST-
FT

T0 0-7 0-7 0-7 0-7 0-7 0-7

T1 12-
22 12-

22 7-
17 7-

17 7-
17 7-

17

T2 7-
12 7-

12 17-
22 21-

28 21-
28 17-

22

T3 30-
38 30-

37
22-
28 17-

23 25-
32 25-

32

T4 37-
43 37-

43 32-
38 32-

38
17-
27 32-

38

T5 34-
45 34-

45 28-
41 23-

34 27-
38 22-

33

T6 22-
34 22-

34 28-
40 28-

43 28-
43 33-

45

T7 49-
56 43-

50 39-
46 38-

45 35-
42 38-

45

T8 52-
61 52-

61 41-
50 45-

55
38-
46 40-

49

T9 45-
60 45-

60 54-
65 46-

57 50-
61 45-

60

T10 71-
79 68-

76 65-
74 62-

71 61-
70 60-

68

Fig. 6: Comparison of results for case 3.

 908 A. Y. Hamed et al: Optimization Task Scheduling Bee …

© 2022 NSP
Natural Sciences Publishing Cor.

References
[1] A. Younes, A. BenSalah, T. Farag, F. A.Alghamdi and U. A.

Badawi, Task Scheduling Algorithm for Heterogeneous Multi
Processing Computing Systems, Journal of Theoretical and
Applied Information Technology., 97(12), 3477-3487 (2019).

[2] Q. M. Hussein and A. N. Hasoon, Dynamic process
scheduling using genetic algorithm, in Proc. NTICT,
Baghdad, Iraq., 111-115 (2017).

[3] M. Ibrahim, S. Nabi, A. Baz, H. Alhakami, M. S. Raza and
et. al, An in-depth Empirical Investigation of state-of-the-art
Scheduling Approaches for Cloud Computing, IEEE
Access., 8, 128282-128294 (2020).

[4] X. Huang, C. Li, H. Chen and D. An, Task scheduling in
cloud computing using particle swarm optimization with
time varying inertia weight strategies, Cluster Computing.,
23(2), 1137-1147 (2020).

[5] R. K. Jena, Task scheduling in cloud environment: A multi-
objective ABC framework, Journal of Information &
Optimization Sciences., 38(1), 1-19 (2017).

[6] S. A. Alsaidy, A. D. Abbood and M. A. Sahib, Heuristic
initialization of PSO task scheduling algorithm in cloud
computing, Journal of King Saud University-Computer and
Information Sciences., (2020).

[7] S. Nabi, M. Ibrahim and J. M. Jimenez, DRALBA:
Dynamic and Resource Aware Load Balanced Scheduling
Approach for Cloud Computing, IEEE Access., 9, 61283-
61297 (2020).

[8] L. Tang, J-S. Pan, Z. Wang, K. Ma and H. Zhao, Novel
Artificial Bee Colony Algorithm Based Load Balance
Method In Cloud Computing, Journal of Information
Hiding and Multimedia Signal Processing., 8(2), 460-467
(2017).

[9] B. Kruekaew and W. Kimpan, Enhancing of Artificial Bee
Colony Algorithm for Virtual Machine Scheduling and Load
Balancing Problem in Cloud Computing, International
Journal of Computational Intelligence Systems., 13, 496-510
(2020).

[10] R. Hwang, M. Gen, and H. Katayamaa, A Performance
Evaluation of Multiprocessor Scheduling with Genetic
Algorithm, Asia Pacific Management Review., 11(2), 67-
72, (2006).

[11] J. E. Pecero, P. Bouvry, H. J. F. Huacuja, J. D. T.
Villanueva, M. A. R. Zuñiga and C. G. G. Santillán, Task
Scheduling in Heterogeneous Computing Systems Using a
MicroGA, 2013 Eighth International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing., 618-623
(2013).

[12] S. AlEbrahim and I. Ahmad, Task scheduling for
heterogeneous computing systems, Journal of
Supercomputing., 73, 2313–2338 (2017).

[13] A. A. Nasr, N. A. El-Bahnasawy and A. El-Sayed, Task
Scheduling Algorithm for High Performance Heterogeneous
Distributed Computing Systems, International Journal of
Computer Applications., 110(16), 0975 – 8887 (2015).

[14] G. Wang, Y. Wang, H. Liu, and H. Guo, HSIP: a novel task
scheduling algorithm for heterogeneous computing,
Scientific Programming., 1–11 (2016).

[15] M. Sulaiman, Z. Halim, M. Waqas and D. Aydin, A hybrid
list-based task scheduling scheme for heterogeneous
computing, Journal of Supercomputing., 4, 1-37 (2021).

[16] A. Y. Hamed and M. H. Alkinani, Task Scheduling
Optimization in Cloud Computing Based on Genetic

Algorithms, Computers, Materials & Continua., 69(3),
3289-3301 (2021).

[17] M. H. Kashani, M. Jamei, M. Akbari and R. M. Tayebi,
Utilizing Bee Colony to Solve Task Scheduling Problem in
Distributed Systems, 2011 Third International Conference on
Computational Intelligence, Communication Systems and
Networks., 298-303 (2011).

[18] T. Gandhi, Nitin and T. Alam, Quantum genetic algorithm
with rotation angle refinement for dependent task
scheduling on distributed systems, 2017 Tenth International
Conference on Contemporary Computing (IC3), 1-5 (2017).

[19] D. Teodorovic, T. Davidovic and M. Selmic, Bee Colony
Optimization: The Applications Survey, ACM Transactions
on Computational Logic., 1-20 (2011).

[20] D. Karaboga and B. Basturk, On the performance of
artificial bee colony (ABC) algorithm, Applied Soft
Computing., 8, 687–697 (2008).

[21] Y. Lee and A. Zomaya, A novel state transition method for
metaheuristic-based scheduling in heterogeneous computing
systems, IEEE Transactions Parallel Distributed Systems.,
19(9), 1215–1223 (2008).

[22] E. H. Houssein, A. G. Gad, Y. M. Wazery and P. N.
Suganthan, Task Scheduling in Cloud Computing based on
Meta-heuristic: Review, Taxonomy, Open Challenges, and
Future Trends, Swarm and Evolutionary Computation., 62
(2021).

[23] S. Gupta, G. Agarwal, and V. Kumar, Task scheduling in
multiprocessor system using genetic algorithm, 2010 Second
International Conference on Machine Learning and
Computing (ICMLC)., 267–271 (2010).

[24] B. Keshanchi, A. Souri, and N. Navimipour, An improved
genetic algorithm for task scheduling in the cloud
environments using the priority queues: Formal verification,
simulation, and statistical testing, Journal of Systems and
Software., 124, 1-21 (2017).

[25] M. Akbari, H. Rashidi, and S. Alizadeh, An enhanced
genetic algorithm with new operators for task scheduling in
heterogeneous computing systems, Engineering
Applications of Artificial Intelligence., 61, 35-46 (2017).

[26] M. Shirvani, A new shuffled genetic-based task scheduling
algorithm in heterogeneous distributed systems, Journal of
Advances in Computer Research., 9(4), 19–36 (2018),

[27] Y. Xu, K. Li, J. Hu, and K. Li, A genetic algorithm for task
scheduling on heterogeneous computing systems using
multiple priority queues, Information Sciences., 270, 255-
287 (2014).

A. Younes received his Ph.D. degree
in Sept. 1996 from South Valley
University, Egypt. His research
interests include Artificial
Intelligence and genetic algorithms,
specifically in computer networks.
Recently, he has started conducting
research in the area of Image
Processing. Currently, he works as a
Professor at Sohag University,
Egypt. Younes always publishes the
outcome of his research in
international journals and
conferences.

Appl. Math. Inf. Sci. 16, No. 6, 899-909 (2022)/ http://www.naturalspublishing.com/Journals.asp 909

 © 2022 NSP
 Natural Sciences Publishing Cor.

M. Kh. Elnahary Received a B.S
degree from the computer science
department, Sohag University,
Egypt. His interests are in task
scheduling and computer networks.

Hamdy H. El-Sayed Received a Ph.D. in
wireless ad hoc network routing
protocols from the computer science
department Sohag University, Egypt,
in march 2015. His research interests
are ad hoc routing protocols and
sensor networks, the Internet of
Things, cloud computing, and
security.

