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Abstract
Detection of small objects is one of the main challenges to be improved in deep learning, mainly due to the small number

of pixels and scene’s context, leading to a loss in performance. In this paper, we present an optimized approach based on

deep object detection models that allow the detection of a higher number of elements and improve the score obtained for

their class inference. The main advantage of the presented methodology is that it is not necessary to modify the internal

structure of the selected convolutional neural network model or re-training for a specific scene. Our proposal is based on

detecting initial regions to generate several sub-images using super-resolution (SR) techniques, increasing the number of

pixels of the elements, and re-infer over these areas using the same pre-trained model. A reduced set of windows is

calculated in the super-resolved image by analyzing a computed graph that describes the distances among the preliminary

object detections. This analysis is done by finding maximal cliques on it. This way, the number of windows to be examined

is diminished, significantly speeding up the detection process. This framework has been successfully tested on real traffic

sequences obtained from the U.S. Department of Transportation. An increase of up to 44.6% is achieved, going from an

average detection rate for the EfficientDet D4 model of 14.5% compared to 59.1% using the methodology presented for the

first sequence. Qualitative experiments have also been performed over the Cityscapes and VisDrone datasets.

Keywords Convolutional neural networks � Super-resolution � Test time augmentation � Object detection �
Small objects

1 Introduction

In recent years, object detection has been applied to many

environments, including autonomous driving and video

surveillance. Numerous video surveillance systems in road

networks offer the potential to use and evaluate the gath-

ered information to identify significant events. Therefore, it

is necessary to get reliable object detection for the

sequences captured by these systems, constituting one of

the main problems in computer vision. This task was per-

formed through classical techniques. Today, many advan-

ces have been established within the area of deep learning.

The performance in classifying and detecting objects has

drastically improved thanks to convolutional neural net-

works over the last few years. The area of highway

surveillance systems is an excellent application for this

type of technology. Information on traffic density, road

safety, and pollution estimation could be obtained by

analyzing their direction, speed, and behavior. There are

many pre-trained models available for detecting and

locating elements from images. However, even with recent

advancements, some object detection-related challenges

still need to be solved for small object detection. In this

context, the vehicles are frequently smaller than the overall
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image size because of the camera distance. As a result of

budget limitations, cameras are often old-fashioned or have

poor performance, and image resolution is usually low, so

each vehicle is composed of a small number of pixels with

simple shapes and not small parts detail.

The angle, weather, and lighting conditions are variable

since these systems must be able to operate in different

locations and situations. It is vital to use a detection system

that is as accurate as possible to ensure a smooth and

efficient tracking process. One must also consider the

computational resources required to identify elements

within a video sequence. The use of graphics processing

units (GPU) is a crucial factor in applying the method in a

reasonable time. Works such as the one proposed by

Lingzhi Shen et al. [1] present a YOLOv3-based method to

enhance the capability of cross-scale detection and focus

on the valuable area, reducing the complexity of training

and paving the way for fast convergence. Zhihe Zhuang

et al. [2] proposed optimal iterative learning control ILC

algorithm addresses nonuniform trial lengths and input

constraints, offering potential improvements. Zhou et al.

[3] propose a PD-type iterative learning control algorithm

for spatially interconnected systems with unstructured

uncertainty that have the potential to be applied in that

field. Several algorithms focused on minimizing the com-

putation times required by the object detection model have

been developed, such as [4–6]. Despite the progress in

adopting these methods, such as [7], no solution trivializes

the computation time required to apply the object detection

model.

Identifying objects of small size is just as crucial as

identifying medium and large objects. The method pre-

sented has a wide range of relevant uses. This paper

focuses primarily on improving object detection algorithms

used for road sequences. The proposed solution can be

applied whenever small elements are not initially detected

in their entirety. Other applicable contexts are the industrial

field or the medical area. Under the premises described

above, there are significant shortcomings in detecting

small-scale elements due to the lack of methods and

techniques to improve performance and the low average

detection accuracy established by the pre-trained models.

The proposed solution in this article is a meta-model

that optimizes the performance of pre-trained convolu-

tional neural networks to improve small-sized object

detection using super-resolution (SR), increasing the class

score to obtain more reliable detections. This process

avoids modifying the structure or re-training existing

models, which are already pre-trained. A set of regional

proposals is determined based on the tentative elements

initially detected and a group of fixed areas. These regions

will be processed with a super-resolution model, generating

new sub-images selected through an optimization process

on which the model must re-infer, improving the time

required to process sequences. For this purpose, a graph is

calculated to generate the optimal number of sub-images

according to the initial elements detected based on a win-

dow’s size. We first studied the optimal window size and

performed detailed experiments to test the effectiveness of

the presented proposal. Subsequently, we prove quantita-

tively and qualitatively that our methodology improves the

performance initially obtained by the raw pre-trained

model.

The rest of this article is organized as follows. Section 2

on page 2 sets out the related work. Throughout Sect. 3 on

page 3, the improvements developed are detailed,

explaining the implemented workflow. Section 4 on page 4

includes the study about the windows-sliding (R) and their

respective results. Finally, in Sect. 5 on page 5, the con-

clusions and the future works to be developed according to

the proposed solution are outlined.

2 Related work

In this section, we first introduce deep learning-based

general object detectors, and then discuss relevant small

object detection methods, the advances in convolutional

neural network (CNN) models for super-resolution appli-

cations, and the contributions of our proposal.

2.1 Convolutional neural networks for object
detections

According to developments in deep learning, it has been

shown that approaches based on convolutional neural net-

works (CNN) have considerably improved object classifi-

cation and detection, thus obtaining good results. In line

with this improvement, several pre-trained models are

available. These can be classified into two main groups.

The first is R-CNN (region-based convolutional neural

network), which comprises two stages. First, it identifies

the areas of interest given an image through a selective

search or by using a network that proposes regions. Sub-

sequently, the model will infer over these areas to detect

elements. Several advances and improvements have been

made in this group, giving rise to models such as Faster

R-CNN [8]. This model introduces the region proposal

network (RPN) concept. This fully convolutional network

predicts the score and objects boundaries. These proposals

will be inferred using the element detection domain model.

Another model that stands out in this field is the one known

as EfficientNet [9]. This model consists of a convolutional

neural network architecture applied in combination with a

scaling method. Uniform scaling of the dimensions deter-

mines the compound coefficient regarding depth, width,
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and resolution. A base network has been developed by

searching for the optimal architecture that composes the

model, which is scaled to obtain a family of models. The

most simple one is called B0, which is based on the

inverted bottleneck residual blocks of MobileNetV2 [10], to

the most complex one set as B7. The models presented

above focus on the accuracy in detecting the elements

present in the image given as input, ignoring the speed

required for processing. For real-time detection, one-step

methods are available. Therefore, they ignore the genera-

tion of regional proposals and use local information. In this

area, highlight models such as SSD [11] or YOLO [12].

According to the last model, several advances, such as the

one established in [13], integrate the convolutional block

attention model (CBAM) to find the specific region in

scenarios with several dense objects. In addition, strategies

based on data augmentation, multiscale testing, and an

additional classifier are applied.

Works such as the one proposed by Subudhi et al. [14]

present a new algorithm for detecting and tracking moving

objects. A Markov random field (MRF) model is first used

to identify the scene attributes and to obtain a spatiotem-

poral segmentation of the elements. This segmentation uses

the maximum a posteriori probability (MAP) estimation

technique and a heuristic to optimize the required time. In

the field of element detection and tracking, there are works

such as the one proposed by Travis Mandel et al. [15],

where an algorithm called robust confidence tracking

(RCT) designed to improve element tracking through

accurate values of confidence in detection is established,

thus obtaining a robust performance. In video surveillance,

Kavitha et al. [16] propose an extreme machine learning

and action recognition scheme developed for semantic

concept detection in unnatural videos called MLE. From

video surveillance sequences, an efficient scheme is pro-

vided by encoding features with the help of a locally

aggregated descriptor vector (LAADV) to reduce the

required computational time. This paper uses cliques

through the modified branch-and-bound method (MBBM)

to solve such a problem. With the resulting features, deeper

features are obtained using CNN, thus demonstrating that

the proposed technique offers higher accuracy and lower

time complexity. Sheng Ren et al. [17] introduced an

advanced super-resolution framework for video object

detection. The framework combines object detection

algorithms, video keyframe selection algorithms, and

super-resolution reconstruction algorithms. The proposed

deep learning-based intelligent video detection object

super-resolution (SR) method uses a regression-based

object detection algorithm, a key video frame selection

algorithm, and an asymmetric depth recursive back-pro-

jection network for super-resolution reconstruction. This

approach enhances the resolution and visual clarity of key

objects, improving the accuracy and effectiveness of object

detection in videos.

2.2 Advances in the field of small object
detections

Despite the pre-trained models available, it has significant

problems to be improved. Their accuracy rate drops con-

siderably when the size of the elements is not big enough.

They are composed of several layers that process the

image, performing a series of convolutions. In each phase,

the number of pixels of the image given as input is reduced,

causing a loss in detecting small elements. In addition, they

have been trained and evaluated on well-known datasets

such as ImageNet [18] or MS COCO [19], in which most of

the objects contained in them have large portions con-

cerning the image. For example, EfficientDet [20], which

has a high rate for medium-sized elements, its efficiency

decreases with smaller elements. Models such as YoloV4

[12] obtain an overall mean average precision (mAP) of

43%. However, this score drops to 24.3% for small objects.

In small object detection, several advances, such as the

one defined by Rabbi et al. [21], propose a new architecture

formed by three components. An edge-enhanced super-

resolution GAN (EESRGAN) is applied in combination

with an edge-enhancement network (EEN) and an object

detection model. Through the application of the GAN

network, the quality of the image given as input is

improved. For this purpose, they used different end-to-end

detector networks where the loss was backpropagated into

the EESRGAN to improve the detection performance. This

advance requires training to be applied in a specific scene.

However, in our proposal, the model does not need re-

training. Other works, such as the one by Deng et al. [22],

propose an extended feature pyramid network (EFPN) with

an extra high-resolution pyramid level specialized for small

object detection. For this purpose, they developed a new

module called feature texture transfer (FTP) to apply super-

resolution and extract credible regional details simultane-

ously. The main difference with our proposal is that the

layers that compose the object detection model must be

modified. Our proposal can be directly applied to pre-

trained models, avoiding modification. For the autonomous

driving and vehicle detection domain, Su et al. [23] pro-

pose a feature pyramid spatial attention (FPSA), which

uses high-level features as attention information according

to low-level ones. Other works, such as Khan et al. [24],

propose a two-step-based approach. It applies the Faster

R-CNN model [8] to detect the given vehicles in an image

and subsequently employs morphological operations to

reduce those regions that are not of interest.
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2.3 Advances in super-resolution

According to the super-resolution (SR) application, several

models are available for direct use, such as [25–28]. Each

of these has a specific structure. Since we want to optimize

the times required to improve initial detections, we have

selected fast super-resolution convolutional neural network

(FSRCNN) [26]. This model introduces a deconvolution

layer to perform upsampling at the network’s end. Three

steps in FSRCNN replace the nonlinear mapping step in

super-resolution convolutional neural network (SRCNN):

shrinking, mapping, and expanding. Finally, the smaller

filter sizes and a deeper network structure provide better

performance and are tens of times faster than other models.

In particular, FSRCNN-s can be implemented in real time

on a generic CPU.

Applied to sequences, works like the one presented by

Kong et al. [29] propose a method to enhance the spatial

resolution in video sequences by combining information

with different spatiotemporal resolutions from various

cameras. This is achieved by constructing a training dic-

tionary using high-resolution images captured by a still

camera and enhancing low-resolution video by searching

this scene-specific database. This approach generates more

realistic results because the training is based on the specific

scene. Finally, the method presented enforces spatiotem-

poral constraints using conditional random fields (CRF).

The problem of video super-resolution is framed as finding

the high-resolution video that maximizes the conditional

probability. Camargo et al. [30] present a framework that

does not require the construction of sparse matrices. This

approach utilizes image operators in the spatial domain and

an iterated back-projection method to produce super-reso-

lution mosaics from frames of surveillance video captured

by unmanned aerial systems (UAS), where the information

analysis is usually affected by different factors, such as

motion blur. Numerical methods such as the steepest des-

cent, conjugate gradient, and Levenberg–Marquardt algo-

rithm were employed to solve the nonlinear optimization

problem in modeling the super-resolution mosaic.

2.4 Contributions of our proposal

Our proposal focuses on improving small vehicle detec-

tions on urban roads and aims to optimize the framework

[31]. This framework improves the mean accuracy preci-

sion (mAP) by re-inferring on multiple sub-images gener-

ated by applying super-resolution. Therefore, a new sub-

image is generated for each initially detected element.

Since we are analyzing sequences with elements close to

each other, several similar sub-images are generated. This

fact substantially increases the time required to process the

sequence. For this purpose, a new module is introduced for

calculating the minimum clique list, maximizing the

number of elements. Subsequently, a greedy algorithm is

applied to remove similar images, thus improving the total

time required by the object detection model. Our proposal

finds new visual elements thanks to the super-resolution

processes, the new enhancements added, and the further

optimization stage presented.

The presented methodology provides an efficient solu-

tion to improve the detection and precision of elements in

images. Compared to previously described approaches,

creating super-resolved images allows, first of all, to sig-

nificantly improve the quality of the images, thus

improving the accuracy in those cases where the system

generates low-quality images. Therefore, the re-inference

on these areas using convolutional neural networks avoids

the re-training of the model and the modification of its

structure. Thus, the described methodology can be imple-

mented in any convolutional object detection model,

making it versatile and adaptable for different scenarios

and applications. This article discusses the implementation

of the same in road sequences. However, this methodology

can be applied in other areas, with a significant impact on

the quality of the results, such as detecting elements in

medical images and remote sensing and video surveillance

systems, among others.

3 Methodology

This section details the presented methodology in Fig. 1,

stating each of the steps that compose it. We take advan-

tage of the fact that detection models based on convolu-

tional neural networks perform well in the high-resolution

domain. Given an input video frame XLR of size W � H

pixels where W is the width and H the height of the frame,

the first step is applying a super-resolution network G to the

original low-resolution image XLR to obtain a high-reso-

lution version ~XHR:

~XHR ¼ G XLRð Þ ð1Þ

Some pre-trained models are denoted as G for the execu-

tion of super-resolution (SR) processes to increase the

initial resolution of an image. Our goal is to process the

images optimally, so we have selected the model denom-

inated as fast super-resolution convolutional neural net-

work (FSRCNN) [26] for being one of the fastest models.

This model has several versions available for use. Each of

them determines a particular upscaling factor Z (X2, X3,

X4). The proposal can be performed by adjusting the

upscaling factor. It is crucial to determine the context of the

scene when choosing a specific Z to ensure accuracy.
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However, using a very high upscaling factor Z may cause

the object detection model to classify the object due to the

enlarged size incorrectly. Let WZð Þ � HZð Þ pixels be the

size of the super-resolved image ~XHR, where Z is the

upscaling factor (X2 selected).

The second step in Fig. 1 consists of processing the

input image XLR, which has a low resolution with the

convolutional neural network model F to yield a set of

tentative detections DLR:

DLR ¼ F XLRð Þ ð2Þ

This gives a list of detections named DLR:

DLR ¼ xi; yi; hi;wi; li; sið Þ k i 2 1; :::;Nf gf g ð3Þ

where xi; yið Þ are the coordinates of the upper left corner of

the ith detection, hi is its height, wi is its width, li is the

class label, si is the classification score (detection confi-

dence), and N is the number of initial elements detected.

The list of detections DLR is then filtered by a threshold

T because the class score si obtained for some of them will

be low. We define those detections as high confidence if

they overreach T, set to 0.35, or low confidence if they do

not exceed this threshold. This threshold represents the

minimum confidence that an object must have to be con-

sidered as a positive detection, and it takes a value from 0

to 1. Therefore, any element with a confidence score lower

than 0.35 will be ignored as a false positive. This threshold

Fig. 1 Workflow of the

proposed technique
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has been selected according to the dataset’s nature and the

complexity of the objects to be detected on which the

presented methodology is applied. By setting a threshold

higher than 0.35, it is possible to increase the specificity

and thus reduce the false positive rate while omitting

potential false negatives. With a lower threshold, sensi-

tivity is increased, but the risk of introducing false posi-

tives increases. The dataset is composed of small elements,

difficult to detect due to their size and the diffusion they

present with the background, among other problems.

Therefore, the threshold established to carry out the

experimental phase in section 4 represents a reasonable

compromise between accuracy and specificity over the

scope. After filtering out the detection with a confidence

lower than a threshold T, we obtain a reduced set of high

confidence detections D0
LR:

D0
LR ¼ xi; yi; hi;wi; li; sið Þ 2 DLR k si [ Tf g ð4Þ

Let us note D0
LR, the cardinal of DLR, i.e., the number of

high confidence detections in D0
LR. Also, let us consider a

ratio parameter R, which the user can edit to define some

specific windows of size WZRð Þ � HZRð Þ pixels in the

super-resolved image ~XHR to perform a second pass of the

object detection network.

The aim is to detect more objects and increase confi-

dence in the already found detections while keeping a low

computational load. This way, we need to perform object

detection in the sub-images I0 generated from the super-

resolved image ~XHR without having to pass the object

detection network exhaustively on all possible windows

that could be defined. Therefore, to set the sub-images I0 to

be generated to re-infer, we build a graph GR with D0
LR

nodes that represent the high confidence detections. Two

nodes i and j are connected in GR if and only if they

correspond to two detections that would fit into the same

window W of size WZRð Þ � HZRð Þ pixels. Steps 3, 4, and 5

in Fig. 2 show the graph generation diagram GR.

Next, in step 6, a maximal clique search by the Bron–

Kerbosch algorithm is done on GR, so that all maximal

cliques Ck � D0
LR are found. Let us note C, the set of all

maximal cliques of GR, and K, the number of such cliques.

A maximal clique is a set of nodes such that all of them are

connected with each other and that no other clique includes

it. It must be highlighted that all the detections that belong

to the same clique could be processed at once by selecting

a single window of size WZRð Þ � HZRð Þ pixels that

includes all of them. By generating the maximum list of

cliques, it is possible to determine which parts of the image

the elements are most frequently concentrated. This list

will be used to generate the optimal sub-images. This

mainly prevents the detection model from re-inferring on

similar sub-images, optimizing the time required to apply

our proposal. However, there are cases in which certain

cliques are contained in others with a greater number of

elements. Therefore, an optimization algorithm has been

developed and is described below.

The greedy algorithm in step 7 is employed to find out a

set of maximal cliques that covers all the detections in D0
LR.

At least P cliques select each detection. P is a tunable

parameter that the user can previously define. This value

sets the number of times a particular element will be

considered when generating the optimal cliques C0 list. The

algorithm reads as follows:

1. Set an integer count for each node of GR to zero.

2. Set a Boolean flag for each node of GR to false.

3. Set a Boolean flag for each maximal clique of C to

false.

4. Find a maximal clique in C that is flagged as false, with

the highest number of false-flagged nodes. Let us note

C0 such maximal clique.

5. Set the flag of C0 to true to indicate that it has already

been selected.

6. Increase the counter of all the nodes in C0 by one. Set

the flag of all nodes whose counters have reached P to

true to indicate that they have already been covered.

When one of the elements has been included at least

P times in several cliques, it is removed from the rest

of the cliques to be validated.

7. Those cliques contained in others with more elements

are removed.

8. If all the nodes of GR are flagged as true, then halt.

Otherwise, go to step 4.

After the execution of this greedy algorithm, an optimal list

of cliques C0 will have been established. According to the

optimized clique list C0, the smallest sub-images that

maximize the elements contained in each will be generated.

For each of the optimal cliques obtained, a new sub-image

is generated on which the object detection model will infer

again. Let C0
i be one of the cliques generated after per-

forming the above steps. It will be formed by a set of N

nodes, where each node represents one detected element.

C0
i ¼ xi; yi; hi;wi; li; sið Þ k i 2 1; :::;Nf gf g ð5Þ

In step 8, the center of each sub-image to be generated,

denoted as I0k is calculated. Therefore, the centroid (cx,cy)

of the elements contained in C0
i is computed. According to

a width wn and a length hn, which are initially set to the

size of the initial image given as input XLR, The window Xi

is centered at the center of the detection (cx,cy) and the new

sub-image I0k will be created starting from the super-re-

solved image ~XHR in step 9. We also create five sub-images

due to a set of fixed zones given the input image, denoted

as F1:::F5. Thanks to these fixed regions, we ensure that
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our proposal is applied over all regions of the image

denoted as XLR in case the model does not obtain any

initial detections.

Then, as shown in step 10 of Fig. 1, object detection is

performed on the set of generated sub-images denoted as I0,
thus obtaining a list S, with the detections of each sub-

image I0k where Ni is the number of detections for sub-

image Ik.

Si ¼ ~xi;j; ~yi;j; ~hi;j; ~wi;j; ~li;j; ~si;j
� �

k j 2 1; :::;Nif g
� �

ð6Þ

In step 11, the object detections of Si are computed in

coordinates of ~XHR. Therefore, they must be translated into

coordinates of XLR. The equation to convert a point ~h

expressed in coordinates of Xi to coordinates h of XLR is as

follows:

h ¼ yi þ
1

Z
~h ð7Þ

where yi is calculated as follows:

yi ¼
xi þ wi

2
;
yi þ hi

2

� �
ð8Þ

ai;j; bi;j
� �

¼ yi þ
1

Z
~xi;j; ~yi;j

� �
ð9Þ

ci;j; di;j
� �

¼ yi þ
1

Z
~hi;j; ~wi;j

� �
ð10Þ

qi;j ¼ ~li;j ð11Þ

ri;j ¼ ~si;j ð12Þ

Consequently, the set of object detections for the sub-im-

age I0 expressed in coordinates of XLR is:

S0i ¼ ai;j; bi;j; ci;j; di;j; qi;j; ri;j
� �

k j 2 1; :::;Nif g
� �

ð13Þ

where Ni is the number of detections for every sub-image

generated, ai; bið Þ 2 R2 are the coordinates of the upper left

corner of the ith detection within the sub-image I0k,

ci; dið Þ 2 R2 are the coordinates of the lower right corner of

the ith detection, qi is the class label of the detection, and

ri 2 R is the class score of the detection.

Finally, in step 12, a cluster K is computed, grouping the

translated detections coming from the optimal sub-images

generated I0 according to the Intersection over Union (IoU)

measure computed on their associated bounding box for

each pair of detections S0j and S0k.

IOU ¼
Area S0j \ S0k

� 	

Area S0j [ S0k

� 	 ð14Þ

The clustering operation is performed for simultaneous

group detections of the same element. The cluster K con-

forms to a list with the detections obtained for each ele-

ment i. According to this list, the detection with the highest

score for each element is selected. At the end of this pro-

cess, an image with a higher number of detections and

improved class inference of each element will be obtained.

The official implementation is publicly available.1.

4 Experiments

The objective is to determine the efficacy of our optimized

proposal. For this purpose, sequences captured by video

surveillance systems have been selected. A comparison of

the following methods was made:

Fig. 2 Generation of the

complete graph flow

1 https://github.com/IvanGarcia7/OSCOD.
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• Original model (raw): the unmodified raw object

detection model.

• SR Not Optimized: application of the proposal [31],

based on applying a sub-image on which to re-infer for

each element initially detected.

• Our proposal: an optimized framework. See Fig. 1 for

more details.

The main difference between the methods referred to as SR

Not Optimized [31] and our proposal is how sub-images for

re-inference are generated. SR Not Optimized generates

sub-images from the super-resolved image for each ele-

ment initially identified in the low-resolution image. This

approach has two limitations that our proposal addresses.

Firstly, because it generates sub-images from initial

detections, it may miss potential elements in certain areas

and leave them unprocessed. In contrast, our proposal

establishes five fixed regions to cover the entire image.

Another aspect to consider is the processing time for a

single frame. SR Not Optimized re-infers over each ele-

ment, leading to a processing time proportional to the

number of initial detections. On the other hand, our pro-

posal includes an optimization module that minimizes the

number of sub-frames to be processed based on the defined

window size. Specific parameters used during the experi-

ments are stated in Table 1.

4.1 Pre-trained models

The proposal presented aims to improve the detection of

small elements without modifying the convolutional neural

network model or re-training it. Therefore, our proposal

can be applied using any neural DCNN-based object

detection model. Six pre-trained models have been selected

from the TensorFlow Model Zoo repository:2

• CenterNet HourGlass104 Keypoints.

• CenterNet Resnet101 V1 FPN.

• Faster R-CNN Inception ResNet V2.

• EfficientDet D3.

• EfficientDet D4.

• EfficientDet D5.

These models have been trained with the COCO (Common

Objects in Context) dataset [19], thus obtaining a generic

model capable of detecting diverse classes in common

areas, a widely used dataset as a reference in the literature.

4.2 Video sequences

Several sequences captured by video surveillance systems

at high points have been selected. Four videos from U.S.

Highway 101 Dataset3 have been used. The systems are

from the U.S. Department of Transportation and collect

sequences of around 15 min each. It especially captures a

large number of small- and medium-sized vehicles. These

sequences have been manually annotated (632 manually

labeled images with a total of 19343 vehicles) and used for

quantitative and qualitative studies to evaluate our pro-

posal. The results have been restricted to the category

named car because the number of elements of that class for

the four selected video sequences was the predominant one.

We have also tested a series of frames from the dataset

named VisDrone (Vision Meets Drones) [32].

4.3 Metrics

The average number of generated sub-images to re-infer

has been used to evaluate the proposed methodology. This

metric is directly variable according to the window size

previously determined in the proposed methodology. It is

crucial to optimize the generated images, decreasing the

number of images on which to re-infer. This indicator

makes it possible to determine the optimal window size

that balances achieving high accuracy and reducing the

processing time required for a particular sequence. A larger

window size would allow for speeding up the processing

time. However, it could result in a lower accuracy due to

omitting some small elements. A smaller window size may

improve accuracy but significantly increase the time

required. This metric is essential for applications where

processing time is a decisive factor or requires processing

large datasets.

Another metric used is the COCO (Common Objects in

Context) evaluator framework,4 widely used in object

detection and segmentation tasks. It is a standard reference

for evaluating the models’ performance. For this reason,

the mean accuracy (mAP) has been selected as the evalu-

ation metric, thus allowing an exhaustive, reliable, and

objective evaluation of the quality of the detections pro-

vided by the model when applying the methodology pre-

sented. It computes the average precision value

Table 1 Selected values of the hyperparameters

Parameter Value

Maximum number of detections per frame 300

Minimum percentage of inference 0.35

Window size R 0–100%

2 https://github.com/tensorflow/models/blob/master/research/object_

detection/g3doc/tf2_detection_zoo.md.

3 https://www.fhwa.dot.gov/publications/research/operations/07030/

index.cfm.
4 https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/

pycocotools/cocoeval.py.
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Table 2 Average sub-images processed per frame obtained for sequence 1 of the U.S. Department of Transportation for the different pre-trained

models used based on different window sizes R of our proposal

Sequence 1—NGSIM dataset sb-camera1-0820am-0835am

Models

Proposal CenterNet HourGlass104

Keypoints

CenterNet Resnet101

V1 FPN

Faster R-CNN Inception

ResNet V2

EfficientDet

D3

EfficientDet

D4

EfficientDet

D5

SR Not

Optimized

24.503 ± 5.750 25.350 ± 4.374 22.175 ± 5.578 19.593 ±

4.443

29.316 ±

2.878

27.322 ±

3.429

OURS R =

0%

29.503 ± 5.750 30.350 ± 4.374 27.175 ± 5.578 24.593 ±

4.443

34.316 ±

2.878

32.322 ±

3.429

OURS R =

10%

28.582 ± 5.523 29.667 ± 4.086 25.119 ± 4.900 24.582 ±

4.430

33.836 ±

2.621

31.780 ±

3.110

OURS R =

20%

22.458 ± 4.457 23.780 ± 3.826 19.915 ± 3.803 20.124 ±

3.825

27.458 ±

2.772

25.525 ±

3.164

OURS R =

30%

21.045 ± 4.457 22.593 ± 3.861 18.107 ± 3.880 19.339 ±

3.792

26.316 ±

2.999

24.661 ±

2.846

OURS R =

40%

18.678 ± 3.811 20.232 ± 3.084 16.542 ± 3.469 17.565 ±

3.379

24.028 ±

2.530

22.531 ±

2.482

OURS R =

50%

16.435 ± 3.004 16.921 ± 2.291 14.938 ± 2.913 14.797 ±

2.401

20.503 ±

1.826

19.260 ±

1.899

OURS R =

60%

14.232 ± 2.154 14.282 ± 1.889 14.085 ± 2.405 12.808 ±

1.889

17.141 ±

1.809

15.870 ±

1.788

OURS R =

70%

12.960 ± 2.065 13.051 ± 1.668 13.226 ± 2.040 11.599 ±

1.698

15.768 ±

1.956

14.277 ±

1.800

OURS R =

80%

11.797 ± 2.037 12.169 ± 1.524 12.328 ± 1.628 10.797 ±

1.455

14.299 ±

1.858

12.972 ±

1.567

OURS R =

90%

10.610 ± 1.928 10.842 ± 1.243 11.006 ± 1.550 10.175 ±

1.257

12.299 ±

1.502

11.373 ±

1.224

OURS R =

100%

9.294 ± 1.232 10.056 ± 0.955 9.977 ± 1.266 9.831 ±

1.209

11.045 ±

1.413

10.497 ±

1.160

Table 3 Mean average precision obtained for the first sequence according to different window sizes R using the EfficientDet D4 model. A

detection is considered valid when having confidence that exceeds the set threshold of 35%

Sequence 1—NGSIM dataset sb-camera1-0820am-0835am—EfficientDet D4—confidence[ 0.35

Proposal IoU = 0.5:0.95-all IoU[ 0.5-all IoU[ 0.75-all IoU = 0.5:0.95-small IoU[ 0.5-medium

Raw 0.145 0.188 0.187 0.137 0.218

SR Not Optimized [31] 0.47 0.697 0.588 0.468 0.484

Ours R = 0% 0.591 0.848 0.748 0.598 0.539

Ours R = 10% 0.591 0.848 0.747 0.598 0.541

Ours R = 20% 0.588 0.849 0.749 0.593 0.547

Ours R = 30% 0.584 0.838 0.75 0.591 0.525

Ours R = 40% 0.59 0.848 0.762 0.597 0.541

Ours R = 50% 0.586 0.838 0.749 0.593 0.518

Ours R = 60% 0.588 0.839 0.754 0.596 0.516

Ours R = 70% 0.585 0.839 0.752 0.593 0.512

Ours R = 80% 0.584 0.829 0.753 0.593 0.503

Ours R = 90% 0.572 0.819 0.736 0.583 0.473

Ours R = 100% 0.563 0.808 0.725 0.576 0.448
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determining how accurate the model gives the predictions.

The average precision is calculated over multiple IoU

(Intersection over Union), the minimum area selected

based on the annotation set as GT (ground truth), and the

one obtained by the model to consider a coincidence as

positive.

Finally, the average confidence (score) of the detections

obtained by the model in a sequence provides information

on the quality of the detections, allowing a comparison

based on the selected window size to determine how it

influences this value.

4.4 Results

Our optimized proposal requires the selection of a tunable

parameter R to calculate the elements called neighbors. The

center of the bounding box of the first object is calculated,

and a defined window size R is used to create a region to

determine whether two elements are neighbors. If the

second element is entirely within this region, it is consid-

ered a neighbor. For each video sequence, it will be nec-

essary to determine the optimal size of R to reduce the

workload on which the model will have to re-infer.

According to the set value, the number of sub-images to re-

infer will decrease as R increases. Table 2 shows the

number of sub-images generated according to the different

window sizes set and their respective standard deviation.

We can highlight how at first, SR Not Optimized processes

a smaller number of sub-images than our proposal with a

window size of 0%. This difference is due to including the

five fixed regions in the image to process it completely,

thus avoiding cases where no initial tentative areas are

detected. As the window size increases, we can decrease

the number of images required for processing by up to

60%, for example, in the CenterNet HourGlass104 Key-

points model compared to the SR Not Optimized method.

It can be verified that as the window size is increased to a

size greater than 10%, the number of optimal candidate

regions is significantly minimized. The window size cal-

culates the neighbors of two detections. Reducing the

number of candidate areas with a relatively small window

is difficult because the cliques will be conformed directly

for only each initially detected element. Overall, an aver-

age speedup of 57.9% is obtained for the six models

evaluated by the SR Not Optimized technique compared to

the methodology presented with a window size of 100%.

Table 3 shows the mAP obtained for the non-optimized

proposal denoted as SR Not Optimized, as well as for each

of the applied window sizes of our proposal. First, we can

determine that the mean average rate (mAP) obtained by

the RAW model is low, obtaining an overall score of 0.145

and 0.137 for small elements. Relating the results of

Tables 2 and 3, the overall mAP increases considerably

using our optimized proposal, obtaining a 0.59 accuracy

rate and 0.597 for small-sized elements, processing 16.67%

fewer images with a window size R of 40% for the Effi-

cientDet D4 model. We achieve higher accuracy than the

one reached with the SR Not Optimized proposal,

Fig. 3 Average score per frame

using different windows sizes

R for sequence 1 of the U.S.

Department of Transportation

Neural Computing and Applications

123



computing fewer sub-images. This fact happens in the rest

of the window sizes of our proposal, obtaining in the most

restrictive case (R = 100%) a 0.563 accuracy compared

with SR Not Optimized with 0.47.

Figure 3 shows the average confidence obtained for

each element detected in sequence one by modifying the

parameter R. As the size of the window increases, the

number of sub-images to be processed is reduced, which

implies that the same object could be detected fewer times.

According to the results, the average score obtained for the

detected elements is not significantly reduced according to

the selected window size. Figure 4 represents the balance

between precision and computational complexity. The x-

axis of the figure sets the average number of sub-images

required to re-infer by each proposal. At the same time, the

y-axis represents the general mean average precision

(mAP) for the mean of the result obtained for the four

sequences. The RAW proposal obtains the worst results

since, even though it only has to process the input image

once, the mAP obtained is very low. We set the best

solutions to proposals close to the upper left corner since

this will mean that it has obtained the highest mAP by

processing the least number of sub-images. We can

therefore determine that our proposal significantly outper-

forms SR Not Optimized, getting a better mAP by reducing

the computation in terms of sub-image processing. It is

worth mentioning the good synergy that the application of

our proposal has with models of the EfficientDet family

since the results obtained are more than four times higher

than the RAW model. Our proposal obtains the best results

even in the most restrictive case with window size R =

100%. To better illustrate the increase in the detection rate

Fig. 4 Balance between precision and computational complexity.

Average sub-images processed are presented on x-axis. y-axis
represents the mean average precision (mAP). Both axis coordinates

have been calculated using the mean of the four sequences of the U.S.

Department of Transportation using two competitors and our proposal

with different windows sizes R
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of our proposal compared to the original model, a series of

qualitative results are shown, represented in Figs. 5, 6, and

7. To demonstrate the present improvement through the use

of this proposal, we have also tested a series of frames from

the dataset named VisDrone (Vision Meets Drones) [32],

see Figs. 8 and 9. According to the results discussed in this

section, implementing the optimized proposal improves the

accuracy of the elements initially detected by the model but

also detects objects not identified a priori.

5 Conclusions

This paper proposes an optimization algorithm to improve

the technique’s speed presented previously in [31]. First,

the detector model sets tentative elements to perform

super-resolution. After that, it generates super-resolved

sub-images to re-infer on it. The proposed greedy algo-

rithm maximizes the cliques which contain the largest

possible number of elements, minimizing the number of

sub-images on which to infer. These results in more

Fig. 5 Frame 3 of the first video denoted as sb-camera1-0820am-

0835am processed by CenterNet HourGlass 104 Kpts with a

confidence [ 50%. The left side shows the results obtained by the

raw model, while the right side shows the detections after applying

our optimized proposal with R = 50%

Fig. 6 Frame 134 of the second video denoted as sb-camera3-0750am-0805am processed by EfficientDet D3 with a confidence[35%. The left

side shows the results obtained by the raw model, while the right side shows the detections after applying our optimized proposal with R = 50%
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accurate estimates of the characteristics of previously

detected objects and the detection of additional objects that

the object detection network did not initially detect. The

advantage of our proposal is that it avoids modifying the

internal structure of the model, as well as re-training for a

specific scene. The results determine that the application of

our proposal improves the mean average precision (mAP)

compared with the raw model or the direct application of

super-resolution to the full image given as input. We can

highlight EfficientDet D4 whose mAP is considerably

Fig. 7 Frame 32 of the third video denoted as sb-camera4-0820am-0835am processed by EfficientDet D4 with a confidence[35%. The left side

shows the results obtained by the raw model, while the right side shows the detections after applying our optimized proposal with R = 50%

Fig. 8 Frame 0000001_05499_d_0000010 of the VisDrone dataset [32] processed by EfficientDet D4 with a confidence[ 50%. The left side

shows the results obtained by the raw model, while the right side shows the detections after applying our optimized proposal with R = 50%

Fig. 9 Frame 0000213_03920_d_0000243 of the VisDrone dataset [32] processed by EfficientDet D4 with a confidence[ 35%. The left side

shows the results obtained by the raw model, while the right side shows the detections after applying our optimized proposal with R = 50%
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increased, going from an accuracy of 14.5% obtained by

the pre-trained model up to 59.1% when applying the

optimized approach. Furthermore, experimental results

show that increasing the window size can lead to better

results, thereby reducing the processing time required for

some cases. However, it is essential to perform a prelimi-

nary analysis based on the area of application to determine

the optimal parameters of the proposed approach. This

analysis can ensure the methodology is optimally applied

to provide the best balance between accuracy and time

required. Overall, our proposed approach provides a flex-

ible and efficient solution to improve the accuracy of

convolutional neural models to optimize specific applica-

tion areas.

According to future lines, there are several avenues to

pursue for the future development of the proposed

methodology. Firstly, incorporating techniques aimed at

feature selection is contemplated to improve the perfor-

mance on the areas of interest in a sequence where the

camera is placed in a static position. Some of these

methods could be SIFT or SURF, among others. Applying

these methods would allow the selection of relevant

regions, improving the localization of objects, thus

improving their accuracy after re-inferring with the con-

volutional neural network. Additionally, integrating tem-

poral information for object detection in static video

sequences could be another promising direction, as it is

often required to track objects captured by a static video

surveillance system.
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