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Abstract: The primary purpose of the task scheduler is to assign tasks to available processors to produce a minimum 
Makespan without violating precedence constraints. In heterogeneous cloud computing resources, task assignments and 
schedules significantly impact system operation. In the experimental task scheduling algorithm, a different mapping of the 
process will result in a different maximum completion time of a batch of tasks (Makespan) on heterogeneous cloud 
computing resources. Thus, a scheduling algorithm has to define a schedule considering the precedence of child tasks 
depending on the resources required to reduce makespan. In this paper, we propose an Efficient Artificial Bee Colony 
Optimization Algorithm (EABCOA) to solve heterogeneous cloud computing resources' task assignment and scheduling 
problems. The basic idea of this process is to exploit the advantages of meta-heuristic algorithms to get the optimal 
solution for makespan. We evaluate our algorithm's performance by applying it to three cases with a different number of 
tasks and processors. The results show that the proposed approach significantly outperforms other methods in finding the 
optimal solution for makespan. 
 
Keywords: Heterogeneous processors, Artificial bee colony optimization algorithm, Task scheduling, multiprocessing, 
cloud computing. 
 
 
 
1 Introduction  

Execution time is one of the key pre-performance 
measurements of any computing system. in order to reduce 
execution time, processors were developed faster. Still, they 
had physical limitations, so a multiprocessing system was 
used. In a multiprocessing system, the program is divided 
into tasks to perform each task on one of the processors. 
Assigning tasks and processors is called scheduling tasks in a 
multiprocessing system. in order to Achieve optimal task 
scheduling and processor utilization in a heterogeneous 
multiprocessing system is a computationally challenging 
goal. The term improvement may refer to several goals 
combined. Usually, the main goal is to reduce the length of 
the schedule (Makespan). Finding the optimal task schedule 
is an NP [1,2] hard problem. Accordingly, meta-heuristic 
algorithms are a good candidate to tackle this problem.  

Many articles have applied the artificial bee colony 
optimization algorithm to solve task scheduling. This paper 
presents the proposed Efficient Artificial Bee Colony 
Optimization Algorithm (EABCOA) for heterogeneous 
cloud computing resources. Heterogeneous cloud computing 

resources have different processing capabilities. The task 
processing time can only be specified when assigned to a 
specific processor; that is, the task processing time depends 
on the processor. The proposed Efficient Artificial Bee 
Colony Optimization Algorithm (EABCOA) is presented to 
find the optimal task scheduler assigned to heterogeneous 
cloud computing resources. The basic idea of this technique 
is to exploit the advantages of meta-heuristic algorithms to 
get the optimal solution for makespan. The proposed 
algorithm assigns tasks to processors randomly, and the task 
priority is generated randomly in order to preserve the 
precedence constraints. We evaluate our algorithm's 
performance by applying it to three cases with a different 
number of tasks and processors. The results show that the 
proposed approach succeeded in finding the optimal solution 
for makespan. 
The convergence speed of the Artificial Bee Colony 
Optimization Algorithm (ABCOA) is slow. The algorithm 
has strong exploration performance, but poor exploitation 
performance since its solution update formula only alters one 
component of the solution vector each time. In order to solve 
the above drawbacks and accelerate the rate of convergence, 
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a new strategy is proposed to find novel candidate solutions 
in the employed bee search step of the proposed EABCOA. 
This strategy accelerates the convergence rate of the 
algorithm and improves the algorithm's exploitation ability. 
In this strategy, we use a method that randomly selects one 
solution from an existing solution and generates random 
numbers according to those generated numbers. It takes the 
values from the randomly chosen solution and puts them into 
the current solution without changing the randomly selected 
solution. We present the same strategy in the onlooker bees 
phase. This strategy improves the algorithm's exploitation 
ability and enhances the solution's precision. 
The rest of this paper is presented as follows. The notations 
are given in Section 2. Section 3 presents some work related 
to the problem of task scheduling for various systems 
architectures. A description of the problem is given in section 
4. In section 5, Artificial Bee Colony Optimization 
Algorithm is described. Our EABCOA approach to finding 
optimal task scheduling for heterogeneous cloud computing 
resources is described in Section 6. The results were obtained 
by applying EABCOA, and their comparison with other 
results is presented in Section 7. Section 8 concludes the 
paper and future work. 
 

2 Notations 
 

G A task graph 
DAG A Directed Acyclic Graph 
Ti Task i 
Pi Processor i 
M Number of processors 
N Number of tasks 
Ni Node i 
C(Ti, Tj) Communication Cost between task i 

and task j 
ST(Ti, Pj) Start time of task i on a processor Pj 
FT(Ti, Pj) Finish time of task i on a processor Pj 
RT(Pi) Ready time of the processor i 
LT A list of tasks according to the 

topological order of DAG. 
DAT(Ti, Pj) The Data Arrival Time of task i at 

processor j 
Pop_size Number of the initial population  
Max_iter The maximum number of iterations 

 

3 Related Work 

Recently, cloud computing has emerged as a widely used 
platform to supply compute, storage, and analytics services 
to end-users and organizations on a pay-as-you-use basis, 
with high skill, accessibility, scalability, and resiliency. It 
allows people and organizations to access a large pool of 
high-processing resources without establishing a high-
performance computing (HPC) platform. For the last few 
years, task scheduling in cloud computing has been an 

outstanding resource for researchers. The Task Aware 
Scheduling Algorithm (TASA) and Proactive Simulation-
based Scheduling and Load Balancing (PSSLB) are 
presented during this research work. The author investigated 
and empirically compared some of the most prominent state-
of-the-art scheduling heuristics regarding Makespan, 
Average Resource Utilization Ratio (ARUR), Throughput, 
and energy consumption  [3]. 
Cloud computing is an efficient technology to serve the 
needs of big data applications. It minimizes the makespan of 
the cloud system, whereas increasing resource utilization is 
essential to reduce costs. In this case, task scheduling is 
challenging to satisfy the requirement because it needs 
effectiveness and efficiency. The particle swarm 
optimization (PSO) algorithm with many discrete variants 
was presented for task scheduling in cloud computing  [4]. 
Cloud computing is an emerging distributed, low-cost 
computing paradigm with a large collection of heterogeneous 
autonomous systems. It provides on-demand, flexible, and 
scalable services to customers on a pay-per-use basis. The 
general performance of cloud infrastructure depends on task 
assignment and scheduling. Efficient task scheduling 
decreases the power consumption of the cloud infrastructure 
and increases service providers' profit by reducing the 
processing time of the user's job. An efficient task scheduling 
algorithm using a multi-objective Artificial Bee Colony 
Algorithm (TA-ABC) is presented. The algorithm optimizes 
the cloud computing environment's energy, cost, resource 
utilization, and processing time [5].  
Task scheduling is one of the significant problems in a cloud 
computing system. Efficient task scheduling is substantial for 
achieving cost-efficient execution and improving resource 
utilization. A particle swarm optimization (PSO) using 
heuristic algorithms has been proposed [6]. In order to 
initialize the PSO, an improved initialization of the longest 
job to the fastest processor (LJFP) and minimum completion 
time (MCT) algorithms are used. The performance of the 
LJFP-PSO and MCT-PSO algorithms is evaluated by 
minimizing the makespan, total execution time, degree of 
imbalance, and total energy consumption metrics.  
For the past few years, cloud computing has been considered 
an attractive high-performance computing platform for 
individuals and organizations. To accommodate the 
requirements of cloud users, cloud service providers (CSPs) 
are setting up their data centers with high-performance 
computing resources. Users are mainly interested in response 
time, whereas cloud service providers are more concerned 
about revenue generation. Concerning these needs, the task 
scheduling for the users' applications in cloud computing has 
attained focus from the research community. A resource-
aware dynamic task scheduling approach is proposed and 
implemented [7]. The DRALBA algorithm has revealed 
significant improvements in attained ARUR, Throughput, 
and Makespan.  
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With the rapid development of cloud computing and the 
internet, load balancing techniques are becoming more and 
more critical than ever. A good scheduling algorithm is a 
significant way to resolve load balance problems. A new load 
balance algorithm is proposed based on the ABC algorithm 
[8], which can be seen as a new scheduling method based on 
a swarm intelligence algorithm.  
The combination of the Swarm Intelligence algorithm of an 
artificial bee colony with a heuristic scheduling algorithm, 
called Heuristic Task Scheduling with Artificial Bee Colony 
(HABC), was proposed [9]. This algorithm enhances cloud 
computing's virtual machines (VMS) scheduling solutions in 
homogeneous and heterogeneous environments. It has been 
introduced to minimize the makespan and balance the loads.  
The general problem of multiprocessor scheduling can be 
defined as scheduling a task graph on a multiprocessor 
system so that the length of the schedule can be optimized. 
Several exploratory approaches have been developed in the 
literature that obtains suboptimal solutions in less polynomial 
time. Recently, genetic algorithms have gained a lot of 
awareness because they are powerful and guarantee a good 
solution. In this paper, the author has developed a genetic 
algorithm based on the principles of evolution found in 
nature to find the optimal solution [10]. 

Constrained application scheduling takes precedence over 
a distributed heterogeneous computing system to reduce 
response or total execution time. The author designed and 
studied the effectiveness of a micro Genetic Algorithm 
(microGA) based scheduling algorithm [11]. 

Effective scheduling of tasks in heterogeneous computing 
systems is paramount for implementing high-performance 
programs. Programs are considered multiple sequences of 
tasks presented as directed acyclic graphs (DAGs). Each task 
has its execution timeline that incorporates various 
processors. Furthermore, each edge on the graph represents 
constraints between sequential tasks. The author proposes a 
new list of scheduling algorithms that schedule tasks 
represented in the processor DAG and that better reduce the 
overall execution time by taking into account the limitations 
of cross-processing. This goal will be achieved in two main 
phases: (a) computing priorities for each task performed and 
(b) selection of the processor who will take over each task 
[12]. 

A new static scheduling algorithm, Communication 
Leveled DAG with Duplication (CLDD), is proposed to 
schedule tasks on heterogeneous distributed computing 
systems efficiently. It solves most of the limitations of 
existing algorithms. The algorithm focuses on reducing the 
range and provides better performance than other algorithms 
in acceleration, efficiency, and time complexity [13]. 
A new task scheduling algorithm for heterogeneous 
computing, called HSIP (Heterogeneous Scheduling 
Algorithm with Optimized Task Priority), whose function is 
based on three pillars: (1) an optimized strategy for priority 
tasks based on standard deviation with optimizing size as a 

weight to calculate and weigh the delivery cost to make 
scheduling priority more reasonable; (2) the policy of 
choosing the duplication of the entry task to make the period 
shorter; and (3) an improved optimization policy based on 
the introduction of idle periods (ITS) to make task 
scheduling more efficient [14]. 
Hybrid list-based task scheduling using the Duplication 
(HLTSD) algorithm for heterogeneous processors. The 
HLTSD algorithm has the same time complexity as modern 
algorithms; however, it produces a lower cost schedule than 
other related methods. This work also presents a 
mathematical formulation for finding priority tasks. The 
processor selection phase is improved through input task 
repetition, insertion-based policy, primary task repetition at 
other levels, and load balancing on each processor [15]. 
A proposed genetic algorithm (PGA) was presented to solve 
homogeneous and heterogeneous multiprocessing task 
attribution and scheduling problems. The basic idea of this 
process is to exploit the advantages of heuristic algorithms to 
reduce the search for space and time to get the best solution 
[1]. 
A task scheduling algorithm based on a Genetic Algorithm 
(GA) is presented [16] to assign and execute different tasks. 
The algorithm aims to decrease both (Makespan) and 
execution costs of tasks and increase resource utilization, 
Speedup, and Efficiency. 
Bee colony optimization (BCO) has been applied as a local 
search in the proposed memory algorithm [17]. 
A quantum genetic algorithm with spin angle optimization is 
presented in the literature for scheduling tasks based on 
distributed systems such as cloud data centers [18]. 
 

4 Problem Description 

The task scheduling model numbers in this work, which can 
be described as N distributed tasks to be performed on M 
processors, can be general processors with different 
computing capabilities. A task graph can be set to describe 
the structure of the problem. Task graph G is a directed 
acyclic graph (DAG) consisting of tasks T1, T2, T3 ... Tn. 
Each node in the graph is described as a task. A task is 
supposed to be a set of instructions performed sequentially 
on a particular processor. The task (node) may have the 
necessary (input) data before it can be executed. When all 
entries are received, the node can be run for execution. 
These entries are expected to be delivered after some other 
task has been completed, and these tasks are evaluated for 
them. We call it task dependency. If the task (Ti) is 
dependent on other essential data, we consider the tasks to be 
tasks that act as significant parents (Tk) →	task (Ti) as their 
child. A node that does not contain an entry node is called an 
entry node, and a node that does not have a child is called an 
end node [1]. The time required to perform a task is what we 
call the computational cost. At any point, the cost of 
calculating Ti is indicated by weight (Ti, Pj). The graph also 
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has straight E edges representing a partial order between the 
tasks. The partial system introduces a DAG constrained by 
precedence and means that if (Ti → Tj), then Tj is a child and 
cannot start until the parent Ti ends. The weight on edge 
represents the communication cost between the tasks 
indicated by C(Ti, Tj), and the communication cost is only 
considered if Ti and Tj are set on different processors; 
otherwise, it is counted as zero, in which case Ti and Tj are 
set on the processor itself. If node Ti is set on processor Pj, 
the node's start and finish times are indicated by ST(Ti, Pj) 
and FT(Ti, Pj), respectively. After scheduling the tasks into 
the processors, the makespan is defined as the maximum 
{FT(Ti, Pj)} across all processors. 

The problem with task scheduling is finding the task 
schedule in the processors so that the makespan is reduced 
across the possible schedules, as task dependency constraints 
are kept. Task dependency restrictions state that no task can 
be started until all parents have completed it. Let the Pj be 
the wizard in which the original Tk task was a cog from the 
scheduled task Ti. The data arrival time (DAT) in the Pj 
processor is the time that data is available for each required 
to perform the task, as defined in [1] as follows: 

 
DAT(Ti, Pj) = max{FT(Tk , Pj) + C(Ti, Tk)}                     (1)  
where k=1, 2, … Number_Parent                                          
 
ST(Ti, Pj) = max{RT(Pj), DAT(Ti, Pj)}                              (2) 
 
FT(Ti, Pj)= ST(Ti, Pj)+weight(Ti, Pj)                                  (3) 
 
Makespan = max{FT(Ti, Pj)}                                              (4) 
 
where i=1, 2,…, N and  j=1,2,…., M 
 

5 Artificial Bee Colony Optimization 
Algorithm 

It is a definition guide for solving integrative optimization 
problems. The behavior of bees in nature inspires the 
Artificial Bee Colony Optimization Algorithm (ABCOA). In 
a honeybee colony, bees search the environment for flower 
paths and, if they find a good food source, share it with other 
bees. When foraging bees return to the hive, they share the 
information they have discovered about food sources through 
a particular movement called an oscillation dance. Studies of 
this type of bee dance show that in the center of this dance, 
certain information, such as direction, distance, quantity, and 
quality of the food source, is shared with other bees 
[17,19,20]. 
ABCOA is a population-based algorithm. The artificial bee 
community is looking for the perfect solution. Each artificial 
bee generates one solution to the problem. The algorithm 
consists of two alternating stages: forward pass and 
backward pass. During each forward swipe, each bee 

explores the search space. It applies a predetermined number 
of movements, which build and improve the solution, 
resulting in a new solution. After obtaining new partial 
solutions, the bees return to the nest and begin the second 
stage, the so-called back passage. During the back pass, all 
the bees share information about their solutions. 

In nature, bees would perform a dancing ritual, informing 
other bees about the amount of food they found and the 
patch's proximity to the nest. In the search algorithm, the 
bees announce the quality of the solution, i.e., the value of 
the objective function. During the backward pass, every bee 
decides with a certain probability whether it will advertise its 
solution. The bees with better solutions have more chances to 
promote their solutions. The remaining bees have to decide 
whether to continue exploring their solution in the next 
forward pass or to start exploring the neighborhood of one of 
the advertised solutions. Similarly, this decision is taken with 
probability, so better solutions are more likely to be explored. 
The two phases of the search algorithm, forward and 
backward pass, are performed iteratively until a stopping 
condition is met. To continue, this is the pseudo-code of the 
ABCOA algorithm: 
1. Initialization: every bee is set to an empty solution 
2. For every bee, do the forward pass: 
Evaluate all possible constructive moves 
According to the evaluation, choose one move using the 
roulette wheel 
3. All bees are back in the hive 
4. Sort the bees by their objective function value 
5. Every bee decides randomly whether to continue its 
exploration and become a recruiter or to become a follower 
(bees with higher objective function values have a greater 
chance to continue their exploration) 
6. For every follower, choose a new solution from recruiters 
by the roulette wheel 
7. If the stopping condition is not met, Go To Step 2 
8. Output the best result. 
 

6 The Proposed Efficient Artificial Bee Colony 
Optimization Algorithm 

The proposed Efficient Artificial Bee Colony Optimization 
Algorithm (EABCOA) starts with the first possible solutions. 
Then, by applying some factors. The best solutions are 
determined according to the value of the objective function. 
In the proposed algorithm (EABCOA), we note that the six 
components are: (1) an initialization method. (2) Priority 
operation. (3) The objective function. (4) Employed phase. 
(5) Onlooker phase. (6) The scout stage. 
 

6.1 Initialization 

The initialization is randomly generated according to the 
number of processors. Suppose we have 3 processors, so the 
generated schedule is between 1 and 3, as shown in Fig. 1. 
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Fig. 1: The proposed schedule 
 
T4, T6, and T8 are scheduled into processor 1, T2, T5, and 
T9 into processor 2, and T1, T3, and T7 are scheduled into 
processor 3.  
 

6.2 Priority Operation 

Task priority plays a significant role in task scheduling and 
calculating makespan. The proposed priority is randomly 
generated in order to preserve the precedence constraints 
{TEntry …………, TExit}. 

6.3 The Objective Function 

The main objective of the scheduling problem is to reduce 
makespan. That is: 
Objective_Function = Makespan                                        (5) 
Where makespan is calculated by Eq. 4. 
 
Algorithm1: The pseudo-code for the task schedule in the 
Standard Genetic Algorithm (SGA) [1] is as follows: 
Input the schedule as shown in Fig. 1 
Output Objective_function = Makespan 
// ready time initialization for all processors   
For all processors, Pj RT(Pj)=0  
      For i = 1 to N 
        { 
            // LT is generated randomly in order that preserves 

precedence constraints 
              Remove the first task Ti form list LT  
             For j = 1 to M 
               { 
                    If Ti is scheduled to processor Pj 
                           // start time for the task   
                          ST(Ti, Pj) = max{RT(Pj), DAT(Ti, Pj)}  
                          // finish time for the task  

           FT(Ti, Pj) = ST(Ti, Pj) + weight(Ti, Pj) 
           // ready time for the processor 
           RT(Pj) = FT(Ti, Pj) 

                   End If 
                 } 
       } 
Makespan=max{FT(Ti, Pj)}  
 

6.4 The Proposed Operations 

6.4.1 Employed Bee Phase 

In this phase, the number of employed bees equals the food 
sources and is applied to each solution. In addition, an 

employed bee generates a food source at the current source 
by the following steps:  
Step 1: Select the current food source  
Step 2: Select a food source randomly but not be the same as 
the current food source 
Step 3: Generate random numbers between 1 to the number 
of tasks  
Step 4: Copy from the randomly chosen food source without 
changing the randomly chosen source and replace the values 
of the current food source when it is equal to the generated 
random numbers as shown in Fig. 2. Consider the generated 
numbers to be {2, 6, 8, 9}         
 
 
 
 
 

                            Current food source   
 
 
 
 
 

Randomly selected source 
 
 
 
 
 
 

Fig. 2: New obtained source 

Step 5: Calculate the objective function of the new obtained 
source  
Step 6: If the new source is better than the current source, 
replace the current one. Or else increase the trial by one  
Step 7: Apply the previous steps 1- 6 for each food source  

6.4.2 Onlooker Bee Phase 

In this phase, each onlooker bee selects an employed bee to 
improve its solution, and the selection is made according to 
fitness value. 

      
Proi = !"#(")

∑ !"#(')(
)*+

                                                                  (6) 

 
Where fit is a fitness function, and it is calculated as (7) 
fit = 1/objective function                                                       (7)  
Generate a random number if the value of that number is less 
than the fitness value, then improve the solution as follows: 
 
Step 8: Select the current food source  
Step 9: Select a food source randomly but not be the same as 
the current food source 
Step 10: Generate random numbers between 1 to the number 
of tasks  
Step 11: Copy from the randomly chosen food source 
without changing the randomly chosen source and 

3 2 3 1 2 1 3 1 2 

2 2 1 3 1 2 1 3 3 

3 1 2 2 1 3 3 2 1 

2 1 1 3 1 3 1 2 1 
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replace the values of the current food source when it 
is equal to the generated random numbers as shown in 
Fig. 3. Consider the generated numbers to be {1, 5, 7, 
9}                         
 
 
 
 

                                                   

                               Current food source 
 
 
 
 
 
 
 

Randomly selected source 
 
 
 
 
 
 

Fig. 3: New obtained source. 

6.4.3 Scout Bee Phase 

In this phase, the employed bee becomes a scout bee, which 
cannot improve its solution until the trial is equal to the limit. 
If the trial is greater than or equal to the limit, it will generate 
a new solution, as shown in Fig. 1. 
 
Algorithm2: The whole EABCOA 
Set the parameters pop_size, max_iter, trial, and limit  
Input the DAG with computation cost, communication cost, 
and number of processors 
Generate the initial population (schedule) as in the 
initialization section  
Calculate the objective function for the initial population 
(schedule) Algorithm 1  
For iter=1 to max_iter 
// Employed Bee Phase 
      For i=1 to pop_size 
            Select the current food source  
              Select food source randomly but not be the same as 

a current food source 
               Generate random numbers between 1 and the 

number of tasks //between{1, ….., (number of 
tasks/2)} 

              To obtain the new source copy from the randomly 
chosen food source without changing the randomly 
chosen source, replace the values of the current food 
source when it is equal to the generated numbers, as 
shown in Fig. 2  

             Calculate the objective function for the new obtained 
source by using Algorithm 1   

             If the objective function of the new source < 

objective function of the current source  
                 Update the current source with the new obtained    

source  
                     Update the objective function of the current 

source with the new objective function  
                    trial = 0  
             Else  
                    trial = trial + 1 
             End if  
     End For  
// Onlooker Bee Phase 
     Calculate Proi according to Eq. 6 
     For i=1 to pop_size  
          If rand < Pro(i) 
             Select the current food source 
               Select food source randomly but not be the same as 

a current food source 
               Generate random numbers between 1 to the number 

of tasks //between{1, ….., (number of tasks/2)} 
              To obtain the new source copy from the randomly 

chosen food source without changing the randomly 
chosen source and replace the values of the current 
food source when it is equal to the generated 
number, as shown in Fig. 3 

             Calculate the objective function of the new obtained 
source by using Algorithm 1 

             If the objective function of the new source < 
objective function of the current source  

                  Update the current source with the new obtained    
source 

                     Update the objective function of the current 
source with the new objective function  

                    trial = 0  
             Else  
                    trial = trial + 1 
             End if  
          End if  
    End for  
// Scout Bee Phase 
    If trial >= limit  
          Generate a new population and replace it with the old  
           Calculate the objective function for the newly 

generated population and replace it with the old 
    End if  
    Keep the best solution   
End for  

7 Evaluation of the Proposed Artificial Bee 
Colony Optimization Algorithm 

In this section, we show the effectiveness of the EABCOA 
by applying it to three cases. The first case consists of 8 tasks 
and three heterogeneous processors. The second case is 11 
tasks and three heterogeneous processors. The third one 
consists of 11 tasks and three heterogeneous processors. 

3 2 3 1 2 1 3 1 2 

1 3 3 1 3 2 2 1 3 

1 2 3 1 3 1 2 1 3 
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EABCOA was implemented as a system by MATLAB 2016. 
We run our system one more time with the initial values of 
the parameters pop_size = 100, max_iter = 100, trial = 0, 
limit = 10 for all cases. 
 
7.1 Case 1 
We consider a case of 8 tasks {T0, T1, T2, T3, T4, T5, T6, 
T7} to be executed on three heterogeneous processors {P1, 
P2, P3}. The execution cost of each task on different 
processors is shown in [21]. The results obtained by the 
proposed EABCOA are compared with those obtained by 
Heterogeneous Earliest Finish Time (HEFT). It is a list-based 
scheduling heuristic in which a task priority list is first built 
so that optimal allocation decisions are made locally for 
every task based on the task's estimated completion time 
[22]. Critical Path on Processor (CPOP) is a listed-based 
scheduling heuristic. It uses a different attribute for setting 
the task priorities and different strategies for determining the 
most effective processor for every selected task [22]. A Basic 
Genetic Algorithm (BGA) [23] is a genetic algorithm based  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

on the principles of evolution found in nature to obtain an 
optimal solution for task graph scheduling problems. 
MicroGAS [11] is designed to investigate the effectiveness 
of a micro genetic-based scheduling algorithm to resolve the 
precedence task graph scheduling problem in distributed 
computing systems. A Genetic Algorithm (GA) based on 
Task scheduling to assign and execute different tasks. It aims 
to decrease the makespan and execution cost of tasks and 
increase resource utilization, Speedup, and Efficiency [16]. 
The results are shown in Table 1 and Fig. 4, with the 
proposed task priority of EABCOA {T0, T4, T1, T2, T3, T6, 
T5, T7}, task priority of HEFT {T0, T4, T1, T3, T2, T5, T6, 
T7}, task priority of CPOP {T0, T4, T3, T2, T1, T6, T5, T7}, 
task priority of BGA {T0, T3, T2, T1, T4, T6, T5, T7}, task 
priority of MicroGAS {T0, T3, T4, T1, T2, T6, T5, T7}, and 
task priority of GA {T0, T1, T4, T3, T2, T6, T5, T7}. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.2 Case 2 

The results obtained by the proposed EABCOA are 
compared with those obtained by GA [16] and Enhanced 
Genetic Algorithm for Task Scheduling (EGA-TS) [25]. It 
is a genetic-based algorithm and meta-heuristic technique 
to handle static task scheduling for processors in 
heterogeneous computing systems. Multiple Priority 
Queues and a Memetic Algorithm (MPQMA) uses a 
genetic algorithm (GA) along with hill climbing to assign a 
priority to every subtask and to search for a solution for the 

Table 1: Schedule obtained by EABCOA and other algorithms for case 1. 
 

 HEFT CPOP BGA microGAS GA EABCOA 

 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 

 ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

T0   0-9 0-
11   0-

11     0-9   0-9   0-9 

T1  20-
35    35-

46  22-
37    19-

30  20-
35  20-

30   

T2   28-
42  28-

40  22-
31    26-

38    19-
33  26-

38  

T3 23-
34     25-

35 
11-
22     9-

19   9-
19   28-

38 

T4   9-
28 

11-
26     22-

41 
20-
35   20-

35     9-
28 

T5   53-
58   50-

55   54-
59   48-

53   48-
53   51-

56 

T6 55-
65   48-

58     41-
54 

35-
45   35-

45     38-
51 

T7   78-
88 

76-
87     59-

69   58-
68   58-

68   56-
66 

 

 
Fig. 4: Comparison of results for case 1. 
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task to processor mapping, using a heuristic-based Earliest 
Finish Time (EFT) approach. New Genetic Algorithm 
(NGA) [24] to improve the task scheduling solutions in a 
cloud computing environment, a powerful and improved 
genetic algorithm is proposed. The algorithm uses the 
evolutionary genetic algorithm's advantages and heuristic 
approaches. The  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.3 Case 3 

In this case, the number of tasks {T0, T1, T2, T3, T4, T5, 
T6, T7, T8, T9, T10} to be executed on three 
heterogeneous processors {P1, P2, P3}. The cost of 
executing each task on different processors is shown in [26] 
results obtained by the proposed EABCOA results are 
shown in Table 2 and Fig. 5, with the proposed task priority 
of EABCOA {T0, T2, T3, T4, T1, T6, T8, T7, T5, T9, 
T10}, task priority of EGA-TS {T0, T4, T3, T1, T2, T5, 

T8, T6, T7, T9, T10}, task priority of MPQMA {T0, T4, 
T3, T2, T8, T1, T6, T5, T7, T9, T10}, task priority of NGA 
{T0, T4, T3, T2, T8, T1, T6, T5, T7, T9, T10}, GA {T0, 
T2, T6, T4, T1, T3, T8, T7, T5, T9, T10}. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results obtained by the proposed EABCOA are 
compared with those obtained by GA [16] and three 
heuristic HEFT algorithms. Upward Ranking Priority 
approach: Every subtask is assigned a weight from exit to 
entry. In the Downward Ranking Priority approach, every 
subtask is assigned a weight from the entry node to the exit 
node. Level ranking Priority approach, every subtask is 
placed in a sorting list based on its level value in increasing 
order [27]. Quantum Genetic Algorithm with Rotation 
Angle Refinement (QGARAR) for scheduling tasks based 
on distributed systems such as cloud data centers [18]. The 
results are shown in Table 3 and Fig. 6, with the proposed 
task priority of EABCOA {T0, T1, T2, T5, T3, T4, T6, T9, 
T8, T7, T10}, task priority of Level Priority {T0, T2, T1, 
T6, T3, T5, T4, T9, T7, T8, T10}, task priority of Upward 
Priority {T0, T2, T1, T6, T3, T5, T4, T7, T9, T8, T10}, 
task priority of Downward Priority {T0, T1, T2, T3, T5, 
T6, T4, T7, T8, T9, T10}, task priority of QGARAR {T0, 
T1, T4, T2, T3, T5, T6, T7, T8, T9, T10}, and task priority 
of GA {T0, T1, T3, T4, T2, T5, T7, T6, T9, T8, T10} 
 

Table 2: Schedule obtained by EABCOA and other algorithms for case 2. 
 

 EGA-TS MPQMA NGA GA EABCOA 

 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 

 ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

T0 0-10   0-10   0-10    0-11   0-11  

T1  35-
47    38-

51   38-
51 

38-
49   36-

47   

T2   38-
51  29-

37   29-
37   11-

19   11-
19  

T3   20-
38   20-

38   20-
38  39-

49   19-
29  

T4 10-
37   10-

37   10-
37    19-

39   29-
49  

T5  47-
59    51-

69   51-
69 

49-
64   47-

62   

T6 61-
70   47-

56   47-
56   29-

38     29-48 

T7  67-
79   67-

79   67-
79   49-

61   59-
71  

T8   51-
66  37-

47   37-
47    28-

43  49-
59  

T9  82-
94   79-

91   79-
91   73-

85   71-
83  

T10  94-
104   91-

101   91-
101   85-

95   83-
93  

 

 
Fig. 5: Comparison of results for case 2. 
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7.4 Discussion  

According to the results in Fig. 4 and Table 1, it is found that 
the Makespan of the proposed EABCOA is reduced by 
(25%), (24.13%), (4.34%), (2.94%), (2.94%) about HEFT, 
CPOP, BGA, microGAS, and  GA, respectively. According 
to the results in Fig. 5 and Table 2, it is found that the 
Makespan of the proposed EABCOA is reduced by 
(10.57%), (7.9%), (7.9%), (2.10%) about EGA-TS, 
MPQMA, NGA, and GA, respectively. According to the 
results in Fig. 6 and Table 3, it is found that the Makespan of 
the proposed EABCOA is reduced by (13.92%), (10.52%), 
(8.10%), (4.22%), (2.85%) about Level Ranking Priority,  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Upward Ranking Priority, Downward Ranking Priority, GA, 
and QGARAR, respectively. 
 

8 Conclusion and Future Work 

In order to get near-optimal results for the problem of task 
scheduling in a cloud computing environment, efficient 
strategies for the optimal mapping of the tasks are required. 
This paper proposed an efficient artificial bee colony 
optimization algorithm (EABCOA) to solve the task 
scheduling problem in a cloud computing environment. The 
system consisted of a limited number of fully connected 
heterogeneous processors. The comparison of the algorithm 
has been made against the algorithms in terms of makespan. 
The comparative analysis explained that the performance of 
the proposed algorithm is significantly better in all cases. In 
our future work, we will develop an efficient task scheduling 
algorithm using the Cuckoo search algorithm in a cloud 
computing environment. 
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Table 3: Schedule obtained by EABCOA and other algorithms  for case 3. 

 Level  Upward  Downward  GA QGARAR EABCOA 

 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 

 ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

ST-
FT 

T0 0-7   0-7   0-7   0-7   0-7   0-7   

T1 12-
22   12-

22   7-
17   7-

17   7-
17   7-

17   

T2 7-
12   7-

12   17-
22    21-

28   21-
28  17-

22   

T3  30-
38    30-

37 
22-
28   17-

23     25-
32   25-

32 

T4   37-
43   37-

43   32-
38   32-

38 
17-
27     32-

38 

T5 34-
45   34-

45    28-
41  23-

34   27-
38   22-

33   

T6 22-
34   22-

34   28-
40    28-

43   28-
43  33-

45   

T7   49-
56   43-

50   39-
46   38-

45   35-
42   38-

45 

T8  52-
61   52-

61   41-
50    45-

55 
38-
46    40-

49  

T9 45-
60   45-

60    54-
65   46-

57   50-
61  45-

60   

T10 71-
79   68-

76    65-
74   62-

71   61-
70  60-

68   

 

 
Fig. 6: Comparison of results for case 3. 
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