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Abstract. Nowadays new applications based on the 3D printing technique demand increasingly strict 
product quality requirements. The in-situ monitoring of variables associated with the manufacturing 
process through the application of different techniques could help to evaluate the process and 
ultimately to ensure product quality. In this regard, the acquisition and evaluation of variables and 
indexes derived from thermographic analysis during the process are key for an early defect detection 
and can contribute to quality estimation. In this work, a new methodology is proposed for the 
monitoring and analysis of the additive manufacturing process based on the processing of 
thermographic images from an LWIR (Long Wave Infrared) camera. The methodology and the 
suitability of the variables and indexes extracted during the monitoring of the manufacturing process 
are discussed for the case of a 3D fused filament fabrication of polymers.  

Introduction 

Additive manufacturing, AM, is the process of joining materials to create objects from a three-
dimensional or 3D model generally done layer by layer (ASTM: American Society for Testing and 
Materials) [1]. The AM is able to produce fully functional models from metals, ceramics, polymers, 
composites, hybrids and others such biological tissues in the field of bioengineering [2, 3]. 

Among all these materials, polymers remain the most widely used up to now, mainly due to the 
achieved basic properties by objects, the relative process simplicity to obtain complex geometries and 
low manufacturing costs [4]. 

The AM is a technology conceived from different contributions made by different researchers 
since the eighties of the last century and originally started at Nagoya Industrial Research Institute in 
Japan by the researcher Hideo Kodama [5]. 

The great development of this technology along last years has come as a consequence from its 
potential benefits: direct translation from model design to part/component, easy customization 
without additional tooling or manufacturing costs, development of external and internal complex 
features, ability to obtain finished components or with almost no additional processing, potential zero 
waste manufacturing, reduction in overall product development, flexibility to adapt customer needs, 
on-demand manufacturing and excellent scalability [6]. 

These benefits have provided an extensive growth in several application fields as aerospace 
industry (complex geometries with advanced materials as titanium alloys and nickel based  
superalloys, high temperature resistant ceramics), automotive (structural and functional parts, braking 



 

systems, ultra-light weight alloy parts for competition vehicles), biomedical (orthopedic and dentistry 
implants, artificial tissues and organs, biological sensors and mechanisms), construction (aggregate-
based materials structures, complex-shaped columns, energy high-performance structures, 
sustainable and renewable components), electronic devices, textile fabrics, energy generation and 
distribution elements, military industry and many others [4, 7-8]. 

Despite the advantages provides by this technology, drawbacks can also be detected posing 
challenges facing the future. In this way, it can be indicated issues related to great dimension 
components manufacturing, production time reduction, setup simplification and optimization of 
process parameters, increase quality of final products, defects detection, standardization, post-
processing, product compatibility, cost reduction, and initial investments among others [5, 9].  

With respect to component quality, the manufactured part must fulfill compliance and observance 
of final material properties, shape, structure and characteristics with which it has been conceived [6]. 
Currently, the main drawback of additive manufacturing to increase its implementation in the industry 
has its origin in the variability and uncertainty of the structural properties of the manufactured parts, 
specifically, micro-structural heterogeneities and randomly dispersed defects within the volume of 
the part [1].  

In this sense, research studies are oriented to the optimization of the mechanical properties of the 
pieces through the parameters of the manufacturing process, analyzing how they affect the anisotropy 
and mechanical resistance of the piece. The main parameters of the process that are usually studied 
are the type of material used (brand, density, molecular weight, quality, etc.), the additive 
manufacturing technology applied, the percentage of filling, the orientation of the print 
(characteristics of the trajectories and direction of construction), thickness of the deposited layers, the 
fill pattern, the bead cross-sectional dimension and the post-processing [4]. 

The most dangerous defects that can occur during the manufacturing process are mainly due to 
cracks (with a degree of affectation on the mechanical and aesthetic properties of the object according 
to the dimensions of the crack), porosity (distributed throughout the entire volume of the piece and 
that affect its mechanical properties), local pore groupings (can give rise to cracks during the 
operational life or in service of the object), residual stresses (can cause deformations, loss of geometry 
and formation of macro-cracks) and the possible influence of surface roughness on the fatigue 
resistance of the final product, a subject that is still under study today [9, 10]. 

The quality control actions on additive manufactured parts could be addressed from several non-
destructive methods such as optical, visual and measuring, ultrasonic, Eddy-current, x-ray, magnetic, 
capillary and thermography. These non-destructive testing methods are important from the point of 
view of they make possible to evaluate the quality of a component without violating its integrity or 
worsening its service characteristics being of special interest among them ones based on non-contact 
measurement and potentially automatable [10]. 

In the specific case of the fused filament fabrication (FFF), there are two forms for quality 
monitoring of process [11]: monitoring of printer health state and detecting product defect during 
printing. The first approach can be carried out fixing different types of sensors (vibration, acoustic 
emission, accelerometers, infrared thermometers, thermocouples and vision cameras) in certain 
locations in printer. Subsequently, the acquired data are processed and analyzed for determining the 
current state of the printer. A second approach can be done acquiring and processing images from a 
vision camera during the printing process to obtain product quality relevant information: in-process 
printing temperature variations, in-process abnormalities detection (first layer and inter-layer bonding 
error, shrinkage and warpage error, product positioning error), infill defects, surface roughness and 
dimension or geometry accuracy (data-driven or model-based). 

In additive manufacturing processes, the heat transfer mode plays a fundamental role for final 
product quality. This heat transfer can be driven through several mechanisms in FFF processes [12]: 
heat induced by heating unit, filament convective cooling with surrounding air, heat exchange 
between adjacent filaments, heat exchange between part and platform bed, radiative losses and heat 
source from exothermal crystallization for semi-crystalline polymers. These heat transfer 
mechanisms will be affected by certain parameters associated with the process: liquefier temperature 



 

(affects the adhesion between filaments), platform bed temperature (affects the bonding of filaments) 
and print speed (affects the cooling rate and the bonding size at the interface of filaments). 

This work addresses, specifically, the in-situ monitoring of the manufacturing process of parts 
made of polymeric materials by means of a thermographic camera installed in a 3D fused filament 
fabrication (FFF) printer. Specifically, the experimental phase has been carried out by printing 
specimens with PLA (PolyLactic Acid) polymer. Through the processing and analysis of images 
acquired by a LWIR thermographic camera, it is intended to obtain variables and indexes that 
influence properties related to the quality of the parts. The proposed methodology based on computer 
vision could allow an early detection of defects during the process and establish strategies to improve 
the final quality of the product. 

Infrared thermography 

Infrared thermography is a technology based on radiometry, a part of physics that describes the 
transfer of energy in the form of electromagnetic radiation along all wavelengths of the 
electromagnetic spectrum within a range comprised between 0.78 µm and 1000 µm. It is precisely in 
this region of spectrum where temperature measurements are made using thermographic cameras, 
specifically in three specific areas: SWIR (Short Wave Infrared Radiation) between 0.7 and 3 µm, 
MWIR (Medium Wave Infrared Radiation) between 3 and 5 µm and LWIR (Long Wave Infrared 
Radiation) between 5 and 14 µm [13]. 

A thermographic camera can measure the temperature distribution of the surface of an object 
without making any contact with it. The camera sensor is made up of a series of discrete elements 
called micro-bolometers that detect the infrared radiation emitted by bodies and transforms it into a 
temperature matrix, generally in the form of a thermographic image or thermography [14]. 

Despite the advantages of infrared thermography (non-contact technology, two-dimensional 
thermal images, real-time scanning, technology safe for humans and non-invasive technique for 
products) it also has some drawbacks or challenges to overcome (low-medium sensor resolutions, 
relative costly technology, some difficulties for image interpretation and highly dependent on 
working conditions) [15]. 

Numerous applications have been successfully developed over the years within the field of infrared 
thermography research. In this regard, it has been applied in the field of material sciences 
(deformations and fractures, duct inspection, thermoplastic material inspection, welding process 
inspection, material deposition analysis, friction analysis of surfaces in contact, materials and 
structural mechanics heat transfer studies) [16], sports science [17], architecture and evaluation of 
buildings and constructions [18], historical and artistic heritage [19], inspection of electrical and 
electronic systems [20], aerial unmanned vehicles inspection [21], inspection and supervision of 
manufacturing processes [22, 23], medical applications [24], security and surveillance [25], fire 
detection [26], etc. 

Elements and experimental setup 

The specimen selected for monitoring during the printing process was a type-V from D638-14 
ASTM standard (Standard Test Method for Tensile Properties of Plastics) [27]. A commercial PLA 
filament with diameter 1.75 mm (± 0.05 mm tolerance) and density 1.24 g/cm3 was used for printing 
specimens in a Creality Ender-3 V2 printer. It was used a 15% infill density with gyroid fill pattern 
and rectilinear top/bottom layers fill pattern. The platform bed and extruder nozzle were set to 55 ºC 
and 212 ºC respectively. 



 

 
Fig. 1. (a) Test bench main elements. (b) Lateral view with the camera-printer relative positioning. 

 
Fig. 2. (a) PLA specimen. (b) head printer during processing. 

Regarding the LWIR thermographic camera, the model used was an Optris Xi 400 (uncooled FPA 
detector, 382 x 288 pixels with 17 μm x 17 μm pitch sensor, from 7.5 μm to 13 μm of spectral range 
and 80 mK of thermal sensivity - NETD) with a 20 mm focal distance mounted lens. It was configured 
to measure within the 0 ºC to 250 ºC temperature range at a 27 Hz frame rate. The acquisition of data 
and images from this camera is done by connecting the camera to a host PC through an USB 2.0 
connection cable and running a software application interface developed for this purpose that 
integrates a library (IRImagerDirect SDK) from Evocortex manufacturer (Nürmberg, Germany). This 
software application also integrates the OpenCV computer vision library (release 4.5.1.) for the 
development and execution of software code related to image processing tasks and algorithms. 

In Fig. 1 (a), it is shown the test bench used during the experimental stage with the 3D printer and 
the thermographic camera. The PLA specimen (Fig. 2. (a)) is built on the printer platform bed by 
extruding the material through the printer head which is composed of the extruder nozzle and the 
coolend and hotend fans (Fig. 2. (b)). The camera is fixed perpendicular to the printer at 250 mm of 
distance away from the extruder nozzle and 38 mm above the platform bed (Fig. 1 (b)). Considering 
this setup and the camera-lens characteristics, the field of view (FOV) and instantaneous field of view 
(IFOV) obtained were about 90 mm and 0.65 mm width respectively.  



 

 
Fig. 3. Processing tasks workflow: previous task (from stage 1 to 4) and in-process tasks (from stage 5 to 12). 

Methodology 
The application of spatial-temporal processing techniques on the images acquired by the 

thermographic camera allows to know the temporal evolution of the temperature in determined 
regions of the image and, in a certain way, to estimate the heat dissipation that occurs during the 
specimens manufacturing. 

On this subject, the proposed methodology is based on applying certain computer vision 
algorithms on acquired images that allow to subsequently quantify several variables and indexes over 
regions of interest (ROIs). The ROIs will be set manually or automatically, the latter by applying 
techniques based on segmentation or more advanced like pattern matching [28–30]. 

Regarding to data obtained from ROIs, statistic indexes will be computed (mean, median, standard 
deviation, min, max, etc.) to evaluate thermal region behavior, slope calculation for analyzing thermal 
gradients and computer vision advanced algorithms, as optical flow ([31, 32]), for estimating the 
deposition speed and angle of material bead. 

The processing task workflow is divided into two parts (Fig. 3): previous and in-process tasks. 
While in the first part, the configuration and start-up tasks of the system are carried out, in the second 
one, a sequential image acquisition and processing procedure to obtain data is done. 

Workflow sequence 
In stage 1, the camera configuration and adjust is carried out (camera positioning, frame rate, 

temperature measuring range, etc.), as well as the ROIs emissivity (the platform bed was set to 0.75, 
the extruder nozzle to 0.82 and the extruded PLA material to 0.92 [33]). After that (stage 2), a camera 
calibration procedure is carried out to obtain the intrinsic and extrinsic parameters of the camera that 
will be necessary later for the correction and transformation of data. Then (stage 3), a nozzle model 
is created from a cropped image necessary for subsequent pattern matching. Finally (stage 4), the 
sizes of manual ROIs are adjusted. 

 A cyclic procedure is performed in second part (in-process tasks). This part starts with the 
acquisition of a new image from camera (stage 5). This image is converted to 16-bit gray level before 
its processing by image processing algorithms. In stage 6, the extruder nozzle is searched to find its 
position in whole image by a pattern matching algorithm. Then, the found extruder nozzle position is 
used to set the relative positioning of ROIs in the image (stage 7). 



 

 
Fig. 4. Image processing tasks: (a) extruder nozzle contour for pattern matching (red), elliptical ROI for platform bed temperature 
measuring (blue) and square ROI for extruder nozzle temperarure measuring (green); (b) ROI and vector field for speed and angle of 
the bead deposition measuring (optical flow); speed and angle values for detected deposition bead (red line) from left to right side (c) 
and right to left side (d). 

The deposition of the material on the specimen surface is analyzed by means of speed and angle of 
bead deposition (stage 8). Both variables are obtained by applying the optical flow technique where 
the displacement that can occur in the pixels between two consecutive images is evaluated. Thus, the 
displacement produced with respect to elapsed time between such images will correspond to the speed 
(measured in mm/s) and its direction respect horizontal axis of the image will correspond with the 
angle (measured in degrees). A laplacian of gaussian (LoG) filter followed by a thresholding 
algorithm is applied on image to find the bead deposition location (stage 9) and to obtain the spatial 
evolution of its temperature and calculate the thermal gradient (stage 10). In stage 11, the statistics 
indexes of ROIs are computed and finally the obtained results of current processing cycle are stored 
(stage 12) waiting for the next acquisition and processing cycle. 

Results and discussion 

Fig. 4 shows some processed images during cyclic in-process part of computer vision tasks. In 
particular, Fig. 4. (a) shows the ROIs configured for temperature measuring of both platform bed and 
extruder nozzle and how the extruder nozzle model contour is found in the image by the pattern 
matching algorithm. 

 



 

 

Fig. 5. Temperatures evolution for extruder nozzle and platform bed. 

 

Fig. 6. Bead deposition speed (left) and angle (right). 

The vector field obtained for speed and angle estimation of the bead deposition it is shown in Fig. 
4. (b). Finally, Fig. 4. (c) and (d) show the detected deposition bead location according to extruder 
nozzle displacement direction (the right to left and left to right direction is marked with a red arrow) 
after filtering and thresholding the image. Also, the speed and angle of bead deposition median values 
are shown. 

The Fig. 5 shows the temperature values for the extruder nozzle and platform bed throughout a 
sequence of 500 processed images during the printing of a layer. The total median and standard 
deviation obtained were 211.3 ºC and 2.3 ºC for the extruder nozzle temperature and 54.7 ºC and 0.8 
ºC for the platform bed temperature respectively. It can be seen that the median temperatures obtained 
are similar to the printer setting values (212 ºC for the extruder nozzle and 55 ºC for the platform 
bed). 

In the results obtained for the estimation of the speed and the angle of the material bead deposition 
(Fig. 6), it can be clearly observed accelerations, decelerations and direction changes of the material 
deposition. Cyclic repeating patterns corresponding to the trajectories made by the printer during the 
filling of the layer are also observed. 

 



 

 

Fig. 7. Instantaneous bead deposition temperature profiles obtained according to extruder nozzle displacement direction. 

The Fig. 7 shows the temperature profile obtained in two processed images, one for a material bead 
deposition from the right to the left side of image and the other one from the left to the right side. The 
temperature profile measurements start close to the extruder nozzle and end at a distance that can be 
set by adjusting the LoG filter and the segmentation process. It can be observed that the greater the 
distance from the extruder nozzle, the lower the temperature of the bead obtained showing a 
progressive cooling of the material. 

Conclusions 

In this work, an in-situ monitoring process based on thermography has been performed during the 
printing of PLA specimens in a commercial 3D printer. The thermographic images acquired by an 
LWIR camera suitably positioned to monitor the printing process have been processed by algorithms 
based on computer vision in a cyclical sequence. Different regions of interest have been manually 
and automatically set within the image to evaluate and analyze several variables and indexes in a 
spatial and temporal way. In particular, statistical values of the temperature trending for the platform 
bed and the extrusion nozzle, estimated values for the instantaneous speed and angle of the material 
bead deposition and its profile temperature from the extruder nozzle have been obtained. 

Although the results obtained are promising and could help to detect defects during the process 
and, ultimately, estimate the quality of the printed components, it is still premature to make a decision, 
so it will be necessary to continue with more in-depth experimentation on the outlined methodology. 
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