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A B S T R A C T

Efficient mixing and pumping of liquids at the microscale is a technology that is still to be optimized. The combination of an AC electric field with a small temperature 
gradient leads to a strong electrothermal flow that can be used for multiple purposes. Combining simulations and experiments, an analysis of the performance of 
electrothermal flow is provided when the temperature gradient is generated by illuminating plasmonic nanoparticles in suspension with a near-resonance laser. 
Fluid flow is measured by tracking the velocity of fluorescent tracer microparticles in suspension as a function of the electric field, laser power, and concentration of 
plasmonic particles. Among other results, a non-linear relationship is found between the velocity of the fluid and particle concentration, which is justified in terms of 
multiple scattering-absorption events, involving aggregates of nanoparticles, that lead to enhanced absorption when the concentration is raised. Simulations provide 
a description of the phenomenon that is compatible with experiments and constitute a way to understand and estimate the absorption and scattering cross-sections 
of both dispersed particles and/or aggregates. A comparison of experiments and simulations suggests that there is some aggregation of the gold nanoparticles by 
forming clusters of about 2–7 particles, but no information about their structure can be obtained without further theoretical and experimental developments. This 
nonlinear behavior could be useful to get very high ETP velocities by inducing some controlled aggregation of the particles.
1. Introduction

There are many applications based on lab-on-a-chip technologies 
that involve the transport and mixing of fluids inside microchannels 
[1–3], but fulfilling their demands requires further developments. One 
hurdle to be overcome is due to the fact that mixing essentially occurs 
by diffusion, which is inherently slow [4]. Moreover, laminar flow is 
typically present at the microscale due to the small Reynolds numbers 
attained, so convection has to be actively forced in order to speed up 
mixing. This is particularly important in the case of applications based 
on surface sensors [5,6] or where mixing between different species is in-
tended [7]. Active pumping is also required in many applications, and 
the standard approach involves the use of syringe pumps that create 
pressure-driven flows [8–11]. However, miniaturization and portability 
clearly require the use of alternative approaches [12,13].

Convection can be triggered by strong temperature gradients. These 
can be obtained e.g. via light-to-heat conversion with plasmonic nanos-
tructures deposited on a substrate [14–21]. Likewise, electrokinetic 
techniques have been extensively developed both to induce convection 
and pump flow inside microchannels [22–27]. Nevertheless, these ap-
proaches present some drawbacks that prevent widespread application. 

* Corresponding author at: Universidad de Málaga, Department of Applied Physics II, 29071, Málaga, Spain.

In the case of plasmonic structures, the generation of strong flows re-
quires somehow high-temperature increments (tens of K), which can 
compromise their use with analytes of biomedical interest, since most 
of them are very sensitive to temperature variations. On the other 
hand, electrokinetic pumps require high electric fields for their efficient 
operation [28–30]. Moreover, both approaches require costly microfab-
rication techniques.

Alternatively, electrothermal flow can be efficiently generated by 
combining a small temperature gradient with an AC electric field 
[31–33]. A plasmonic nanostructure used as a heat source in combi-
nation with an AC electric field has been shown to provide versatility 
in the generation of convective flow inside microchannels thanks to the 
electrothermoplasmonic (ETP) effect [34–37]. This approach is attrac-
tive since the ETP effect has been shown to provide significant flow with 
low-temperature increments and moderate electric fields. Interestingly, 
the flow thus obtained can be even engineered to create stagnation 
points that are able to trap molecules and small nanoparticles in a re-
gion where no heating is produced [38].

In this work, we explore a novel configuration for ETP flow where 
heating is achieved thanks to the laser absorption of plasmonic gold 
nanoparticles dispersed in the fluid, which constitutes an interesting 
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Fig. 1. Schematic representation of the problem and simulations of the fluid-velocity field. (a) A microfluidic chamber is fabricated by sandwiching two aluminum-
foil electrodes with two glass coverslips. An infrared laser (𝜆 = 980 nm) is focused by an objective microscope (20x, NA = 0.4), and excites off-resonance the surface 
plasmon of gold nanoparticles (AuNPs) uniformly dispersed in the bulk. An AC electric field is generated in the bulk by feeding the electrodes with an AC voltage 
signal (𝑓 = 100 kHz) between two electrodes (typical distance ≈ 1 mm, see panel (a)) that apply an oscillating electric field with intensity in the range 10–50 V/mm. 
The blue arrows in panel (a) represent the direction of the fluid flow in the chamber. Panels (b), (c), and (d) show the simulated flow fields in the XY, XZ, and 
YZ planes, respectively. In the simulations, the AuNP concentration is 4.96 ⋅ 1012 particles∕cm3, the incident laser power is 30 mW and the applied electric field is 
30 V/mm. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
alternative to the deposition of gold nanostructures on a substrate 
[16,36]. This platform is used to better understand and characterize the 
dynamics of ETP flow. In our experiments, we present measurements of 
the flow field obtained as a function of the electric field, the laser power, 
and the concentration of dispersed gold nanoparticles (AuNPs). We 
compare our results with simulations performed with COMSOL Multi-
physics, providing an in-depth understanding of the mechanism behind 
ETP flow.

The paper is organized as follows. We first introduce ETP funda-
mentals, discussing the particular structure of ETP flow obtained in our 
configuration aided by computer simulations. Further, we present ex-
perimental results of the flow field obtained under different experimen-
tal situations, comparing these with simulations. Finally, we present 
simulations of the scattering cross-section of aggregates of plasmonic 
nanoparticles, and discuss why they are needed to justify the observed 
behavior.

2. Overview of electrothermoplasmonic flow

The electrothermal effect is a flow generation technique that com-
bines a gradient of temperature ∇𝑇 (r) with an applied AC electric field 
E. In this situation, the electric field exerts a body force on the fluid due 
to gradients in electric permittivity and conductivity concomitant with 
the temperature gradient. The driving electrothermal force at position 
r is [31]:

FET(r) =
1
2

Re

[
𝜀(𝛼 − 𝛽)
1 + 𝑖𝜔𝜏

(∇𝑇 (r) ⋅ E)E∗ − 1
2
𝜀𝛼|E|2∇𝑇 (r)

]
(1)

where 𝛼 = (1∕𝜀)(𝜕𝜀∕𝜕𝑇 ), 𝛽 = (1∕𝜎)(𝜕𝜎∕𝜕𝑇 ), and 𝜎 and 𝜀 are the con-
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ductivity and permittivity of the solution, respectively, at the angular 
frequency 𝜔 of the electric field. The second term in this body force 
starts to dominate over the first one above the MHz range, determined 
by the inverse of the relaxation time of the solution 1∕𝜏 = 𝜎∕𝜀 [31,36].

The configuration we have used is depicted in Fig. 1a). In our ex-
periment, the temperature gradient is obtained via resonant excitation 
of surface plasmons in gold nanoparticles that are dispersed in the fluid 
[21]. This is different from previous approaches, where ETP flow was 
generated by the excitation of nanostructures deposited on a surface 
[35,36]. Therefore, the geometry of the convection cells we obtain is 
different, since in our case the electric field is perpendicular to the laser 
beam (see Fig. 1a)), while in previous works the laser and the electric 
field were always parallel [35–37]. Experiments and numerical simu-
lations based on finite element analysis and performed with COMSOL 
Multiphysics (see Methods section) reveal that the flow field features a 
quadrupolar structure in the focal plane (XY). The liquid flows inwards 
(outwards) from (to) the focus in the directions perpendicular (paral-
lel) to the electric field, respectively (see Fig. 1). Interestingly, the flow 
is significant, leading to vortexes moving at tens of μm/s over distances 
hundreds of microns apart from the focus, what can be useful in mixing 
applications.

3. Methods

3.1. Experimental

A microfluidic chamber is constructed by sandwiching two elec-
trodes made of aluminum foil (150 ± 20 μm thickness) with two glass 
coverslips (thickness 170 ± 5 μm). The typical distance between elec-
trodes is 1 mm. During an initial exploration, we tested different ways 

to build the microchambers, also using ITO coverslips with 120 μm 
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Fig. 2. Optical setup. Notice the microfluidic chamber and electrodes in the 
center, as well as the electric scheme on the right.

spacers. However, this approach changes the direction of the electric 
field and hence of the flow pattern, making it difficult to reliably mea-
sure the velocity. Simulations of the expected results are provided at 
the end of the manuscript.

We have prepared suspensions of a mixture of plasmonic nanopar-
ticles and fluorescent microparticles in water. The nanoparticles are 
used to generate the temperature gradient, while the fluorescent mi-
croparticles serve as flow tracers. The flow tracers move with a velocity 
𝐯 = 𝐮 +𝐅∕𝛾 , where 𝐮 is the velocity of the flow, 𝐅 is the sum of the exter-
nal forces acting on the particles and 𝛾 = 6𝜋𝜂𝑟 is the Stokes friction coef-
ficient, which depends on the fluid viscosity 𝜂 and the tracer particle ra-
dius 𝑟. Since the electric field is AC and with negligible gradients in our 
electrode configuration, we can safely ignore additional forces on the 
particles and identify the velocity of the fluid with that of the tracers.

We have built a fluorescence microscope to track the trajectory of 
the flow tracers. The scheme is shown in Fig. 2. Briefly, a laser beam 
(𝜆 = 532 nm) has been used to excite the fluorescence of the tracer mi-
croparticles (diameter 500 nm, from Sigma Aldrich). A 𝜆 = 980 nm laser 
from Arroyo Instruments has been focused to a diffraction-limited spot 
(diameter 1.56 μm) incident toward the sample to excite AuNPs, and an 
electric field has been applied with a signal generator from RSPro RSDG 
1032X and an amplifier from Falco Systems WMA-100 as can be seen 
in Fig. 2. The experiments were recorded with an IDS UI 1240 CMOS 
camera and a NAVITAR 50 mm lens.

The gold nanoparticles used were rods with 16 ± 4 nm mean diame-
ter, 56 ± 9 nm mean length, and average aspect ratio of 3.7 ± 0.8, where 
the estimates have been obtained from TEM images of 70 particles and 
uncertainties indicate standard deviation [39] (see also Supplementary 
Images). Sizing of the AuNPs in suspension by means of dynamic light 
scattering (Nanosizer Nano ZS, Malvern Instruments) leads to the re-
sults shown in Fig. 3a). In this case, we detect 2 populations present, 
namely, a broad peak centered at about 6 nm and another one at about 
85 nm. The lower peak does not correspond to a population of small 
nanoparticles, but is due to the rotational diffusion of non-spherical 
particles. On the other hand, the higher peak should be attributed to 
the size of an equivalent sphere having the same diffusion coefficient as 
the rods. This can be calculated as 𝑑eff =

√
𝐿2∕12 +𝑅2∕2 [40]. For our 

rods, this formula predicts 𝑑eff ≃ 17 nm, which does not agree with any 
of the populations retrieved in the DLS measurements. This indicates 
that our sample presents some degree of aggregation, as we discuss be-
low. This aggregation is present in suspensions independently from ETP 
experiments.

As can be seen in the experimental extinction curve (see Fig. 3b)) 
suspensions of these particles have a plasmon resonance at a wave-
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length of around 850 nm. This resonance is also consistent with some 
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Fig. 3. a) DLS measurements of aqueous suspensions of the AuNPs. Error bars 
stand for the standard deviation obtained from 5 independent measurements. 
The inset is a high-resolution TEM picture of gold nanoparticles (AuNPs) sam-
ple. b) Extinction (scattering + absorption) spectrum of the gold nanorods 
suspension [39].

level of aggregates present in suspension since we expect from previous 
works and simulations that the resonant peak for our gold rods should 
be centered at a wavelength between 750 nm and 800 nm [41–43]. We 
choose the laser wavelength used in the ETP experiments to be 980 nm, 
away from the resonance in order to avoid excessive heating and thus 
generate a moderate temperature gradient.

Videos of the flow motion have been recorded on the CMOS camera 
and analyzed with PIVLab [44,45] to produce experimental flow fields. 
In order to achieve a reasonable signal-to-noise ratio, we have recorded 
videos of, at least, 200 frames. Each of them was analyzed to obtain a 
velocity field with an interrogation area of 64 × 64 pixels2. Averaging 
out over the frames, we obtain a mean velocity field that is used to 
evaluate performance.

3.2. ETP simulations

Additionally, to test the theoretical expression for the ETP driving 
force [35], we have performed COMSOL Multiphysics numerical sim-
ulations. With these simulations we have solved the strongly coupled 
heat transfer (Eq. (2)), Navier-Stokes (Eq. (3)), and Poisson (Eq. (4)) 
equations for calculating temperature, flow velocity, and electric fields.

𝜌𝑙𝑐pu(r) ⋅∇𝑇 (r) − 𝜅∇2𝑇 (r) = 𝑞(r) (2)

∇[𝑝(r)I− 𝜇(∇u(r) + (∇u(r))𝑇 )] = F(r)

∇ ⋅ u(r) = 0
(3)

∇2𝜑 = −𝜌

𝜀
(4)

where F(r) is the electrothermal body force shown in Eq. (1). 𝜌𝑙 , 𝑐𝑝, 𝜅
and 𝜇 are the volume density, specific heat capacity, thermal conduc-
tivity, and dynamic viscosity of the aqueous solution, respectively. 𝑇 (r), 
u(r) and 𝑝(r) are the spatial temperature, fluid velocity, and fluid pres-

sure fields, respectively I is the constant 3 × 3 identity matrix and the 
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superscript 𝑇 denotes matrix transposition. In the Poisson equation, 𝜑
is the electric potential energy per unit charge, 𝜌 is the total volume 
charge density and 𝜀 is the permittivity of the medium. The main heat 
source 𝑞(r) comes from the region of the dispersed nanoparticles illumi-
nated by the heating laser beam. We modeled the heat power per unit 
volume, 𝑃abs, due to the AuNPs absorption with the following expres-
sion in cylindrical coordinates 𝜌𝑐 and 𝑧 [46]:

𝑃abs = 𝜎𝑎𝑏𝑠𝐼(𝜌𝑐 , 𝑧)Prob[𝜌𝑐 , 𝑧] (5)

where we assume that the intensity profile of the laser beam is:

𝐼(𝜌𝑐 , 𝑧) = 𝐼𝑖𝑛𝑐

(
𝑊0

𝑊 (𝑧)

)2
exp

(
−

2𝜌2
𝑐

𝑊 2(𝑧)

)
(6)

with 𝑊 (𝑧) =𝑊0
√
1 + (𝑧∕𝑧0)2, 𝑊0 =

√
𝜆𝑧0∕𝑛𝜋 and 𝑧0 = 𝜆𝑛∕(𝜋(NA)2) are 

the beam width, waist radius, and the Rayleigh range, respectively. 
Also, 𝜎𝑎𝑏𝑠 is the absorption cross-section of AuNPs and 𝐼𝑖𝑛𝑐 is the in-
tensity at the center of the focal region (𝜌𝑐 = 𝑧 = 0), while NA is the nu-
merical aperture and 𝑛 is the refractive index of water. Lastly, Prob[𝜌𝑐 , 𝑧]
corresponds to the AuNP concentration in the sample, which is assumed 
to be uniform. In Eq. (6), we implicitly assume that the relative absorp-
tion of light is low, given the fact that the absorption cross-section and 
the concentration of AuNPs are low. Therefore, the intensity profile is 
not affected by absorption but is only given by the properties of the 
focusing system.

3.3. Electromagnetic simulations

The ETP flow is generated by the combination of an applied AC 
electric field and a thermal gradient, the latter one a direct consequence 
of the incident laser energy absorption and scattering by the AuNPs 
(both as individual particles and as part of aggregates). This means that, 
in order to analyze the ETP flow behavior, we need as a first step the 
study of the absorption and scattering cross-sections. The heat power 
generated inside the AuNPs appears as an input to the calculation of 
the temperature and flow fields by solving the coupled heat transfer 
and momentum balance equations.

The absorption and scattering cross-section simulations are per-
formed by the use of the finite-element analysis platform COMSOL Mul-
tiphysics, with an Electromagnetic Waves, Frequency Domain physics 
interface combined with a Wavelength Domain study. The physics in-
terface provides different approaches to computing the electromagnetic 
fields in the whole system. In this case, we have solved only for the per-
turbation electric field arising from a background plane wave electric 
field E𝑏 incident on the nanoparticles:

E𝑏 = E0𝑒
𝑖k⋅r (7)

where E0 is the incident electric field amplitude, k is the wave number 
vector in water, and r is the position vector. The physics interface solves 
the following expression:

∇× (∇ × E) − 𝜅2
0𝜀𝑟E = 0 (8)

where 𝜅0 and 𝜀𝑟 are the free-space wave number and relative permittiv-
ity, respectively.

The geometry of all electromagnetic simulations, those shown in 
Figs. 6–8, is composed of a sphere representing a certain water do-
main and, depending on the simulation, one or more gold nanoparticles 
arbitrarily oriented and distributed close to the center of the sphere. 
The material of the nanoparticles is gold, with a wavelength-dependent 
complex refractive index, while the water domain has been simplified 
to a material model with an only-real part refractive index, with a value 
of 𝑛𝑤𝑎𝑡𝑒𝑟 = 1.33. The water domain sphere is surrounded by a spherical 
shell with a PML (Perfectly Match Layer) setting. This shell has coordi-
nates stretched out toward infinity to mimic an open and non-reflecting 
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infinite domain that absorbs the outgoing waves, and so prevents reflec-
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tions back into the region of interest. It is also prescribed a Scattering 
Boundary Condition in the external boundaries of the PML.

From the perturbation electromagnetic fields, we can compute the 
absorption 𝜎𝑎𝑏𝑠 and scattering 𝜎𝑠𝑐 cross-sections with the following ex-
pressions:

𝜎𝑎𝑏𝑠 =
1
𝐼0 ∫

𝑉

𝑄ℎ =
1
𝐼0 ∫

𝑉

1
2

J ⋅ E∗ (9)

𝜎𝑠𝑐 =
1
𝐼0 ∫

𝑆

P𝑎𝑣 ⋅ n (10)

where 𝐼0 in the incident intensity, total power dissipation density, J

is the electric current density in the nanoparticles, E∗ is the complex 
conjugate of the perturbed electric field, P𝑎𝑣 is the time-averaged per-
turbation Poynting vector, n is the surface normal, and 𝑉 and 𝑆 are the 
volume and surface of all nanoparticles, respectively.

4. Results and discussion

4.1. Experimental results on electrothermoplasmonic flow

In this section, we analyze experimentally the influence of the dif-
ferent parameters in the ETP flow, by evaluating the maximum velocity 
observed in each experiment. These are compared with simulations of 
the ETP flow. Similar results are obtained if the average velocity is con-
sidered instead of the maximum velocity.

We have performed multiple experiments in order to evaluate the 
dependencies of the flow field with the electric field, laser power, and 
gold nanoparticles concentration. The frequency of the AC field in these 
studies is kept at 100 kHz. This choice is based on the fact that the elec-
trothermal flow has been shown to be independent of frequency in the 
range [10 kHz–1 MHz] [33,36]. This is the case when the condition 
𝜀𝜔∕𝜎 << 1 is fulfilled, as is the case for suspensions made with CO2
saturated water with no electrolytes added. Likewise, ETP flow is ex-
pected to be the main driving force in this regime, given the size of 
our chamber and the used electric field. Notice that other effects like 
AC electroosmosis can dominate fluid flow if the distance between the 
walls is decreased [33]. In simulations, AC electroosmosis is not in-
cluded, but buoyancy is taken into account (see Methods). The lower 
frequency bound safely excludes electrolysis and polarization effects on 
the electrodes.

We first make a qualitative comparison between theory and simula-
tions in Fig. 4. As can be seen, we experimentally observe the quadrupo-
lar structure predicted by simulations (compare with Fig. 1). In this 
case, flow velocities as high as 60 μm/s are obtained with moderately 
low electric fields (30 V/mm). Even if our experimental setup does not 
allow us to measure the temperature of the fluid, comparison with simu-
lations provides an estimate. Fig. 4b) also depicts the temperature field 
that matches the experiment in the left panel of Fig. 4. The simula-
tion considers heat transfer and the intensity distribution of the focused 
Gaussian beam [46]. As can be seen, the temperature field presents one 
lobe in the focus, where the fluid temperature is raised due to heat 
generation upon plasmonic excitation. Interestingly, simulations pre-
dict that just a 4.5 K temperature increment at the focus is enough to 
develop convection cells with the observed velocities.

We have checked that the numerical aperture and power of the laser 
beam, and also the electric field intensity, do not affect significantly the 
shape or size of the quadrupolar vortices. It seems that the size of the 
vortices is governed essentially by geometrical restrictions, as we have 
found that increasing the height of the simulation domain involves an 
enlargement of the vortices. This behavior is related to the available 
space for these structures to develop. The experimental uncertainty in 
the true height of the measuring cell can explain the small discrepancies 
observed about the spatial extent of the quadrupolar shape comparing 
Figs. 4a) and 1b). Moreover, an imperfect matching of the laser focus 
plane and the observation plane could also contribute to small discrep-

ancies in the observed size of the lobes.
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Fig. 4. Left: Experimental flow field. The AuNP concentration is 4.96 ⋅1012 particles∕cm3 , the incident laser power is 30 mW and the applied electric field is 30 V/mm. 
Right: Simulated temperature increment corresponding to the experimental condition shown on the left. The gray line corresponds to the laser beam profile.

Fig. 5. a) Experimental data (dots), experimental fit (dashed line), and simulation results (blue solid line) of maximum flow velocity for an incident laser power of 
30 mW and different applied electric fields. The orange solid line is the maximum temperature increment, as obtained from simulations. b) Experimental data (dots), 
experimental fit (dashed line) and simulation results (blue solid line) of maximum flow velocity for an applied electric field of 30 V/mm and different incident laser 
power. The orange solid line is the maximum temperature increment, as obtained from simulations. Concentration for panels a and b are 2.6 ⋅ 1012 particles∕cm3 . 
c) Experimental maximum flow velocity (dots) for different AuNP concentrations and an applied electric field of 30 V/mm and an incident laser power of 30 mW. 
The dashed line is an experimental fit.
In order to characterize the performance of ETP flow, we have done 
experiments analyzing the influence of electric field magnitude, exci-
tation laser power, and particle concentration. The results are shown 
in Fig. 5a), b), and c). For each experimental condition, one video was 
recorded; except for the curve shown in Fig. 5c) where two videos were 
recorded. The particle concentration value for the data in Figs. 4, 5a), 
5b) was the same as in Fig. 1. We first analyze the effect of the applied 
electric field. Fig. 5a) shows that the maximum velocity scales quadrat-
ically on the applied electric field, as expected for ET flow (see Eq. (1)). 
Likewise, in Fig. 5b), where the applied electric field is fixed, the re-
lationship between the flow field and the generated heat is linear as 
expected from Eq. (1). The temperature increment raises with the in-
frared laser power, leading to an ever-increasing velocity. Deviations 
from linearity are likely due to variability in the construction of the 
flow chambers.

Together with the experiments, we present the results of the simu-
lations. For this aim, the only unknown input is the absorption cross-
section of the particles in suspension, which we used as a fitting param-
eter. Since our gold nanoparticles have a tendency to aggregate [39], 
a direct theoretical estimation of this value from simulations is not fea-
sible, as we discuss later. In order to get a consistent analysis, we have 
performed all the simulations with the same value of the absorption 
cross-section, which is considered a fitting parameter and will be dis-
cussed later. Therefore, all ETP flow simulations have been performed 
using a fitted value of 2.5 ⋅ 10−17 m2 for the absorption cross-section. 
With this value, the agreement between the predictions of the simula-
401

tions and the experimental results is adequate in all cases.
Finally, we characterize the influence of the concentration of AuNPs 
on the flow velocity. We have performed experiments with five different 
concentrations at a fixed electric field and laser intensity. The results 
are shown in Fig. 5c), where we observe that the maximum velocity has 
a quadratic dependence on particle concentration. Velocities as high 
as 100 μm/s are observed at moderate values of electric field and laser 
power, and we estimate that up to 0.5 mm/s could be achieved with the 
maximum values of electric field and laser power we tested in our set 
of experiments. However, we could not measure adequately this value 
due to the limited acquisition speed of our camera (25.8 fps for the full 
sensor).

The origin of this nonlinearity is unclear, but we hypothesize that 
it has to do with the way photons are scattered and absorbed by the 
AuNPs. Proper modelling of the propagation of the laser beam through 
the sample would involve the solution of an equation of energy trans-
fer, which is out of the scope of this work [47,48]. However, some 
considerations can be made in order to get information from this result. 
For purely absorbing media, the Beer-Lambert law predicts that the ab-
sorption of light should increase linearly with concentration. In this 
situation, increasing the concentration of AuNPs would have a similar 
effect on the velocity as the increase of laser power, and the depen-
dence should be linear, which is not the case. Therefore, in order to 
account for the observed non-linearity, we need to consider multiple 
scattering events [47]. A photon that interacts with a NP can be either 
scattered or absorbed, with a probability that depends on the respective 
cross-section. When the concentration increases, a scattered photon is 
likely to interact with neighboring particles, increasing its probability 

to be absorbed. Scattering-absorption events are likely to enhance the 
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Fig. 6. Absorption (solid) and scattering (dashed) simulated cross-section spec-
tra of a single gold nanoparticle for different angles 𝜃 between the incident 
electric field polarization and the AuNP major axis.

absorbance of the suspension as particle concentration increases beyond 
the linear regime when the scattering and absorption cross-sections are 
comparable in magnitude [47]. As we will show later, at the particle 
concentration considered, this could happen when there is certain ag-
gregation present in the suspension. In order to explore this possibility, 
we need to study the scattering and absorption cross-sections of the 
AuNPs used in our experiments, both as individual particles or being 
part of aggregates. Since we do not have a direct method to measure 
them, we performed numerical simulations, as described in the next 
section.

4.2. Absorption and scattering cross-sections

At this point, we must first consider whether there appears any col-
lective heating effect that could take place in our system of nanorods. 
This effect has been predicted and observed previously in the case of 
different nanoparticle 1D and 2D periodic arrays [49]. In the present 
study, the maximum concentration used was 6.6 ⋅ 1012 particles/cm3, 
and this corresponds to an average distance between AuNPs of 660 nm, 
which is about 12 times the largest dimension of the AuNP (16 nm ×
56 nm). As it is indicated in [49], if the NP inter-distance is at least 
4 or 5 times larger than the NP diameter, they are far enough apart 
that they can be considered optically independent. We can improve this 
analysis a bit by estimating the parameter 𝜁 defined in [49], which 
provides an empiric discriminator between collective (𝜁 ≪ 1) and in-
dividual regimes (𝜁 > 1). Since there is no closed-form analytical ex-
pression for the 3D case, we could use the 2D expression 𝜁2 = 𝑝2∕(3𝐿𝑅)
(Eq. (22) in ref. [49]) to get an idea of what heating regime our sys-
tem is in. If we consider 𝑝 ≈ 660 nm, 𝑅 ≈ 20 nm and 𝐿 ≈ 1560 nm 
(diffraction-limited spot diameter), we get 𝜁2 ≈ 4.7 > 1, which is in-
dicative of individual heating regime. Therefore, we are always in a 
situation where our AuNPs can be considered optically independent 
and we should not expect any collective heating behavior if they re-
main as individual nanoparticles (i.e., not aggregated). In our case, it 
only makes sense for a collective heating effect to appear just within 
the particles that compose an aggregate.

First, we have performed electromagnetic wave numerical simula-
tions in the wavelength domain, using the finite-element analysis COM-
SOL Multiphysics platform to calculate the absorption and scattering 
cross-sections of an individual AuNP, which is modeled as a cylinder 
with rounded bases, 56 nm length and 16 nm diameter [39]. The nu-
merical results obtained are shown in Figs. 6–7.

The highest calculated plasmon resonance peak is located at a fre-
quency of about 780 nm. This result is not in agreement with the 
experimental absorption spectra of our nanorods suspension, see Fig. 3, 
while it fits previous results obtained with similar particles [42]. Exper-
imentally, the main resonance peak appears around 850 nm wavelength 
and is much broader. This disagreement indicates that our suspension 
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cannot be constituted by individual nanoparticles well separated within 
Journal of Colloid And Interface Science 648 (2023) 397–405

Fig. 7. Absorption (solid) and scattering (dashed) simulated cross-sections of 
a single gold nanoparticle as a function of the angle 𝜃 between the incident 
electric field polarization and the AuNP major axis.

the aqueous medium. The reason for this discrepancy lies in the pres-
ence of a certain level of particle aggregation, as will be discussed later.

It is straightforward that the energy absorption and scattering mag-
nitudes depend strongly on the relative orientation angle 𝜃 between 
the incident electric field polarization and the AuNP major axis, i.e., 
𝜎 = 𝜎(𝜃), being 𝜃 ∈ [0, 𝜋∕2], as can be observed in Fig. 6 and more 
clearly in Fig. 7. As expected, the cross-section values are higher when 
the electric field of the wave is parallel to the major axis of the AuNP 
(𝜃 = 0), and minimum when it is parallel to the diameter (𝜃 = 𝜋∕2). The 
laser source used in experiments emits unpolarized light, and the AuNPs 
are subjected to both random translational and rotational Brownian 
motions. As a consequence, the actual cross-sections for an individual 
particle should be compared or estimated by an average, over all possi-
ble angles 𝜃, of the calculated cross-section magnitudes.

Previous numerical calculations of the laser scattering of different 
aggregates of nanorods [41,50] show that the absorption resonance 
peak position depends strongly on the number of particles of the ag-
gregate and its spatial configuration. The explanation behind this phe-
nomenon is that there is a strong interaction between the surface plas-
mons of neighboring particles that lead to a red shift and multiple 
resonances, even if the aspect ratio of the aggregate with respect to 
that of a single particle does not change. Similar results were obtained 
in our own test simulations, see Fig. 8, and we have found that the cal-
culated resonance peaks wavelength shift to values much closer to the 
experimental broad resonance peak (850 nm, Fig. 3) than that of an 
individual nanoparticle (780 nm, Fig. 6). Also, we show that the rela-
tive magnitude of the resonance peaks depends strongly on the specific 
configuration of the aggregate.

Another remarkable finding is that, in the case of aggregates, the 
scattering cross-section is now a larger percentage relative to the ab-
sorption cross-section (about 40%–60%), than that found in the case of 
an individual nanoparticle (a maximum of 14%, Fig. 6). This reflects 
the occurrence of multiple scattering-absorption events, which would 
be very unlikely in the case of isolated particles at the considered con-
centrations in the experiments.

If we consider that our system is a collection of aggregates, with a 
variable number of nanoparticles and random configurations, then the 
measured extinction spectra should be compared with an average over 
all aggregation possibilities (in Fig. 8 there are a few) with weights 
corresponding to the suspension aggregation statistics. Inspecting the 
numerical results in Fig. 8, it is clear that the weighted superposition 
of all these possible spectra would result in a curve quite close to the 
experimental one, Fig. 3, with the broad resonance peak at 850 nm.

We then conclude here that: i) there is a certain level of particle 
aggregation in our system, and that ii) it is not possible to obtain a 
good theoretical estimate of the absorption cross-section without much 
more detailed information on the configuration and aggregation statis-
tics. Furthermore, the presence of this aggregation can be observed in 

the TEM image in the inset of Fig. 3, although it is not clear that it 
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Fig. 8. Absorption and scattering cross-sections for random aggregates of a) 2 nanoparticles, b) 4 nanoparticles, c) 6 nanoparticles, and d) 9 nanoparticles. For 
reference, the absorption (red-dashed line) cross-section for an individual nanoparticle has been included in a). Also, the absorption and scattering cross-sections for 
orderly distributed aggregates of e) 2 nanoparticles, f) 3 nanoparticles, g) 4 nanoparticles and h) 5 nanoparticles. Insets: sketches for every aggregate configuration.
may also be due to the TEM preparation itself (see also Supplemen-
tary Images). Therefore, the effective absorption cross-section should 
be considered a fitting parameter, as we did in the previous section. 
The ETP flow simulations have been performed using a fitted value of 
2.5 ⋅ 10−17 m2 for the absorption cross-section, being this value in good 
agreement with the typical range provided by the aggregate simulations 
for an incident vacuum wavelength of 980 nm.

4.3. Alternative configuration

For completeness, we have performed the simulations with the ap-
plied electric field parallel to the optical axis. This configuration is 
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similar to the one presented in Ref. [36], only differing in the fact that 
in that case the gold particles were deposited on the substrate. The flow 
field structure now is composed of two superposed toroids, as can be 
seen in Fig. 9. Moreover, due to the height limitation (150 μm) the max-
imum velocities achieved are lower than those reported previously with 
the original electrode configuration. We have implemented experimen-
tally this configuration with two ITO-covered glasses and performed 
measurements similar to the ones presented above, but in this case the 
tracking was difficult and we did not obtain reliable results.

5. Conclusions

We have performed a detailed analysis of ETP flow with a novel con-

figuration, namely, with AuNPs dispersed in liquid instead of deposited 
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Fig. 9. Simulation results for an AC electric field applied parallel to the optical axis in the Z-direction. a) X-plane and b) Z-plane of electrothermoplasmonic flow 
patterns; c) maximum ETP velocity vs electric field intensity achieved with a constant laser power of 30 mW, and d) maximum ETP velocity vs laser beam power 
achieved with a fixed electric field amplitude of 30 V/mm. The concentration used for all the panels were 2.6 ⋅ 1012 particles∕cm3 .
on a 2D array. We have demonstrated that this configuration can lead 
to strong convection, which could be useful for mixing in microfluidic 
devices. We first have evaluated the effects of the electric field and 
laser power, finding good agreement with the simulations. This com-
parison allows us to obtain an estimation of the absorption cross-section 
of the AuNPs. The obtained value for the absorption cross-section sug-
gests that the AuNPs in suspension are aggregated forming clusters, in 
agreement with the measurements from DLS and extinction. However, 
we could not get detailed information about their structure, but our re-
sults are consistent with clusters formed by 2–7 particles. Such clusters 
were also observed in TEM images.

We have demonstrated that the velocity scales quadratically with 
the concentration of AuNPs. While this dependence should be linear 
for purely absorbing particles at low concentrations, the presence of 
aggregates can be invoked to justify this nonlinearity. Two mecha-
nisms can play a role in the observed behavior. On the one hand, it 
can happen that the scattering and absorption cross-sections become 
comparable in magnitude, so events of scattering and absorption be-
come likely in the highest values of concentration. In this situation, 
absorption is enhanced, increasing the ETP flow. This is in agree-
ment with the simulations we have performed since the magnitude 
of these two cross-sections becomes comparable in the case of aggre-
gates. In contrast, the absorption cross-section is much larger than the 
scattering one in the case of isolated particles. On the other hand, 
increasing the concentration of nanoparticles in suspension can lead 
to ever larger aggregates, thus increasing the absorption cross-section 
and hence the overall absorption, leading to the observed nonlinear-
ity. These two effects can be present simultaneously, but further work 
should be needed in order to distinguish between the two contribu-
tions. In any case, this nonlinear behavior could be very useful to get 
very high ETP velocities by inducing some controlled aggregation of the 
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particles.
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