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Abstract

This paper is the natural extension of Fuzzy Closure Structures as Formal
Concepts. In this paper we take into consideration the concept of closure
system which is not dealt with in the previous one. Hence, a connection
must be found between fuzzy ordered sets and a crisp ordered set. This
problem is two-fold, the core of the fuzzy orders can be considered in order
to complete the ensemble, or the crisp order can be fuzzified. Both ways are
studied in the paper. The most interesting result is, similarly to the previous
paper, that closure systems are formal concepts of these Galois connections
as well.
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1. Introduction

Closure systems, also called Moore families, were introduced by E. H. Moore
in 1910 [16]. They play a major role in computer science and both pure
and applied mathematics [11]. The extension to the fuzzy framework of
closure systems has been approached from several distinct perspectives in
the literature, to cite a few we mention the following [2, 9, 12, 15, 17, 19].
In this work, we will use the definition introduced in [19], which extends
closure systems as meet-subsemilattices in the framework of complete fuzzy
lattices. This extension is done in two levels, first as crisp sets and later as
fuzzy sets, both these notions will be used in the paper. The counterpart of
closure systems, the so-called closure operators, have also been extended to
the fuzzy setting, and most authors use the same definition, i.e., a mapping
that is inflationary, isotone and idempotent. Fuzzy closure operators were
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defined in [2, 6] and they appear naturally in different areas of fuzzy logic
and its applications.

Besides closure structures, the main notion in this paper are Galois con-
nections and formal concepts. Galois connections seem to be ubiquitous,
they appear in several mathematical theories and in plenty of instances in the
theory of relations [21]. For instance, it is well-known that the derivation op-
erators of Formal Concept Analysis form a Galois connection [13]. Therefore,
the research on Galois connections complements that on FCA. The extension
of this notion to the fuzzy framework was introduced by Bělohlávek [1], the
so-called Galois condition, which is an “if and only if” in the crisp case, is
substituted by an equality of the fuzzy preorders. This extension provided a
way to study Fuzzy Formal Concept Analysis.

In this paper, we continue the study started in [18]. In that paper, the
framework was a complete L-fuzzy lattice (A, ρ), where the infimum and
the supremum are denoted by ⊓ and ⊔, respectively and L is a complete
residuated lattice. Lattice type fuzzy orders were originally introduced by
Bělohlávek [5]. There are other definitions of lattice type orders in the liter-
ature, e.g., [22], but this is also the case concerning fuzzy orders. The notion
of fuzzy order is scattered through the literature; many distinct definitions
have appeared since the original one by Zadeh, but there is no exhaustive
analysis or comparison among them. The one used in this paper follows the
spirit of Bodenhofer’s definition [10].

The topic of [18] was the study of the mappings that relate one closure
structure to the other. For example, if Φ ∈ LA is a fuzzy closure system,
then the mapping ĉ(Φ) : A → A defined as ĉ(Φ)(a) =

d
(aρ ⊗ Φ) is a closure

operator. This allows us to define ĉ : LA → AA as Φ 7→ ĉ(Φ) for all Φ ∈ LA.

Similarly, for a closure operator c : A → A, the mapping Ψ̃ : AA → LA

maps c to a fuzzy closure system Ψ̃(c), defined by Ψ̃(c)(a) = ρ(c(a), a).

One of the main results in [18] proved that the pair (ĉ, Ψ̃) is a fuzzy Galois
connection between (LA, S) and (Isot(AA), ρ̃). Furthermore, it is proved
that any pair of closure structures (Φ, c) is a formal concept of the Galois
connection. This problem is also studied for fuzzy closure relations, hence
studying two additional Galois connections, one between (Isot(AA), ρ̃) and
(IsotTot(LA×A), ρ̂) and another one between (LA, S) and (IsotTot(LA×A), ρ̂).

The aim of this paper is to insert crisp closure systems in the problem.
Notice that there are different approaches to this addition since crisp sets
form a classical lattice (2A,⊆), whereas the three sets mentioned above are
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endowed with fuzzy relations. The approach in this paper is two-fold. First,
we examine the existence of crisp Galois connections between the crisp lat-
tice (2A,⊆) and the three sets of the previous paragraph endowed with the
1-cut of their fuzzy relations. Thus, we turn this problem into a fully crisp
problem and study the existence of Galois connections and the behavior of
the sets of fixed points. The second approach would be considering the fuzzi-
fication of the crisp order and study the existence of fuzzy Galois connections
there. Surprisingly, there is a fuzzy Galois connection between (2A, S) and
(Isot(AA), ρ̃) if and only if (A, ρ) is a crisp lattice, that is, ρ(a, b) ∈ {0, 1} for
all a, b ∈ A.

The outline of the paper is as follows. First, a section of preliminaries
to recall already known results that are useful to understand the paper bet-
ter. The next section summarizes the framework of the problem, the lattices,
posets and preposets in consideration, in addition to the results that are de-
rived straightforwardly from [18] and taking the 1-cut of the fuzzy relations.
The following section proves that the mappings we are considering form a
Galois connection between (2A,⊆) and (Isot(AA), ρ̃1) and closure systems
and closure operators are indeed related to the formal concepts. Later it
is proved that there is not a fuzzy adjunction between (2A,⊆) and (LA,⊆).
However, if we restrict to the set of extensional fuzzy sets, then there is an
adjunction between (2A,⊆) and (Ext(LA),⊆) and again closure systems and
fuzzy closure systems are related to the sets of formal concepts. Actually,
under the most common set of condition in applications, namely linear or-
der of truth values and finite complete fuzzy lattice, we have characterized
the fixed points of this adjunction. The next section examines whether we
could solve this problem in the fuzzy framework, that is, fuzzifying the crisp
subsethood order ⊆. The answer is negative, since we prove that the fuzzy
Galois connection exists if and only if the complete fuzzy lattice (A, ρ) is a
crisp lattice. Last, there is a section of conclusions and further work where
the results are discussed and some hints of future research lines are shown.

2. Preliminaries

The main structure used in this paper is going to be that of Galois connection
in the fuzzy framework. Therefore, here we present some of the concepts in
the fuzzy setting necessary to follow the paper.

The general framework throughout the paper is going to be a complete
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residuated lattice L = (L,∧,∨,⊗,→, 0, 1). For the properties of complete
residuated lattices we refer the reader to [4, Chapter 2].

Given a L-fuzzy set X ∈ LA, the 1-cut of X, denoted by X1, is the
crisp set {a ∈ A | X(a) = 1}. Equivalently, we will consider it as the
fuzzy set whose characteristic mapping is X1(a) = 1 if X(a) = 1 and 0
otherwise. Given a fuzzy relation, or L-relation, µ between A and B, i.e., a
crisp mapping µ : A × B → L, and a ∈ A, the afterset aµ is the fuzzy set
aµ : B → L given by aµ(b) = µ(a, b). A fuzzy relation µ is said to be total if,
for all a ∈ A, the aftersets aµ are normal fuzzy sets, i.e., there exists x ∈ A
such that aκ(x) = 1.

For ρ being a binary L-relation in A, we say that

• ρ is reflexive if ρ(x, x) = 1 for all x ∈ A.

• ρ is symmetric if ρ(x, y) = ρ(y, x) for all x, y ∈ A.

• ρ is antisymmetric if ρ(x, y)⊗ρ(y, x) = 1 implies x = y for all x, y ∈ A.

• ρ is transitive if ρ(x, y) ⊗ ρ(y, z) ≤ ρ(x, z) for all x, y, z ∈ A.

Notice that this definition of antisymmetry differs from the original one by
Zadeh. There is a wide variety of distinct definitions of fuzzy order in the
literature, a nice survey on this topic can be found in [7, 8]. In particular,
Bodenhofer’s definition of fuzzy order needs a fuzzy preorder ρ and a fuzzy
similarity relation ≈. For a single fuzzy preorder, several similarities can
be considered. The approach used in this paper follows the idea given by
Bodenhofer [10, Section 5] where the equality relation ≈ is defined by the
preorder ρ.

Definition 1. Given a non-empty set A and a binary L-relation ρ on A, the
pair (A, ρ) is said to be a

• fuzzy preposet if ρ is a fuzzy preorder, i.e. if ρ is reflexive and transitive;

• fuzzy poset if ρ is a fuzzy order, i.e. if ρ is reflexive, antisymmetric and
transitive.

A typical example of fuzzy poset is (LA, S), for any set A. If (A, ρ) is a fuzzy
poset, we will also use the so-called full fuzzy powering ρ∝, which is the fuzzy
relation on LA defined as follows: for all X, Y ∈ LA,

ρ∝(X, Y ) =
∧

x,y∈A

(X(x) ⊗ Y (y)) → ρ(x, y).
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Even though the relation ρ∝ is not a preorder in general, it satisfies a sort of
transitivity.

Theorem 2. Let (A, ρ) be a fuzzy poset and X, Y, Z ∈ LA. If Y is normal
then,

ρ∝(X, Y ) ⊗ ρ∝(Y, Z) ≤ ρ∝(X,Z).

The definition of infimum and supremum used throughout the paper is
the standard one in the fuzzy framework, originally introduced by Bělohlávek
in [5], we write it out to ease the reading of the paper.

Definition 3. Let (A, ρ) be a fuzzy poset and X ∈ LA. The down-cone
(resp. up-cone) of X is defined as a fuzzy set with the following membership
function.

Xρ(x) =
∧

a∈A

X(a) → ρ(x, a)

(
resp. Xρ(x) =

∧

a∈A

X(a) → ρ(a, x)

)
.

Definition 4. Let (A, ρ) be a fuzzy poset and X ∈ LA. An element a ∈ A is
said to be infimum (resp. supremum) of X if the following conditions hold:

1. Xρ(a) = 1 (resp. Xρ(a) = 1).

2. Xρ(x) ≤ ρ(x, a) (resp. Xρ(x) ≤ ρ(a, x)), for all x ∈ A.

Hereinafter, suprema and infima in A will be denoted by ⊔ and ⊓, re-
spectively. As a straightforward consequence we have that, if a =

d
X,

then X ⊆ aρ.

Theorem 5. An element a ∈ A is infimum (resp. supremum) of X ∈ LA if
and only if, for all x ∈ A,

ρ(x, a) = Xρ(x) (resp. ρ(a, x) = Xρ(x)).

Definition 6. Let (A, ρ) be a fuzzy poset. The couple (A, ρ) is said to be a
complete fuzzy lattice if

d
X and

⊔
X exist for all X ∈ LA.

The last definition was originally introduced by Bělohlávek under the
name completely lattice L-ordered set, and has also been used by Zhang and
Fan [24] under the name L-fuzzy complete lattice or Konečny [14] under the
name fuzzy complete lattice.
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Fuzzy closure operators and systems were first introduced in the fuzzy
framework by Bělohlávek in [3]. The definition of fuzzy closure operator
used in this paper is the original one, used also in [2, 3, 4], i.e., a mapping
c : A → A that is inflationary, isotone and idempotent. On the other hand,
we will consider fuzzy closure systems on arbitrary complete fuzzy lattices,
not necessarily on the powerset, as defined in [19], where they are extensional
hulls of crisp sets which are closure systems.

Every fuzzy order induces a symmetric relation, called symmetric kernel
relation.

Definition 7. Given a fuzzy poset (A, ρ), the symmetric kernel relation is
defined as ≈ : A× A → L where (x ≈ y) = ρ(x, y) ⊗ ρ(y, x) for all x, y ∈ A.

The notion of extensionality was introduced in the very beginning of the
study of fuzzy sets. It has also been called compatibility (with respect to the
similarity relation) in the literature.

Definition 8. A fuzzy set X ∈ LA is said to be extensional or compatible
with respect to ≈ if it satisfies X(x) ⊗ (x ≈ y) ≤ X(y), for all x, y ∈ A.

Definition 9. Given a fuzzy set X ∈ LA, the extensional hull of X, denoted
by X≈, is the smallest extensional set that contains X. Its explicit formula
is the following:

X≈(x) =
∨

a∈A

(X(a) ⊗ (a ≈ x)).

Remark 1. For a crisp set X ⊆ A, the expression of the extensional hull is
simplified since we have

X≈(x) =
∨

a∈A

(X(a) ⊗ (a ≈ x)) =
∨

a∈X

(a ≈ x).

We focus now on closure structures in the fuzzy framework. The definition
of fuzzy closure operator in the fuzzy setting is the one used in [2, 4].

Definition 10. Given a fuzzy poset (A, ρ), a mapping c : A → A is said to
be a closure operator on A if the following conditions hold:

1. ρ(a, b) ≤ ρ(c(a), c(b)), for all a, b ∈ A (isotonicity)

2. ρ(a, c(a)) = 1, for all a ∈ A (inflationarity)

3. ρ(c(c(a)), c(a)) = 1, for all a ∈ A (idempotency)
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An element q ∈ A is said to be closed for c if ρ(c(q), q) = 1.

The counterpart of closure operators is closure systems, there are sev-
eral approaches to defining this concept in the fuzzy framework, originally
introduced on the fuzzy powerset lattice by Bělohlávek [2]. The extension to
arbitrary complete fuzzy lattices was introduced in [19] and is the one used
here.

Definition 11. Let (A, ρ) be a complete fuzzy lattice. A crisp set F ⊆ A is
said to be a closure system if

d
X ∈ F for all X ∈ LF .

This definition of closure system in the fuzzy framework maintains the
one-to-one relation of the crisp case [17].

Theorem 12. Let (A, ρ) be a complete fuzzy lattice. The following assertions
hold:

1. If c is a closure operator on (A, ρ), the crisp set F
c
defined as {a ∈ A |

c(a) = a} is a closure system.

2. If F is a closure system, the mapping cF : A → A defined as cF(a) =d
(aρ ⊗F) is a closure operator on (A, ρ).

3. If c : A → A is a closure operator on (A, ρ), then cFc
= c.

4. If F is a closure system, then F = F
cF
.

Remark 2. Notice that the set F
c

can be defined as {a ∈ A | ρ(c(a), a) = 1}
since, as c is inflationary, if ρ(c(a), a) = 1 we would also have ρ(a, c(a)) = 1
and then c(a) = a by antisymmetry.

Since closure systems are crisp structures with certain fuzzy properties, it
is natural to wonder whether a fuzzy structure can be defined. An affirmative
answer was found in [19].

Definition 13. Let (A, ρ) be a complete fuzzy lattice. A fuzzy set Φ ∈ LA

is said to be a fuzzy closure system if Φ1 is a closure system and Φ is the
extensional hull of Φ1.

This definition of fuzzy closure system maintains the well-known one-to-
one relationship between closure systems and closure operators [19].

Theorem 14. Let (A, ρ) be a complete fuzzy lattice. The following assertions
hold:
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1. If c is a closure operator on (A, ρ), the fuzzy set Φ
c
defined as Φ

c
(a) =

ρ(c(a), a) is a fuzzy closure system.

2. If Φ is a fuzzy closure system, the mapping cΦ : A → A defined as
cΦ(a) =

d
(aρ ⊗ Φ) is a closure operator on (A, ρ).

3. If c : A → A is a closure operator on (A, ρ), then cΦc
= c.

4. If Φ is a fuzzy closure system on (A, ρ), then Φ = Φ
cΦ
.

In [20], the mapping f(x) =
d

(xρ ⊗ Φ) was thoroughly studied. In
particular we have the following result.

Proposition 15. Let (A, ρ) be a complete fuzzy lattice and c be a closure
operator on A. For Φ

c
∈ LA, defined as Φ

c
(a) = ρ(c(a), a), we have that

(Φ
c
)1 = F

c
is the closure system associated to c and, for all x ∈ A,

l
(xρ ⊗ Φ

c
) =

l
(xρ ∩ F

c
) (1)

In addition, for all a ∈ A, one has

Φ
c
(a) =

∨

x∈Fc

(a ≈ x) (2)

Fuzzy Galois connections are a main concept in this paper as well. Let
us recall the definition.

Definition 16 ([23]). Let (A, ρA) and (B, ρB) be fuzzy posets, f : A → B
and g : B → A be two mappings.

• The pair (f, g) is called an isotone fuzzy Galois connection or fuzzy ad-
junction between (A, ρA) and (B, ρB), denoted by (f, g) : (A, ρA)⇀↽ (B, ρB),
if

ρA(g(b), a) = ρB(b, f(a)) for all a ∈ A and b ∈ B.

• The pair (f, g) is called a fuzzy Galois connection between (A, ρA) and
(B, ρB), denoted by (f, g) : (A, ρA) ⇀↼ (B, ρB), if

ρA(a, g(b)) = ρB(b, f(a)) for all a ∈ A and b ∈ B.

A fixed point, also called fixed pair or formal concept, of a fuzzy Galois
connection (f, g) is a couple (a, b) ∈ A×B such that f(a) = b and g(b) = a.
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3. Framework of the proposal

This paper is a sequel of [18], where the setting was a complete fuzzy lattice
(A, ρ). In that paper, three fuzzy Galois connections were proved to exist and
the relationship among them and the fuzzy closure structures was studied.
Thus, we obtained the following.

(LA, S) (Isot(AA), ρ̃)/

(ĉ,Ψ̃)
o

(LA, S) o

(κ,Ψ̂)
/ (IsotTot(LA×A), ρ̂)

(Isot(AA), ρ̃)
(−1,−≈)

/ (IsotTot(LA×A), ρ̂),o

where Isot(AA) is the set of (crisp) isotone mappings on A, IsotTot(LA×A) is
the set of isotone and total fuzzy relations on A and the fuzzy relations ρ̃, ρ̂
are defined as follows,

ρ̃(f1, f2) =
∧

x∈A

ρ(f1(x), f2(x)) for all f1, f2 ∈ AA

ρ̂(κ1, κ2) =
∧

a∈A

ρ∝(aκ1 , aκ2) for all κ1, κ2 ∈ LA×A.

The mappings in the diagram are defined as follows,

ĉ : LA → Isot(AA) ĉ(Φ) = cΦ

Ψ̃ : Isot(AA) → LA Ψ̃(f) = Φf

κ : LA → IsotTot(LA×A) κ(Φ)(a, b) =
l

(aρ ⊗ Φ) ≈ b

Ψ̂ : IsotTot(LA×A) → LA Ψ̂(µ)(x) = ρ∝(xµ, x)

Results in [18] involve fuzzy closure systems, closure operators and fuzzy
closure relations, but closure systems as crisp sets are not considered. Thus,
our next step is to study a similar problem with the partially ordered set
(2A,⊆). This addition to the problem is not straightforward since (2A,⊆) is
a crisp poset, whereas (LA, S) and (Isot(AA), ρ̃) are complete fuzzy lattices
and (IsotTot(LA×A), ρ̂) is a fuzzy preposet [18]. Thus, there are two possible
ways, either consider the 1-cut of the fuzzy relations and study the crisp
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problem, or consider the fuzzification of the crisp partial order and study the
problem in the fuzzy setting. In this paper we will tackle both ways.

First, to study the crisp problem, we have to define the 1-cut of each fuzzy
relation. It is well-known that S1 is Zadeh’s inclusion, hence throughout
the paper we will follow the classical notation for subsethood ⊆. We will
also consider the 1-cut of ρ̃, we will denote ρ̃ 1(f, g) = 1 as f � g, and
ρ̂1(κ1, κ2) = 1 will be denoted by κ1 ⊑ κ2, that is,

f � g if and only if ρ(f(a), g(a)) = 1, for all a ∈ A. (3)

κ1 ⊑ κ2 if and only if xκ1(y) ⊗ xκ2(z) ≤ ρ(y, z) for all x, y, z ∈ A. (4)

Observe that the set (IsotTot(LA×A),⊑) is a preordered set. In addition,
(LA,⊆) and (Isot(AA),�) are complete lattices by [18, Proposition 13] and
[4, Theorem 4.55].

Proposition 17. The following pairs of mappings form two Galois connec-
tions and an adjunction, respectively,

(LA,⊆) (Isot(AA),�)/

(ĉ,Ψ̃)
o

(LA,⊆) o

(κ,Ψ̂)
/ (IsotTot(LA×A),⊑)

(IsotTot(LA×A),⊑)
(−1,−≈)

/ (Isot(AA),�).o

Proof. All these Galois connections (either isotone or antitone) were proved
in the fuzzy setting in [18]. The restriction to the 1-cut of the fuzzy relations
maintains the crisp Galois connection.

The question now is whether it is possible to consider (2A,⊆) in this
problem. This is the topic discussed in the next section.

4. Adding the classical powerset to the problem

The main goal of this section is to study the Galois connections in Figure 1
and examine the relationship between their fixed points and fuzzy closure
structures. The existence of these two Galois connections will be studied
independently in the following subsections.
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(2A,⊆) o

(c̃,F)
/ (Isot(AA),�)

(2A,⊆)
(−1,−≈)

/ (LA,⊆)o

Figure 1: Antitone/isotone Galois connections

4.1. Study of the Galois connection between the set of crisp sets and the set
of isotone mappings

The following lemma is a technical result. It is presented independently
to ease the reading of the rest of the proofs. Since it is a particular case of a
more general theorem in [18], we omit the proof.

Lemma 18. For all X ∈ 2A, the mapping c̃(X) is inflationary and isotone.
For all isotone mapping f : A → A, the set Φ(a) = ρ(f(a), a) is an

extensional set.

Following the spirit in [18], the mappings which form the Galois connec-
tions must be the ones relating closure systems and fuzzy closure operators,
i.e., F(f) = {a ∈ A | ρ(f(a), a) = 1} and c̃(X)(a) =

d
(aρ ⊗ X), for any

isotone mapping f ∈ Isot(AA) and any set X ⊆ A. Indeed, the couple (c̃,F)
forms a Galois connection.

Theorem 19. Let c̃ : (2A,⊆) → (Isot(AA),�) defined as c̃(X)(a) = cX(a) =d
(aρ ⊗ X) and F : (Isot(AA),�) → (2A,⊆) given by F(f) = {a ∈ A |

ρ(f(a), a) = 1}. Then, the couple (c̃,F) is a Galois connection between
(2A,⊆) and (Isot(AA),�).

Proof. The mapping c̃ is well-defined by Lemma 18.
Assume X ⊆ F(f), we need to prove f � c̃(X), that is, ρ(f(a), c̃(X)(a)) =

ρ(f(a),
d

(aρ⊗X)) = 1, for all a ∈ A. By Theorem 5, it suffices to show that
(aρ ⊗X)ρ(f(a)) = 1. This is trivial for x /∈ X. Otherwise, since X ⊆ F(f)
and f is an isotone mapping,

(aρ⊗X)(x) = ρ(a, x) ≤ ρ(f(a), f(x)) = ρ(f(a), f(x))⊗ρ(f(x), x) ≤ ρ(f(a), x)

Therefore, X ⊆ F(f) implies f � c̃(X).
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Conversely, assume f � c̃(X), we need to prove X ⊆ F(f). Let x ∈ X,
it suffices to show that ρ(f(x), x) = 1. Since f � c̃(X), in particular we have
ρ(f(x),

d
(xρ⊗X)) = 1. Since c̃(X)(x) is an infimum we have (xρ⊗X)(y) ≤

ρ(c̃(X)(x), y), for all y ∈ A. Therefore, in the particular case of x, we have
(xρ ⊗X)(x) = 1 = ρ(c̃(X)(x), x) which by transitivity gives ρ(f(x), x) = 1.

Therefore, f � c̃(X) implies X ⊆ F(f).

The fixed points of the Galois connection introduced above are studied in
the following theorem. As expected, the closure structures are fixed points of
the Galois connection. Moreover, all the fixed points are closure structures,
in spite of the cases examined in [18].

Theorem 20. Let X ∈ 2A and f ∈ Isot(AA). The following statements are
equivalent:

1. The couple (X, f) is a fixed point of the Galois connection (c̃,F).

2. The crisp set X is a closure system and c̃(X) = cX = f .

3. The mapping f is a closure operator and F(f) = Ff = X.

Proof. Items 2 and 3 are equivalent by Theorem 12. Furthermore, the equiv-
alence between 2 and 3 implies directly that the couple (X, f) is a fixed point
of the Galois connection. To prove 1 implies 3, assume (X, f) is a fixed point.
Then, we have to prove that f = cX is a closure operator. By Lemma 18, f
is inflationary and isotone.We only have to prove idempotency.

Let a ∈ A, and denote m = f(a) =
d

(aρ ⊗X). Then, by the definition
of infimum, aρ ⊗ X ⊆ mρ which implies aρ ⊗ X = aρ ⊗ X ⊗ X ⊆ mρ ⊗
X since X is crisp. Taking infima in the last chain of inequalities we get
ρ(

d
(mρ ⊗ X),

d
(aρ ⊗ X)) = ρ(f(m),m) = 1. Then, by antisymmetry, we

have f(a) = f(f(a)). Therefore, f is idempotent and a closure operator.

The last result shows that every fixed point of the Galois connection is a
pair of fuzzy closure structures. This is interesting because this result does
not hold in the general fuzzy setting. Recall that in the general fuzzy setting
fuzzy closure structures were formal concepts of the Galois connections but
there existed formal concepts that were not formed by fuzzy closure struc-
tures. Examples of such cases can be found in [18].
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4.2. Study of the adjunction between the set of crisp sets and the set of fuzzy
sets

Our intended goal would be to prove the adjunction between (2A,⊆) and
(LA, S). Unfortunately, the couple of mappings we have been considering so
far, i.e.,

Φ1 = {a ∈ A | Φ(a) = 1} and X≈(a) =
∨

x∈X

(x ≈ a),

do not form an adjunction between these two posets. This is illustrated in
the next example.

Example 1. Let L = {0, 0.5, 1} be the three-valued  Lukasiewicz residuated
lattice. Consider the complete fuzzy lattice (A, ρ) where the universe set is
A = {⊥, a, b, c, d, e,⊤} and ρ is the fuzzy order defined by the following
table:

ρ ⊥ a b c d e ⊤
⊥ 1 1 1 1 1 1 1
a 0.5 1 0.5 1 1 1 1
b 0.5 0.5 1 1 1 1 1
c 0.5 0.5 0.5 1 1 1 1
d 0 0.5 0 0.5 1 0.5 1
e 0 0 0.5 0.5 0.5 1 1
⊤ 0 0 0 0.5 0.5 0.5 1

Consider X = {a, b} ⊆ A and Φ = {a, b} ∈ LA. Then, it is clear that
X ⊆ Φ1, but X≈(⊥) = (⊥ ≈ a) ∨ (⊥ ≈ b) = 0.5 � 0 = Φ(⊥). Therefore,
X≈ * Φ and (−1,−≈) is not an adjunction.

Even though this pair is not an adjunction in general, restricting to sets
that satisfy certain additional properties may work. For instance, every
time since the introduction of fuzzy closure systems in the literature [2, 17],
the condition of being extensional has been imposed to the definition. In
addition, the restriction to the set of extensional fuzzy sets maintains the
Galois connections in Proposition 17, since the images of both Ψ̃ and Ψ̂ are
always extensional sets. The former was proved in [18, Lemma 16] and the
latter holds since, for any isotone and total relation κ : A × A → L verifies
that

Ψ̂(κ)(x) ⊗ (x ≈ y) = ρ∝(xκ, x) ⊗ ρ(x, y) ⊗ ρ(y, x)

(i)

≤ ρ∝(yκ, xκ) ⊗ ρ∝(xκ, x) ⊗ ρ(x, y)

13



(ii)

≤ ρ∝(yκ, y) = Ψ̂(κ)(y),

where (i) holds due to isotonicity and (ii) holds by Theorem 2.
Hence, we will work on the set of extensional fuzzy sets of A, denoted

by (Ext(LA), S). This set maintains many of the good properties of (LA, S)
such as being a complete fuzzy lattice. This is shown in the following result.

Proposition 21. The couple (Ext(LA), S) is a fuzzy sublattice of (LA, S).

Proof. It is well-known (e.g. see [4]) that (LA, S) is a complete fuzzy lattice
where, given Ξ: LA → L, the infimum and the supremum of Ξ are defined as

(⋂
Ξ
)
(a) =

∧

X∈LA

(
Ξ(X) → X(a)

)
and,

(⋃
Ξ
)
(a) =

∨

X∈LA

(Ξ(X) ⊗X(a))

Now, let Ξ: Ext(LA) → L, let us prove that
⋂

Ξ and
⋃

Ξ are extensional as
well. Notice that, by hypothesis, Ξ(X) = 0, for all X /∈ Ext(LA). Thus,

∧

X∈LA

(Ξ(X) → X(x)) =
∧

X∈Ext(LA)

(Ξ(X) → X(x))

∨

X∈LA

(Ξ(X) ⊗X(x)) =
∨

X∈Ext(LA)

(Ξ(X) ⊗X(x))

First we show infima,

(⋂
Ξ
)

(x) ⊗ (x ≈ y) =


 ∧

X∈Ext(LA)

(Ξ(X) → X(x))


⊗ (x ≈ y)

(i)

≤
∧

X∈Ext(LA)

((Ξ(X) → X(x)) ⊗ (x ≈ y))

(ii)

≤
∧

X∈Ext(LA)

(Ξ(X) → (X(x) ⊗ (x ≈ y)))

(iii)

≤
∧

X∈Ext(LA)

(Ξ(X) → X(y)) =
(⋂

Ξ
)

(y),

where (i), (ii) hold due to (2.53) and (2.63) in [4], respectively and (iii) holds
due to the extensionality of X and (2.43) in [4]
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And now for suprema,

(⋃
Ξ
)

(x) ⊗ (x ≈ y) =


 ∨

X∈Ext(LA)

(Ξ(X) ⊗X(x))


⊗ (x ≈ y)

(i)
=

∨

X∈Ext(LA)

(Ξ(X) ⊗X(x) ⊗ (x ≈ y))

(ii)

≤
∨

X∈Ext(LA)

(Ξ(X) ⊗X(y)) =
(⋃

Ξ
)

(y),

where (i) holds due to (2.50) in [4] and (ii) holds due to the extensionality
of X.

Moreover, the couple of mappings (−1,−≈) forms an adjunction between
(2A,⊆) and (Ext(LA),⊆).

Theorem 22. Let −1 : (Ext(LA),⊆) → (2A,⊆) and −≈ : (2A,⊆) → (Ext(LA),⊆
) defined as

Φ 7→ Φ1 = {a ∈ A | Φ(a) = 1} and X 7→ X≈(a) =
∨

x∈X

(x ≈ a).

Then, the couple (−1,−≈) is an adjunction between (Ext(LA),⊆) and (2A,⊆
).

Proof. It is clear that the mappings above are well-defined since the exten-
sional hull of a set is always an extensional set.

Let X ⊆ A and Φ ∈ Ext(LA) be two sets. Assume X ⊆ Φ1, then we have

Φ(x) =
∨

a∈A

(Φ(a) ⊗ (a ≈ x)) ≥
∨

a∈Φ1

(a ≈ x) ≥
∨

a∈X

(a ≈ x) = X≈(x).

Thus, X≈ ⊆ Φ.
Conversely, assume X≈ ⊆ Φ and let x ∈ X

X≈(x) =
∨

a∈X

(a ≈ x)
(i)
= 1 ≤ Φ(x),

where (i) holds due to reflexivity. Therefore, x ∈ Φ1 which implies X ⊆ Φ1

and concludes the proof.
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As done in the previous case, a study of the fixed points of the adjunction
is necessary. This is done in the result below.

Theorem 23. Let A be a complete fuzzy lattice, then

1. Let F ⊆ A be a closure system, then (F≈,F) is a fixed point of the
adjunction.

2. Let Φ ∈ LA be a fuzzy closure system, then (Φ,Φ1) is a fixed point of
the adjunction.

Proof. For the first item, let F be a closure system, then, by Theorem 12,
there exists a closure operator c : A → A such that F = F

c
= {a ∈ A |

c(a) = a}. By Proposition 15, the extensional hull of F is the set F≈(x) =∨
a∈F(x ≈ a) =

∨
a∈Fc

(x ≈ c(a)) = ρ(c(x), x). Therefore,

(F≈)1 = {a ∈ A | ρ(c(a), a) = 1} = {a ∈ A | c(a) = a} = F .

For the second item, assume that Φ is a fuzzy closure system, by The-
orem 14, there is a fuzzy closure operator c : A → A such that Φ(x) =
ρ(c(x), x). On the other hand, since Φ1 = F

c
and by Proposition 15, we get

(Φ1)≈(x) =
∨

a∈Φ1

(x ≈ a) =
∨

a∈Fc

(x ≈ a) = ρ(c(x), x) = Φ(x).

Therefore, (Φ1)≈ = Φ.

As expected, fuzzy closure structures are fixed points of the adjunction.
However, there are fixed points which are not fuzzy closure structures. This
is illustrated in the following example.

Example 2. Let L be the unit interval with the  Lukasiewicz t-norm and
residuum, U = {u} and the powerset lattice (LU , S) and consider the set
X = {{u/0.5}} ⊆ LU .

(X≈)({u/α}) = ({u/α} ≈ {u/0.5})

= min{1, 1 − α + 0.5} ⊗ min{1, 1 − 0.5 + α}

= min{1, 1.5 − α} ⊗ min{1, 0.5 + α}

=

{
1.5 − α, if α ≥ 0.5

0.5 + α, if α ≤ 0.5
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Thus, (X≈)({u/α}) = 1 if and only if α = 0.5, that is, (X≈)1 = X, the pair
(X,X≈) is a fixed point of the adjunction but X is not a closure system
because U /∈ X. Similarly, by X≈(U) = 0.5 6= 1 we have that X≈ is not a
fuzzy closure system.

As shown above, not all the fixed points are (fuzzy) closure systems. The
next result gives some conditions to narrow down the set of fixed points of
the adjunction.

Proposition 24. If L is linearly ordered and A is finite then (X≈, X) is a
fixed point of the adjunction for all X ⊆ A.

Proof. Assume L is a linearly ordered residuated lattice and A is a finite
complete fuzzy lattice. Let X ⊆ A, then

X≈(x) =
∨

a∈A

X(a) ⊗ (a ≈ x) =
∨

a∈X

(a ≈ x).

Since X is finite and since L is linearly ordered, there exists x0 ∈ X such
that (x0 ≈ x) = X≈(x). Consider x ∈ (X≈)1 then, X≈(x) = (x0 ≈ x) = 1.
By antisymmetry we have x = x0 ∈ X. Thus, (X≈)1 ⊆ X. The converse
inclusion is trivial since X ⊆ X≈ implies X = X1 ⊆ (X≈)1.

The hypothesis in Proposition 24 is sufficient but not necessary, that is,
there are examples of infinite complete fuzzy lattices or with values on a non-
linear residuated lattice where (X≈, X) is a fixed point for all crisp subset
X. The following is one of them.

Example 3. Let L be the Heyting algebra whose Hasse diagram is the fol-
lowing:

1

c

❃❃
❃❃

❃❃
❃❃

��
��
��
��

a

❂❂
❂❂

❂❂
❂❂

b

✁✁
✁✁
✁✁
✁✁

0
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Let U be a infinite set and consider the fuzzy powerset lattice (LU , S). Let
X ⊆ LU . Then, for all Φ ∈ LU ,

X≈(Φ) =
∨

Ψ∈X

(Φ ≈ Ψ) =
∨

Ψ∈X

(S(Φ,Ψ) ⊗ S(Ψ,Φ)).

Since L is finite, the last supremum is a supremum of a finite number of
values. Moreover, in this particular lattice, the supremum equals 1 if and
only if one of the terms is 1. Therefore, X≈(Φ) = 1 if and only if there exists
Ψ0 ∈ X such that (Ψ0 ≈ Φ) = 1, therefore Φ = Ψ0 ∈ X. Thus, we get
(X≈)1 = X even though L is not a chain and LU is infinite.

Even though the hypothesis in Proposition 24 are not necessary, we can
find counterexamples if any of them are dropped. The following examples
illustrate some such cases.

Example 4. Let L be the unit interval with the  Lukasiewicz structure, U =
{u} and the powerset lattice (LU , S). Let Q = {qi}i∈N be an enumeration of
the rationals in (0, 1) and consider the set A = {{u/q1}, {u/q2}, {u/q3}, . . . } ⊆
LU . Then,

A≈({u}) =
∨

i∈N

({u/qi} ≈ {u}) =
∨

i∈N

qi = 1.

Therefore, {u} ∈ (A≈)1 r A.

Last example uses a linear L and an infinite fuzzy lattice LU . One can
also find counterexamples of Proposition 24 when both the residuated and
the fuzzy lattices are finite but the order in L is non-linear.

Example 5. Let L be the Heyting algebra whose Hasse diagram is the fol-
lowing:

1

❂❂
❂❂

❂❂
❂❂

✁✁
✁✁
✁✁
✁✁

a

❂❂
❂❂

❂❂
❂❂

b

✁✁
✁✁
✁✁
✁✁

0

Let U = {u} and consider the fuzzy powerset lattice (LU , S) and the set
X = {{u/a}, {u/b}}. Then,

(X≈)({u}) = ({u/a} ≈ {u}) ∨ ({u/b} ≈ {u})
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= (S({u/a}, {u}) ⊗ S({u}, {u/a})) ∨ (S({u/b}, {x}) ⊗ S({u}, {u/b}))

= a ∨ b = 1.

Therefore, {u} ∈ (X≈)1 rX.

Proposition 24 gives conditions under which (X≈, X) is a fixed point for
all X ⊆ A. We wonder whether an analogous result holds for extensional
sets. Unfortunately, it does not hold for all Φ ∈ Ext(LA), even under the
conditions in Proposition 24, as the following example shows.

Example 6. Let (A, ρ) be the complete fuzzy lattice from Example 1, where
L is a chain and A is finite. Consider the fuzzy set

Φ = {⊥/0.5, a/1, b/0.5, c/0.5, d/1, e/0.5, ⊤/1}

is extensional, the computation is tedious so it is omitted. Then, Φ1 =
{a, d,⊤} and

(Φ1)≈(b) = (a ≈ b) ∨ (d ≈ b) ∨ (⊤ ≈ b)

= (ρ(a, b) ⊗ ρ(b, a)) ∨ (ρ(d, b) ⊗ ρ(b, d)) ∨ (ρ(⊤, b) ⊗ ρ(b,⊤))

= (0.5 ⊗ 0.5) ∨ (0 ⊗ 1) ∨ (0 ⊗ 1) = 0 6= 0.5 = Φ(b).

As shown above, there are extensional sets Φ ∈ (Ext(LA),⊆) such that
(Φ,Φ1) is not a fixed point of the adjunction.

Remark 3. An extensional fuzzy set Φ ∈ Ext(LA) is a fixed point of the
adjunction if and only if Φ(a) =

∨
x∈Φ1(a ≈ x) for all a ∈ A. This result

is an immediate consequence of applying the composition of both mappings,
nevertheless the explicit formula obtained is remarkable and turns out to be
very useful in some proofs.

5. Analysis of the fuzzy setting

In this brief section we will study the behavior of the problem if we had
considered the set of crisp subsets as a fuzzy poset. First of all we need to
extend to the fuzzy framework the subsethood relation, this is the well-known
S operator.

Remark 4. Consider the relation S : 2A × 2A → L defined by

S(X, Y ) =
∧

a∈A

(X(a) → Y (a)) =

{
1, if X ⊆ Y

0, otherwise
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With this fuzzy relation we have the following result.

Theorem 25. Let (A, ρ) be a complete fuzzy lattice. Then, the couple (c̃,F)
is a fuzzy Galois connection between (2A, S) and (Isot(AA), ρ̃) if and only if
ρ is a crisp relation.

Proof. For the direct implication we need to prove that ρ(x, y) is either 0 or
1 for all x, y ∈ A. Let a, b ∈ A. If ρ(a, b) = 1 we are done. Let us assume
ρ(a, b) 6= 1.

Consider now the isotone mapping f : A → A defined as the constant
mapping f(x) = a for all x ∈ A and let X ∈ 2A be the singleton X = {b}.
Then we have b /∈ F(f) since f(b) = a � b. Hence S(X,F(f)) = 0.

On the other hand,

ρ̃(f, c̃(X)) =
∧

x∈A

ρ(f(x), c̃(X)(x))

=
∧

x∈A

ρ(a,
l

(xρ ∩ {b}))

(i)
=
∧

x∈A

(xρ ∩ {b})ρ(a) =
∧

x∈A

(ρ(x, b) → ρ(a, b))

(ii)

≥ ρ(a, b),

where (i) holds due to Theorem 5 and (ii) holds due to (2.31) in [4] Thus, we
can derive the following,

ρ(a, b) ≤
∧

x∈A

ρ(a,
l

(xρ ∩ {b})) = ρ̃(f, c̃(X))
(i)
= S(X,F(f)) = 0,

where (i) holds due to (c̃,F) being a fuzzy Galois connection.
For the converse implication, assume (A, ρ) is a crisp poset. Then both

(2A,⊆) and (Isot(AA),�) are crisp posets and the Galois connection between
them was proved in Theorem 19.

Therefore, in a complete properly-fuzzy lattice, that is, if there exist
a, b ∈ A such that ρ(a, b) /∈ {0, 1}, then the couple (c̃,F) will never be a
fuzzy Galois connection.
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6. Conclusions and further work

This paper continues the line of work which initiated in [18], where the
mappings that relate fuzzy closure structures are studied from the point of
view of fuzzy Galois connections. Here we have introduced the crisp powerset
lattice to that same framework. This is remarkable since it is a crisp structure
in a fuzzy setting. Thus, there are two possible procedures. We can consider
the 1-cut of the fuzzy preorders and study the crisp Galois connections there,
or fuzzify the crisp order and study the fuzzy ones. In the former, results are
somehow similar to the ones in [18]. The Galois connections exist and the
fuzzy closure structures are fixed points of them. However, by analyzing the
second procedure, we prove that the mappings form a fuzzy Galois connection
if and only if the underlying complete fuzzy lattice is crisp. These results are
both surprising and remarkable.

As a prospect of future work, since we know the images of the mappings
introduced in [19] are not closure operators and fuzzy closure systems in
general, this analysis can be continued and study the nature of its fixed
points and examine whether they are interesting for solving some problems
as some sort of pre-closure structures.
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Fuzzy closure systems: Motivation, definition and properties. Interna-
tional Journal of Approximate Reasoning, 148:151–161, 2022.

[20] M. Ojeda-Hernández, I. P. Cabrera, P. Cordero, and E. Muñoz-Velasco.
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