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Abstract
We consider the Hilbert-type operator defined by

1 1 12
H,(f)(2) = / f@) (E / B (u) du) w(t)dt,
0 0
where {B?}:GJD are the reproducing kernels of the Bergman space A?a induced by a radial
weight w in the unit disc D. We prove that H,, is bounded on the Hardy space H”,1 < p < oo,
if and only if
sup 2(3) < 00, ()

and

! 1 P T
r 1 — o~ t p/
sup / —dt ! / & dt < 00,
O<r<l1 0 w(t)P r 1—t

where o(r) = frl w(s)ds. We also prove that H,, : H'! — H!is bounded if and only if (1)
holds and
o(r) (/’ ds >
sup - < OQ.
refo,n 1 —r \Jo (s)
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As for the case p = oo, H,, is bounded from H* to BMOA, or to the Bloch space, if and
only if (1) holds. In addition, we prove that there does not exist radial weights @ such that
H,: HP — H?,1 < p < 00, is compact and we consider the action of H,, on some spaces
of analytic functions closely related to Hardy spaces.

Keywords Hilbert operator - Hardy space - Bergman reproducing kernel - Radial weight

Mathematics Subject Classification 47G10 - 30H10

1 Introduction

For 0 < p < o0, let L‘”0 1 be the Lebesgue space of measurable functions such that

1
117, =f O df < oo,
0,1 0

and let H(D) denote the space of analytic functions in the unit disc D = {z € C : |z| < 1}.
The Hardy space H? consists of f € H(ID) for which

| fllur = sup Mp(r, f) < oo,

O<r<l1

where

1

1 21 . ?
My, f) = (—/ |f(re“’>|Pd9> . 0<p<oo
27‘[ 0
and

Moo(r, f) = max |f(re'?)].

For a nonnegative function w € L[lo’ 1 the extension to D, defined by w(z) = w(|z]) for all
z € D, is called a radial weight. Let AZ) denote the weighted Bergman space of f € H(D)
such that ||f||A2 = Jplf(@Pw(@)dA(z) < oo, where dA(z) = dxndy is the normalized

area measure on . Throughout this paper we assume @(z) = fli\ w(s)ds > Oforallz € D,
for otherwise A2 = H (D).

The Hilbert matrix is the infinite matrix whose entries are h, y = (n + k + DL ke
N U {0}. It can be viewed as an operator on spaces of analytic functions, by its action on the
Taylor coefficients

- < flk
f(")'_’zinﬁlr n e NU {0},
k=0

called the Hilbert operator. That is, if f(z) = thio f(k)zk e H(D)

k
H(f)() = Z(Znﬁi]) " (1.1)

n=0 \k=0

whenever the right hand side makes sense and defines an analytic function in .
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Hilbert-type operator on Hardy spaces... Page 3 of 36 2

The Hilbert operator H is bounded on Hardy spaces H” ifand only if | < p < oo [4]. A
proof of this result can be obtained using the following integral representation, valid for any
feH,

1
1 -1z

1

H(f)(z) 2/0 @) dt. (1.2)
Going further, the formula (1.2) has been employed to solve a good number of questions in
operator theory related to the boundedness, the operator norm and the spectrum of the Hilbert
operator on classical spaces of analytic functions [1, 3, 5, 24]. During the last decades several
generalizations of the Hilbert operator have attracted a considerable amount of attention [9,
11, 24, 26]. We will focus on the following, introduced in [26]. For a radial weight w, we
consider the Hilbert-type operator

1 1 z
H,(f)(2) 2/ f@) (*/ Bf"(()ﬂ) w(t)dt,
0 ZJo

where {BY};ep C A2 are the Bergman reproducing kernels of A2. The choice w = 1 gives
the integral representation (1.2) of the classical Hilbert operator, therefore it is natural to
think of the features of a radial weight w so that H,, has some of the nice properties of the
(classical) Hilbert operator. In this paper, among other results, we describe the radial weights
o such that the Hilbert-type operator H,, is bounded on H”, 1 < p < oo.

In order to state our results some more notation is needed. For 0 < p < oo, the Dirichlet-
type space leil is the space of f € H(D) such that

171y = 17OF + [ 1F@IPa =) dac) < .
.

and the Hardy-Littlewood space H L(p) consists of the f(z) = Z;O:O f(n)z” € H(D) such
that

L1 = D_IFmIP( 4+ DP? < oo
n=0

We will also consider the space H (oo, p) = {f € H(D) : ||f||’;1(oo’p) = fol ME(r, f)dr <
oo}. These spaces satisfy the well-known inclusions
D[’;_1 C H? c HL(p), 0<p <2, (1.3)
HL(p) C H? C Dﬁj_l, 2<p<oo, (1.4)
and
H” C H(co, p), Dy | CH(o0,p), 0<p<oo. (1.5)

See [6, 7, 14] for proofs of (1.3) and (1.4), and [27, p. 127] and [8, Lemma 4] for a proof of
(L.5).
The Bergman reproducing kernels, induced by aradial weight w, canbe writtenas BY (§) =

> en(z)en(¢) for each orthonormal basis {e,} of Ai, and therefore using the basis induced
by the normalized monomials,

e}

BY() =) er z,§ €D, (1.6)

2w
=0 2n+1
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Here wy,+1 are the odd moments of w, and in general from now on we write @, =
fol r*w(r)dr for all x > 0. A radial weight  belongs to the class D if &(r) < ca(%)
for some constant C = C(w) > 1 and all 0 < r < 1. If there exist K = K(w) > 1 and
C = C(w) > 1 such that @(r) > C@(l - 1%) forall 0 < r < 1, then w € D. Further,
we write D = D N D for short. Recall that @ € M if there exist constants C = C (w) > 1
and K = K(w) > 1 such that w, > Cwg, for all x > 1. It is known that DcM [23,
Proof of Theorem 3] but D C M [23, Proposition 14]. However, [23, Theorem 3] ensures
that D = D ND = D N M. These classes of weights arise in meaningful questions con-
cerning radial weights and classical operators, such as the differentiation operator f or the
Bergman projection P, (f)(z) = fD f&)BL() w($)dA(Z) [23]. We will also deal with the
sublinear Hilbert-type operator

~ ! 1 [%
Hy,(f)(2) :f [f (D] (*/ B,‘”(E)dC) w(t)dt.
0 z Jo

If X,Y C H(D) are normed vector spaces, and T is a sublinear operator, we denote
ITlx>y = SUp| rlx <1 IT(Hlly.

Theorem 1 Let w be a radial welght and 1 < p < oo. Let X,,,Y, € {H(oo, p), H?,

Dllj_l, HL(p)}and T € {H,, Hw} Then the following statements are equivalent:

(i) T: X, — Y, is bounded;

1 1
. N 1 P re
(ii) @ € Dand Mp(w) = supyen (ano M) (Zn =N w2n+1(” + 17 2) <
00;
1 1
=~ N 1 P i
(111) e DandMP(w) = SUPyeN (Zn:o m) (Zn N w2n+] (I’l + 1)1) 2) <

Q] . ]
(iv) w e D and M (@) =supgy_, | (for Z}ﬁdl)” (j; (w(t)) d[) < 00.

The proof of (i)=(iii) of Theorem 1 has two steps. Firstly, we prove that o € ’5,
and later on the condition M,(w) < oo is obtained by using polynomials of the form
fnm(@@) = Z/?/I:N 5, (k + DB N, M e N, «, B € R as test functions. Then, we see
that any radial weight o satisfying the condition M, (w) < 00, belongs to M. This proves
(i)« (iii). The proof of (iii)<>(iv) is a calculation based on known descriptions of the class
D [21, Lemma 2.1]. Finally, we prove (iv)=-(i) which is the most involved implication in
the proof of Theorem 1. In order to obtain it, we merge techniques coming from complex
and harmonic analysis, such as a very convenient description of the class D, see Lemma 14
below, precise estimates of the integral means of order p of the derivative of the kernels
Ky (2) = % foz B (z) du, decomposition norm theorems and classical weighted inequalities
for Hardy operators.

Observe that both, the discrete condition M,(w) < oo and its continuous version
M (w) < oo, are used in the proof of Theorem 1. The first one follows from (i), and
the condition M, .(w) < oo is employed to prove that T : X, — Y, is bounded.

As for the case p = 1 we obtain the following result.

TheoremZ Let w be a radial weight, X1,Y1 € {H(co, 1), H' DO,HL(I)} and T €
{Hy,, Ha,} Then the following statements are equivalent:

(i) T : X1 — Y is bounded;
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(i) w e D and the measure e defined as diLy,(z2) = w(2) ( 12 wa;i)) X10,1)(2) dA(z) is
a 1-Carleson measure for X;
(iii)) w € D and satisfies the condition

1 1
M (w) = sup ; w(t) </ ds ) dt < oo;
acio.ny 1 —a Ja w(s)

(iv) w € D and satisfies the condition M .(w) < 0o,
(/0 w(s)) 00,

V) we D and satisfies the condition M 4(w) = sup,¢o. 1)

(vi) w e D and satisfies the condition

al 1
Mi(w) = sup(N + Doy —— <
NeN kzz(:) (k + 1) wyy

We recall that given a Banach space (or a complete metric space) X of analytic functions
on DD, a positive Borel measure ¢ on D is called a g-Carleson measure for X if the identity
operator I; : X — L9(u) is bounded. Carleson provided a geometric description of p-
Carleson measures for Hardy spaces H?, 0 < p < oo, [6, Chapter 9]. These measures
are called classical Carleson measures. The proof of Theorem 2 uses characterizations of
Carleson measures for X-spaces, universal Cesaro basis of polynomials and some of the
main ingredients of the proofs of Theorem 1 and [26, Theorem 2].

Concerning the classes of radial weightsﬁand Mpy,:={w: My (w) <o0},1 <p<oo,
a standard weight w(z) = (1 —|z])?, B > —1, satisfies the condition M,, c(w) < ocoifand
onlyif 8 > -- —1,s0 H, : H? — HP? is bounded if and only if § > - — 1. Moreover,

a calculation shows that the exponential type weight @ (r) = exp (—ﬁ) € M, . for any

p €[l,00), but w ¢ 5, see [28, Example 3.2] for further details. So, D and M), . are not
included in each other.

The study of the radial weights w such that H, : H? — HP? is bounded, has been
previously considered in [26]. Indeed, Theorem 2 improves [26, Theorem 2], by removing
the initial hypothesm w e D On the other hand, [26, Theorem 3] describes the weights w € D
such that H,, : L[0 H ? is bounded, and consequently gives a sufficient condition for
the boundedness of H,, H P — HP 1 < p < oo. The following improvement of [26,
Theorem 3] is a byproduct of Theorem 1.

Corollary 3 Let w be a radial weight and 1 < p < oo. Let Y, € {H(o0,p), H"

DIPFI, HL(p)}and T € {H,, Hw} Then the following statements are equivalent:
G T: LY 0.y~ Y, is bounded;

(i) w € D and satisfies the condition

= o (10 [ i) ([ o )
my,(w) = sup + —dt w(t t < 00;
b 0<r<l1 0o w()? r

>iil) w € D and satisfies the condition m (w) < oo.

In relation to an analogous result to Corollary 3 for p = 1, Theorem 26 below
shows that the radial weights such that T : LlO n Y, is bounded, where Y| €

{H(co, 1), H', DO, HL()}and T € {H,, H } are the weights w € D such that m(w) =
ess sup; o, 1) @ (1) (1 + fot j(i))
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2 Page60f36 N. Merchén et al.

In view of the above findings, we compare the conditions M, (@) < 00, M), 4(w) < 00
andm p(w) < ooin order toput the boundednessof T : X, — Y, alongside the boundedness
of T : LY 0.y p» Where X,, Y, € {H(c0, p), H?, D _1» HL(p)} and T € {H,, H }
forl < p < o0. Bearlng in mind (1. 5) it is clear that the condmon mp(w) < oo implies that

M, (@) < oo, for any weight w € D. Moreover, observe that M pe(@) < oo if and only if

1 , L
r 1 —, l At p p/
sup (1 +/ Aidt>l / <£) dt < o0, whenl <p < oo
O<r<l 0 a)(t)P r 11—t

and sup,¢[o, 1) 1 p— ( + foa wd(i)) < oo if and only if M 4(w) < oo. So, the conditions
M, (w) < oo and mp,(w) < 00, are equivalent for any 1 < p < oo whenever w satisfies
the pointwise inequality
ot
() < # 1 €[0, 1), 1.7

and @ € D. The condition (1.7) implies restrictions on the decay and on the regularity of the
weight, in fact if w fulfills (1.7) then w cannot decrease rapidly and cannot oscillate strongly.

For instance, the exponential type weight w(r) = exp( ! ) which is a prototype of
rapidly decreasing weight (see [18]), has the property

or) <o) (1—r)?, 0<r<l,

so it does not satisfy (1.7). On the other hand, any regular or rapidly increasing weight
satisfies (1.7). Regular and rapidly increasing weights are large subclasses of D, see [25,
Section 1.2] for the definitions and examples of these classes of radial weights. However, we
construct in Corollaries 19 and 28 weights @ € D with a strong oscillatory behaviour so that
M (w) < oo and m p(w) = o0, and consequently they do not satisfy (1.7).

With the aim of discussing some results concerning the case p = oo, we recall that the
space BMOA consists of those functions in the Hardy space H! that have bounded mean
oscillation on the boundary of ID [10], and the Bloch space 5 is the space of all analytic
functions on DD such that

Iflls =1f0)+ sug(l — 121/ @) < oo.

We also consider the space H L(00) of the f(z) = ZOOZO f(n)z” € H(ID) such that

I fllEL(o0) = sup (n +1) |f(n)| < 0.

neNU{0

The following chain of inclusions hold [10]

HL(co) C BMOA C B. (1.8)
If w is a radial weight
oo © 1
Wp 1 xt 1 1
H,(1 = ——x" > — =—1 —, € (0,1),
(D) §2w2n+1(n+1)x _2x’§)n+l 2x 0g<1—x> x<O.1)

so H,, is not bounded on H°. As for the classical Hilbert matrix H, it is bounded from H°
to BMOA [13, Theorem 1.2]. So, it is natural wondering about the radial weights such that
H, : H® — BMOA is bounded. The next result answers this question.
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Theorem 4 Let w be a radial weight and let T € {H,,, I:ZO}. Then, the following statements
are equivalent:

(i) T : H*® — HL(00) is bounded;
(i) T : H*® — BMOA is bounded;
(iii) T : H*® — B is bounded;

(iv) w € D.

The equivalence (iii)<>(iv) was proved in [26, Theorem 1], so our contribution in Theorem 4
consists on proving the rest of equivalences.

Bearing in mind Theorems 1, 2 and 4, we deduce that T € {H,,, FI;)} is bounded from H°
to HL(o0) if T : X, — Y, is bounded, where X, Y, € {H(oc0, p), H?, D;’fl, HL(p)},
1 < p < oo. We prove that this is a general phenomenon for Hilbert-type operators and
parameters 1 < g < p.

Theorem 5 Let w be radial weight, T € {H,,, I:I:,} and 1 < g < p < oo. Further, let
Xq, Yy € {H?, D} |, HL(q), H(00,q)} and X, Y, € {H?, D)) |, HL(p), H (00, p)}. If
T : X, — Y, isbounded, then T : X, — Y, is bounded.

We also prove that that there does not exist radial weights  such that H,, : X, — Y, is
compact, where X, Y, € {H?, D;’_], HL(p), H(oo, p)} and 1 < p < o0, neither radial
weights such that H,, : H>® — B is compact, see Theorems 22, 31, 34 below.

The letter C = C(-) will denote an absolute constant whose value depends on the param-
eters indicated in the parenthesis, and may change from one occurrence to another. We will
use the notation a < b if there exists a constant C = C(-) > O such thata < Ch,anda 2 b
is understood in an analogous manner. In particular, if a < b anda 2 b, then we write a =< b
and say that a and b are comparable. We remark that if a or b are quantities which depends
on a radial weight w, the constant C such that a < b or a 2 b may depend on w but it does
not depend on a neither on b.

The rest of the paper is organized as follows. Section 2 is devoted to prove some auxiliary
results. We prove Theorem 1 and Corollary 3 in Sect. 3, and Theorem 2 is proved in Sect. 4.
Section5 contains a proof of Theorem 4 and Theorem 5 is proved in Sect. 6 together with
some reformulations of the condition M), (@) < oco.

2 Preliminary results
In this section, we will prove some convenient preliminary results which will be repeatedly
used throughout the rest of the paper. The first auxiliary lemma contains several characteri-

zations of upper doubling radial weights. For a proof, see [21, Lemma 2.1].

Lemma 6 Let w be a radial weight on D. Then, the following statements are equivalent:

(i) weD;
(i) There exist C = C(w) > 1 and By = Bo(w) > 0 such that

—~ 1—r ﬂA
w(r)=<C - (), 0<r<t<l;
forall B > Po.
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2 Page80f36 N. Merchén et al.

(iii)
! 1
/ sSo(s)ds < 6(1 - 7>, x €[1, 00);
0 X
@iv) There exists C = C(w) > 0 and B = B(w) > 0 such that
y\#
a)XSC(f) wy, 0<x <y <ooc;
X )

v) D(w) = SUP, e a(j’—;” < 00.

We will also use the following characterizations of the class ﬁ, see [23, (2.27)].

Lemma 7 Let w be a radial weight. The following statements are equivalent:
() e Dy
(i1) There exist C = C(w) > 0 and ay = ag(w) > 0 such that

1_ o
a(s)gc<1—j> 51), 0<i<s <1

forall0 < a < ap;
(iii) There exist K = K(w) > 1 and C = C(w) > 0 such that

1—L=r
/ " w(s)ds > Co(r), 0<r <]1.
B

@2.1)

Embedding relations among spaces X, Y, € {H?, DY . HL(p), H(oco, p)} are quite

p—1°
useful in the study of operators acting on them. In particular, we recall that

I lH@o.p) < Cpllfllx,, 0<p <oo,

for X, € (H?, D)}, see [27, p. 127] and [8, Lemma 4].

2.2)

This inequality is no longer true for X, = HL(p) if 0 < p < 1. In fact, take f(z) =
Z;ozo 2%z2". A calculation shows that f € HL(p), if 0 < p < 1. However, using [15,

Theorem 1],

1 00 ; p [e'e)
||f||2(oo’p) =/0 (ZZMZ ) ds < Zl = 00.
n=0 n=0

Our following result extends the inequality (2.2) to X, = HL(p) and 1 < p < oc.

Lemma8 Let 1 < p < oo. Then, there is C, > 0 such that

I lz@o.py < Cpllfllx,, f € HD),

where X, € (H?, Dﬁ_l, HL(p)}.
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Proof By (2.2) it is enough to prove the inequality for X, = HL(p). By [15, Theorem 1]
and Holder’s inequality

1 1 e8] P
/Mé”o(t,f)dtff (Zlf(n)w) di
0 0 n=0

00 2n+171 p

SIFOP+> 727 Y 1F W)
n=0 k=2"

2n+l 1

<I f0)|P+ZZ"<P DN fl
n=0 k=2"
o) 2n+l_1

IFOP+Y " Y G+ DT =1 F1 )
n=0 k=2"
This finishes the proof. O

For 0 < p < oo and w a radial weight, let LZ [0.1) be the Lebesgue space of measurable
functions such that

1
A2, =/ I f O (1) dt < .
@,[0,1) 0

Next, we will prove that the sublinear operator H does not dlstlngulsh the norm of the spaces

H (oo, p), HL(p), Dp 1» H?, when 1 <p<ooanda>eD

Lemma9 Letw e D, 1 < p<ooand Xp,Y, € {H(co, p), HL(p), DY . HP). Then,

p—1
I Ho(Hlix, < 1 Ho(Olly,. [ €LY 01

Proof Here and on the following, letus denote I (n) = {k € N : 2" < k < 2"}, n € NU{0}.
By Lemma 6

Woynt2 X k42 X W X wyn, foranyn € NU {O}andk € I(n). 2.3)

The above equivalences and [15, Theorem 1], yield

p
- Jo 1fO1* o) dr </1 ),,
i, _N"on Qo lf@itowmdr) )
VN = Z keIZ() W Do 1o

n 1 4
AZT (fo |f @)t w(t)dz) (/0 |f(t)|w(t)dz>

Won+1

1
= ||Hw(f)||HL(p)» /e Lw,[0,1)~

This, together with [26, Lemma 8], finishes the proof. O
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2 Page 100f36 N. Merchén et al.

3 Hilbert-type operators acting on X,-spaces, 1 < p < c©
3.1 Necessity part of Theorem 1

We begin this section with the construction of appropriate families of test functions to be
used in the proof of Theorem 1. To do this, some notation and previous results are needed.
Let g(z) = Y o 2(k)zF € H(D), and denote A, g(z) = Zke](n) 2(k)zF. In the particular

case g(z) = 11: we simply write A, (z) = A, (g)(2) = Zkel(n) zF. We recall that
1Al gr < 2071P) 0 e NU{0}, 1< p < o0, (3.1

see [2, Lemma 2.7].

For any ny, ny € NU {0}, ny < na, write Sy, »,8(z) = ZZ;: S(k)z*. The next known
result can be proved mimicking the proof of [13, Lemma 3.4] (see also [24, Lemma E]), that
is, by summing by parts and using the M. Riesz projection theorem.

Lemma10 Let 1 < p < oo and A = {A}Re, be a positive and monotone sequence. Let
8(x) = Y02 bk and (1g)(2) = Y32 M.

(a) If {Ax },fio is nondecreasing, there exists a constant C > 0 such that
C™ ki ISny a8l e < 1Snyny AN err < Chany Sy nr 8l a0
(b) If {Ai}z2 is nonincreasing, there exists a constant C > 0 such that
C™ 2 ISy maglle < 1Snym Cg)llir < Coony 1S, s gl -

Lemmall Letw € D, 1 < p < 00, a, B € Rand M, N € NU {0} such that 0 < N <
4N + 1 < M. Let us consider the function

M
fnm@ =) o+ 1P
k=N

Then,
| fvmllELp) < I fNmllEr < ||fN,M||DII;_ , (3.2)

1

where the constants involved do not depend on M or N. In particular, if @ = O then (3.2)
holds for any radial weight.

Proof Firstly, let us show that forall N, M €e N, M > N,

||f2N+1,2M||D§_1 =N fov oM lHL(p)- (3.3)
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[16, Theorem 2.1(b)] (see also [20, 7.5.8]), Lemma 10, (2.3) and (3.1) implies

p
M-1
o1 2wl < D2 Y Wk +2)F (k+ 12t
SN kel (n) "
= Z 2Pl 2n+1 A, ||Hp
n=N

M—1
- n(pp+p—1),  pa
- Z on(pB+p )wzn+1

2
D ke DPPIP2ORE = | fon g o 5y )
k=2N+41

A similar calculation shows that
||f2N+1+1!2M||D;':_1 X | fon g pm ||Dz_], M >N+ 1. 3.4
Next, if N > 2, there is N*, M* € Nsuch that2¥" < N —1 <2V *land 2M" < M — 1 <

oM +1 ,80 N* 4+ 1 < M*. Then, by [16, Theorem 2.1(b)] and the boundedness of the Riesz
projection, (3.3) and (3.4)

IN* 1 P
I v ml?, =27PN k+ 1) fy mk + Dz p

Nmllp = (k+ 1) fymk+ 1z aall WEVAERRS VA (L
p—1 p—1

k=N-—1 HP

M—1 p

+ 27PN k4 1) v (ke + D2
k=2M* HP

S fowe g pure 117
foviin D’

= p - p p
= ||f2N"+1+1,2M’ ”D;:—l = ||f2N*+1+1,2M*”HL(p) 5 ||fN,M||HL(p)~
On the other hand,
Iiv Do 2 fonerpq ome 120 <M fone g ome i 1
f Dz_l f2 1412 Dﬁ_l fz +1,2M*+ D,I:_l
- P p
-~ ||f2N*+172M*+1||HL(p) = ”fN,M”HL(p)-

Then, bearing in mind (1.3) and (1.4), we obtain || fy mllHLp) < | fv,mllEP < ||fN,M||D{]
foreach N > 2.

If N € {0, 1, 2}, the previous argument together with minor modifications implies (3.2).
This finishes the proof. O

Now we are ready to prove the necessity part of Theorem 1.

Proposition 12 Let w be a radial weight and 1 < p < oo. If X, Y, € {H(o0, p), H?,
Dﬁ_l, HL(p)}, T € {H,, Hw} andT : X, — Y, is a bounded operator. Then, ® € D and

i 1 ; i 7 r=)’ 5
Mp(w) = sup — wy o (n+ 1P <oo. (3.5)
P e \ S+ 1D20b, 2

n=N
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Proof In order to obtain both conditions, w € D and M, (w) < 0o, we are going to work with
families of test functions constructed in Lemma 11. Since they have non-negative Maclaurin
coefficients, it is enough to prove the result for T = H,. Take f € H(DD) such that f(n) >0
foralln € N.

First Step. We will prove that w € D. By Lemma 8, it is enough to deal with the case
Y, = H(co, p).

Observe that Moo (r, Ho (f)) = > ey m (Zk -0 f(k)a),H_k) . Now, consider
the test functions fy(z) = Y0, 7} Z", N € N. Given that Y1 ) ——— =

(1)1 1) T
1
(N +1)r-T,
TN

1 N
MOO va 2 ~ . 1~ k n "
(r, Ho(fv)) ;N ST Do (ZfN( o +k>r

> 721\,: Wn+N i 1 o
~ (n + Dwy1 o (k + 1)1—,;%1

SN+ DTN NeN, 0<r<l.
WI12N

So,

L[ wsg p
1Ho (SN 10 py 2 (N + 17 1(w12’;) , NeN.

By Lemmas 11 and 8,

N

1 1
IAwl%, S UGGy =D ———— < (N + D7
n=0 (n+1) p=l

Consequently,

1 [ wgN 1
(N + 17t (m) SN Ho o py S IV, SN+ DPT, NeN.

Therefore, there is C = C(w, p) such that wgy < Cwiany, N € N. From now on, for
each x € R, |x] denotes the biggest integer < x. For any x > 120, take N € N such that
8N < x < 8N + 8, and then

2 2 2 2
wy <wgy < Coppy < C‘“8L3TNJ <C @pp| | = Cwign-12 < C*wien+16 < CTway.

So,w €D by Lemma 6.

Second Step. We will prove that M, (w) < oo.
Case Y, = HL(p). Set an arbitrary N € N. Then, bearing in mind that {w;}72, is decreas-

ing,

N 1 o o o ,
- & Yo,
(,,;) (n+ 1)2w§n+1> k:ZN f( oz Z (n + 1)2 Wil Zf( o +k

k=0

S ||Hw||XﬁHL(,,>||f||X,,.
(3.6)
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Take M, N € N, M > 4N + 1, and consider the family of test polynomials

M
fum@ =Y b+ D72 zeD. 3.7)
k=N
Then, Lemmas 8 and 11 yield
M !’
Y b kD =Wl 2 Il
k=N

where the constants do not depend on M or N.
So, testing this family of functions in (3.6), there exists C = C(p, w) > 0 such that

N M p-l
1 P /=2
_— Wy (k+ 1P ) <C, foranyM,N e NM > 4N + 1.
By letting M — o0, and taking the supremum in N € N, (3.5) holds.
Case Y, € {H(co, p), H?, Dg_l]. Let fn,m be the functions defined in (3.7), then
H,(fn.m) = ITI;,( Jfn.m). This together with the fact that w € D and Lemma 9, yields

1 Ho (fv ) lly, =< 1Ho(fN.m)IHL(p)

where the constants in the inequalities do not depend on M or N.
Therefore, using Lemmas 8, 9 and 11, there exists C = C(p, ) > 0 such that

| Ho(fv )L < ClfnmIlELp)-
So, arguing as in the case Y, = HL(p), we obtain M) (w) < oo.

Third Step. We will prove that the condition M,(w) < oo implies that v € M. Indeed, set
K,MeN,K,M > 1and N € N. By (3.5),

1
KN P ((K+M)N—1 4

1 / ’
p . -2
o= M) = | 2 G+ D2k, > @G+
=~ \J 2j+1 j=KN
1 1
o KN 1 P ((K+M)N—1 I
(K4+M)N Z Z . p=2
> - G+1D ,
2
2N J=N G+D j=KN

So, there is C = C(p) > 0 such that

1 U / i/
WIN = OAKAIMN c ((K + MYl kP *‘)" foralN eN.  (3.8)
Mp(w)
Now, fix K > 1 and take M € N large enough such that
1

1
C((K+MmP~'—kP-1\" =cK,M, p, 1.
3 € (K400 )" =CK. M. p.w) >

Let x > 1 and take N € N such that 2N — 2 < x < 2N. Then, by (3.8)
wy = oy = C(K, M, p,w)wyk+mn = C(K, M, p, ©)OK +M)x+2(K+M)
>C(K, M, p, o)w3(k+M)x>
sow € M. Since w € ﬁ, [23, Theorem 3] yields @ € D. The proof is finished. ]
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3.2 Sufficiency part of Theorem 1
For the purpose of proving Theorem 1 we need some additional preparations. In particular, we
aim for reformulating the necessary discrete condition on the moments of the radial weight

w, M, (w) < 00, as a continuous inequality in terms of @(r). Observe that a radial weight @
satisfies the condition

I / L
| > L /o) \P »
K, (w) = sup 1+/ —dt ! / & dt < 00
' O<r<l 0 a)(t)P r -1

if and only if M, .(w) < oo. This fact will be used repeatedly throughout the paper.

Lemma13 Let 1l < p < oo and w € D. Set

B ror N awN )T
KP’C(w)_oil:E1<1+/(> 6(f)"’dt) (fr <ﬁ> dt) .

Lo\ I ,”
/0 (ﬁ) di< ) @f e+ D

k=0

Then,

and

My(w) < Kp (o).
Proof Let 0 < r < 1 and set N € N such that 1 — % <r<1- ﬁ Then, by using
Lemma 6,

N

1 N 1 - k+1 1
Z(k+1)zw§k+1AZ A(l_l)le+Z/ xza(l_l)l)dx

k=0

In addition, by Lemma 6 again,

/1<a(z))P’ dt</‘
s \1 =1 —Ji-1

Therefore, K c(0) S Mp(w).
Conversely, in order to obtain the reverse inequality, a similar argument to (3.9) yields

N N

> 75 B
T 12al S = s
im0 (k+ D2y = k+ 1D (1 - %)p 0 a(s)P
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. l N 1 < r 1
Now, on the one hand, if r < 5 then >, T S <1+, ssypds- On the other

hand, if § <r < L,

N

1 o eS|
S [ [T,
K+ D2, o awr )y B

k=0

2
S~
)
=]
=
QU
t
+
=
&)
=
[
T
=

So, Lemma 6 yields

N

1 <1+/’ LR e
E 0 = §ST =
k+ Db~ 0 @(s)P o@2r—1P

k=0
| " 1
=1 —I—/ —ds —l—/ —ds
0o w(s)? 2r—1 W(s)P
| 1
<1+ —ds, —-<r<l
0o o(s)P 2
Next,
[e9) 00 4 1
/ /_ —~ 1 P / l_m
Db k+ 1P < Zw(l —m> (k+1)? / i
k=N k=N =
1 ~ P 1/~ P
t t
< / <£> dt < / (ﬁ) dr, (3.10)
-5 1—1t¢ » \1—t
and consequently, M, (w) S K (). Finally, (3.9) and (3.10) imply
1/ r o0
(1) 4 -2
/0 <§> dt <Y ok (k+ 1P 2
k=0
This finishes the proof. O

We will also need the following description of the class D.

Lemma 14 Let w be a radial weight. Then the following conditions are equivalent:

(i) weD;

(ii) The function defined as @(r) = la(_rr) , 0 <r < 1, is aradial weight and satisfies

)=o), 0<r<l.
Proof (i)=(ii). By Lemma 7, there is « > 0 such that
1 ~ 1
/ a(s)ds < ﬂ/ (1—5)tds <a@(r), 0<r<]1,
r (I=nr*=J,

which, in particular, implies that @ is a radial weight. On the other hand, by Lemma 6, there
is B > 0 such that

1 -~ 1
/E’o(s)dsz%/ (1 —s)lds>a@r), 0<r<l.
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Reciprocally, if (ii) holds, there are C1, C> > 0 such that
Ci1a(r) < a(r) < Cra(r), 0<r<1.

So, forany K > 1,

~ 1 l_lK;rN logK 1—r
o) > — w(s)ds > wll— , 0<r<l.
(S C K

Therefore, taking K such that ]OEZK >1,weD.

Moreover, for any K > 1

- I » log K __ 1t
or) < —olr) < —o@r) + — w(s)ds 0<r <.
Ci C CrJi—z

If loglK < 1, then

. Cy 1—r
w(r)fil_long 1-— X , 0<r<l1.

Cy

So, w € D. This finishes the proof. O

The previous lemma may be used to prove that a differentiable non-decreasing function
h 1 [0,1) = [0, 00) belongs to L} |, if and only if it belongs to L% |, . This result is
essential for our purposes. In particular, bearing in mind Lemma 14 and two integration by
parts,

1

1
/ h(t)w(t)dt < h(0)w(0) —I—f h(t)w(r) dt, (3.11)
0 0

for any differentiable non-decreasing function % : [0, 1) — [0, c0).

Bearing in mind Lemma 13, our next result ensures that the Hilbert-type operators H,, and
FIZ,) are well defined on X, € {H (oo, p), H?, Dgfl, HL(p)},1 < p <oowhenw € D
and Mp(w) < o0.

1 (@) 2
Lemma 15 Letw € Dand 1 < p < oo such that [ (7= ) dr < oo.
Then

1/p

1 1/~ P
/O Moo, Do) di < 11 f 100 (/O (%) dz) . feHD).

In particular, T (f) € H(D) for any f € X, where X, € {H(o0, p), H?, DZ—I» HL(p)}
and T € {H,, H,}.

Proof By (3.11)
1 1
/ Moo (2, flo(t)dt < |f(0)|5(0)+f M (t, o) dt. (3.12)
0 0
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Then, by Holder’s inequality

1 1 1/p 1 ) 1/p
/ Moo(z,fm(t)drs|f<0)|?o(0>+< / ML, f)dz) (/ 3P dr)
0 0 0

1 1/p'
Sl p) (/ a()? dt) <oo, feH(oo,p).
0

Joining the above chain of inequalities with Lemma 8, the proof is finished. O

Next, for p, ¢ > Oand o > —1, let H'(p, ¢, &) denote the space of f € H(ID) such that

1
1 P
11t gy = <|f<0)|1’+ /O Mq”<r,f’)(1—r>“dr) < 0.

It is worth mentioning that H! (p, p, p — 1) = D;’fl.
The following inequality will be used in the proof of Theorem 1. It was proved in [16,
Corollary 3.1].

Lemma 16 Let1 < g < p < oo. Then,

» < N H(D).
I f e NIIfIIHl( )) f e HD)

p-q:p (1 -q
Now, we are ready to prove the main result of this section.

Proof of Theorem 1 The implication (i)=>(ii) was proved in Proposition 12. The implication
(ii)=-(iii) is clear, and (iii)=>(ii) follows from the third step in the proof of Proposition 12. On
the other hand, bearing in mind that M, .(w) < oo if and only if K, (@) < oo, (iii)&(iv)
follows from Lemma 13. Then, it is enough to prove (ii)=(i).

(i) =(i).

First Step. We will prove the inequality

Ty, SUFx, + 1HoDlly,, € Xp. (3.13)

By Lemmas 8 and 16, it is enough to prove

VDN (4. p(1-1)) S 10, WD, V<. p <00 [ X,
(3.14)
Let f € X,,. Then, Lemmas 13 and 15 ensure that H,(f) € H(D). By [16, Theorem 2.1]

H, P = [Hy(£)O)? + |Hy(f) (0)]P
Il (f)”Hl(p,q,p(l_;)) [Hy ()OO + [Hy(f) (0)]

ey s i, Gas)
n=0
Due to

oo

1 1
(Ho(/) (@) =3 st ( /O f(r)z"“w(r)dt) ",

= 2(n + )03
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and using the proof of [8, Lemma 7], Lemma 10 and (3.1),

(o™ @) )

1An(Ho () 0 < 7 Y, onz3.
Wont2,43
Hence, by using Lemma 6,
00 00 A =2 1 p
— 1—1)41 2n
S 2 0= A () 18 < Y- ( [ tklf(t)la)(t)dt>
n=3 n=3 @ +2 k=213 0

(o M1y @rwwar)”

>

S S I Ho (O
— w2k+l k + 1)2 HL(p)
(3.16)
In addition, by Lemmas 8 and 15
2
[Ho () O)I” + |Ho (f) (0)I7 + 22_"”||An(Hw(f))’I|Zp S ||f||§p~ (3.17)
n=0
Therefore, by putting together (3.15), (3.16) and (3.17)
p < P 7 p
IHDIG 4 g po-1y) S VI +IHD
The above inequality, together with Lemma 9, yields (3.14).
Second Step. We will prove the inequality
I Ho(Dlipr | S 1 lreep. [ € H©0.p). (3.18)
We denote by
w d 1 ¢ w
Gr@ =~ [ Br@uc). (3.19)
z\z Jo
By [26, Lemma B]
rt d 1/p 1
Mp(r,Gi”)S(1+/ —_— ) S O0=r1<l
0o @)1 =97 B —rn)' v

which together with Minkowski’s inequality yields
" 1 1 p
1T DI, SITOOPF+ [ ( / |f(t)|a)(t)Mp(r,G;“)dt) (=P dr

1 1 p
SIEOOF+ | (f Wdr) (1 —rPtdr
0 0 D(ry(1 —rr) "~ »

—

1 p
s|F1;(f)(o>|P+/ (/ Wd,) (- ar.
o \Jo Gena—rn'e
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Now, by (3.11)
IHo(DIy S TH (DO + 1 F O

. P
+/1 (/1 Moo(t, f) ] (t) dt) (l_r)P—ldr_ (3.20)
o \Jo Gy —rp)'r 11

Next, by Lemma 13, M, .(w) < o0 holds, so [17, Theorem 2] yields

/1</1 Moo, f) a(r)dt)"(l_,)p_ldr
0o \Jr a(rt)(l—rz)“%l_t

1 1 ~ p
(1) 1
= Mxo(t, f)——dt | — d
/(; (/r ool f)l —t ) w(r)?P "
S 15 oo,y (3.21)
On the other hand, by [17, Theorem 1],

/l</r Moot /) 20 dt)p(l—r)l’ldr
o \Jo Gena—rn'-r -t

1 r P
x/ ( Mot /). f)l dt) (1—rPtar
o \Jo (1—-pn*7

S 1 0.y (3.22)

1 1
where in the last inequality we have used thatsup_, _ (frl(l - t)l’—1> b (for(l —p)~l=p ) r<
0. So, joining Lemma 15, (3.20), (3.21) and (3.22), we get (3.18).

Third Step. Since » € D, by Lemma 9
1 Ho (Dl = 1Hu(Dly,. | €Xp.

for Y, € {H(o0, p), H?, Dﬁfl, HL(p)}. This, together with (3.13), (3.18) and Lemma 8
implies

ITHIy, SNflx, + 1Ho(Plly,
=1, + 1H(Dlpr

SUFlx, + 1 oo
SUflx,, feXp

This finishes the proof. O
33He:X,—> YpversusHy : Lj | = Yy, 1 < p <0

An additional byproduct of Theorem 1 is the following improvement of [26, Theorem 3].
Proof of Corollary 3 (i)=(ii). By Lemma 8, T : Y, — Y, is bounded, and so by Theorem 1,

w € D. Next, by the proofs of [26, Theorems 3 and 4] we obtain m (@) < oo.
(i1)=(iii) is clear. Finally, (iii)=>(i) follows from Lemma 8 and [26, Theorem 3].
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Putting together Lemma 8, Theorem 1 and Corollary 3, we deduce the following result.

Corollary17 Let @ be a radial weight and 1 < p < oo. Let Xp, Y, € {H(o0, p),

HP, Dp - HL(p)}andletT € {H,, Hw} If there exists C > 0 such that

(1)
) < Co—foralld <1 < 1. (3.23)

Then, the following statements are equivalent:
G T: L[0 H Y, is bounded;
(ii) T : X, — Y, is bounded;
(i) w € Dand Mp c(w) < 00y
(iv) w e Dande () < ooy
V) we Dandmp(a)) < 00;
Vi) w e Dandmp(w) < 00.

Proof The implication (i)=(ii) follows from Lemma 8, and (ii)<>(iii)<>(iv) follows from
Theorem 1. Next, (iii)=>(v) is a byproduct of the hypothesis (3.23). The equivalence (v)<>(vi)
and the implication (vi)=-(i) have been proved in Corollary 3. This finishes the proof. m}

Next, we will prove that there are weights w € D, such that M, .(w) < oo and m ,(w) =
00, so in particular they do not satisfy (3.23). Consequently, the boundedness of the operator
H,: LP 0.1 Y, is not equivalent to the boundedness of the the operator H,, : X, — Y),
where X, Y, € {H(oo, p), H?, Df;fl, HL(p)}. With this aim we prove the next result,
which shows that despite its innocent looking condition, the class D has in a sense a complex
nature.

Lemma 18 Let1 < p < co and v € D. Then, there exists w € D such that
o) =xv(), tel0,1),

w € L forany ro € (0,1)and w ¢ Lﬁ)/,l).

[0,70]
Proof By Lemma 14,V € D. So we can choose K > 1 so that V satisfies (2.1). Next,
consider the sequences r;, = 1 — t, = ryp + a,, with

)’

(n+ Hp=T

Krta

), n e NU {0}.

0 < a, < min ("n+1 — I,

Let

i V(ry) = V(rnt1)

o0
1) = h Hv(), t € [0,1), where h = =
o) = ) huXir, ) (OF@), 1 €[0, 1), w R

n=0

,neNU{0}.

Observe that the sequence {%,};°, is well-defined because

t"l
ﬂrn)—?(rn):/ 1"” ds > v(tn)10g<

n

>>O,neNU{O}.

n

Moreover, w is non-negative and

1 oo
/ oy dr =3 hy () = 5(t)
0 n=0
00 R A 1 1
= Y (0w = F0mi0) =50 = [ T0dr < [ virdr < e,
n=0 0 0
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where in the last equivalence we have used Lemma 14.
Next, take t € [0, 1) and N € NU {0} such that ry <t < ry41. By Lemmas 14 and 6,

o) <@(ry) = Y (00) =V(rar1) =V(ry) < D(ry) S and

n=N
o) = o0rns) = Y (V) =Vrar1) =Vrns1) < Drvin) 2 00),
n=N+1

so w(t) < V(t) and hence w € D.

It is clear that w € L? 0.1 for any ro € (0, 1), so it only remains to prove that ¢ L[O -
Bearing mind (2.1), we get that

= =0 N enuUo).

V(rp) — V(1)
This, together with Lemma 6 and Holder’s inequality, implies

e (19)” ar

(g 32 ar)”
E 0T N & (B &

22((1,111")1/17) =Z(‘;1r/p) zzo(n+1)=oo
n n=

n=0 n=0

! ' " D(1) >
/ w()P dt = Zh” / ( ) dr <y (Bra))"
0 "n n=0

[m}

Corollary 19 Let 1 < p < oo and Xp,Y, € {H(c0, p), H?, Dp 1» HL(p)}. For each
radial weight v such that Q : L[O,l) — Y, is bounded, where Q € {H,, F[:,}, there is a
radial weight w such that

o) <v(@), te[0,1),

w € Lﬁ;yro]for any ro € ,E(,)’ D, T: X, — Yy is bounded and T : L‘[%,]) — Y, is not
bounded. Here T € {H,, H,}.

Proof Since Q : L[p0 H Y, is bounded, by Theorem 1, v € D and M (v) < 0o. Now,
by Lemma 18 there is a radial weight o such that @(1) < V(t), w € L [0.70] for any rg € (0, 1)

and o ¢ L[0 1y S0, mp(w) = oo and by Corollary 3, T' : L[O’I) — Y, is not bounded.
Moreover, @ € D and M), .(w) < oo because v satisfies both properties, so Theorem 1
yields T : X, — Y, is bounded. O

3.4 Compactness of Hilbert-type operators on X,-spaces.Case 1 < p < o©

For X, Y two Banach spaces, a sublinear operator L : X — Y is said to be compact provided
L(A) has compact closure for any bounded set A C X. Once it has been understood the radial
weights w such that H,, : X, — Y, is bounded, X, Y, € {H (00, p), D? -1 HP,HL(p)},
1 < p < oo, it is natural to consider the analogous problem, replacmg boundedness by
compactness. Theorem 22 in this section answers this question, but firstly we need some
previous results.
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Lemma20 Let 1 < p < o0 and w € D such that ||Z6||L[p0/1) < 00. Let {frlpey C Xp €
{H (00, p), Dfn]fl* H?, HL(p)} such that sup, .y I fellx, < o0 and frx — 0 uniformly on

compact subsets of D. Then the following statements hold:

1) fol | fx®|w(t)dt — 0 when k — oo.
(i) IfT € {Hy, Hy}, then T (fi) — 0 uniformly on compact subsets of D.

Proof (i). Let ¢ > 0. By hypothesis fol c~o(t)p/dt < 00, so there exists 0 < pg < 1 such that

fplo a(t)p/dt < &.Moreover, there exists ko such that forevery k > kopandz € M = D(0, po),
| fx(2)] < €. Then, by Lemma 14, (3.11), and Holder inequality

1 1
[0 Ot < |fO)BO) + fo Moot fB(0)d1

P0 1
< Moo (t, fo(t)dt + | Mx(t, fi)o(t)dt
0 £0
1

00 ,
< 8/ o(t)dt + sup ”fk”H(oo,p)f o) dt
0 keN

0
1
<e (/ w(t)dt + sup ”fk”H(oo,p)) = Ce,
0 keN

where in the last step we have used Lemma 8.
(ii). Let be M C ID a compact set and K;’(z) = % foz BP(u)du.Ifz e M

1 1
TG < f A ONKC@lo®dt < sup KOG [ el (0) d.
0 o 0

Since, M C D(0, py), for some pg € (0, 1), then

00 k_k =)
"z
sup |K”(z)] = sup P R = C(w, pp) < o0,
oM zeM ,; 2(k + Dang1 kz 2k + 1)w2k+1
1€[0,1) te[0,1) "7
so, by (i), T (fx) — O uniformly on M. This finishes the proof. ]

Theorem 21 Let w be a radial weight, 1 < p < oo, X,,,Y, € {H(c0, p), D?
HL(p)}andletT € {H,, I:Itu}. Then, the following assertions are equivalent:

P HP,

(i) T:X,— Y is compact;
(ii) Forevery sequence { fi )32, C X, such that sup; .y Il fillx, < ooand fi — Ouniformly
on compact subsets of D, limg_, o0 | T (f2) |l Y, = 0.

Proof (i)=(ii). Let { f,}7>, C X, such that sup, || /x| x, < ocoand f, — 0 uniformly
on compact subsets of D. Assume there exist ¢ > 0 and a subsequence {ny}x C N such that

1T (fa)lly, > €, foranyk. (3.24)

Since T is compact, there exists a subsequence {ng;}; C N and g € Y, such that
lim;_, ||T(fnkv)—g||yp = 0. Moreover, Theorem 1 ensures thatw € D and M), () < oo,

SO ||a)|| < 00. Therefore Lemma 20, implies that 7 ( fnkj) — 0 uniformly on compact
[0 )
subsets of D, so lim ;oo || T ( f,,kj )lly, = 0 which yields a contradiction with (3.24).
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(i)=(@). Let{fs} C X} suchthatsup,cy || fullx, < 0o.Then, {f,} is uniformly bounded
on compact subsets of D. Then, by Montel’s Theorem there exists { f,, }x and f € H(D)
such that f,,, — f uniformly on compact subsets of D. Let g,, = f,, — f,theng,, — 0
uniformly on compact subsets of I and sup;cy [I8n, llx, < 0o. Therefore, by hypothesis
limg— 00 1T (gn,) Iy, = 0, that is, T' is compact. m}

Theorem 22 Let w be a radial weight, 1 < p < oo, X, Y, € {H(c0, p), DY HP

HL(p)}, andlet T € {H,, I:i:,)}. Then, T : X, — Y is not compact.

)

p—1

Proof Assume that T : X, — Y, is compact. Foreach 0 < a < 1, set

1—a? >l/p 0

fa(z>=<(1 e =n§ﬁ(n)z", zeD,

where fy(n) = (1 — a?)!/» l;(,rlitzz/lf’)) " > 0. So, by Stirling’s formula

Fa) < 1 —a»HVPm+ 1P 1¢", neNU{0}. (3.25)

Consequently, || fallaLpy =< 1,a € (0,1). Moreover, || fallm(co.p) = ”fa”DZil =

Il fallmr = 1. Furthermore, it is clear that f, — 0, as @ — 1 uniformly on compact
subsets of D, and H,,(f,) = Hy(fq).Since T : X, — Y is compact, w € D by Theorem 1.
So, Lemma 9 implies that

1T lly, < NT(f)llHL(p), @ € (0, 1).
Therefore, by using (3.25) we have

IS 4 — p—2
I1Ho(f)lIy, 2 1Ho(f)ll 71y Z(”“) ( 56+ Doy

o] p
1 n
>(-a )Z( T (Z(k+ DRE L;f; )

n=0

P
_ 2/p=1 4k Phin
> (1 a)Z — 1)2 (;)(k+ 1H2P=1g -~ )

n p
1
> -a ( (k+1)2/p_lak>
g(nﬂﬂ ;
00 n n p
>(1—a>2L Z(k+1>2/f’*1
- = (n+1)2 —

>(1- o >, 3.26
(1-a Z a" =02 (3.26)
n=0
so using Theorem 21 we deduce that T : X, — Y, is not a compact operator. O

4 Hilbert type operators acting on X;-spaces

The first result of this section gives the equivalence of conditions (iii)—(vi) of Theorem 2.
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Lemma23 Let w € D. Then, the following conditions are equivalent:

(i) K1e(@) = sup,cpo.y) ﬁfu o) (1+ wdg)) t < oo;
(i) K1.4(0) = supaero.ny 12 (1+ Jg wdg))
(iii) Mi(w) = SUPNGN(N + Doy Zk 0 (k+])2

<
w2k

Moreover,
Kic(w) < Ki,a(w) < Mi(w), 4.1
and w € D when satisfies any of the three previous conditions.

Observe that for any radial weight, K .(w) < oo holds if and only if M; .(w) < oo, and
analogously K 4(w) < oo if and only if M; 4(w) < oo. This fact will be used repeatedly
throughout the paper.

Proof On the one hand,

0@ (1, [“dsy_ 1! o1+ [ 2 a
1—a< +/0 a(s))—l—a o ( +/0 a(s))

<Kic(w), a€l0,1),

so ()=(ii) and K| 4(w) < K10 (w). _
On the other hand assume that (ii) holds. Since w € D, [22, Lemma 3(ii)] (for v(¢) = 1)

yields
1 1 rds 1 a)(t)(l—t)
r—al, “’(’)(1 /w<s>> d’<K“’(“’)<1—a/ 0] t)

SKigw), 0<a<l,

that is (i) holds and K (@) < K1 ,4(w). Finally, by mimicking the proof of Lemma 13,
Ki.a(w) < Mi(w),

so (ii)<>(iii) and (4.1) holds.
Next, forany K > 1andr € (0, 1)

Ko (1- %) (=% ds
M 4(w) > /
’ —r - w(s)
(1 - 1=r
- w(r)
that is
- K—-1 _ 1—r
or)>——owl1-— , O<r<l1,
M 4(w) K
so taking K > M1 4(w) + 1, we getw € D. This finishes the proof. O

The following result will be used to prove the equivalence (ii)<(iii) of Theorem 2.
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Proposition 24 Let i be afinite positive Borel measure on [0, 1) and X € {H (oo, 1), HL(1)}.
Then w is a 1-Carleson measure for X1 if and only if 1 is a classical Carleson measure.
Moreover,

u(a, 1))
||Id||X|—>L1(/L) = sup T
ael0,1) a

Proof 1If u is a 1-Carleson measure for X, then by (2.2) and (1.3), u is a 1-Carleson measure
for H'. So, by [6, Theorem 9.3] and its proof, w is a classical Carleson measure and
u(la, 1))

sup = < allx, 11 )-
acl0.1) 1—a 1—~>L' ()

Conversely, if u is a classical Carleson measure, two integration by parts yield

1 1 1
/le(z)ldu(z)zfo If(t)ldu(t)S/0 Moo(t, f)du@) S fllH@o,1) sup M.

aclo,y l—a

This inequality, together with Lemma 8, finishes the proof. O

We introduce some more notation to prove Theorem 2. For any C*°-function ® : R — C
with compact support, define the polynomials

k
0] k
W, (Z):Zq)(;)Z , neN
keZ
A particular case of the previous construction is useful for our purposes. Some properties
of these polynomials have been gathered in the next lemma, see [12, Section 2] or [19, p.
143-144] for a proof.

Lemma25 Let ¥ : R — R be a C*®-function such that W = 1 on (—oo, 1], ¥ = 0 on
[2, 00) and V is decreasing and positive on (1, 2). Set ¥ (t) = ¥ (%) — () forallt € R.
Let Vo(z) = 1+ z and

00 . 2n+l ] .
Va(z) = W;f,fl(z) = Zlﬁ (znj_] ) d=> v <2nj_1 ) 2, neN.
j=0 j=2n-1
Then,
f@ =) (Vax f)2). z€D, feHD), 4.2)

n=0

and for each 0 < p < oo there exists a constant C = C(p, V) > 0 such that
IVa* fllur < Cll fllur, f€HP, neN. (4.3)
In addition

[ Vallzr < 2707120 < p < c0. 4.4)

Let us denote f.(z) = f(rz),z € D, r € (0,1). Now we are ready to prove the main
theorem of this section.
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Proof of Theorem 2 First of all, recall that M| .(w) < oo if and only if K (w) < oo
and analogously Mj 4(w) < oo if and only if K 4(w) < o0, so that the equivalences
(i)« (iv)<(v)<(vi) follow from Lemma 23. The equivalence between (ii) and (iii) is a
consequence of [6, Theorem 9.3] when X1 = H 1129, Theorem 2.1] when X; = Dé and
Proposition 24 when X € {H (oo, 1), HL(1)}.

(i)=(iii). In order to obtain both condltlons weDand M Le(@) < oo, we are going to
deal with functions f € H(ID) such that f (n) > 0 for all n € N U {0}, so it is enough to
prove the result for 7 = H,,,.

First Step. Let us prove o € D. Bearing in mind Lemma 8 and (1.4)

00 N

Wn+N -

N k H, oo, l) S 1 He S

,; TS (Zf( )) < 1Ho (Do) S MHo (Dl S 1S N1,

SUflpy. NeN, 45)

for any f € H(ID) such that f(n) > 0, n € NU {0}. Next, for each N € N, consider the
test functions fo N (2) = Z,ivzo(k + D%, & > 0.Set M € N such that 2™ < N < 2M+1,
Then, bearing in mind (4.2),

o] M
o n)s@ =D (Vs (fL )@ =Y (Va x (fa ) @),

n=0 n=0
which together with [16, Lemma 3.1], [19, Lemma 5.4] and (4.4) gives

1 Mo e
iy = [ 165 s < 32 [ WV (£ sl
n=0

M

< Zf D, [ ds = Y2 = oM < (N 4 1)
n=0 n=0
Testing the functions fy_y in (4.5), supy (N +1) Y00 ) —2%_ — o0, Therefore, there

n=0 (n+1)2wyn41
exists C = C(w) >0

W8N
oy T wiy

(N—i—l)Z 1)2_(N+)Z Ont N

Sy (it Doy
So, arguing as in the first step proof of Proposition 12, w € D.

Second Step. We will prove M .(w) < oco. Let us consider the test functions f,(z) =
1—a? a € (0,1). A calculation shows that ||fa||D1 =< 1,a € (0, 1). Then, by Lemma 8

(1—az)?’

and (1.3),

|Hollx,—v; 2 sup Ho(f)lly, 2 sup [1Heu(fa)ll 1
ae(0,1) ae(0,1) (0.

Consequently, using that w € D and mimicking the proof (4.2) of [26, Theorem 2], we get
M (w) < oo.

Now let us prove (iv) = (i). Firstly, observe that the condition M (w) < oo implies
Ki.(w) < oo sothat w(t) = “’(r) is bounded on [0, 1). So, using Lemma 8 and (3.11),

/(; Moo (t, fle(r) dt §/0 Moo (t, o dt SN fllaeen S 1F N,
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that is H,(f) € H(D) for any f € X;. Secondly, by (1.4) and Lemma 8, it is enough to
prove the inequality

IHo(Dlipy S I IH@on,  f € H(oo, 1),

to end the proof. Indeed,

1 1/l
1 Ho ()l p 5/0 M (s, Hw(f)')dssfo (/O If(t)lw(t)Ml(S,G?’)dt> ds

1 1
=/0 [f(D]ew(r) (/0 Ml(s,G;”)ds>dt.

Then by (3.19) and [26, Lemma B]

st dx
Ml(s,G;”)xl—I—/ —, 0<s,t<1.
0o o) —x)
Bearing in mind that M; .(w) < oo implies K (w) < oo and applying Proposition 24,
the measure ., defined as du,(z) = w(z) (1 + fom w’iz)) X10,1)(2) dA(z) is a 1-Carleson
measure for H (oo, 1), so by Tonelli’s theorem,

1 1 st dx
IHaDly 5 [ 1100 <1+/0 (/0 m) ds> di
1 t )

d
/ Ol (1 +f (x))dt <1 f o 4.6)
This finishes the proof. O

41 Hy, : X1 — Yyversus Hy, : Ll e 4

[0,1)

Firstly, we will study the boundedness of T : L[l0 e Yi, T € {Hy, I:I:,}, Y|, €
{H (oo, 1), H', D}, HL(1)}.
Theorem 26 Let w be a radial weight, let Y1 € {H (o0, 1), H', DO, HL(1)} and let T €
{H,, H, ). Then the following statements are equivalent:

G T: LEO H Y| is bounded;

(i) w € D andm)(w) = esssup;[g. 1) (t) ( fot wd(i))

(iii) @ € D and m(w) = ess sup; 0.1y @ (1) ( fot wd(i))

Proof (i)=(ii). If (i) holds, then w € D by Lemma 8 and Theorem 2. Next, using Lemma 8
again and making minor modifications in the proof of [26, Theorem 2] we get

d
ITHlv Z 1HolPllgy, /f“)”(’)(”/ (s))dt

forany f >0, f € Lllo’]).So,

1 t o ds
/()f(t)w(t)(l+/o %) SUfly,. £20
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which implies that m | (w) < oo.
(i)=(iii) is clear.
(iii)=-(@i). If (iii) holds, then H,(f) € H(D) for any f € LEO,I) and arguing as in (4.6)

1 todx
1 Ploy [ 10100 (14 [ 25 Y ar iy, .

This together with (1.3) and Lemma 8 gives that H,, L[o e Y1 is bounded. This finishes
the proof. O

Joining Theorems 2, 26 and Lemma 8 we deduce the following.

Corollary 27 Let w be a radial weight, X1,Y) € {H (00, 1), H'.D HL(])} andlet T €
{Hy, Hw} If w satisfies the condition (3.23), then the following statements are equivalent:

G T: L[O’l) — Y1 is bounded;
(i) T : X1 — Y, is bounded;
(iii) @ € D and My .(w) < 00;
(iv) w € D and M (w) < 00;
V) we D and mi(w) < 00,
(vi) w € Dand m(w) < oo.

Proof (i)=(ii) follows from Lemma 8, and (ii)<>(iii) <> (iv) were proved in Theorem 2. Next,
since M1 (w) < ooimplies K .(w) < 0o, (iii)=>(v) is a byproduct of the hypothesis (3.23).
Finally, the equivalences (v)<>(vi)<>(i) follow from Theorem 26. This finishes the proof. O

A similar comparison between the conditions M (w) < ooandm|(w) < oo, to thatmade
for the conditions M, .(w) < o0 and m,(w) < 00, 1 < p < o0, can also be considered.
The following result shows that they are not equivalent.

Corollary 28 Let X1, Y, € {H(oco, 1), H', DO, HL(1)}. For each radial weigth v such that
0: L} 0.1 Y1 is bounded, where Q € {H,, H,}, there is a radial weight w such that

o) <v(), te][0,1),

w € Lf&ro] for any rg e’g), 1), T : X1 — Y| is bounded and T LEO,I) — Y| is not
bounded. Here T € {H,, Hy}.

Proof Since Q : L} 0.1y — Y is bounded, by Theorem 2, v € D and M, (v) < oo. Now,
by Lemma 18 and its proof, there is a radial weight w such that @(z) =< V(¢), w € L[o,ro
forany rp € (0,1) and w ¢ L[0 1y So, mi(w) = oo and by Theorem 26, T : L[l(),l) — Y]
is not bounded. Moreover, w € D and M (w) < oo because v satisfies both properties,
consequently 7 : X| — Y is bounded. O

4.2 Compactness of Hilbert-type operators on X;-spaces

Lemma29 Let w € D such that M 4(w) < oo. Let {fk},fio C X1 € {H(oo, 1),
Dé, H', HL(1)} such that supgen l fkllx, < o0 and fiy — O uniformly on compact subsets
of D. Then the following statements hold:

Q) f) [fe@Olo@)dt — 0 when k — oc.
(i) If T € {H,, Hy,}, then T (fr) — 0 uniformly on compact subsets of D.
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Proof Firstly, let us prove that

lim = 0. @.7)

/‘Yi> ds
o o)) 1—s

Since M| 4(w) < oo, then

fl-;a dS - (M ( )) ]/1‘5”
0o o) =T
» - S dt ds
> (M 4()) [ /(‘) %) 1-s
I+a

[ d T d
= oo™ ([ 55) [ 1

= (Ml,d(a)))_l (/2 Adt>l gL, 0<a<1.
o () 1—a
a ds

So lim,_, - f, 67 = 9% and then using again the condition M| 4(w) < oo, (4.7) holds.

From now on, the proof follow the lines of Lemma 20. Let ¢ > 0. By (4.7) there exists
0 < po < 1 such that @(r) < ¢ for any 7 € [pg, 1). Moreover, there exists kg such that for
every k > kg and z € M = D(O0, po), | fr(z)| < €. Then, by Lemma 14 and (3.11)

5
TN N

)

1 1
/0 [fe(Dw(r)dt < |f1<(0)|@(0)+f0 Moo (t, frow(t)dt

1
S /m Moo (t, f@M)dt + | Mo (2, fr)@(1)dt
0

20
1
<¢ (/ CT)([)dl‘ + sup ”fk”Xl) = Ce,
0 keN

where in the second to last step we have used Lemma 8.
The proof of (ii) is analogous to that of Lemma 20 so we omit its proof. O

Using the previous lemma and Theorem 2 we obtain the following by mimicking the proof
of Theorem 21.

Theorem 30 Let o be a radial weight and X,Y) € {H(co, 1), D}, H', HL(1)} and let
T € {H,, H,}. Then, the following assertions are equivalent:

(1) T : X1 — Yy is compact;

(ii) Forevery sequence { fi}32, C X1 such that sup;cy |l fellx, < oo and fi — O uniformly
on compact subsets of D, limy_, 0 | T (fi)lly, = 0.

Theorem 31 Letw be a radial weight and X1, Y1 € {H (o0, 1), DO, H', HL(1)}, and let
T € {H,, Hw} Then, T : X1 — Y is not compact.

Proof The proof is analogous to that of Theorem 22, so we provide a sketch of the proof.
Assume that T : X1 — Y is compact. Foreach 0 < a < 1, set f,(z) = (] az)z, zeD. A

calculation shows that sup,¢ . 1) | fallx, < 1 and f; — 0, as a — 1 uniformly on compact
subsets of . Moreover, since 7T ( f,;) has non-negative Taylor coefficients,

IT(f)lly, 2 1 Ho(fa)l Hioo, 1) X 1 Ho(f)lHL() 2 1, a € (0, 1),
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where the last inequality follows taking p = 1 in (3.26). So, using Theorem 30 we deduce
that 7 : X; — Y is not a compact operator. O

5 Hilbert-type operators acting on H*

We will prove a result which includes Theorem 4. With this aim we need some more notation.
The space O, 0 < p < 00, consists of those f € H (D) such that

1715, = 1F O + sug/ﬂ) QP — PP dAG) < oo,

a—z

where ¢, (z) = {57, z,a € D. If p > 1, Q, coincides with the Bloch space B. The space

Q1 coincides with BM O A (see, €. g., [10, Theorem 5.2]). However, if 0 < p < I, Qpisa

proper subspace of BM O A [30]. The space Qg reduces to the classical Dirichlet space D.
We recall that

0, CBMOACB, 0<p<l.

5.1
H>™ C BMOA C B, ©-D

howeverif0 < p <1, H*® ¢ Qp,and Q, ¢ H, see [30].
Moreover, HL(00) € Q. This embedding might have been proved in some previous
paper, however we include a short direct proof for the sake of completeness.

Lemma32 Let0 < p < oo, then HL(00) C Q) and
Ifllo, S fllHLicc), [ € HMD).
Proof Let f € HL(c0), then

00 00 2
_ . L 1
M3(p. f1) =Y 1 F ) Po™ 2 < 1 f Lo D P72 = 71_;2“),

n=1 n=1
Soforany 0 < p < oo,

1 _ 2P
Sup/ﬂ)(l —lpa@PIf (DI dAR) S SUP/O <w> Mzz(s,f/)ds

aeD aeD (l - |a|s)2
1 D 2\p—1
(1 —lahP(1 —s%)P
<IIfI3 sup /
HL©) b Jo (1 — lals)?P

2
S 1200

o I fllg, < IfllHL(ec)- The lacunary series f(z) = Zﬁoz—klog(k+2)z2k €
(Mo<p Qp\H L(0c0). This finishes the proof. O

Now we will prove the main result of this section, which is an extension of Theorem 4.

Theorem 33 Let w be a radial weight and let T € {H,,, IEIZ,}. Then, the following statements
are equivalent:
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(i) T : H*® — HL(00) is bounded;
(ii) T : H*® — Q,, is bounded for 0 < p < 1;
(iii) T : H*® — BMOA is bounded;
(iv) T : H*® — B is bounded;
(V) weD.

Proof of Theorem 33 By Lemma 6,

N RORION
2(k + Dok
NGO
k+1H)—~———
S1<esNuL£){0}( b 2(k + Dwait1
= | Ho (Nl Loy S I e,

lHo (O IlHL(0) = sup (k+1)
keNU{0)

so (v)= (i). The implications (i)=>(ii)=>(iii))=>(iv) follow from (5.1) and Lemma 32.
The implication (iv)=-(v) was proved in [26, Theorem 1], and this finishes the proof. O

It is worth mentioning that for f(z) = log 11? € HL(00) and w a radial weight,

/ ~ ) n s Wn+k n—1
Hy(f) (x) = ; 2(n + Dwopt1 (,; k )x
00 n "1 n—1
22 501D (,; k) '

log(n 4+ Dx"~!,

¢

2

I
-

n

so Hy,(f) ¢ B. So, the space H*® cannot be replaced by H L(oo) and by any Q,, space,
0 < p < 00, in the statement of Theorem 33. That is, the remaining cases for p = oo,
analogous to those of Theorems 1 and 2, which do not appear in Theorem 33, simply do not
hold for any radial weight.

Finally, we will prove the analogous result to Theorem 22 for p = oo.

Theorem 34 Let w be a radial weight and let T € {H,,, I’-ZO}. ThenT : H® — Yo is nota
compact operator, where Yoo € {Q ), B,BMOA, HL(00)}, 0 < p < 1.

We need the following result, whose proof can be obtained by mimicking the proof The-
orem 21.

Theorem 35 Let w be a radial weight and T € {H,,, I’-I:)}. Then, the following assertions are
equivalent:

(1) T : H*® — B is compact;
(ii) For every sequence {fi};2, C H® such that supycy || fellme < oo and fi — 0
uniformly on compact subsets of D, limy_ | T (fx)llz = O.
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Proof of Theorem 34 By (5.1) and Lemma 32, it is enough to prove that T : H*® — B is
not compact. Let consider for every k € N the function fi(z) = zX, z € . It is clear that
Il fllgoe = 1 for every k € N and fy — 0 uniformly on compact subsets of D). Since

b fiorowdt , N ow
T(fi)2) = Zm ,,Zz()z(”+1)w2”+1 '

for any k > 2

o
1
IT(fi)lls = sup (1_X)Z”“’$xn—1 > 1 sup (l_x)z Ontk n—1
xe€(0,1)

— 2(” + Dwoy+1 4 ve0.1) Won
1 Wn+k X" 1S 1 = n—1
= ersﬁ)pl)(l a X) Z @W2n - Z :E)pl)(l - X) ka
2k—1 m
zlsup (1—x)kx2k—lzl<1—l> zlinf<l—l> >C>0
xe(0,1) 8 2k 8 m>2 m

so limg— o0 |7 (f2)|IB8 # O and hence, by Theorem 35, T : H* — B is not compact. O

Before ending this section, we briefly compare the action of the Hilbert-type operator H,,
and the Bergman projection

Po(f)(2) = ID)f(é“)B;”(;“)w(;“)dz‘\(é“),

induced by a radial weight w. As a consequence of Theorem 33 and [23, Theorem 1], the
condition @ € D characterizes the boundedness of the operators H,, : H* — B and
P, : L* — B. Moreover, P, : L — B is bounded and onto if and only if ® € D
[23, Theorem 3]. So, it is natural to think about the radial weights such that the operator
H, : H® — B is bounded and onto. A straightforward argument proves there is no radial
weights such that H,, : H* — B satisfies both properties: If H,, : H>® — B is bounded,
Theorem 33 yields that H, : H>* — BMOA is also bounded, so if g € B\ BMOA, e.g.
2(2) = Yoo sz’ there does not exist f € H such that H,(f) = g. Consequently,
H, : H®® — B is not surjective.

6 Comparisons and reformulations of the M, .-conditions
In order to prove Theorem 5 we will study the relationship between some of the conditions

which describe the boundedness of the Hilbert-type operators H,, and ﬁ;, from X, to Y,,,
and X, to Y.

Theorem 5 Firstly, assume 1 < g < p < oo. Since T' : X4 — Y is bounded, Theorem 1
yields w € D and M, (w) < 0o, and as a consequence, K, L(a)) < 00. By using Lemma 6,

" ds 1—r
1 > 0< 1. 6.1
+/0 o) ~ame (=T (-1
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On the other hand, H6lder’s inequality with exponents x = £, > 1 and x’ = =7, implies
P X—

1

1
g 1 /= q 7
(/ (‘”(9)> ds> 5(/ <w(s)> ds) A—r? 7, 0<r<l.
r \1l—s r \1l—s
Moreover,

1 1
| o | »
<1 —|—-/(.) 50)7 ds) < a)(r)ﬁ (1 +/ 507 ds) , 0<r <. (6.3)

-1 , together with (6.1), (6.2) and (6.3) yield

(6.2)

So, the identity pi
1 g b2
Tl vt aoN Y
<1+/0 a(r)l’d’) (/ (1—r> dt)
SN[ P awN N\
S(l r) <1+f ! ds) </ (“’(S)>q ds)
w(r)4 0o o(s)4 s \1l—s

€1
7

r L 1 /= !
5<1+/ ! ds>" (/ (a)(s))q ds)q |
o w(s)? » \1—s

Consequently K, (@) < 00, and by Theorem 1, T : X, — Y}, is bounded.
Assume that ¢ = 1, thatis, T : X; — Y| is bounded. By Theorem 2, w € D and

M 4(w) < 00,50 K1 4(w) < oo. Then,
V) P : ! s 1 N\
/r (1_S> dng{jd(w)/r <1+/ ﬁdz) ds
< kP (@)1 -1 <1 +fr Aldz>_p
- 0o o)

()
(1—ryp' =1’

where in the last inequality we have used (6.1) with ¢ = 1. Moreover,

S KLy 0<r<l,

ro ” 1 T ’
1—1—/ ——ds| S —— 1+/ ——ds
0o W) 5(}’)175 0 o(s)
1
- (1: ryr
w(r)
So, M .(w) < oo, and by Theorem 1, T : X, — Y, is bounded. This finishes the proof.

Kig@'?, 0<r<1.

Finally, we present two more conditions which characterize the radial weights w such that
T:X,—Y, 1< p<oo,isbounded, where X,, Y, € {H(o0, p), H?, D[’;_l, HL(p)}

and T € {H,, H,}.

Proposition 36 Let w be a radial weight and 1 < p < oo. Then, the following conditions
are equivalent:
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< =

() we D and Kpa(w) =supg_, . ——T (1 + fo W ds) < 00;

(1-r7

|
.. ~ nr [ 1 (e
(i) w € Dand Kp (@) = supy, - (ﬁlw% <fr (?EYY)) dS> =
1

~ s \? 7
(iii) @ € D and K o(w) = supy_,-; (1 + Jo Wdt) (frl (%) dt) " < 0.

Proof Assume that (i) holds. A calculation shows that F(r) = (1 —r)* (1 + fo w(s)p ), with

K= ,,7, is non-decreasing in [0, 1). So,

Kp,d(w)
1 -~ K -
/ (a)(s)) s<K" ( / Al dt) 3 ds
» \1l—s 60( )P
1

<Kpd(0))F(7’) Fla-o%

r

/

/

_r
< Kp/+P(w) <1 + /r ;d;) v
v 208
KV (@ )L)/,
(1 —ryr'-1
where in the last inequality we have used (9\. 1). That is (ii) holds.
Now, assume that (ii) holds. Since w € D

1 o~ 17’ o~ p/
/ w(s) dszL),, 0<r<l.
» \1l—s (1 —ryr'-1

0<r<l,

Moreover, H(r) = (1 —r)™" frl (](—) ds, withn = ﬁ, is non-increasing in [0, 1).
.ew
So, P
1 4 i
" ds "o (1) p
1 <1+K — dt ds
+ [ e =1 KR [ (f (1—r> ) 9
_2 [T 1
<1+ Kp (H(r) » / ﬁds
0 (1 —S) '7p/
P
1 /= 14 v
t
< K0 (o )(/ <&> dz)
» \1—t
<KL )A() L 0<r<l,

therefore (i) holds.
Next, if (i) holds, then (ii) holds and so it is clear that (iii) holds. Finally, (iii) together
with (6.1) implies (ii). This finishes the proof. ]
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