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The objective of this study is to investigate the behavior of the static and free 

vibration analyses of axially functionally graded elliptical planar curved beams 

using a mixed finite element method (MFEM) based on the Timoshenko beam 

theory. A two-noded curved mixed finite element has 12 field variables at each node. 

These variables denote three displacements, three cross-sectional rotations, three 

forces, two bending moments, and torque, respectively. The functionally graded 

material is composed of ceramic-particle material and metal-matrix material. The 

volume fraction of ceramic and metal materials varies along the beam axis. The 

effective material properties (modulus of elasticity, Poisson's ratio, and density) of 

the functionally graded material are determined according to the rule of mixture. It 

is aimed in the benchmark examples to present the influence of ceramic-particle 

material and non-homogeneity index of material gradation, the minimum radius of 

the elliptical beam, and boundary condition to the results of static and free vibration 

analysis in detail. 

Keywords 
 

Functionally graded material 

Ceramic composites 

Elliptical beam 

Static analysis 

Free vibration analysis 

Mixed finite element method 

 

1. Introduction 

Functionally graded materials are a new generation of composite materials that are widely used in aerospace, 

energy, automotive, defense, and nuclear industries, civil engineering, as well as in optical, electronic, and 

biomedical devices or chemical plants [1-11]. Due to abrupt changes in thermal conditions or mechanical 

loads, problems of cracks or delamination can occur in structures having classical composite material 

properties (e.g. laminated composites). Functionally graded (FG) materials are two-phase composite 

materials with a continuously varying function in desired directions. The grading of material properties 

increases the strength of functionally graded materials under sudden varying loads or temperature changes 

[12,13]. Functionally graded materials are produced with low thermal conductivity, high hardness and wear 

resistance, and other excellent mechanical and chemical properties such as low coefficient of friction [14].  

 Curved beams are commonly used structural elements in architecture, and civil and mechanical 

engineering applications e.g. [15-18]. In the literature, most studies about the structural analysis of axially 

FG beams are related to straight beam geometry. Some of the studies can be cited as follows [19-31] for the 

static/buckling/dynamic analysis of axially FG straight beams/micro or nanobeams. Some studies about the 

structural analysis of axially functional graded (AFG) curved planar beams can be summarized as follows: 
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Rajesakaran [32] investigated the static and free vibration analyses of AFG curved beams using the 

differential transformation method in which the shear effect was considered. Tsiatas and Charalampakis [33] 

dealt with the optimization problem over the natural frequencies of AFG straight and circular planar beams 

with material distribution described by a four-parameter exponential function or a five-parameter 

trigonometric function. Noori et. al. [34] investigated the free vibration and forced vibration analyses of AFG 

parabolic beams using the complementary functions method. Temel and Noori [35] investigated the free 

vibration and forced vibration analyses of AFG cycloid beams with variable cross-sections using the 

complementary functions method by considering the shear effects of the beam. Lee and Lee [36] investigated 

the free vibration behavior of AFG circular beams using the direct integral method developed with the trial 

eigenvalue method. Arıbas et.al. [37] investigated the static response and normal/shear stresses of AFG exact 

super-elliptical beams via a warping-included mixed finite element method. Aktı et.al.[38] investigated the 

behavior of the static analysis of AFG circular planar curved beams using a mixed finite element method 

(MFEM) based on Timoshenko beam theory. Convergence analysis of AFG elliptical beams is investigated 

over 3-D 2 node beam element (BEAM188) and 3-D 20-Node structural solid element (SOLID186) of 

ANSYS finite element program for the static and free vibration analysis by Kır et.al. [39] and Aydoğan et. 

al. [40], respectively.  

 In this study, the static and free vibration of axially FG elliptical curved beams are investigated using 

mixed FEM. The FG material is composed of a metal matrix reinforced with ceramic-particle material. In 

the static analysis, the influence of ceramic material (Al2O3, ZrO2, and SiC), boundary conditions (fixed-

fixed and fixed free), and non-homogeneity index of material gradation on the response of axially FG 

elliptical beam subjected to a vertical uniformly distributed load are investigated over the displacement, 

cross-sectional rotations, and support reactions of the beam in detail. In the free vibration analysis, the out-

of-plane natural frequencies are examined for the same parameters as those considered in the static analysis. 

As far as the authors know, this study is a new contribution to the literature and provides some benchmark 

examples.  

 

2. Formulation 

2.1. Elliptical beam geometry 

A planar curve is described by a position vector r(θ) in an x-y plane in terms of a horizontal angle θ as 

follows: 

   ( ), ( )( ) x y  =r  (1) 

 For an elliptical beam (Fig. 1), the components in the x-y plane of the position vector x-y, are 

  
max min( ) cos ( ) sin,x R y R   = =  (2) 

where Rmin > 0 and Rmax > 0 are the minimum and maximum radii, respectively. The gradient of the arc length 

c(θ) is defined in terms of the position vector Eq. (1) as follows: 

  ,( )c  = r ,     d ( )ds c  =  (3) 

where the subscript after the comma denotes a derivative with respect to horizontal angle θ [41], ds is the 

infinitesimal arc length. The total length S of the elliptical beam is calculated using 
B

0
( ) dS c



 =   where 

θB is the subtended angle of the elliptical beam.  
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Fig. 1. Axially functionally graded elliptical beam 

 

Table 1. The material properties of ceramic particles and metal matrix. 

Material E (GPa) υ ρ (kg/m3) 

Aluminum (Al) [44] 70 0.3 2702 

Alumina (Al2O3) [44] 380 0.3 3800 

Zirconia (ZrO2) [44] 200 0.3 5700 

Silicon carbide (SiC) [45] 302 0.17 3200 

2.2. Axially functionally graded material 

A two-phase composite beam is composed of a metal matrix and ceramic particles. The variation of the 

material along the beam axis depends on the horizontal angle θ (Fig.1). As a homogenization scheme, the 

Voigt model [42,43] is used to predict the effective material properties of a two-phase composite beam as 

follows: 

  ( ) ( )eff A B A

hn

B

P P P P





 
= + −  

 
 (4) 

where Peff denotes the effective material properties of the modulus of elasticity (E), Poisson’s ratio (υ), and 

density (ρ), respectively. nh ≥ 0 is the non-homogeneity index of material gradation. The subscripts A and B 

denote the metal and ceramic materials at the start and endpoints of the elliptical beam, respectively. In this 

study, three different ceramic materials (Al2O3, ZrO2, SiC) are employed while the metal matrix (Al) is kept 

the same. The material properties are given in Table 1.  

 The variation of the material constituents along the beam axis can be determined using Eq. (4) and the 

material properties in Table 1. The material variation versus normalized horizontal angle parameter (θ/θB) is 

plotted for different non-homogeneity indices and three different ceramic materials (Al2O3, SiC, and ZrO2) 

in Fig.2 

2.3. Field equations, functional and mixed finite element formulation 
The field equations in the Frenet coordinate system of axially curved beams are extended from the isotropic 

spatial Timoshenko beam [46] as 

  

,

,

equations of motion
s

s

A



− − + = 


− −  − + = 

T q u 0

M t T m I 0  (5) 
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Fig. 2. The effective material properties of axially functionally graded material composed of metal-matrix (Al) 

reinforced by three different ceramic particles (Al2O3, SiC, and ZrO2) 

 

  
,

,

constitutive equations
s

s





+  − = 


− = 

u t C  T 0

C  M 0




 (6) 

where t, n and b are the tangent, normal and binormal unit vectors of Frenet coordinate. u(ut,un,ub) is the 

displacement vector, Ω(Ωt,Ωn,Ωb) is the cross-sectional rotation vector, T(Tt,Tn,Tb) is the force vector and 

M(Mt,Mn,Mb) is the moment vector, q(qt,qn,qb) is the distributed load, m(mt,mn,mb) is the distributed moment, 

ρ= ρ (θ) is the material density of the axially FG beam, A is the cross-sectional area, I(It,In,Ib) is the moment 

of inertia vector, Cγ = Cγ (θ) and Cκ = Cκ (θ) are the compliance matrices of the axially FG beam. 

 The functional for free vibration and static analyses of the isotropic homogenous elastic spatial beam 

exists in [46,47]. The functional for free vibration analysis of the axially functionally graded spatial beam is 

given in Ermis 2021 [48]. Using the potential operator and Gâteaux differential [49], the functional [46] in 

terms of Eq. (5) and (6) yields to the necessary form for static analysis of the AFG spatial beam can be given 

as follows: 

  
( )   ( ) ( )

    ( ) ( )    

, ,

1 1
, , , , ,

2 2

ˆ ˆ ˆ, , , , , ,

s s  

 
 

 


    = − +  − − −        


    − − + − + − + +
    

I y u T t T M C M M C T T

q u m T T u M M u T M

 

  

 (7) 

Considering the harmonic motion in the free vibration analysis, Eq. (7) can be rearranged by using q = m = 

0 and inserting the acceleration terms in the form ( )  ( )  21 1

2 2
, ,    = −u u u u , 

( ) ( )  21 1

2 2
, ,      = −      where ω is the natural circular frequency. The parentheses in Eq. (7) 

indicate the inner product, the terms with hats are known values on the boundary and the subscripts ε and σ 
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represent the geometric and dynamic boundary conditions, respectively. It is noted that the unit vector b 

coincides with the unit vector z for a planar beam defined in the x-y plane. 

 For the finite element formulation, the linear shape functions Φi = (φj-φ)/Δφ and Φj = (φ-φi)/Δφ are 

employed in finite element formulation. The subscripts represent the node number of the curved finite 

element, φj > φi and Δφ =(φj- φi). The mixed type curved finite element has two nodes with 212 degrees of 

freedom as follows: three displacements, three cross-sectional rotations, a normal force, two shear forces, 

two bending moments, and a torque. The detailed information for the submatrices of the mixed-type finite 

element matrix exists in [46]. 

 

3. Numerical examples 

This section aims to investigate the effect of different ceramic particle materials, the non-homogeneity index 

(nh), minimum radius (Rmin), and boundary conditions on the static and dynamic responses of the AFG 

elliptical beam. Firstly, the convergence and comparison problems are handled between MFEM and ANSYS 

[50] for static and free vibration analyses in Sec.3.1. Next, some benchmark examples are introduced to the 

literature in Sec.3.2. Throughout the numerical examples, the common geometric parameters are as follows: 

the maximum radius Rmax = 10m and the subtended angle θB = 180º of the elliptical beam. The width and 

height of the rectangular cross-section is 0.48 m and 0.36 m, respectively. For the static analysis, the vertical 

distributed load is q(z) = 1 N/m. 

 

 

Fig. 3. The convergence analysis for natural frequencies of AFG elliptical beams 
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Fig.4. The convergence analysis for the static response of the AFG elliptical beam (Al-
2 3

Al O ) having fixed-fixed BC 

3.1. Convergence and comparison study 

In this section, convergency analysis and comparison between MFEM and ANSYS-BEAM188 are carried 

out for the free vibration (Sec.3.1.1.) and static analysis (Sec.3.1.2.) of AFG elliptical beams. The minimum 

radius is considered as Rmin = 7.5 m, the non-homogeneity index is nh = 3 and the boundary condition is fixed 

at both ends of the beam. In ANSYS analysis, the BEAM188 element, two noded beam elements in 3D, is 

used. BEAM188 has six degrees of freedom at each node. Three of them are translations along x, y, and z-

directions. The remaining ones are rotations about x, y, and z-directions. 

3.1.1. Free vibration analysis 

Three different ceramic particles are considered as: Al2O3, ZrO2, and SiC. The convergence analysis MFEM 

and ANSYS for the first three out-of-plane natural frequencies of the AFG elliptical beam is plotted against 

the number of elements between ne = 20 and 100 in Fig.3. The percent differences of the results are 

calculated using ( )MFEM ANSYS

1 1diff.%= 1 100f f−   and are given in Fig. 3 for ne = 100 finite elements. The 

maximum percent difference is 0.1%. The convergence rate of the first natural frequency of AFG elliptical 

beams calculated by MFEM is considerably faster than the results obtained by ANSYS-BEAM188 for all 

the considered ceramic-particle materials. 

3.1.2. Static analysis 

Al2O3 ceramic material is employed. The convergence analysis MFEM and ANSYS for the static responses 

( max

zu , A

zT , A

xM , and 
A

yM ) of the AFG elliptical beam is plotted against the number of elements between ne 

= 20 and 100 in Fig. 4. It is noted that the maximum displacement max

zu  occurs at 0.432 which is the 

normalized arc length of the AFG beam for ne = 100. The results obtained by MFEM are compared to those 

of ANSYS, and the percent differences for ne = 100 finite elements are given in Fig. 4 for each static response 
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( max

zu , A

zT , A

xM , and 
A

yM ). The maximum percent difference is 0.23%. It can be said that the convergence 

rate of the maximum displacement max

zu  of AFG elliptical beams calculated by MFEM is faster than the 

results obtained by ANSYS-BEAM188 whereas the convergence rate of the static response ( A

zT , A

xM , and 

A

yM ) of AFG elliptical beams calculated by ANSYS-BEAM188 is significantly faster than MFEM. 

 For both free vibration and static analyses, it is observed that the results of MFEM and ANSYS are 

consistent with each other in Sec. 3.1.1 and 3.1.2, respectively. ne =100 finite elements provide enough 

precision results for the dynamic response (the first three out-of-plane natural frequencies) and static 

responses ( max

zu , A

zT , A

xM , and 
A

yM ) of the AFG elliptical beam. In the following benchmark examples, 

the results of static and free vibration analyses, ne =100 is used. 

 

Table 2. The fundamental natural frequencies f (in Hz) of the AFG elliptical planar beam. (Al-Al2O3)  

 

Table 3. The fundamental natural frequencies f (in Hz) of the AFG elliptical planar beam. (Al-SiC)  

 

Table 4. The fundamental natural frequencies f (in Hz) of the AFG elliptical planar beam. (Al-ZrO2) 

Boundary 

conditions 
Rmin (m) 

The non-homogeneity index ( nh ) 

0.5  1  1.5  2  3  5  

fixed-free 

5 0.734 0.605 0.547 0.519 0.496 0.489 

7.5 0.584 0.481 0.436 0.415 0.398 0.394 

10 0.477 0.393 0.357 0.340 0.326 0.323 

fixed-fixed 

5 4.941 4.558 4.360 4.226 4.039 3.808 

7.5 3.477 3.230 3.122 3.054 2.955 2.814 

10 2.488 2.326 2.265 2.230 2.176 2.085 

Boundary 

conditions 
Rmin (m) 

The non-homogeneity index ( nh ) 

0.5  1  1.5  2  3  5  

fixed-free 

5 0.746 0.626 0.571 0.543 0.520 0.509 

7.5 0.597 0.500 0.457 0.436 0.419 0.411 

10 0.489 0.409 0.375 0.358 0.344 0.338 

fixed-fixed 

5 4.867 4.459 4.240 4.095 3.902 3.685 

7.5 3.428 3.162 3.036 2.955 2.846 2.711 

10 2.454 2.276 2.200 2.153 2.089 2.000 

Boundary 

conditions 
Rmin (m) 

The non-homogeneity index ( nh ) 

0.5  1  1.5  2  3  5  

fixed-free 

5 0.490 0.446 0.429 0.423 0.425 0.439 

7.5 0.392 0.356 0.343 0.338 0.339 0.350 

10 0.321 0.291 0.280 0.277 0.277 0.286 

fixed-fixed 

5 3.254 3.245 3.281 3.319 3.364 3.371 

7.5 2.305 2.311 2.352 2.391 2.440 2.457 

10 1.655 1.666 1.703 1.737 1.780 1.798 



29   Ermis et al.  

 

3.2. Benchmark examples 

Throughout the analysis, the following parameters are used: the minimum radius is Rmin = 5 m, 7.5 m, and 

10 m. The metal matrix (Al) is reinforced by three different ceramic particle materials Al2O3, ZrO2, and SiC, 

respectively. The non-homogeneity index of the functionally graded material is nh = 0.5, 1, 1.5 ,2 , 3 and 5, 

respectively. The boundary conditions are fixed-fixed and fixed-free, respectively. 

3.2.1. Free vibration analysis 

The fundamental natural frequencies f of AFG beam are tabulated in Tables 2-4 for the minimum radius 

Rmin= 5 m, 7.5 m, and 10 m, respectively. By considering the results for all of the considered minimum radii 

cases (Tables 2-4): In the case of fixed-free BC, when the non-homogeneity index (nh) increases, the 

fundamental natural frequencies decrease for all the considered ceramic-particle cases. In the case of fixed-

fixed BC, when the non-homogeneity index (nh) increases, the fundamental natural frequencies decrease for 

Al2O3 and SiC whereas the fundamental natural frequencies increase for ZrO2. The conclusions of parametric 

studies are handled in the following three sub-sections in detail. 

3.2.1.1. The effect of the non-homogeneity index (nh) 

To investigate the effect of the non-homogeneity index on the fundamental natural frequencies (f ) of AFG 

elliptical beam, the results of the cases nh = 1, 1.5, 2, 3, and 5 are compared with the results of the case nh = 

0.5 by using 0.5h h hn i n i nf f = = ==  where (i = 1, 1.5, 2, 3, and 5) for each boundary condition, minimum radius, 

and ceramic material. For the fixed-fixed boundary condition, the ratio 
hn i =  is plotted against Rmin= 5 m, 

7.5 m, and 10 m in Fig.5a, b, and c for the ceramic materials Al2O3, SiC, and ZrO2, respectively. It should 

be noted that when the non-homogeneity index (nh) decreases, the constituent of functionally graded material 

along the beam axis becomes ceramic-rich material (Fig. 2a-c). On the other hand, when the non-

homogeneity index (nh) increases, the constituent of functionally graded material along the beam axis 

becomes metal-rich material (Fig. 2a-c). The following outcomes can be stated for each value 
min

R  over the 

hn :  

1. For the fixed-fixed boundary condition, the maximum fundamental natural frequencies of the cases 

Al2O3 and SiC (see Fig. 5a and b) are obtained for the nh = 0.5, and the values of 
hn  are less than 1. 

Also, when the non-homogeneity index (nh) increase, the ratio 
hn  decreases.  

 

Fig. 5. The effect of the non-homogeneity index on the fundamental natural frequencies of AFG elliptical beam having 

fixed-fixed BC, 0.5h h hn i n i nf f = = ==  where (i = 1, 1.5, 2, 3, and 5). 
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2. The maximum fundamental natural frequencies for ZrO2 (see Fig. 5c) are obtained for the 5
h

n = . When 

the non-homogeneity index (nh) decreases, the ratio 
hn  decreases.  

3. As the ratio 
hn  becomes closer to 1, the fundamental natural frequencies of the non-homogeneity 

indices approach the results of nh = 0.5. It means when 1
hn → , the effect of the constituent ceramic-

rich or metal-rich functionally graded material on the fundamental natural frequency results of AFG 

beams is less influential for the case ZrO2 (e.g. the cases Rmin= 5 m and in Fig. 5c). The effect of the 

constituent ceramic-rich or metal-rich functionally graded material on the fundamental natural frequency 

results of AFG elliptical beam is more influential for the cases Al2O3 and SiC (e.g. the cases Rmin= 5 m 

and in Fig. 5a and b). 

 For the fixed-free boundary condition, the maximum fundamental natural frequencies of all the 

considered ceramic particles and minimum radius Rmin value are obtained for the nh = 0.5. It is also observed 

that the ratio 
hn i =  has nearly the same values for each value of minimum radius. For the selected minimum 

radius Rmin= 5 m, 
hn i = = 0.825, 0.746, 0.707, 0.676, and 0.667 for Al2O3; 

hn i = = 0.838, 0.765, 0.728, 0.696, 

and 0.683 for SiC; 
hn i = = 0.909, 0.875, 0.863, 0.866 and 0.896 for ZrO2.  

3.2.1.2. The effect of the material properties of ceramic material 

To investigate the effect of the ceramic material on the fundamental natural frequencies (f) of AFG elliptical 

beam, the results of the cases SiC and ZrO2 are compared with the results of the case Al2O3 using 

2 3c c Al Of f =  where (c = SiC and ZrO2) for each boundary condition, minimum radius, and the non-

homogeneity index. For the minimum radius Rmin= 5 m and both boundary conditions, the ratio 
c  is plotted 

against nh = 0.5, 1, 1.5, 2, 3, and 5 in Fig.6 a and b for the ceramic materials SiC and ZrO2, respectively. 

 In the case of SiC (Fig. 6a), the ratio SiC 1   of the fixed-fixed boundary condition is less than 1 for all 

considered non-homogeneity indexes. It means the maximum fundamental natural frequencies of the fixed-

fixed BC case are obtained for ceramic material Al2O3. On the other hand, the ratio 
SiC 1   of the fixed-

free boundary condition is greater than 1 for all considered non-homogeneity indexes. It means the maximum 

fundamental natural frequencies of the fixed-free BC are obtained for ceramic material SiC. 

 

 

Fig. 6. The effect of ceramic particles on the fundamental natural frequencies of AFG elliptical beam with Rmin= 5 m. 

2 3c c Al Of f =  (where c: SiC and ZrO2). 
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Fig. 7. The effect of boundary conditions on the fundamental natural frequencies of AFG elliptical beam

B.C. fixed-free fixed-fixed
( )f f =  

 

 In the case of ZrO2 case (Fig. 6b), the ratio 
2ZrO

1   of fixed-fixed and fixed-free boundary conditions 

is less than 1 for all considered non-homogeneity indexes. It means the maximum fundamental natural 

frequencies of the fixed-fixed BC are obtained for ceramic material Al2O3. 

 When the non-homogeneity index increases, the ratio 
2ZrO

  increases for both boundary conditions. It 

means the fundamental natural frequencies results of ZrO2 case approach the results of Al2O3 case. 

 For both boundary conditions, the cases Rmin= 7.5 m and Rmin= 10 m show a similar trend to the case 

Rmin= 5 m in Fig.6. 

 As the ratio 
c

  becomes closer to 1, the fundamental natural frequencies of cases SiC and ZrO2 approach 

the results of Al2O3. It means the effect of the type of the constituent ceramic material of functionally graded 

material on the fundamental natural frequency results of AFG elliptical beam is less influential for the case 

SiC (e.g. the case nh = 0.5 in Fig. 6a). 

3.2.1.3. The effect of the boundary condition  

To investigate the effect of the boundary conditions on the fundamental natural frequencies (f) of AFG 

elliptical beam, the results of the fixed-fixed boundary condition are compared with those of the fixed-free 

one by using B.C. fixed-free fixed-fixed
f f =  for each minimum radius and the non-homogeneity index in Fig.7. By 

considering each ceramic particle, the minimum ratio B.C.  occurs at the case Al2O3 for all considered 

minimum radii and the non-homogeneity indexes.  

 By considering each case, e.g., the non-homogeneity index and ceramic-particle materials, the minimum 

ratio B.C.  occurs at Rmin= 5 m. Also, by considering each case, e.g., ceramic-particle materials, the maximum 

ratio 
B.C.  occurs at the case nh = 0.5. 

3.2.2. Static analysis 

The static responses ( max

zu , max

xΩ , 
max

yΩ , A

zT , A
M , and B

M ) of AFG beam having fixed-fixed BC and 

minimum radius Rmin = 10 m are plotted against the non-homogeneity index in Fig. 8. A
M  and B

M  are the 

resultant of the moments at points A and B, respectively (Fig.1).  
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 The normalized arc length coordinates for the maximum displacement max

zu of AFG planar curved beam 

with Rmax = 10 m for the fixed-fixed case are given in Table 5. The static responses ( max

zu , max

xΩ , 
max

yΩ ) of 

an AFG beam with a fixed-free BC are plotted versus the non-homogeneity index in Fig. 9. For fixed-free 

BC, the static responses of A

zT  and A
M  are the same values for all of the considered non-homogeneity 

indices and ceramic particles. A

zT  and A
M  are found to be -24.221 N and 256.89 Nm for Rmin= 5 m, -27.629 

N and 308.94 Nm for Rmin= 7.5 m, and -31.415 N and 372.42 Nm for Rmin= 10 m, respectively. 

 As the non-homogeneity index decreases, the constituent of functionally graded material along the beam 

axis becomes ceramic-rich material (Fig.2a-c). Each ceramic particle has both higher elasticity modulus than 

that of the metal matrix (Al). Thus, the absolute minimum value of max

zu , max

xΩ , 
max

yΩ  occurs at non-

homogeneity index nh = 0.5 whereas the absolute maximum value of max

zu , max

xΩ , 
max

yΩ  occurs at non-

homogeneity index nh = 5. Also, the ratio Γ of elasticity modulus between ceramic and metal material is 

calculated using c c Al

EE E =    where c: Al2O3, SiC, and ZrO2 as follows: 
2 3Al O 5.43

E
 = , SiC 4.31E = , 

2ZrO 2.86E = , respectively. As the ratio of elasticity modulus Γ increases, the absolute values max

zu , max

xΩ , 

max

yΩ  decrease. The absolute minimum value of max

zu , max

xΩ , 
max

yΩ  is obtained for the Al2O3 case whereas 

the absolute maximum value of max

zu , max

xΩ , 
max

yΩ  is obtained for ZrO2. 

 

 

Fig. 8. The static responses of AFG circular beams (Rmax = Rmin = 10 m) having fixed-fixed BC 
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Table 5. The normalized arc length coordinates for the maximum displacement 
max

zu of AFG planar curved beam with 

Rmax = 10 m for the fixed-fixed boundary condition.  

Minimum 

radius 

Ceramic 

materials 

The non-homogeneity index ( nh ) 

0.5  1  1.5  2  3  5  

 Al2O3 0.448 0.448 0.435 0.435 0.435 0.448 

Rmin= 5 m SiC 0.474 0.448 0.448 0.448 0.448 0.461 

 ZrO2 0.474 0.461 0.461 0.461 0.461 0.474 

 Al2O3 0.455 0.443 0.432 0.432 0.432 0.443 

Rmin= 7.5 m SiC 0.455 0.455 0.443 0.443 0.443 0.455 

 ZrO2 0.477 0.455 0.455 0.455 0.455 0.466 

 Al2O3 0.460 0.440 0.440 0.440 0.440 0.440 

Rmin = 10 m SiC 0.460 0.460 0.440 0.440 0.440 0.450 

 ZrO2 0.480 0.460 0.460 0.460 0.460 0.460 

 

 

Fig. 9. The static responses of AFG circular beams (Rmax = Rmin = 10 m) having fixed-free BC  

3.2.2.1. The effect of the non-homogeneity index (nh) 

To investigate the effect of the non-homogeneity index on the static responses of AFG elliptical beam, the 

results of the cases nh = 1, 1.5, 2, 3, and 5 are compared with those of the case nh = 0.5 using 

0.5h h hn i n i n

= = ==    where ( : , ,u T M  and i = 1, 1.5, 2, 3, or 5) for each boundary condition, minimum 

radius, and ceramic material.  

 For max

zu , the minimum and maximum ratios 
max
z

h

u

n i = are obtained as i = 1 and 5, respectively (Table 6). 

When the non-homogeneity index increases, the ratio 
max
z

h

u

n  increases. The values 
max
z

h

u

n  are greater than 1. 

Also, the ratio 
max
z

h

u

n  of the fixed-free BC case is greater than that of the fixed-fixed BC case. 

 In the fixed-fixed case, the value of each ratio 
A
z

h

T

n i = , 
A

h

M

n i =  and 
B

h

M

n i =  remains approximately the same 

for each ceramic material and minimum radius. The average and standard deviations 
A
z

h

T

n , 
A

h

M

n  and 
B

h

M

n  

over the non-homogeneity index are calculated for the static responses
A
z

h

T

n i = , 
A

h

M

n i =  and 
B

h

M

n i =  of the AFG 

elliptical planar beam, respectively. For each minimum radius and ceramic material, the values 
hn

  are 

tabulated in Table 7. 
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Table 6. The ratio 
max
z

h

u

n  of AFG elliptical planar beam for fixed-fixed and fixed-free boundary conditions  

 

Table 7. The average and standard deviation 
hn

  for the static responses (
A

zT , 
A

M  and 
B

M ) of an AFG elliptical 

planar beam having fixed-fixed BC 

Parameters 
Ceramic 

materials 
Rmin = 5 m Rmin = 7.5 m Rmin = 10 m 

A

zT  

Al2O3 0.958 ± 0.007 0.953 ± 0.006 0.947 ± 0.007 

SiC 0.967 ± 0.006 0.963 ± 0.005 0.959 ± 0.005 

ZrO2 0.997 ± 0.010 0.979 ± 0.004 0.977 ± 0.004 

A
M  

Al2O3 0.934 ± 0.039 0.923 ± 0.033 0.914 ± 0.030 

SiC 0.950 ± 0.035 0.940 ± 0.029 0.932 ± 0.027 

ZrO2 1.003 ± 0.029 0.965 ± 0.021 0.960 ± 0.019 

B
M  

Al2O3 1.111 ± 0.021 1.091 ± 0.015 1.082 ± 0.015 

SiC 1.092 ± 0.017 1.076 ± 0.013 1.069 ± 0.014 

ZrO2 1.011 ± 0.023 1.050 ± 0.010 1.045 ± 0.011 

 

 To investigate the effect of the non-homogeneity index and ceramic inclusions on the resultant moments 

of support reactions at points A and B (Fig.1), the ratio /
A B

M M  is calculated for each minimum radii as 

follows: The maximum /
A B

M M occurs at ceramic-rich material case (nh = 0.5) for all considered ceramic 

inclusions and minimum radii. For Rmin = 5 m, it is calculated as 0.750, 0.676, and 0.648 for ZrO2, SiC and 

Al2O3, respectively. For Rmin = 7.5 m, we have the values of 0.736, 0.658, and 0.627 for ZrO2, SiC, and Al2O3, 

respectively. For Rmin = 10 m, the results become 0.720, 0.639, and 0.605 for ZrO2, SiC, and Al2O3, 

respectively. 

 The minimum /
A B

M M  for all considered ceramic inclusions and minimum radii occurs at nh = 1.5 

except Rmin = 5 m and Al2O3 case (nh = 2.0). For Rmin = 5 m, the minimum ratios of ZrO2, SiC and Al2O3 

cases are 0.672, 0.568, and 0.525, respectively. For Rmin = 7.5 m, these are 0.661, 0.556 and 0.511, 

respectively. For Rmin = 10 m, they are 0.645, 0.538 and 0.492, respectively. 

3.2.2.2. The effect of the material properties of ceramic material 

To investigate the effect of the ceramic material on the static responses of the AFG elliptical beam, the results 

of the cases SiC and ZrO2 are compared with those of Al2O3 using 
2 3c c Al O

=    where ( : , ,u T M , and 

c: SiC and ZrO2) for each boundary condition, minimum radius, and the non-homogeneity index. 

Case 
Ceramic 

materials 

Rmin = 5 m Rmin = 7.5 m Rmin = 10 m 

1hn =  5hn =  1hn =  5hn =  1hn =  5hn =  

fixed-fixed 

Al2O3 1.264 2.149 1.245 1.941 1.229 1.804 

SiC 1.229 1.931 1.211 1.769 1.196 1.660 

ZrO2 1.160 1.583 1.147 1.488 1.138 1.424 

fixed-free 

Al2O3 1.513 2.663 1.513 2.595 1.512 2.568 

SiC 1.441 2.315 1.444 2.281 1.446 2.273 

ZrO2 1.285 1.748 1.282 1.723 1.280 1.714 
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Table 8. The ratio 
max

c
zu  of AFG elliptical planar beam for fixed-fixed and fixed-free boundary conditions  

 

Table 9. The average and standard deviation 
c  for the static responses (

A

zT , 
A

M  and 
B

M ) of an AFG elliptical 

planar beam having fixed-fixed BC 

Parameters 
Ceramic 

materials 
Rmin = 5 m Rmin = 7.5 m Rmin = 10 m 

A

zT  
SiC 1.013 ± 0.004 1.014 ± 0.005 1.016 ± 0.005 

ZrO2 1.043 ± 0.011 1.047 ± 0.012 1.052 ± 0.014 

A
M  

SiC 1.042 ± 0.009 1.046 ± 0.009 1.051 ± 0.009 

ZrO2 1.132 ± 0.025 1.142 ± 0.025 1.155 ± 0.026 

B
M  

SiC 0.971 ± 0.008 0.970 ± 0.006 0.969 ± 0.005 

ZrO2 0.908 ± 0.019 0.907 ± 0.015 0.905 ± 0.014 

 

 For 
max

c
zu , the maximum and minimum ratios 

max

c
zu are obtained for 0.5hn =  and 5 , respectively (Table 

8). When the non-homogeneity index increases, the ratio 
max

c
zu  decreases. The values 

max

c
zu  are greater than 

1. The ratio 
max

c
zu  of the fixed-free BC is less than that of the fixed-fixed BC, and the ratio 

max

c
zu  of the ZrO2 

case is greater than that of the SiC case. 

 In the case of fixed-fixed BC for the nh = 0.5,1,1.5,2,3 and 5 values of the non-homogeneity index, the 

values 
A

c
zT , 

A

c

M  and 
B

c

M  remains approximately the same for each ceramic material (c: SiC and ZrO2) 

and minimum radius. The average and standard deviation 
A

c
zT , 

A

c

M  and 
B

c

M  over the non-homogeneity 

index are calculated for the static responses
A

c
zT , 

A

c

M  of the AFG elliptical planar beam, respectively. For 

each minimum radius and ceramic material (SiC and ZrO2), the values 
c  are tabulated in Table 9. 

4. Conclusions 

The static and free vibration responses of axially functionally graded elliptical beams are investigated using 

a mixed finite element method. Functionally graded material is composed of metal-matrix (Al) and ceramic 

inclusions (Al2O3, SiC, and ZrO2). The effect of the non-homogeneity index, ceramic-particle material, 

minimum radius, and boundary conditions on the static and dynamic response of the AFG elliptical beam is 

discussed in detail (Sec. 3.2). The main outcomes of the parametric analysis can be summarized as follows: 

a) Free vibration analysis (Sec.3.2.1):  

▪ As the minimum radius Rmin increase, the fundamental natural frequencies decrease for all the considered 

ceramic particles, the non-homogeneity indices, and boundary conditions cases. 

▪ When the effect of ceramic particle materials is considered for all the considered non-homogeneity 

indexes, minimum radii, and boundary conditions, the maximum fundamental natural frequencies of the 

Case 
Ceramic 

materials 

Rmin = 5 m Rmin = 7.5 m Rmin = 10 m 

nh = 0.5 nh = 5 nh = 0.5 nh = 5 nh = 0.5, nh = 5 

fixed-fixed 
SiC 1.197 1.075 1.192 1.086 1.191 1.096 

ZrO2 1.672 1.232 1.648 1.264 1.639 1.293 

fixed-free 
SiC 1.159 1.007 1.147 1.008 1.140 1.009 

ZrO2 1.548 1.016 1.533 1.018 1.528 1.020 
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fixed-fixed boundary condition are obtained for the Al2O3 case whereas the maximum natural frequencies 

of the fixed-free boundary condition are obtained for the SiC. The minimum fundamental natural 

frequencies are obtained for ZrO2 for both boundary conditions. 

▪ When the non-homogeneity index nh increase, the fundamental natural frequencies of the fixed-free beam 

increase for all the considered ceramic-particle and minimum radii cases.  

▪ In cases Al2O3 and SiC, since the constituent of the fixed-fixed AFG beam becomes metal-rich (nh ↑), the 

fundamental natural frequencies decrease, and more ductile behavior can be obtained. However, in the 

case of ZrO2, it is quite the opposite. 

▪ As the ratio Rmin / Rmax decreases, the change of non-homogeneity index is more influential on the results 

of fundamental natural frequencies of Al2O3 and SiC cases whereas the change of non-homogeneity index 

is less influential on the results of fundamental natural frequencies of ZrO2 case. 

b) Static analysis (Sec.3.2.2):  

▪ As the non-homogeneity index (nh) increases, the constituent of functionally graded material along the 

beam axis becomes metal-rich material. Each ceramic-inclusions Al2O3, SiC and ZrO2 has both higher 

elasticity modulus than that of the metal matrix (Al). Thus, the absolute value of static responses max

zu , 

max

xΩ  and 
max

yΩ  increases for both fixed-fixed and fixed-free boundary conditions, respectively.  

▪ In the case of the fixed-fixed boundary condition, the absolute maximum and minimum values of max

zu , 

max

xΩ , 
max

yΩ  are obtained for the ceramic materials Al2O3 and ZrO2, respectively. When the non-

homogeneity index increases, the change in the absolute values of A

zT , A
M , and B

M  has an opposite 

trend. Also, by considering the support reactions of points A and B, the maximum resultant moments M 

of the AFG beam occurs at point A for all considered non-homogeneity indices, the minimum radii, and 

ceramic inclusions. 

▪ In the case of the fixed-free boundary condition, as the constituent of the AFG beam becomes metal-rich 

(nh ↑), the effect of different ceramic materials on the static responses max

zu , max

xΩ , 
max

yΩ  quickly 

decreases. Each static response max

zu , max

xΩ , 
max

yΩ  approaches the same values for each ceramic material 

Al2O3, ZrO2, and SiC by increasing the non-homogeneity index(nh). 

 As far as the knowledge of the authors, the static and free vibration analysis of axially FG elliptical beam 

using mixed FEM is an original example for the literature. 

Declaration of conflicting interests 

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or 

publication of this article. 

References 

[1] Chin ESC (1999) Army focused research team on functionally graded armor composites. Mater Sci Eng A 

259:155–161. https://doi.org/10.1016/S0921-5093(98)00883-1 

[2] Pompe W, Worch H, Epple M, et al (2003) Functionally graded materials for biomedical applications. Mater Sci 

Eng A 362:40–60. https://doi.org/10.1016/S0921-5093(03)00580-X 

[3] Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG (2013) Functionally Graded Materials: Design, 

Processing, and Applications (Vol. 5). Springer Science & Business Media. 

[4]  Kumar S, Reddy KVVSM, Kumar A, Devi GR (2013) Development and characterization of polymer–ceramic 

continuous fiber-reinforced functionally graded composites for aerospace application. Aerosp Sci Technol 26:185–

191. https://doi.org/10.1016/j.ast.2012.04.002 



37   Ermis et al.  

 

[5] Zhang C, Chen F, Huang Z, et al (2019) Additive manufacturing of functionally graded materials: A review. Mater 

Sci Eng A 764:138209. https://doi.org/10.1016/j.msea.2019.138209 

[6] Sofiyev AH (2019) Review of research on the vibration and buckling of the FGM conical shells. Compos Struct 

211:301–317. https://doi.org/10.1016/j.compstruct.2018.12.047 

[7] Adıyaman G, Birinci A (2018) A general solution for the receding contact problem of a functionally graded layer 

resting on a Winkler foundation. Journal of Structural Engineering & Applied Mechanics 1(3):136–146. 

https://doi.org/10.31462/jseam.2018.03136146 

[8] Haciyev VC, Mirzeyeva GR, Shiriyev AI (2018) Effect of Winkler foundation, inhomogeneity and orthotropy on 

the frequency of plates. Journal of Structural Engineering & Applied Mechanics 1(1):1–5. 

https://doi.org/10.31462/jseam.2018.01001005 

[9] Karakaş Aİ, Daloğlu A (2019) A parametric frequency analysis for functionally graded cylinders using graded 

harmonic FEM. Journal of Structural Engineering & Applied Mechanics 2(4):190–206. 

https://doi.org/10.31462/jseam.2019.04190206 

[10] Polat A, Kaya Y, Bora P, Bendine K, Özşahin TŞ (2019) Investigation of the contact problem for a partial 

functionally graded layer by using finite element method. Journal of Structural Engineering & Applied Mechanics 

1(4):185–193. https://doi.org/10.31462/jseam.2019.01185193 

[11] Garg A, Belarbi M-O, Chalak HD, Chakrabarti A (2021) A review of the analysis of sandwich FGM structures. 

Compos Struct 258:113427. https://doi.org/10.1016/j.compstruct.2020.113427 

[12] Piovan MT, Domini S, Ramirez JM (2012) In-plane and out-of-plane dynamics and buckling of functionally graded 

circular curved beams. Compos Struct 94:3194–3206. https://doi.org/10.1016/j.compstruct.2012.04.032 

[13] Swaminathan K, Naveenkumar DT, Zenkour AM, Carrera E (2015) Stress, vibration and buckling analyses of 

FGM plates—A state-of-the-art review. Compos Struct 120:10–31. 

https://doi.org/10.1016/j.compstruct.2014.09.070 

[14] Avey A, Süzer M (2019) The investigation of dynamic response of FGM cylindrical shells in mixed boundary 

conditions, Nigde Omer Halisdemir University Journal of Engineering Science. 8(3):1-15. 

https://doi.org/10.28948/ngumuh.617259. (in Turkish) 

[15] Norris CH, Wilbur JB, Utku Ş (1977) Elementary Structural Analysis. McGraw-Hill. 

[16] Prathap G (1985) The curved beam/deep arch/finite ring element revisited. Int J Numer Methods Eng 21(3):389-

407. https://doi.org/10.1002/nme.1620210302. 

[17] Chidamparam P, Leissa AW (1993) Vibrations of planar curved beams, rings, and arches. Appl Mech Rev 46:467–

483. https://doi.org/10.1115/1.3120374 

[18] Cazzani A, Malagù M, Turco E (2016) Isogeometric analysis of plane-curved beams. Math Mech Solids 21:562–

577. https://doi.org/10.1177/1081286514531265 

[19] Caliò I, Elishakoff I (2005) Closed-form solutions for axially graded beam-columns. J Sound Vib 280:1083–1094. 

https://doi.org/10.1016/j.jsv.2004.02.018 

[20] Aydogdu M (2008) Semi-inverse method for vibration and buckling of axially functionally graded beams. J Reinf 

Plast Compos 27:683–691. https://doi.org/10.1177/0731684407081369 

[21] Şimşek M, Kocatürk T, Akbaş ŞD (2012) Dynamic behavior of an axially functionally graded beam under action 

of a moving harmonic load. Compos Struct 94:2358–2364. https://doi.org/10.1016/j.compstruct.2012.03.020 

[22] Babilio E (2013) Dynamics of an axially functionally graded beam under axial load. Eur Phys J Spec Top 

222:1519–1539. https://doi.org/10.1140/epjst/e2013-01942-8 

[23] Shafiei N, Kazemi M, Ghadiri M (2016) Nonlinear vibration of axially functionally graded tapered microbeams. 

Int J Eng Sci 102:12–26. https://doi.org/10.1016/j.ijengsci.2016.02.007 

[24] Azimi M, Mirjavadi SS, Shafiei N, Hamouda AMS (2016) Thermo-mechanical vibration of rotating axially 

functionally graded nonlocal Timoshenko beam. Appl Phys A 123:104. https://doi.org/10.1007/s00339-016-0712-

5 

[25] Li X, Li L, Hu Y, et al (2017) Bending, buckling and vibration of axially functionally graded beams based on 

nonlocal strain gradient theory. Compos Struct 165:250–265. https://doi.org/10.1016/j.compstruct.2017.01.032 

[26] Shafiei N, Kazemi M, Ghadiri M (2016) Nonlinear vibration of axially functionally graded tapered microbeams. 

Int J Eng Sci 102:12–26. https://doi.org/10.1016/j.ijengsci.2016.02.007 



Journal of Structural Engineering & Applied Mechanics 38 

 

[27] Ghayesh MH (2018) Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams. 

Appl Math Model 59:583–596. https://doi.org/10.1016/j.apm.2018.02.017 

[28] Singh A, Kumari P (2018) Analytical solution of functionally graded beam having longitudinal stiffness variation. 

Int J Comput Methods Eng Sci Mech 19:390–395. https://doi.org/10.1080/15502287.2018.1534152 

[29] Zheng S, Chen D, Wang H (2019) Size-dependent nonlinear free vibration of axially functionally graded tapered 

microbeams using finite element method. Thin-Walled Struct 139:46–52. 

https://doi.org/10.1016/j.tws.2019.02.033 

[30] Ermis M, Aribas UN, Kutlu A, Eratlı N, Omurtag MH (2019) Forced vibration analysis of axially FG straight 

beams by mixed FEM. IV. Eurasian Conference on Civil and Environmental Engineering, İstanbul, Türkiye, 

pp.894-899. 

[31] Aribas UN, Ermis M Kutlu A, Eratlı N, Omurtag MH (2019) Elastically Damped Transient Response of Axially 

FG Straight Beams. International Journal of Theoretical and Applied Mechanics 4:19-25. 

[32] Rajasekaran S (2014) Analysis of curved beams using a new differential transformation-based curved beam 

element. Meccanica 49:863–886. https://doi.org/10.1007/s11012-013-9835-3 

[33] Tsiatas GC, Charalampakis AE (2017) Optimizing the natural frequencies of axially functionally graded beams 

and arches. Compos Struct 160:256–266. https://doi.org/10.1016/j.compstruct.2016.10.057 

[34] Noori AR, Aslan TA, Temel B (2018) An efficient approach for in-plane free and forced vibrations of axially 

functionally graded parabolic arches with nonuniform cross-section. Compos Struct 200:701–710. 

https://doi.org/10.1016/j.compstruct.2018.05.077 

[35] Temel B, Noori AR (2019) Out-of-plane vibrations of shear-deformable AFG cycloidal beams with variable cross-

section. Appl Acoust 155:84–96. https://doi.org/10.1016/j.apacoust.2019.05.010 

[36] Lee JK, Lee BK (2019) In-plane free vibration of uniform circular arches made of axially functionally graded 

materials. Int J Struct Stab Dyn 19:1950084. https://doi.org/10.1142/S0219455419500846 

[37] Aribas UN, Ermis M, Omurtag MH (2021) The static and stress analyses of axially functionally graded exact super-

elliptical beams via mixed FEM. Arch Appl Mech 91, 4783–4796. https://doi.org/10.1007/s00419-021-02033-w 

[38] Aktı Z, Ermis M, Omurtag M.H (2021) Static analysis of axially functionally graded circular beams via mixed 

finite element method. TUMTMK 22nd National Mechanics Congress, Çukurova University-Adana, Turkey (in 

Turkish), 525-539. ISBN: 978-975-561-523-3. 

[39] Kır O, Ermis M, Aribas UN, Omurtag MH (2021) Static analysis of axially functionally graded elliptical beams 

via finite element method. TUMTMK 22nd National Mechanics Congress, Çukurova University-Adana, Turkey (in 

Turkish), 46-60. ISBN: 978-975-561-523-3. 

[40] Aydoğan G, Ermis M, Aribas UN, Omurtag M.H (2021) Free vibration analysis of axially functionally graded 

elliptical beams via finite element method. TUMTMK 22nd National Mechanics Congress, Çukurova University- 

Adana, Turkey (in Turkish), 61-74. ISBN: 978-975-561-523-3. 

[41] Ermis M, Omurtag MH (2017). Static and dynamic analysis of conical helices based on exact geometry via mixed 

FEM. Int J Mech Sci 131-132:296-304. https://doi.org/10.1016/j.ijmecsci.2017.07.010 

[42] Voigt W. (1889) Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper. Ann Phys. 

274(12):573–87. 

[43] Karami B, Shahsavari D, Janghorban M, Li L (2019) Influence of homogenization schemes on vibration of 

functionally graded curved microbeams. Compos Struct 216:67–79. 

https://doi.org/10.1016/j.compstruct.2019.02.089 

[44] Fu T, Chen Z, Yu H, et al (2018) An analytical study of sound transmission through corrugated core FGM sandwich 

plates filled with porous material. Compos Part B Eng 151:161–172. 

https://doi.org/10.1016/j.compositesb.2018.06.010 

[45] Gunes R, Aydin M, Apalak MK, Reddy JN (2014) Experimental and numerical investigations of low-velocity 

impact on functionally graded circular plates. Compos Part B Eng 59:21–32. 

https://doi.org/10.1016/j.compositesb.2013.11.022 

[46] Omurtag MH, Aköz AY (1992) The mixed finite element solution of helical beams with variable cross-section 

under arbitrary loading. Comput Struct 43:325–331. https://doi.org/10.1016/0045-7949(92)90149-T 

[47] Eratli N, Yilmaz M, Darilmaz K, Omurtag MH (2016) Dynamic analysis of helicoidal bars with non-circular cross-

sections via mixed FEM, Struct Eng Mech 57:221–238. https://doi.org/10. 12989/sem.2016.57.2.221. 

https://doi.org/10.1016/j.apacoust.2019.05.010
https://doi.org/10.1016/j.ijmecsci.2017.07.010


39   Ermis et al.  

 

[48] Ermiş M (2021) Free vibration analysis of axially functionally graded helices via mixed finite element method. 

Nigde Omer Halisdemir University Journal of Engineering Science 10(1):319-327. 

https://doi.org/10.28948/ngmuh.823385 (in Turkish) 

[49] Oden JT, Reddy JN (1976) An Introduction to the Mathematical Theory of Finite Elements. JohnWiley&Sons Inc., 

NewYork. 

[50] Ansys® Academic Research Mechanical, Mechanical APDL Release 2021 R1, Element Reference, ANSYS, Inc. 


