
Computers in Industry 152 (2023) 104007

A
0

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.sciencedirect.com/journal/computers-in-industry

OpenTwins: An open-source framework for the development of next-gen
compositional digital twins
Julia Robles ∗, Cristian Martín, Manuel Díaz
ITIS Software, University of Malaga, Arquitecto Francisco Peñalosa, 18, 29071 Málaga, Spain

A R T I C L E I N F O

Dataset link: https://github.com/ertis-research
/OpenTwins/

Keywords:
Digital twin composition
Open-source digital twin framework
Kafka-ML
3D visualizations
Industry 4.0

A B S T R A C T

Although digital twins have recently emerged as a clear alternative for reliable asset representations, most of
the solutions and tools available for the development of digital twins are tailored to specific environments.
Furthermore, achieving complex digital twins often requires the orchestration of technologies and paradigms
such as machine learning, the Internet of Things, and 3D visualization, which are rarely seamlessly aligned
in open-source solutions. In this paper, we present an open-source framework for the development of
compositional digital twins, i.e., advanced digital twins that link individual entities or subsystems to create
a higher degree digital twin, allowing knowledge sharing and data relationships. In this open framework,
digital twins can be easily developed and orchestrated with 3D-connected visualizations, IoT data streams,
and real-time machine-learning predictions. To demonstrate the feasibility of the framework, a use case in the
Petrochemical Industry 4.0 has been developed.
1. Introduction

Industry 4.0 has revolutionized production and technological capa-
bilities in a wide range of sectors. The manufacturing industry stands
out as a compelling example, showcasing substantial progress in en-
hancing productivity and fostering sustainable growth (Alsaadi, 2022).
This advance is particularly evident in the automotive sector, where
these technologies are commonly employed (Papulová et al., 2022).
Furthermore, Industry 4.0 has made significant contributions to risk
mitigation in the health and safety sector (Arana-Landín et al., 2023a),
achieved remarkable efficiency gains in the energy sector (Arana-
Landín et al., 2023b), and demonstrated its utility in supply chain
management (Marinagi et al., 2023). Actually, in modern times, the
assets surrounding us (e.g., Vehicle to Everything-V2X) are increasingly
connected, sharing information with each other and with the envi-
ronment to optimize their performance, prevent dangerous situations,
and improve safety. We can highlight several emerging paradigms
that have gone hand in hand with the industrial digitalization: the
Internet of Things (IoT) (Díaz et al., 2016), which has enabled the
real-time monitoring and actuation of multiple physical phenomena;
artificial intelligence (AI) and machine learning (ML) (De Silva et al.,
2020), which have paved the way to the modeling of the behavior of
systems and processes (in some cases unknown) through data-driven
approaches; cloud computing (Bello et al., 2021), which has made these
computational needs possible; mixed reality (both augmented reality
and virtual reality) (Yin et al., 2023), which has enabled more effective

∗ Corresponding author.
E-mail addresses: juliarobles@uma.es (J. Robles), cristian@uma.es (C. Martín), mdiaz@uma.es (M. Díaz).

and accurate representations of real worlds assets; and simulation of
digital twins that can synchronize with the status and future operating
of the assets and simulate future outcomes (e.g., a machine failure). It
is therefore not paradoxical that, at the same time as the surrounding
sources of information (IoT) and the computing power (cloud comput-
ing) have increased, analytical techniques have also evolved to improve
knowledge of the environment (AI/ML), then the assets are displayed
in a 3D and realistic form (mixed reality), and last but not least,
the assets and even the learning techniques (physics-informed ma-
chine learning (Karniadakis et al., 2021)) are better modeled through
simulation.

A digital twin can be defined as a digital accurate and trustwor-
thy representation of a physical asset provided through continuous
monitoring, prediction, and optimization for decision-making (Rasheed
et al., 2020). For instance, consider a train wheel bearing, which tends
to have high maintenance and production costs (Márquez et al., 2020).
A digital twin that predicts when bearings need to be repaired and/or
replaced, as well as their estimated service life, could highly optimize
operating costs and allow for better planning by railway companies.
Although digital twins share similarities with cyber–physical systems,
such as the integration of assets into the digital world, they go a step
further (Nazarenko and Camarinha-Matos, 2020), providing accurate
replicas of assets that behave as they would in the physical world.

Digital twins exploit the paradigms that have driven Industry 4.0
to monitor the environment (IoT) and seek continuous optimization/
vailable online 22 August 2023
166-3615/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.compind.2023.104007
Received 3 May 2023; Received in revised form 30 June 2023; Accepted 8 August
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2023

https://www.sciencedirect.com/journal/computers-in-industry
http://www.sciencedirect.com/journal/computers-in-industry
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
https://github.com/ertis-research/OpenTwins/
mailto:juliarobles@uma.es
mailto:cristian@uma.es
mailto:mdiaz@uma.es
https://doi.org/10.1016/j.compind.2023.104007
https://doi.org/10.1016/j.compind.2023.104007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2023.104007&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers in Industry 152 (2023) 104007J. Robles et al.

d
a
t
a
h
e
e

m
w
n
r
T
d
w
d
I
a
l
i
r
d

w
t
t
d
e
a
T

prediction (simulation, AI/ML) on physical assets. In many processes,
in addition to data-driven models, physically-based models provide
accurate representations of asset behaviors through mathematical equa-
tions. However, these models are often difficult to obtain, so they are
complemented by data-driven models such as AI/ML. Digital twins
are, therefore, a combination of technologies, models, and paradigms
integrated into a common interface for asset control and monitoring.
In this context, the visualization (preferably in 3D) of assets also plays
a key role, as one of the main functionalities of having reliable digital
twins is the simulation of the assets in unknown and extreme situations
in order to evaluate their behavior.

Today’s digital twins are mostly designed for isolated, bounded
solutions such as wind turbine gearbox bearing modeling (Mehlan
et al., 2022). However, in the physical world, assets may comprise and
require the interconnection of multiple and heterogeneous components,
even from different manufacturers. An excellent illustration of this can
be seen in automotive line production, where the integration of data
from robotic hands, CNC machines, and the overall factory environment
is crucial (Mendi, 2022). Moreover, another example is the digital
twin of a spacecraft network system. It encompasses both physical
components, such as servers and network terminals, and intangible
elements, including process protocols and network traffic models (Zhao
et al., 2022). In most cases, simulation systems have been used to
model these complex behaviors, but these systems lack the flexibility
and possibilities offered by digital twins, such as the capabilities for
monitoring and prediction.

This orchestration of technologies and paradigms presented by digi-
tal twins requires frameworks for their continuous development and in-
tegration. Over the last few years, numerous frameworks have emerged
that enable the development of digital twins. Architecture and design
for digital twin frameworks are identified as areas where further work
is needed (Boyes and Watson, 2022). A notable open-source example
is Eclipse Ditto,1 one of the most widely used solutions for multi-
omain digital twins. Whereas Eclipse Ditto allows for the virtual
bstraction of asset communications as well as fine-grained access con-
rol management, substantial extra integration efforts are required to
chieve effective digital twins. Of course, we are referring to seamless
armonization with AI/ML techniques, integration with 3D rendering
ngines, sensor failure detection, and integrated visualization of the
cosystem, among others.

Moreover, digital twins often address individual assets, but these
ay be part of a global system (e.g., the bearings and the train),
here orchestration of digital twins or digital twin composition may be
ecessary. The approach of compositional digital twins provides a wide
ange of benefits in terms of interaction, reusability, and distribution.
his innovative concept empowers the creation of flexible and modular
igital twins, making development and maintenance more straightfor-
ard. Furthermore, it enables the parallelization and distribution of
igital twins across various devices, resulting in enhanced performance.
n addition, the use of compositional digital twins facilitates detailed
nd comprehensive analysis at both individual and collective levels,
eading to a deeper understanding of the system and significantly
mproving decision-making capabilities. Currently, there is a need for
esearch on the integration and composition of digital twins for the
igitalization of complex systems (Human et al., 2023).

In this paper, we present an open-source architecture and frame-
ork known as OpenTwins for the continuous development and in-

egration of compositional digital twins, i.e., advanced digital twins
hat encapsulate complex systems and are composed of a collection of
igital twins from individual entities or subsystems. This composition
stablishes data relationships among them, enabling knowledge sharing
nd linking their information to form a higher degree digital twin.
his framework provides a modular and unified environment where

1 https://www.eclipse.org/ditto/
2

users can define digital twins adapted to their needs. This solution has
considered the main needs when developing digital twins (namely IoT
monitoring, AI/ML, and 3D visualization), providing a unified interface
for their monitoring, management, and continuous optimization. The
framework has been designed on a scalable platform that allows for
fault tolerance and high availability and opens the door to future
extensions. The main contributions to this article are as follows:

1. An open-source framework and interface for the design, de-
velopment, and continuous integration of effective digital twin
composition.

2. Seamless orchestration with AI/ML techniques and data streams
for continuous optimization and prediction, such as sensor fail-
ure detection.

3. 3D rendering engine integration for the design and visualization
of 3D-powered digital twins.

4. Finally, this paper presents the validation of the framework in a
manufacturing use case in the petrochemical industry.

The rest of the article is organized as follows. In Section 2, re-
lated work is discussed. Section 3 presents the digital twin framework
architecture and its components. An evaluation of the framework is
performed in Section 5. Lastly, our conclusions and future work are
presented in Section 6.

2. Related work

The idea of digital twins was proposed by Professor Michael Grieves
of the University of Michigan in 2003 (Grieves, 2016), although at the
time it was described simply as a virtual representation capable of being
equivalent to a physical product. Despite not having a great initial
impact, Grieves was improving this concept until, in 2016, together
with John Vickers, the term digital twin was established (Grieves and
Vickers, 2017). On the other hand, between 2011 and 2016, NASA
(National Aeronautics and Space Administration) put this idea into
practice, becoming the first organization to deal with digital twins. Its
research was a breakthrough in the field, as it defined the potential
of digital twins (Glaessgen and Stargel, 2012) and the main challenges
involved (Tuegel, 2012). However, digital twins did not gain recogni-
tion until 2016, when the research and advisory firm Gartner included
them in their list of the top 10 strategic technology trends (CeArley
et al., 2016) for two consecutive years. This marked the beginning of an
exponential increase in the number of publications about digital twins.

2.1. Digital twin frameworks

The idea of digital twins has grown considerably, acquiring a major
impact on research in recent years. Large companies such as Siemens,
Microsoft, and Dassault have developed their own solutions for the
construction and use of digital twins. Similarly, work is also carried out
in the open-source field. One clear example of a digital twin solution
is the large European project IoTwins,2 which provides a big data plat-
form for the delivery of digital twins in manufacturing. The resulting
digital twins from IoTwins address open challenges in a variety of
sectors, ranging from a football stadium to wind turbine predictive
maintenance. The solutions developed are tailored to a given IoT-edge-
cloud infrastructure use case, providing a wide range of services for the
definition of digital twins. A modular digital twin framework (Rolle
et al., 2021) enables the monitoring, assessment, and 3D visualiza-
tion of assets. This framework was validated in a real manufacturing
scenario, but as demonstrated in the evaluation, scalability can be a
challenge in this architecture. A digital twin development guide has
been built around the well-known FIWARE ecosystem (Conde et al.,
2021). The solution describes a guide to how digital twins can be

2 https://www.iotwins.eu/

https://www.eclipse.org/ditto/
https://www.iotwins.eu/


Computers in Industry 152 (2023) 104007J. Robles et al.

f
t
t
b
a
I
a
d

2

d
h
e
o
(
t
l
o
t
t
a

d
m
s
d
t
c
l
t
d
c
i
b
t
p
p
(
T
f
n
i

m
(
c
T

c
f
o
i

defined in FIWARE, but a framework adapted for digital twins has not
been developed and validated.

Shah et al. (2021) consider the inclusion of open tools for the
realization of a digital twin framework. However, this framework lacks
flexibility since it is only adapted to computational fluid dynamics
systems. Pang et al. (2021) develop a framework that combines both
digital twin and digital thread technology, providing improved data
management and, consequently, improving the performance and pro-
ductivity of operational processes. However, this framework does not
support the definition and management of a digital twin, requiring the
use of an external tool for this purpose.

On the other hand, DTOP-Cristallo (Bonney et al., 2021) is a pro-
totype of an operational platform for digital twins related to the UK
DigiTwin project.3 It is modular, open source, system-independent, and
ully written with Flask Python. At the moment, it only focuses on
he analysis and simulation aspects of digital twins, providing a set of
ools that, with respect to given data, perform the operations requested
y the user through a web interface. Kamath et al. (2020) suggest
n architecture for the design and analysis of digital twins based on
oT-friendly open-source projects. It includes the most basic aspects of

digital twin: real-time IoT sensor data collection and storage, twin
efinition and management, and real-time analysis and visualization.

.2. Digital twin composition

The composition of digital twins is also an important aspect to ad-
ress in this area. A common scheme for creating a complex digital twin
as not been established, but certain ideas have been proposed. Dai
t al. (2021), in the context of the machining process, propose an
ntology-based modeling method for manufactured parts. Liu et al.
2021) propose a multi-scale knowledge modeling method for digital
wins focusing on product quality, particularly at the macro and micro
evels. Jia et al. (2022) present a digital twin modeling method capable
f dealing with multiscale, multi-scenario, or multidimensional digital
wins. These complex digital twins are divided into simple digital
wins. This method favors the scalability and reusability of components,
lthough these divisions may reduce the accuracy of the digital twin.

Borth et al. (2019) study the issues that can arise when composing
igital twins. They emphasize the impact of the architecture, recom-
ending that it should be modular and have reflection mechanisms at

ensitive points. In addition, they point out the importance of defining
edicated processes and operations to ensure the proper performance of
he infrastructure. To this end, they advise using twin maintenance pro-
esses with modular computational models and combining automated
ocal upgrades with expert-driven global upgrades. The snitch digital
win concept is presented in Calvo-Bascones et al. (2023). Snitch’s
igital twin consists of a behavior model based on digital twin data
omposition for the detection of anomalies. Although this approach
s intended for anomaly detection in multi-agent systems, the use of
asic techniques like quantiles and slope with the composition of digital
wins is a feasible solution for this problem. Reiche et al. (2021)
ropose a structured network of digital twins controlled by a single
oint of truth. This point corresponds to the digital twin of the system
DTS), which is responsible for managing its subordinate twin network.
his structure improves data access, allows the linking of digital twins
rom different sources, and promotes uniform and centralized commu-
ication, although the computational effort for twin representation will
ncrease as the network expands.

Atkinson and Kühne (2021) discuss the advantages of multilevel
odeling of digital twins. The orthogonal classification architecture

OCA) of the multilevel model overcomes the problem of accidental
omplexity that arises with the traditional two-tier cascading approach.
his architecture favors scalability by allowing the creation of an

3 https://digitwin.ac.uk/
3

unlimited number of domain classification levels. Each level will have
its own features and constraints, which facilitate the creation of twins
and ensure compliance with architectural principles. Our architecture
also shares some of the components identified in Human et al. (2023)
for the definition of digital twins, but our framework goes further by
considering aspects necessary for the development of today’s digital
twins, such as integration with machine learning streaming and 3D
visualization.

3. Open-source architecture for the design and development of 3D
iot-AI-powered compositional digital twins

A microservice architecture has been designed with the aim of
increasing the modularity of the platform by making functionality
independent and the system scalable and reusable, allowing modules to
be added, replaced, and connected without affecting the whole system.

Fig. 1 shows the current architecture of the platform. The main
core of the platform is the Eclipse Ditto framework, which has a set
of essential functionalities that act as a base for the development of
digital twins. A microservice architecture has been built around Eclipse
Ditto, composed of open-source tools that mostly belong to external
projects. Certain services have also been developed specifically for the
platform, mainly with the aim of connecting certain tools or adding
functionalities that were not already covered. The different modules
are connected mainly by means of an API or a protocol designed to
handle real-time data, such as Apache Kafka, AMQP, or MQTT. As
observed in the existing literature, there are other frameworks that
share some of the functionalities proposed in this architecture, such
as the work in Kamath et al. (2020), where monitoring and visual-
ization of digital twins are proposed with open-source components.
However, to the best of our knowledge, there is a lack of frameworks
considering open source components to support the end-to-end digital
twin design, i.e., asset monitoring, integration with AI/ML systems
for learning/prediction with streaming data, user-friend visualization
with 3D capabilities, and, as discussed, the digital twin composition.
We have therefore considered open-source solutions and developed
the necessary components to achieve this functionality in a unified
framework, OpenTwins.

On the other hand, to facilitate the management, portability, and
execution of the platform, a container-based structure has been used.
Each service is packaged in a Docker container, and all the containers
are managed through Kubernetes, a container orchestrator.

Eclipse Ditto provides an entity for the twin definition, access
control, state storage, and connection support with IoT protocols, which
can modify the state of the twins and share their events externally. The
union of this framework with all the services shown in Fig. 1 provides
the platform with the functionalities required in most digital twin
platforms: reception of data from IoT devices, definition and update of
twin composition, real-time storage of the states through time series,
and user-friendly data visualization. In addition, two functionalities
have been added that constitute a real advance in terms of open-source
platforms for digital twins: interactive 3D visualization of the real-time
and historical state of the twin and real-time data stream inference by
machine learning.

Regarding these functionalities, the architecture can be divided into
blocks related to the compositional and essential functionality of the
platform, the prediction of data with Machine Learning, and the 3D
visualization of the twin.

In GitHub,4 the description of the system, the installation and
onnection manual of the architecture, the necessary documentation
or its use, and the redirections to all the services and plugins devel-
ped (which, in addition to the code produced, also have their own
nstallation manual and documentation of use) can be found.

4 https://github.com/ertis-research/OpenTwins/

https://digitwin.ac.uk/
https://github.com/ertis-research/OpenTwins/


Computers in Industry 152 (2023) 104007J. Robles et al.
Fig. 1. An overview of the 3D-IoT-AI-powered digital twin architecture. In blue are the essential and compositional functions, in red the 3D representation, and in yellow the
data prediction with ML. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3.1. Basic functionality

The blue components in the architecture (Fig. 1) represent the
part of the architecture corresponding to this compositional and basic
functionality. This part is mainly composed of open-source projects, but
also includes two elements that have been developed to complete the
desired functionality.

The objective of this block was to obtain a platform on which the
digital twin of any element and its composition could be defined. For
this purpose, the following functionalities can be considered basic for
any digital twin:

1. Digital twin scheme definition.
2. Connection with IoT devices and collection of their information.
3. Storage of digital twin data in real-time series.
4. User-friendly visualization of data.

The main element of architecture is Eclipse Ditto, an open-source
framework for building digital twins. Eclipse Ditto does not provide
any system to obtain the information sent by the devices, so Eclipse
Hono5 was considered for this purpose. Eclipse Hono is a platform that
provides several interfaces for connecting many IoT devices, unifying
them into a single AMQP 1.0 endpoint where the information received
can be read and commands can be sent to trigger actions on any IoT
device. It can receive information via common IoT protocols, such
as MQTT or AMQP, and custom adapters. This is the recommended

5 https://www.eclipse.org/hono/
4

tool to work with Eclipse Ditto, and, thanks to the Eclipse cloud2edge
package,6 the integration of the two is very convenient.

Another feature that Eclipse Ditto lacks is the storage of the twin
state at different time instants. To solve this, InfluxDB,7 has been
chosen as a time-series database. This is a well-known database with a
large community and is ideal for processing sensor data. To collect the
data, we have considered Telegraf8 a plugin-driven server that provides
support for numerous data sources and with which we can configure
the data ingestion into the database. As there is no possibility for
Telegraf to collect the data directly from Eclipse Ditto because neither
technology implements a broker for the protocols it supports, we need
an intermediate element that allows its connection. Apache Kafka,9 one
of the best-known streaming and processing platforms for real-time
data, is a suitable alternative since Telegraf has a Kafka-consumer10

plugin available, and Eclipse Ditto offers the option to publish events
in a Kafka topic.

Finally, Grafana11 has been chosen to act as the front-end, i.e., the
user interface for end-users. This technology provides support for met-
rics visualization from the most popular databases, including InfluxDB.
It allows making queries in the language defined by the chosen data
source and presenting the results in different types of interactive panels.
These panels are part of dashboards, which can be modified to the

6 https://www.eclipse.org/packages/packages/cloud2edge/
7 https://www.influxdata.com/products/influxdb-overview/
8 https://www.influxdata.com/time-series-platform/telegraf/
9 https://kafka.apache.org/

10 https://www.influxdata.com/integration/kafka-telegraf-integration/
11 https://grafana.com/

https://www.eclipse.org/hono/
https://www.eclipse.org/packages/packages/cloud2edge/
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/time-series-platform/telegraf/
https://kafka.apache.org/
https://www.influxdata.com/integration/kafka-telegraf-integration/
https://grafana.com/


Computers in Industry 152 (2023) 104007J. Robles et al.
Fig. 2. Example composition of digital twins and their types.
user’s liking. It also includes an access control system through roles.
Another of its strong points, and one of the most important for the
project, is that it allows the creation of personalized panels and the
inclusion of any type of functionality by means of plugins, providing
the libraries and documentation necessary for this.

3.2. Compositionality support

Eclipse Ditto offers the Ditto Thing entity, which always belongs to
a namespace and is basically composed of an identifier and a series
of attributes and features. The attributes correspond to the static part
of the entity, whereas the features correspond to the dynamic part. In
this way, the framework provides full freedom to define how models
should be designed and how the tool should be used. After studying
different options, such as considering a Ditto Thing as a complete
twin and including each sensor as a feature of it, a design decision
was made to assign a Ditto Thing to a single entity or sensor and to
create parent–child hierarchies between these entities. This prevents
the creation of oversized Ditto Thing entities, which could decrease
the platform’s performance, and facilitates the management, reuse, and
communication of digital twins. In addition, it is also convenient to
include the creation and management of twin types. This streamlines
the tedious task of creating multiple twins that, while corresponding to
different physical devices, have exactly the same features. For instance,
in the case of a system comprising 10 components with identical
features, it becomes feasible to define a single type of digital twin for
that particular component and create 10 instances of twins based on it.
Fig. 1 represents in green the part related to these functionalities.

A digital twin can be considered both an entity that receives in-
formation from a single device and one that is composed of other
entities, which can also be understood as twins. A twin could then
be represented as a tree, where each leaf is the representation of a
single sensor. Thus, a factory that has three robots, and each one has
particular sensors, could be contemplated as shown in Fig. 2(a).

Regarding twin types in the factory example, creating a type can
facilitate the generation of additional robots of the same model, as is
the case for robots 1 and 2. Additionally, the sensors that make up the
robot type should be defined as their own types. For example, even
though sensor 2 (and therefore sensor 4) may belong to a different robot
type, they can still have the same model as sensor 5. Thus, the twin
types form a cycle-free graph, which could be represented as shown in
Fig. 2(b).

These guidelines have been implemented in a service called Ditto-
Extended-API12, which can be considered a layer above Eclipse Ditto
and which provides an API that replaces the one offered by this
technology. In addition to verifying that the specified constraints are
satisfied, this service adds all the respective functionality to the twin

12 https://github.com/ertis-research/extended-api-for-Eclipse-Ditto/
5

types, allowing both their management and the creation of twins from
them. It has been developed with the Node.js framework, an open-
source framework that functions at runtime and delivers excellent
performance in developing server-side tools, so it is a suitable option
for implementing this service.

Moreover, an application plugin13 has been developed for Grafana
that adds a graphical interface for managing twins and types using the
Ditto-Extended-API service, thus unifying all the functionalities of the
platform in the same application. ReactJS is used as the implementation
language, an open-source and component-based JavaScript framework
whose main purpose is to create user interfaces for single-page ap-
plications. On the other hand, Grafana provides a series of libraries
that allow improved integration with data sources and greater visual
consistency with the rest of the tool.

3.3. Prediction model integration with Kafka-ML

This milestone aims to achieve the integration of the platform with
machine learning algorithms. This might be useful for digital twins to
predict their next state or a situation of failure, as, for instance, the
values that a sensor should return in case no real data is received from
it, either because it has been switched off or because it has had some
kind of failure.

The part of the architecture that is in charge of achieving this
objective corresponds to the yellow components in Fig. 1. In this
part, the main component is Kafka-ML (Martín et al., 2022), which
will be in charge of machine learning life cycle management and
complement this architecture. In addition, in order to integrate it with
Eclipse Hono and Eclipse Ditto and fulfill the required functionality,
three specific services have been developed: Eclipse-Hono-to-Kafka-ML,
Error-Detection-for-Hono-with-Kafka-ML, and Kafka-ML-to-Eclipse-Ditto.

Kafka-ML is an open-source framework14 that manages the life cycle
of ML/AI applications in production environments through continuous
data streams. Unlike traditional frameworks that work on datasets or
static files, Kafka-ML allows both training and inference with continu-
ous data streams, enabling users to have fine control of the ingestion
data in popular ML frameworks such as TensorFlow and PyTorch.

One of the main purposes in the area of machine learning focused on
digital twins is the prediction of the future states of the twin, which may
be of considerable utility if control or improvement of the element that
the twin represents is sought. It also aims to predict certain features
or values of the twin that cannot be measured or obtained directly
or in any accurate way. As mentioned above, these models will be
deployed in Kafka-ML, so for their connection with Eclipse Hono, a
new specific Eclipse-Hono-to-Kafka-ML15 service has been developed.

13 https://github.com/ertis-research/digital-twins-plugin-for-Grafana/
14 https://github.com/ertis-research/kafka-ml/
15
 https://github.com/ertis-research/eclipse-hono-to-kafka-ml/

https://github.com/ertis-research/extended-api-for-Eclipse-Ditto/
https://github.com/ertis-research/digital-twins-plugin-for-Grafana/
https://github.com/ertis-research/kafka-ml/
https://github.com/ertis-research/eclipse-hono-to-kafka-ml/


Computers in Industry 152 (2023) 104007J. Robles et al.

M
t
t
l
c

M
m
d
s

3

o
c
f
i

s
c
m
i

a
p

k

This tool constantly reads from the Eclipse Hono endpoints that contain
devices whose data must be sent to these deployed Kafka-ML models.
When a message arrives, the service processes the data to comply
with the required format and automatically sends it to the respective
Kafka-ML-trained model.

Another of the strong points of this part is its ability to detect when
a sensor is not sending its data and to act in consequence. To this
end, service Error-Detection-for-Hono-with-Kafka-ML16 has been created,
which basically reads the information received by the specified Hono
endpoints and checks that the devices that are part of it are sending
their data in accordance with their periodicity. In case one of them
does not send the data when it is due, the service will send the last
values received from that sensor to a Kafka-ML-trained model with
historical data. Kafka-ML will predict the next state of the system to
avoid a service interruption due to the sensor failure until the sensor is
available again. To identify instances of data deficiencies, one timer is
set for each device to be controlled based on the time interval between
the two most recent messages received. In the event of the timer’s
expiration, Kafka-ML is activated, and if a new message arrives, the
timer is reset.

On the other direction, the data generated by Kafka-ML has to be
consumed by Eclipse Ditto. Initially, the idea was to take advantage
of the payload mapping functionality provided by Ditto to Kafka-
ML by creating a source connection to each of the Kafka-ML output
topics where models send the predictions and mapping the information
received so that it could be supported by Eclipse Ditto. This was not
viable since, at the time of the development of this platform, Eclipse
Ditto had not implemented the connection with Apache Kafka acting
as a data source. That is why it was decided to build an intermediate
service17 that would read the information from Kafka, map it to Eclipse
Ditto Protocol, and publish it to a message broker that Eclipse Ditto
could connect to, in this case, RabbitMQ,18 which uses AMQP 0.9.1.

These services are thread-based and are managed through an API. A
ongoDB database is used to maintain the persistence of the informa-

ion provided by users, which will indicate the output topics or devices
hat need to be controlled. The Flask framework, whose programming
anguage is Python, has been used, as it provides great facilities for
reating APIs and, unlike Node.js, it allows multithreading.

To sum up, the integration of the digital twin platform with Kafka-
L allows the provision of intelligence to digital twins through deep/
achine learning models and streaming data, and even to model the
ata disruption behavior of different sensors with the generation of
imulated data.

.4. 3D representation of the state of the twin

An important aspect of digital twin platforms is the representation
f the data. It is common to find 3D representations of digital twins that
onsiderably improve the visualization and comprehension of their in-
ormation and state. Achieving the integration of this 3D representation
s the main objective of this milestone.

The architecture that has been designed for 3D visualization corre-
ponds to the red components in Fig. 1 and basically consists of the
reation of a panel plugin for Grafana that allows the display of a 3D
odel developed with Unity19 with which it will be possible to interact

n both directions.
Unity is a software that mainly focuses on video game development,

lthough it can also be used in other contexts. It is one of the most
opular graphics engines with the largest community. Although it is

16 https://github.com/ertis-research/error-detection-for-eclipse-hono-with-
afka-ml/
17 https://github.com/ertis-research/kafka-ml-to-eclipse-ditto/
18 https://www.rabbitmq.com/
19
6

https://unity.com/
not an open-source tool, it can be used free of charge for personal use
or for low-budget projects. This technology allows assigning a certain
behavior to 3D objects through the use of scripts and interacting both
with the user and with other elements in the environment. Unity allows
the project to be built in several formats, including a specific one for
web rendering called WebGL. A panel plugin20 has been developed for
Grafana to load models in this format. This type of plugin allows the
creation of a custom panel that usually represents or uses data series,
which will depend on the query and the data source introduced by the
user in the panel configuration.

The plugin panel also enables bidirectional interaction with both
Grafana and the user. This means that any actions taken by the user
within Grafana will be reflected in the corresponding 3D model, and
conversely, any manipulations performed on the representation may
impact the information displayed in other panels of the dashboard.

In order to support these functionalities, the plugin’s implemen-
tation relies on the React Unity WebGL library, which facilitates the
integration of Unity compilations exported to WebGL format into any
React-based application and enables bidirectional communication be-
tween them.

4. Use case: Virtual analyzer in petrochemical industry

The OpenTwins platform has been validated through a Petrochem-
ical Industry 4.0 use case. The objective of the use case is to define
a virtual analyzer that is able to predict the freezing point of one
of CEPSA end products (lubricant) based on the operating conditions
and the properties of the feedstock. This process is carried out in the
San Roque (Spain) Energy Park of CEPSA, one of the largest refineries
in Spain. The freezing point is an important parameter that, due to
its characteristics, has to be measured offline in a laboratory. Based
on the monitoring of different operation conditions, such as the filter
operational conditions, the aim is to predict in Kafka-ML the state
of the freezing point in real-time for better control of the process.
This continuous prediction, together with the status of the monitored
sensors, has been modeled in a digital twin within our framework.
Digital twins have also been studied before in the petrochemical in-
dustry. For instance, a digital twin for production control purposes of a
catalytic cracking unit in the petrochemical industry is proposed (Min
et al., 2019). In this work, we go further by considering the modeling,
prediction, and 3D visualization of a process in this industry.

The company has provided us with real-time (through the MQTT
protocol) and historical data (to train ML models) from the necessary
sensors. These sensors will be considered twins in their own right, and
together they will compose the main twin being sought. From them,
the different digital twin types have been identified by grouping the
sensors that are identical in operation and description, and a Ditto
Thing scheme has been defined for each type and twin. For sending
real-time data, a tenant was created in Eclipse Hono and credentialed
devices have been added for each of the available sensors. At this point,
the twins should be receiving the data correctly, and their state over
time will be stored in InfluxDB, so Grafana dashboards can be created
according to requirements.

The freezing point predictive model that has been developed as the
target of the use case has been deployed in Kafka-ML. For its data input,
a script periodically makes a call to Eclipse Ditto to collect the current
state of the twins that represent the sensors required by the model. The
output data of this model is collected by the Kafka-ML-to-Eclipse-Ditto
service in order to update the freezing point feature contained in the
digital twin.

For the 3D representation of the twin’s state, a model was created
in Unity that contains enough elements to represent each of the sensors
that are part of the machine. In this model, each asset has been renamed

20 https://github.com/ertis-research/unity-plugin-for-grafana/

https://github.com/ertis-research/error-detection-for-eclipse-hono-with-kafka-ml/
https://github.com/ertis-research/error-detection-for-eclipse-hono-with-kafka-ml/
https://github.com/ertis-research/kafka-ml-to-eclipse-ditto/
https://www.rabbitmq.com/
https://unity.com/
https://github.com/ertis-research/unity-plugin-for-grafana/


Computers in Industry 152 (2023) 104007J. Robles et al.
Fig. 3. Final result of the digital twin for the use case.
with the ID of the sensor it represents, and the necessary code has
been implemented for the movement of the camera and the selection
of assets by clicking on them, as well as the script necessary for the
model integration in Grafana. Its WebGL export has been added to the
Grafana public folder, and the Unity panel has been included in one of
the boards.

Fig. 3 shows the final result of the digital twin-developed 3D rep-
resentation for the described use case. As a result, an easily adaptable
and extendable twin of the industrial process has been obtained, with
an eye-pleasing representation of its real-time status using different
types of graphics as well as a 3D model that, on receiving the data
from the sensors, provides the possibility of displaying data of interest
on the machine, such as its real movement, and allowing any type of
interaction with the user. Likewise, the platform allows easy querying
of the current state of the twin via the Eclipse Ditto API and its
state over time, using any of the query options provided by InfluxDB.
Furthermore, in terms of predictive concerns, machine learning models
are easily integrated with the twins, with the resulting value being
considered as any other feature of the twin.

The framework has successfully demonstrated its application in the
petrochemical industry, serving as a practical use case. However, it
should be noted that this solution is designed to be adaptable across
various domains. This versatility is achieved through the flexible nature
of its individual components.

When deploying a digital twin in a different domain, it becomes nec-
essary to define the attributes and features of both the main twin and its
sub-twins through the platform interface. Furthermore, if real-time data
needs to be collected, the corresponding devices can be defined and
monitored through Eclipse Hono, using the specific protocol employed
by the IoT devices. Similarly, other models can be defined in Kafka-
ML and integrated into OpenTwins to achieve the desired predictive
behavior. As for the three-dimensional representation, a new 3D model
of the asset has to be designed and compiled with Unity. However, once
compiled, it can be effortlessly incorporated into the platform using
the enabled plugin. In summary, creating a digital twin for a specific
use case only requires establishing the corresponding schematics, mod-
els, and connections, without the need for any modifications to the
architecture components.

5. Evaluation

The system, with a special interest in the freezing point prediction
component, is currently being gradually implemented in the factory.
7

Operators have provided generally positive feedback, indicating that
the use of the digital twin is assisting them in enhancing process
control, suggesting a promising start.

On the other hand, given the wide range of components used in
the framework in question, it was decided to conduct a comprehensive
evaluation with the primary objective of guaranteeing the optimal
performance of the entire system. This evaluation aims to ensure that
all elements involved function efficiently and maintain an acceptable
level of coherence and consistency in terms of quality.

Therefore, a series of tests will be carried out to validate the
performance and scalability through a latency analysis, as well as
the availability of the platform. These tests will use the construction
outlined in the previous section, taking into account the different
flows of which the architecture is composed. Specifically, the tests
will focus on the essential functionality (Test 1) and machine learning
(Test 2) flows, as the 3D visualization relies on a single component.
Moreover, evaluating the essential functionality accurately will require
considering scenarios where multiple sensors receive simultaneous up-
dates or where a single sensor receives multiple updates concurrently.
Furthermore, it is important to consider whether the platform is capable
of recovering quickly in the event of outages and to assess whether this
would lead to data loss (Test 3).

Test 1 will probe the latency and throughput of the digital twin’s
core functionalities with respect to the number of connected sensors
and the number of clients/connections used. Meanwhile, Test 2 will
calculate the same properties but will focus on the predictive flow of the
platform considering the number of simultaneous clients. Finally, Test 3
will check the fault tolerance of the platform by obtaining the average
recovery time of the services and determining whether the failure of
those services results in data loss.

5.1. Experimental setup

Hardware configuration. All the experiments were performed on
a five-node Kubernetes cluster in our private cloud infrastructure in
VMware vCloud. Each node has 4 virtual CPUs in 2 sockets and 16 GB
of RAM. The client that sent the information and from where the results
were measured was a PC with 64 GB of RAM, 1 CPU, and 10 cores.

Software configuration. Each one of the five nodes runs Kuber-
netes v1.19.3 and Docker 19.03.13 on top of Ubuntu 16.04.7 LTS. A
Kubernetes master was deployed in one node, whereas the remaining
four are Kubernetes workers. The PC with the client runs the Ubuntu
server.



Computers in Industry 152 (2023) 104007J. Robles et al.
Fig. 4. Latency and throughput of test 1 for different number of sensors.
5.2. Test 1 - Essential functionality flow

The test will evaluate the latency and throughput from the moment
data are sent to Eclipse Hono via MQTT to the moment they are stored
in InfluxDB within the dataflow used in the Petrochemical Industry
use case described. Here we have two test cases: different numbers
of sensors receiving data simultaneously, and different numbers of
clients/connections sending data simultaneously. The size of the data
sent has not been taken into account because all the messages share the
same format, so their size hardly varies.

5.2.1. Related to the number of sensors
For this test, historical data has been sent in the format specified

by the company, creating an MQTT connection for each sensor and
increasing the number of sensors to which data is sent simultaneously
using threads. The time at which each input is stored in InfluxDB is then
queried, and times are compared to obtain latency and throughput. The
result of each test by sensor number is the average of ten repetitions
of the test. Since the company provided us with data from 27 of
their sensors, this is the maximum number of sensors to be called
simultaneously in this test. Fig. 4 shows the results obtained.

It is clear that, as the number of affected sensors increases, latency
increases almost linearly and throughput decreases exponentially. This
result is in accordance with normality, and it should also be taken into
account that in a real-life scenario, not all the sensors of the platform
will receive the data simultaneously or with the same frequency, so we
can determine that the platform performs well as the number of sensors
(here twins) affected increases.

5.2.2. Related to the number of clients
This case is similar to the previous one, with the difference that

only data updates will be sent to a single sensor by a different number
of simulated clients using threads. The values sent in each message
are always unique, as each client increments by 0.01 a global value,
starting at 0. Likewise, the result of each test per number of clients is
the average of ten repetitions of this test. Fig. 5 shows the results, which
have also been limited to 27 clients to facilitate the understanding of
the graph and the comparison with the one explained above.

As can be seen, the latency exceeds one second of delay after 20
simultaneous clients. The throughput, on the other hand, maintains
a fair decrease. These results do not represent a problem since the
most common stage is that a twin or device receives data from a
single data source, except for simulated or predicted features, where the
number of clients could usually increase by one or two. This behavior
is also normal as sending all messages to a single twin can overload
it. Therefore, we can conclude that the system reacts correctly to a
coherent increase in the number of clients.
8

5.3. Test 2 - Machine learning prediction flow

In this test, the latency and throughput will be calculated for the
machine learning integration part of the architecture. Since there is
only one prediction model running in the use case for the freezing point
prediction, the test will always affect the same Eclipse Ditto twin, and
what we will vary is the number of clients sending input data to the
model. To relate each client to the outcome of the model, we have used
data inputs with known results, avoiding their repetition during each
of the tests. After the execution of the test with a certain number of
clients, InfluxDB is consulted for the time in which each piece of data
has been stored, which will allow later comparison. The result of each
test is an average of 10 executions. Fig. 6 shows the results achieved in
this test.

The results are very similar to those shown in the first test with
respect to the number of clients. Latency grows until it exceeds one
second delay with 17 simultaneous clients. Similarly, throughput de-
creases substantially. These are acceptable results compared to the
real-time data flow, as the difference between them is minor, and
it must be taken into account that a per-client prediction is made
during the process. Moreover, in this case, as in the previous one,
it is usual for a single client to initiate the flow, so the limitation
of simultaneous clients would not be a problem. Therefore, it can be
concluded that the platform exhibits appropriate responsiveness when
confronted with an increased volume of concurrent clients during the
machine learning-based prediction flow.

5.4. Test 3 - Error tolerance

This last test is based on checking the platform’s tolerance to
errors. To do this, a script has been created that sends a message to
Eclipse Hono via MQTT every half a second. While this is running, the
pod corresponding to the service to be tested is manually deleted in
Kubernetes. If a message cannot be sent, it will be resent as many times
as necessary, maintaining the initial time of the first sending. When
the end of the test is indicated, the data received will be extracted
from InfluxDB for comparison. The maximum time difference of the
test shall be considered the recovery time for that pod. Each test result
is the average of five test runs. In Fig. 7, we can see the results. The
selected pods follow the sequence from sending data to Eclipse Hono
until the moment the corresponding twin is updated in Eclipse Ditto
and is shown in the graph in that order. The combination of two or
more pods has not been included, as the result coincides with the
maximum recovery time between them.

As a result of this test, it can be observed that the vast majority
of the services exhibit significantly reduced recovery times, which are
fully acceptable for this kind of system. The exception is the Eclipse
Hono MQTT adapter, which has a higher recovery time, probably owing
to its dependence on the creation, configuration, and connection of an



Computers in Industry 152 (2023) 104007J. Robles et al.
Fig. 5. Latency and throughput of test 1 for different numbers of clients.
Fig. 6. Latency and throughput of test 2.
Fig. 7. Recovery time for each service. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

MQTT broker. On the other hand, by looking at the raw data obtained
in the test, we can determine which services involve a loss of data
during recovery. Those that do involve some data loss are marked in red
in Fig. 7, while those that do not are shown in green. This is not a big
problem, because of the short recovery time of the services, although its
resolution will be studied for future work. Based on the above, we can
conclude that the platform has good behavior with respect to errors, as
it is capable of recovering from them without causing a great loss of
data or requiring human intervention.
9

6. Conclusions and future work

Digital twins are emerging as a valuable resource in order to have
a better understanding of and anticipate possible situations that assets
may face in the physical world. Although a multitude of platforms have
been defined in the literature for the development of digital twins, they
are mainly focused on specific vertical contexts, and a significant evolu-
tion is needed to achieve effective and compositional digital twins. The
provision of preferably-open platforms for the development of digital
twins and their composition is one of the current needs in this area. In
this paper, we propose an open-source platform for the development
of compositional digital twins that can be adapted to multiple con-
texts. We refer to digital twins that can be seamlessly integrated with
predictive models through the open platform Kafka-ML, interactive
digital twins provided thanks to Unity’s support for 3D representations,
and a unified interface for real-time visualization and management of
IoT monitoring data for simple and complex models. To demonstrate
the feasibility of the platform, we have defined a digital twin of an
industrial process in the petrochemical industry. This process monitors
and predicts the freezing point of lubricant generation. Through the
digital twin, plant users can visualize the status of the plant and its
components (e.g., filters) directly on the 3D representation, as well as
the freezing point prediction in real time.

As future work for the platform, we envisage supporting the FMI
(Functional Mock-up Interface) standard in order to be able to simulate
complex processes that follow this standard and integrate them with the
3D representations of the platform. Furthermore, we intend to generate
hybrid twins that can take advantage of the low latency opportunities
offered by edge/fog systems and demonstrate the viability of the plat-
form in other contexts. We are currently working in the agricultural
sector on the development of digital twin solutions for irrigation pivots
and soil, with the overarching goal of creating a complex digital twin
of the crops.



Computers in Industry 152 (2023) 104007J. Robles et al.

C

D

i
i

D

c

A

1
T
m
A
s
D
o

R

A

A

A

A

B

B

B

B

C

C

C

D

CRediT authorship contribution statement

Julia Robles: Software, Conceptualization, First manuscript
draft and review. Cristian Martín: Supervision, Conceptualiza-
tion, Manuscript draft and review. Manuel Díaz: Supervision,

onceptualization, Manuscript review, Funding.

eclaration of competing interest

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Source code is open source21 but data used for the use case is
onfidential.

cknowledgments

This work is funded by the Spanish projects TSI-063000-2021-
16 (‘5G+TACTILE_2: Digital vertical twins for B5G/6G networks’),
ED2021-130167B-C33 (‘SIERRA: Application of Digital Twins to
ore sustainable irrigated farms’), PID2022-141705OB-C21 (‘DiTaS:
framework for agnostic compositional and cognitive digital twin

ervices’), and MIG-20221022 (‘GEDERA: Intelligent Flexible Energy
emand Management in Coupled Hybrid Networks’). Funding for
pen access charge: Universidad de Malaga/CBUA.

eferences

lsaadi, N., 2022. Modeling and analysis of industry 4.0 adoption challenges in the
manufacturing industry. Processes 10 (10), 2150.

rana-Landín, G., Laskurain-Iturbe, I., Iturrate, M., Landeta-Manzano, B., 2023a.
Assessing the influence of industry 4.0 technologies on occupational health and
safety. Heliyon 9 (3).

rana-Landín, G., Uriarte-Gallastegi, N., Landeta-Manzano, B., Laskurain-Iturbe, I.,
2023b. The contribution of lean management—Industry 4.0 technologies to
improving energy efficiency. Energies 16 (5), 2124.

tkinson, C., Kühne, T., 2021. Taming the complexity of digital twins. IEEE Softw. 39
(2), 27–32.

ello, S.A., Oyedele, L.O., Akinade, O.O., Bilal, M., Delgado, J.M.D., Akanbi, L.A.,
Ajayi, A.O., Owolabi, H.A., 2021. Cloud computing in construction industry: Use
cases, benefits and challenges. Autom. Constr. 122, 103441.

onney, M.S., de Angelis, M., Wagg, D., Dal Borgo, M., 2021. Digital twin operational
platform for connectivity and accessibility using flask python. In: International
ACM/IEEE Conference on Model-Driven Engineering Languages and Systems
(MODELS), OCT 10-15. pp. 239–243.

orth, M., Verriet, J., Muller, G., 2019. 2019 14th Annual Conference System of Systems
Engineering (SoSE). IEEE, pp. 164–169.

oyes, H., Watson, T., 2022. Digital twins: An analysis framework and open issues.
Comput. Ind. 143, 103763.

alvo-Bascones, P., Voisin, A., Do, P., Sanz-Bobi, M.A., 2023. A collaborative network of
digital twins for anomaly detection applications of complex systems. Snitch Digital
Twin concept. Comput. Ind. 144, 103767.

eArley, D., Burke, B., Searle, S., et al., 2016. Gartner’s top 10 strategic technology
trends for 2017.

onde, J., Munoz-Arcentales, A., Alonso, A., Lopez-Pernas, S., Salvachua, J., 2021.
Modeling digital twin data and architecture: A building guide with FIWARE as
enabling technology. IEEE Internet Comput..

ai, S., Zhao, G., Yu, Y., Zheng, P., Bao, Q., Wang, W., 2021. Ontology-based
information modeling method for digital twin creation of as-fabricated machining
parts. Robot. Comput.-Integr. Manuf. 72, 102173.

21 https://github.com/ertis-research/OpenTwins/
10
De Silva, D., Sierla, S., Alahakoon, D., Osipov, E., Yu, X., Vyatkin, V., 2020. Toward
intelligent industrial informatics: A review of current developments and future
directions of artificial intelligence in industrial applications. IEEE Ind. Electron.
Mag. 14 (2), 57–72.

Díaz, M., Martín, C., Rubio, B., 2016. State-of-the-art, challenges, and open issues in
the integration of Internet of things and cloud computing. J. Netw. Comput. Appl.
67, 99–117.

Glaessgen, E., Stargel, D., 2012. The digital twin paradigm for future NASA and U.S.
air force vehicles.

Grieves, M.W., 2016. Origins of the digital twin concept.
Grieves, M.W., Vickers, J.H., 2017. Digital twin: Mitigating unpredictable, undesirable

emergent behavior in complex systems.
Human, C., Basson, A., Kruger, K., 2023. A design framework for a system of digital

twins and services. Comput. Ind. 144, 103796.
Jia, W., Wang, W., Zhang, Z., 2022. From simple digital twin to complex digital twin

Part I: A novel modeling method for multi-scale and multi-scenario digital twin.
Adv. Eng. Inform. 53.

Kamath, V., Morgan, J., Ali, M.I., 2020. Industrial IoT and Digital Twins for a Smart
Factory : An open source toolkit for application design and benchmarking. In: 2020
Global Internet of Things Summit (GIoTS). pp. 1–6.

Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L., 2021.
Physics-informed machine learning. Nat. Rev. Phys. 3 (6), 422–440.

Liu, S., Lu, Y., Li, J., Song, D., Sun, X., Bao, J., 2021. Multi-scale evolution mechanism
and knowledge construction of a digital twin mimic model. Robot. Comput.-Integr.
Manuf. 71, 102123.

Marinagi, C., Reklitis, P., Trivellas, P., Sakas, D., 2023. The impact of industry
4.0 technologies on key performance indicators for a resilient supply chain 4.0.
Sustainability 15 (6), 5185.

Márquez, A.C., de la Fuente Carmona, A., Marcos, J.A., Navarro, J., 2020. Designing
cbm plans, based on predictive analytics and big data tools, for train wheel
bearings. Comput. Ind. 122, 103292.

Martín, C., Langendoerfer, P., Zarrin, P.S., Díaz, M., Rubio, B., 2022. Kafka-ML:
connecting the data stream with ML/AI frameworks. Future Gener. Comput. Syst.
126, 15–33.

Mehlan, F.C., Nejad, A.R., Gao, Z., 2022. Digital twin based virtual sensor for online
fatigue damage monitoring in offshore wind turbine drivetrains. J. Offshore Mech.
Arct. Eng. 144 (6), 060901.

Mendi, A.F., 2022. A digital twin case study on automotive production line. Sensors
22 (18), 6963.

Min, Q., Lu, Y., Liu, Z., Su, C., Wang, B., 2019. Machine learning based digital
twin framework for production optimization in petrochemical industry. Int. J. Inf.
Manage. 49, 502–519.

Nazarenko, A.A., Camarinha-Matos, L.M., 2020. The role of digital twins in collabora-
tive cyber-physical systems. In: Doctoral Conference on Computing, Electrical and
Industrial Systems. Springer, pp. 191–205.

Pang, T., Restrepo, J., Cheng, C.-T., Yasin, A., Lim, H., Miletic, M., 2021. Developing
a digital twin and digital thread framework for an ‘industry 4.0’ shipyard. Appl.
Sci. 11, 1097.

Papulová, Z., Gažová, A., Šufliarskỳ, L., 2022. Implementation of automation technolo-
gies of industry 4.0 in automotive manufacturing companies. Procedia Comput. Sci.
200, 1488–1497.

Rasheed, A., San, O., Kvamsdal, T., 2020. Digital twin: Values, challenges and enablers
from a modeling perspective. IEEE Access 8, 21980–22012.

Reiche, L.-T., Gundlach, C.S., Mewes, G.F., Fay, A., 2021. The digital twin of a system: A
structure for networks of digital twins. In: 2021 26th IEEE International Conference
on Emerging Technologies and Factory Automation(ETFA), SEP 07-10, 2021.

Rolle, R.P., Martucci, V.d.O., Godoy, E.P., 2021. Modular framework for digital twins:
Development and performance analysis. J. Control Autom. Electr. Syst. 32 (6),
1485–1497.

Shah, K., Prabhakar, T., Sarweshkumar, C., Abhishek, S., et al., 2021. Construction
of a digital twin framework using free and open-source software programs. IEEE
Internet Comput..

Tuegel, E., 2012. The airframe digital twin: Some challenges to realization. In:
Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference.

Yin, Y., Zheng, P., Li, C., Wang, L., 2023. A state-of-the-art survey on Augmented
Reality-assisted Digital Twin for futuristic human-centric industry transformation.
Robot. Comput.-Integr. Manuf. 81, 102515.

Zhao, Z., Wang, F., Gao, Y., Li, T., Ying, L., Liang, W., Li, Y., Dong, Z., 2022. Design
of a digital twin for spacecraft network system. In: 2022 IEEE 5th International
Conference on Electronics and Communication Engineering. ICECE, IEEE, pp.
46–50.

http://refhub.elsevier.com/S0166-3615(23)00157-4/sb1
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb1
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb1
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb2
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb2
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb2
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb2
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb2
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb3
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb3
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb3
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb3
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb3
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb4
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb4
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb4
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb5
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb5
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb5
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb5
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb5
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb6
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb6
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb6
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb6
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb6
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb6
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb6
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb7
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb7
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb7
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb8
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb8
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb8
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb9
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb9
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb9
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb9
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb9
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb10
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb10
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb10
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb11
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb11
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb11
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb11
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb11
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb12
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb12
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb12
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb12
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb12
https://github.com/ertis-research/OpenTwins/
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb13
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb13
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb13
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb13
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb13
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb13
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb13
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb14
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb14
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb14
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb14
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb14
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb15
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb15
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb15
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb16
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb17
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb17
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb17
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb18
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb18
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb18
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb19
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb19
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb19
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb19
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb19
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb20
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb20
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb20
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb20
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb20
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb21
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb21
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb21
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb22
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb22
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb22
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb22
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb22
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb23
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb23
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb23
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb23
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb23
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb24
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb24
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb24
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb24
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb24
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb25
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb25
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb25
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb25
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb25
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb26
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb26
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb26
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb26
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb26
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb27
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb27
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb27
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb28
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb28
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb28
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb28
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb28
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb29
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb29
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb29
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb29
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb29
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb30
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb30
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb30
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb30
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb30
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb31
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb31
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb31
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb31
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb31
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb32
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb32
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb32
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb33
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb33
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb33
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb33
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb33
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb34
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb34
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb34
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb34
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb34
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb35
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb35
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb35
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb35
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb35
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb36
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb36
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb36
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb36
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb36
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb37
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb37
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb37
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb37
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb37
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb38
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb38
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb38
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb38
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb38
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb38
http://refhub.elsevier.com/S0166-3615(23)00157-4/sb38

	OpenTwins: An open-source framework for the development of next-gen compositional digital twins
	Introduction
	Related work
	Digital twin frameworks
	Digital twin composition

	Open-source architecture for the design and development of 3D IoT-AI-powered compositional digital twins
	Basic functionality
	Compositionality support
	Prediction Model Integration with Kafka-ML
	3D representation of the state of the twin

	Use case: Virtual analyzer in Petrochemical industry
	Evaluation
	Experimental Setup
	Test 1 - Essential functionality flow
	Related to the number of sensors
	Related to the number of clients

	Test 2 - Machine Learning prediction flow
	Test 3 - Error tolerance

	Conclusions and Future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


