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Abstract
We consider the Hilbert-type operator defined by

Hω( f )(z) =
∫ 1

0
f (t)

(
1

z

∫ z

0
Bω
t (u) du

)
ω(t)dt,

where {Bω
ζ }ζ∈D are the reproducing kernels of the Bergman space A2

ω induced by a radial
weightω in the unit discD.We prove that Hω is bounded on theHardy space H p , 1 < p < ∞,
if and only if

sup
0≤r<1

ω̂(r)

ω̂
( 1+r

2

) < ∞, (†)

and

sup
0<r<1

(∫ r

0

1

ω̂(t)p
dt

) 1
p
(∫ 1

r

(
ω̂(t)

1 − t

)p′

dt

) 1
p′

< ∞,

where ω̂(r) = ∫ 1
r ω(s) ds. We also prove that Hω : H1 → H1 is bounded if and only if (†)

holds and

sup
r∈[0,1)

ω̂(r)

1 − r

(∫ r

0

ds

ω̂(s)

)
< ∞.
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As for the case p = ∞, Hω is bounded from H∞ to BMOA, or to the Bloch space, if and
only if (†) holds. In addition, we prove that there does not exist radial weights ω such that
Hω : H p → H p , 1 ≤ p < ∞, is compact and we consider the action of Hω on some spaces
of analytic functions closely related to Hardy spaces.

Keywords Hilbert operator · Hardy space · Bergman reproducing kernel · Radial weight

Mathematics Subject Classification 47G10 · 30H10

1 Introduction

For 0 < p < ∞, let L p
[0,1) be the Lebesgue space of measurable functions such that

‖ f ‖p
L p

[0,1)
=

∫ 1

0
| f (t)|p dt < ∞,

and let H(D) denote the space of analytic functions in the unit disc D = {z ∈ C : |z| < 1}.
The Hardy space H p consists of f ∈ H(D) for which

‖ f ‖H p = sup
0<r<1

Mp(r , f ) < ∞,

where

Mp(r , f ) =
(

1

2π

∫ 2π

0
| f (reiθ )|p dθ

) 1
p

, 0 < p < ∞,

and

M∞(r , f ) = max
0≤θ≤2π

| f (reiθ )|.

For a nonnegative function ω ∈ L1
[0,1), the extension to D, defined by ω(z) = ω(|z|) for all

z ∈ D, is called a radial weight. Let A2
ω denote the weighted Bergman space of f ∈ H(D)

such that ‖ f ‖2
A2

ω
= ∫

D
| f (z)|2ω(z) d A(z) < ∞, where d A(z) = dx dy

π
is the normalized

area measure on D. Throughout this paper we assume ω̂(z) = ∫ 1
|z| ω(s) ds > 0 for all z ∈ D,

for otherwise A2
ω = H(D).

The Hilbert matrix is the infinite matrix whose entries are hn,k = (n + k + 1)−1, k, n ∈
N ∪ {0}. It can be viewed as an operator on spaces of analytic functions, by its action on the
Taylor coefficients

f̂ (n) 	→
∞∑
k=0

f̂ (k)

n + k + 1
, n ∈ N ∪ {0},

called the Hilbert operator. That is, if f (z) = ∑∞
k=0 f̂ (k)zk ∈ H(D)

H( f )(z) =
∞∑
n=0

( ∞∑
k=0

f̂ (k)

n + k + 1

)
zn, (1.1)

whenever the right hand side makes sense and defines an analytic function in D.
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The Hilbert operator H is bounded on Hardy spaces H p if and only if 1 < p < ∞ [4]. A
proof of this result can be obtained using the following integral representation, valid for any
f ∈ H1,

H( f )(z) =
∫ 1

0
f (t)

1

1 − t z
dt . (1.2)

Going further, the formula (1.2) has been employed to solve a good number of questions in
operator theory related to the boundedness, the operator norm and the spectrum of the Hilbert
operator on classical spaces of analytic functions [1, 3, 5, 24]. During the last decades several
generalizations of the Hilbert operator have attracted a considerable amount of attention [9,
11, 24, 26]. We will focus on the following, introduced in [26]. For a radial weight ω, we
consider the Hilbert-type operator

Hω( f )(z) =
∫ 1

0
f (t)

(
1

z

∫ z

0
Bω
t (ζ )dζ

)
ω(t)dt,

where {Bω
z }z∈D ⊂ A2

ω are the Bergman reproducing kernels of A2
ω. The choice ω = 1 gives

the integral representation (1.2) of the classical Hilbert operator, therefore it is natural to
think of the features of a radial weight ω so that Hω has some of the nice properties of the
(classical) Hilbert operator. In this paper, among other results, we describe the radial weights
ω such that the Hilbert-type operator Hω is bounded on H p , 1 ≤ p < ∞.

In order to state our results some more notation is needed. For 0 < p < ∞, the Dirichlet-
type space Dp

p−1 is the space of f ∈ H(D) such that

‖ f ‖p
Dp

p−1
= | f (0)|p +

∫
D

| f ′(z)|p(1 − |z|)p−1 d A(z) < ∞,

and the Hardy–Littlewood space HL(p) consists of the f (z) = ∑∞
n=0 f̂ (n)zn ∈ H(D) such

that

‖ f ‖p
HL(p) =

∞∑
n=0

| f̂ (n)|p(n + 1)p−2 < ∞.

Wewill also consider the space H(∞, p) = { f ∈ H(D) : ‖ f ‖p
H(∞,p) = ∫ 1

0 Mp∞(r , f ) dr <

∞}. These spaces satisfy the well-known inclusions

Dp
p−1 ⊂ H p ⊂ HL(p), 0 < p ≤ 2, (1.3)

HL(p) ⊂ H p ⊂ Dp
p−1, 2 ≤ p < ∞, (1.4)

and

H p ⊂ H(∞, p), Dp
p−1 ⊂ H(∞, p), 0 < p < ∞. (1.5)

See [6, 7, 14] for proofs of (1.3) and (1.4), and [27, p. 127] and [8, Lemma 4] for a proof of
(1.5).

TheBergman reproducingkernels, inducedby a radialweightω, canbewritten as Bω
z (ζ ) =∑

en(z)en(ζ ) for each orthonormal basis {en} of A2
ω, and therefore using the basis induced

by the normalized monomials,

Bω
z (ζ ) =

∞∑
n=0

(zζ )n

2ω2n+1
, z, ζ ∈ D. (1.6)

123



    2 Page 4 of 36 N. Merchán et al.

Here ω2n+1 are the odd moments of ω, and in general from now on we write ωx =∫ 1
0 r xω(r) dr for all x ≥ 0. A radial weight ω belongs to the class D̂ if ω̂(r) ≤ Cω̂( 1+r

2 )

for some constant C = C(ω) > 1 and all 0 ≤ r < 1. If there exist K = K (ω) > 1 and
C = C(ω) > 1 such that ω̂(r) ≥ Cω̂

(
1 − 1−r

K

)
for all 0 ≤ r < 1, then ω ∈ Ď. Further,

we write D = D̂ ∩ Ď for short. Recall that ω ∈ M if there exist constants C = C(ω) > 1
and K = K (ω) > 1 such that ωx ≥ CωKx for all x ≥ 1. It is known that Ď ⊂ M [23,
Proof of Theorem 3] but Ď � M [23, Proposition 14]. However, [23, Theorem 3] ensures
that D = D̂ ∩ Ď = D̂ ∩ M. These classes of weights arise in meaningful questions con-
cerning radial weights and classical operators, such as the differentiation operator f (n) or the
Bergman projection Pω( f )(z) = ∫

D
f (ζ )Bω

z (ζ ) ω(ζ )d A(ζ ) [23]. We will also deal with the
sublinear Hilbert-type operator

H̃ω( f )(z) =
∫ 1

0
| f (t)|

(
1

z

∫ z

0
Bω
t (ζ )dζ

)
ω(t) dt .

If X , Y ⊂ H(D) are normed vector spaces, and T is a sublinear operator, we denote
‖T ‖X→Y = sup‖ f ‖X≤1 ‖T ( f )‖Y .
Theorem 1 Let ω be a radial weight and 1 < p < ∞. Let X p, Yp ∈ {H(∞, p), H p,

Dp
p−1, HL(p)} and T ∈ {Hω, H̃ω}. Then the following statements are equivalent:

(i) T : X p → Yp is bounded;

(ii) ω ∈ D and Mp(ω) = supN∈N
(∑N

n=0
1

(n+1)2ωp
2n+1

) 1
p (∑∞

n=N ω
p′
2n+1(n + 1)p

′−2
) 1

p′
<

∞;
(iii) ω ∈ D̂ and Mp(ω) = supN∈N

(∑N
n=0

1
(n+1)2ωp

2n+1

) 1
p (∑∞

n=N ω
p′
2n+1(n + 1)p

′−2
) 1

p′
<

∞;
(iv) ω ∈ D̂ and Mp,c(ω) = sup0<r<1

(∫ r
0

1
ω̂(t)p dt

) 1
p
(∫ 1

r

(
ω̂(t)
1−t

)p′
dt

) 1
p′

< ∞.

The proof of (i)⇒(iii) of Theorem 1 has two steps. Firstly, we prove that ω ∈ D̂,
and later on the condition Mp(ω) < ∞ is obtained by using polynomials of the form
fN ,M (z) = ∑M

k=N ωα
2k(k + 1)β zk, N , M ∈ N, α, β ∈ R as test functions. Then, we see

that any radial weight ω satisfying the condition Mp(ω) < ∞, belongs to M. This proves
(ii)⇔(iii). The proof of (iii)⇔(iv) is a calculation based on known descriptions of the class
D̂ [21, Lemma 2.1]. Finally, we prove (iv)⇒(i) which is the most involved implication in
the proof of Theorem 1. In order to obtain it, we merge techniques coming from complex
and harmonic analysis, such as a very convenient description of the class D, see Lemma 14
below, precise estimates of the integral means of order p of the derivative of the kernels
Kω
u (z) = 1

z

∫ z
0 Bω

u (z) du, decomposition norm theorems and classical weighted inequalities
for Hardy operators.

Observe that both, the discrete condition Mp(ω) < ∞ and its continuous version
Mp,c(ω) < ∞, are used in the proof of Theorem 1. The first one follows from (i), and
the condition Mp,c(ω) < ∞ is employed to prove that T : X p → Yp is bounded.

As for the case p = 1 we obtain the following result.

Theorem 2 Let ω be a radial weight, X1, Y1 ∈ {H(∞, 1), H1, D1
0, HL(1)} and T ∈

{Hω, H̃ω}. Then the following statements are equivalent:

(i) T : X1 → Y1 is bounded;
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(ii) ω ∈ D̂ and the measure μω defined as dμω(z) = ω(z)
(∫ |z|

0
ds

ω̂(s)

)
χ[0,1)(z) d A(z) is

a 1-Carleson measure for X1;
(iii) ω ∈ D̂ and satisfies the condition

M1,c(ω) = sup
a∈[0,1)

1

1 − a

∫ 1

a
ω(t)

(∫ t

0

ds

ω̂(s)

)
dt < ∞;

(iv) ω ∈ D and satisfies the condition M1,c(ω) < ∞;

(v) ω ∈ D̂ and satisfies the condition M1,d(ω) = supa∈[0,1)
ω̂(a)
1−a

(∫ a
0

ds
ω̂(s)

)
< ∞;

(vi) ω ∈ D̂ and satisfies the condition

M1(ω) = sup
N∈N

(N + 1)ω2N

N∑
k=0

1

(k + 1)2ω2k
< ∞.

We recall that given a Banach space (or a complete metric space) X of analytic functions
on D, a positive Borel measure μ on D is called a q-Carleson measure for X if the identity
operator Id : X → Lq(μ) is bounded. Carleson provided a geometric description of p-
Carleson measures for Hardy spaces H p , 0 < p < ∞, [6, Chapter 9]. These measures
are called classical Carleson measures. The proof of Theorem 2 uses characterizations of
Carleson measures for X1-spaces, universal Cesàro basis of polynomials and some of the
main ingredients of the proofs of Theorem 1 and [26, Theorem 2].

Concerning the classes of radial weights D̂ andMp,c = {ω : Mp,c(ω) < ∞}, 1 ≤ p < ∞,
a standard weight, ω(z) = (1 − |z|)β , β > −1, satisfies the condition Mp,c(ω) < ∞ if and
only if β > 1

p − 1, so Hω : H p → H p is bounded if and only if β > 1
p − 1. Moreover,

a calculation shows that the exponential type weight ω(r) = exp
(
− 1

1−r

)
∈ Mp,c for any

p ∈ [1,∞), but ω /∈ D̂, see [28, Example 3.2] for further details. So, D̂ and Mp,c are not
included in each other.

The study of the radial weights ω such that Hω : H p → H p is bounded, has been
previously considered in [26]. Indeed, Theorem 2 improves [26, Theorem 2], by removing
the initial hypothesisω ∈ D̂. On the other hand, [26, Theorem 3] describes theweightsω ∈ D̂
such that Hω : L p

[0,1) → H p is bounded, and consequently gives a sufficient condition for
the boundedness of Hω : H p → H p , 1 < p < ∞. The following improvement of [26,
Theorem 3] is a byproduct of Theorem 1.

Corollary 3 Let ω be a radial weight and 1 < p < ∞. Let Yp ∈ {H(∞, p), H p,

Dp
p−1, HL(p)} and T ∈ {Hω, H̃ω}. Then the following statements are equivalent:

(i) T : L p
[0,1) → Yp is bounded;

(ii) ω ∈ D and satisfies the condition

m p(ω) = sup
0<r<1

(
1 +

∫ r

0

1

ω̂(t)p
dt

) 1
p
(∫ 1

r
ω(t)p

′
dt

) 1
p′

< ∞;

(iii) ω ∈ D̂ and satisfies the condition m p(ω) < ∞.

In relation to an analogous result to Corollary 3 for p = 1, Theorem 26 below
shows that the radial weights such that T : L1

[0,1) → Y1 is bounded, where Y1 ∈
{H(∞, 1), H1, D1

0, HL(1)} and T ∈ {Hω, H̃ω}, are the weights ω ∈ D such that m1(ω) =
ess supt∈[0,1) ω(t)

(
1 + ∫ t

0
ds

ω̂(s)

)
< ∞.
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In view of the above findings, we compare the conditions Mp,c(ω) < ∞, Mp,d(ω) < ∞
andmp(ω) < ∞ in order to put the boundedness of T : X p → Yp alongside the boundedness
of T : L p

[0,1) → Yp , where X p, Yp ∈ {H(∞, p), H p, Dp
p−1, HL(p)} and T ∈ {Hω, H̃ω}

for 1 ≤ p < ∞. Bearing in mind (1.5), it is clear that the conditionmp(ω) < ∞ implies that
Mp,c(ω) < ∞, for any weight ω ∈ D̂. Moreover, observe that Mp,c(ω) < ∞ if and only if

sup
0<r<1

(
1 +

∫ r

0

1

ω̂(t)p
dt

) 1
p
(∫ 1

r

(
ω̂(t)

1 − t

)p′

dt

) 1
p′

< ∞, when 1 < p < ∞

and supa∈[0,1)
ω̂(a)
1−a

(
1 + ∫ a

0
ds

ω̂(s)

)
< ∞ if and only if M1,d(ω) < ∞. So, the conditions

Mp,c(ω) < ∞ and mp(ω) < ∞, are equivalent for any 1 ≤ p < ∞ whenever ω satisfies
the pointwise inequality

ω(t) � ω̂(t)

1 − t
, t ∈ [0, 1), (1.7)

and ω ∈ D̂. The condition (1.7) implies restrictions on the decay and on the regularity of the
weight, in fact if ω fulfills (1.7) then ω cannot decrease rapidly and cannot oscillate strongly.

For instance, the exponential type weight ω(r) = exp
(
− 1

1−r

)
, which is a prototype of

rapidly decreasing weight (see [18]), has the property

ω̂(r) � ω(r)(1 − r)2, 0 ≤ r < 1,

so it does not satisfy (1.7). On the other hand, any regular or rapidly increasing weight
satisfies (1.7). Regular and rapidly increasing weights are large subclasses of D̂, see [25,
Section 1.2] for the definitions and examples of these classes of radial weights. However, we
construct in Corollaries 19 and 28 weights ω ∈ D with a strong oscillatory behaviour so that
Mp,c(ω) < ∞ and mp(ω) = ∞, and consequently they do not satisfy (1.7).

With the aim of discussing some results concerning the case p = ∞, we recall that the
space BMOA consists of those functions in the Hardy space H1 that have bounded mean
oscillation on the boundary of D [10], and the Bloch space B is the space of all analytic
functions on D such that

‖ f ‖B = | f (0)| + sup
z∈D

(1 − |z|2) | f ′(z)| < ∞.

We also consider the space HL(∞) of the f (z) = ∑∞
n=0 f̂ (n)zn ∈ H(D) such that

‖ f ‖HL(∞) = sup
n∈N∪{0}

(n + 1)
∣∣ f̂ (n)

∣∣ < ∞.

The following chain of inclusions hold [10]

HL(∞) � BMOA � B. (1.8)

If ω is a radial weight

Hω(1)(x) =
∞∑
n=0

ωn

2ω2n+1(n + 1)
xn ≥ 1

2x

∞∑
n=0

xn+1

n + 1
= 1

2x
log

(
1

1 − x

)
, x ∈ (0, 1),

so Hω is not bounded on H∞. As for the classical Hilbert matrix H , it is bounded from H∞
to BMOA [13, Theorem 1.2]. So, it is natural wondering about the radial weights such that
Hω : H∞ → BMOA is bounded. The next result answers this question.
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Theorem 4 Let ω be a radial weight and let T ∈ {Hω, H̃ω}. Then, the following statements
are equivalent:

(i) T : H∞ → HL(∞) is bounded;
(ii) T : H∞ → BMOA is bounded;
(iii) T : H∞ → B is bounded;
(iv) ω ∈ D̂.

The equivalence (iii)⇔(iv) was proved in [26, Theorem 1], so our contribution in Theorem 4
consists on proving the rest of equivalences.

Bearing in mind Theorems 1, 2 and 4, we deduce that T ∈ {Hω, H̃ω} is bounded from H∞
to HL(∞) if T : X p → Yp is bounded, where X p, Yp ∈ {H(∞, p), H p, Dp

p−1, HL(p)},
1 ≤ p < ∞. We prove that this is a general phenomenon for Hilbert-type operators and
parameters 1 ≤ q < p.

Theorem 5 Let ω be radial weight, T ∈ {Hω, H̃ω} and 1 ≤ q < p < ∞. Further, let
Xq , Yq ∈ {Hq , Dq

q−1, HL(q), H(∞, q)} and X p, Yp ∈ {H p, Dp
p−1, HL(p), H(∞, p)}. If

T : Xq → Yq is bounded, then T : X p → Yp is bounded.

We also prove that that there does not exist radial weights ω such that Hω : X p → Yp is
compact, where X p, Yp ∈ {H p, Dp

p−1, HL(p), H(∞, p)} and 1 ≤ p < ∞, neither radial
weights such that Hω : H∞ → B is compact, see Theorems 22, 31, 34 below.

The letter C = C(·) will denote an absolute constant whose value depends on the param-
eters indicated in the parenthesis, and may change from one occurrence to another. We will
use the notation a � b if there exists a constant C = C(·) > 0 such that a ≤ Cb, and a � b
is understood in an analogous manner. In particular, if a � b and a � b, then we write a � b
and say that a and b are comparable. We remark that if a or b are quantities which depends
on a radial weight ω, the constant C such that a � b or a � b may depend on ω but it does
not depend on a neither on b.

The rest of the paper is organized as follows. Section2 is devoted to prove some auxiliary
results. We prove Theorem 1 and Corollary 3 in Sect. 3, and Theorem 2 is proved in Sect. 4.
Section5 contains a proof of Theorem 4 and Theorem 5 is proved in Sect. 6 together with
some reformulations of the condition Mp,c(ω) < ∞.

2 Preliminary results

In this section, we will prove some convenient preliminary results which will be repeatedly
used throughout the rest of the paper. The first auxiliary lemma contains several characteri-
zations of upper doubling radial weights. For a proof, see [21, Lemma 2.1].

Lemma 6 Let ω be a radial weight on D. Then, the following statements are equivalent:

(i) ω ∈ D̂;
(ii) There exist C = C(ω) ≥ 1 and β0 = β0(ω) > 0 such that

ω̂(r) ≤ C

(
1 − r

1 − t

)β

ω̂(t), 0 ≤ r ≤ t < 1;

for all β ≥ β0.

123



    2 Page 8 of 36 N. Merchán et al.

(iii)

∫ 1

0
sxω(s)ds � ω̂

(
1 − 1

x

)
, x ∈ [1,∞);

(iv) There exists C = C(ω) > 0 and β = β(ω) > 0 such that

ωx ≤ C
( y

x

)β

ωy, 0 < x ≤ y < ∞;

(v) D̂(ω) = supn∈N ωn
ω2n

< ∞.

We will also use the following characterizations of the class Ď, see [23, (2.27)].

Lemma 7 Let ω be a radial weight. The following statements are equivalent:

(i) ω ∈ Ď;
(ii) There exist C = C(ω) > 0 and α0 = α0(ω) > 0 such that

ω̂(s) ≤ C

(
1 − s

1 − t

)α

ω̂(t), 0 ≤ t ≤ s < 1

for all 0 < α ≤ α0;
(iii) There exist K = K (ω) > 1 and C = C(ω) > 0 such that

∫ 1− 1−r
K

r
ω(s)ds ≥ Cω̂(r), 0 ≤ r < 1. (2.1)

Embedding relations among spaces X p, Yp ∈ {H p, Dp
p−1, HL(p), H(∞, p)} are quite

useful in the study of operators acting on them. In particular, we recall that

‖ f ‖H(∞,p) ≤ Cp‖ f ‖X p , 0 < p < ∞, (2.2)

for X p ∈ {H p, Dp
p−1}, see [27, p. 127] and [8, Lemma 4].

This inequality is no longer true for X p = HL(p) if 0 < p < 1. In fact, take f (z) =∑∞
n=0 2

n
p z2

n
. A calculation shows that f ∈ HL(p), if 0 < p < 1. However, using [15,

Theorem 1],

‖ f ‖p
H(∞,p) =

∫ 1

0

( ∞∑
n=0

2
n
p s2

n

)p

ds �
∞∑
n=0

1 = ∞.

Our following result extends the inequality (2.2) to X p = HL(p) and 1 ≤ p < ∞.

Lemma 8 Let 1 ≤ p < ∞. Then, there is Cp > 0 such that

‖ f ‖H(∞,p) ≤ Cp‖ f ‖X p , f ∈ H(D),

where X p ∈ {H p, Dp
p−1, HL(p)}.
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Proof By (2.2) it is enough to prove the inequality for X p = HL(p). By [15, Theorem 1]
and Hölder’s inequality

∫ 1

0
Mp∞(t, f ) dt ≤

∫ 1

0

( ∞∑
n=0

| f̂ (n)|tn
)p

dt

� | f̂ (0)|p +
∞∑
n=0

2−n

⎛
⎝2n+1−1∑

k=2n
| f̂ (k)|

⎞
⎠

p

≤ | f̂ (0)|p +
∞∑
n=0

2n(p−2)
2n+1−1∑
k=2n

| f̂ (k)|p

� | f̂ (0)|p +
∞∑
n=0

2n+1−1∑
k=2n

(k + 1)p−2| f̂ (k)|p = ‖ f ‖p
HL(p).

This finishes the proof. ��

For 0 < p < ∞ and ω a radial weight, let L p
ω,[0,1) be the Lebesgue space of measurable

functions such that

‖ f ‖p
L p

ω,[0,1)
=

∫ 1

0
| f (t)|pω(t) dt < ∞.

Next, wewill prove that the sublinear operator H̃ω does not distinguish the norm of the spaces
H(∞, p), HL(p), Dp

p−1, H
p, when 1 < p < ∞ and ω ∈ D̂.

Lemma 9 Let ω ∈ D̂, 1 < p < ∞ and X p, Yp ∈ {H(∞, p), HL(p), Dp
p−1, H

p}. Then,

‖H̃ω( f )‖X p � ‖H̃ω( f )‖Yp , f ∈ L1
ω,[0,1).

Proof Here and on the following, let us denote I (n) = {k ∈ N : 2n ≤ k < 2n+1}, n ∈ N∪{0}.
By Lemma 6

ω2n+2 � ω2k+2 � ω2k � ω2n , for anyn ∈ N ∪ {0}andk ∈ I (n). (2.3)

The above equivalences and [15, Theorem 1], yield

‖H̃ω( f )‖p
H(∞,p) �

∞∑
n=0

2−n

⎛
⎝ ∑

k∈I (n)

∫ 1
0 | f (t)|tkω(t) dt

(k + 1)ω2k+1

⎞
⎠

p

+
(∫ 1

0
| f (t)|ω(t) dt

)p

�
∞∑
n=0

2−n

(∫ 1
0 | f (t)|t2nω(t) dt

ω2n+1

)p

+
(∫ 1

0
| f (t)|ω(t) dt

)p

� ‖H̃ω( f )‖p
HL(p), f ∈ L1

ω,[0,1).

This, together with [26, Lemma 8], finishes the proof. ��
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3 Hilbert-type operators acting on Xp-spaces, 1 < p < ∞
3.1 Necessity part of Theorem 1

We begin this section with the construction of appropriate families of test functions to be
used in the proof of Theorem 1. To do this, some notation and previous results are needed.
Let g(z) = ∑∞

k=0 ĝ(k)z
k ∈ H(D), and denote 	ng(z) = ∑

k∈I (n) ĝ(k)z
k . In the particular

case g(z) = 1
1−z , we simply write 	n(z) = 	n(g)(z) = ∑

k∈I (n) z
k . We recall that

‖	n‖H p � 2n(1−1/p), n ∈ N ∪ {0}, 1 < p < ∞, (3.1)

see [2, Lemma 2.7].
For any n1, n2 ∈ N ∪ {0}, n1 < n2, write Sn1,n2g(z) = ∑n2−1

k=n1
ĝ(k)zk . The next known

result can be proved mimicking the proof of [13, Lemma 3.4] (see also [24, Lemma E]), that
is, by summing by parts and using the M. Riesz projection theorem.

Lemma 10 Let 1 < p < ∞ and λ = {λk}∞k=0 be a positive and monotone sequence. Let
g(z) = ∑∞

k=0 bkz
k and (λg)(z) = ∑∞

k=0 λkbk zk .

(a) If {λk}∞k=0 is nondecreasing, there exists a constant C > 0 such that

C−1λn1‖Sn1,n2g‖H p ≤ ‖Sn1,n2(λg)‖H p ≤ Cλn2‖Sn1,n2g‖H p .

(b) If {λk}∞k=0 is nonincreasing, there exists a constant C > 0 such that

C−1λn2‖Sn1,n2g‖H p ≤ ‖Sn1,n2(λg)‖H p ≤ Cλn1‖Sn1,n2g‖H p .

Lemma 11 Let ω ∈ D̂, 1 < p < ∞, α, β ∈ R and M, N ∈ N ∪ {0} such that 0 ≤ N <

4N + 1 ≤ M. Let us consider the function

fN ,M (z) =
M∑

k=N

ωα
2k(k + 1)β zk .

Then,

‖ fN ,M‖HL(p) � ‖ fN ,M‖H p � ‖ fN ,M‖Dp
p−1

, (3.2)

where the constants involved do not depend on M or N. In particular, if α = 0 then (3.2)
holds for any radial weight.

Proof Firstly, let us show that for all N , M ∈ N, M > N ,

‖ f2N+1,2M ‖Dp
p−1

� ‖ f2N+1,2M ‖HL(p). (3.3)

123



Hilbert-type operator on Hardy spaces... Page 11 of 36     2 

[16, Theorem 2.1(b)] (see also [20, 7.5.8]), Lemma 10, (2.3) and (3.1) implies

‖ f2N+1,2M ‖p
Dp

p−1
�

M−1∑
n=N

2−np

∥∥∥∥∥∥
∑

k∈I (n)

ωα
2k+2(k + 2)β(k + 1)zk

∥∥∥∥∥∥
p

H p

�
M−1∑
n=N

2npβω
pα
2n+1‖	n‖p

H p

�
M−1∑
n=N

2n(pβ+p−1)ω
pα
2n+1

�
2M∑

k=2N+1

(k + 1)pβ+p−2ω
pα
2k = ‖ f2N+1,2M ‖p

HL(p),

A similar calculation shows that

‖ f2N+1+1,2M ‖Dp
p−1

� ‖ f2N+1,2M+1‖Dp
p−1

, M > N + 1. (3.4)

Next, if N > 2, there is N �, M� ∈ N such that 2N
� ≤ N − 1 < 2N

�+1 and 2M
� ≤ M − 1 <

2M
�+1, so N � + 1 < M�. Then, by [16, Theorem 2.1(b)] and the boundedness of the Riesz

projection, (3.3) and (3.4)

‖ fN ,M‖p
Dp

p−1
� 2−pN �

∥∥∥∥∥∥
2N

�+1−1∑
k=N−1

(k + 1) f̂N ,M (k + 1)zk

∥∥∥∥∥∥

p

H p

+ ‖ f2N�+1+1,2M� ‖p
Dp

p−1

+ 2−pM�

∥∥∥∥∥∥
M−1∑
k=2M�

(k + 1) f̂N ,M (k + 1)zk

∥∥∥∥∥∥
p

H p

� ‖ f2N�+1,2M�+1‖p
Dp

p−1

� ‖ f2N�+1+1,2M� ‖p
Dp

p−1
� ‖ f2N�+1+1,2M� ‖p

HL(p) � ‖ fN ,M‖p
HL(p).

On the other hand,

‖ fN ,M‖p
Dp

p−1
� ‖ f2N�+1+1,2M� ‖p

Dp
p−1

� ‖ f2N�+1,2M�+1‖p
Dp

p−1

� ‖ f2N�+1,2M�+1‖p
HL(p) ≥ ‖ fN ,M‖p

HL(p).

Then, bearing inmind (1.3) and (1.4), we obtain ‖ fN ,M‖HL(p) � ‖ fN ,M‖H p � ‖ fN ,M‖Dp
p−1

for each N > 2.
If N ∈ {0, 1, 2}, the previous argument together with minor modifications implies (3.2).

This finishes the proof. ��
Now we are ready to prove the necessity part of Theorem 1.

Proposition 12 Let ω be a radial weight and 1 < p < ∞. If X p, Yp ∈ {H(∞, p), H p,

Dp
p−1, HL(p)}, T ∈ {Hω, H̃ω}, and T : X p → Yp is a bounded operator. Then, ω ∈ D and

Mp(ω) = sup
N∈N

(
N∑

n=0

1

(n + 1)2ωp
2n+1

) 1
p
( ∞∑
n=N

ω
p′
2n+1(n + 1)p

′−2

) 1
p′

< ∞. (3.5)
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Proof In order to obtain both conditions,ω ∈ D and Mp(ω) < ∞, we are going to work with
families of test functions constructed in Lemma 11. Since they have non-negative Maclaurin
coefficients, it is enough to prove the result for T = Hω. Take f ∈ H(D) such that f̂ (n) ≥ 0
for all n ∈ N.

First Step. We will prove that ω ∈ D̂. By Lemma 8, it is enough to deal with the case
Yp = H(∞, p).

Observe that M∞(r , Hω( f )) = ∑∞
n=0

1
2(n+1)ω2n+1

(∑∞
k=0 f̂ (k)ωn+k

)
rn . Now, consider

the test functions fN (z) = ∑N
n=0

1

(n+1)
1− 1

p−1
zn, N ∈ N. Given that

∑N
k=0

1

(k+1)
1− 1

p−1
�

(N + 1)
1

p−1 ,

M∞(r , Hω( fN )) ≥
7N∑

n=6N

1

2(n + 1)ω2n+1

(
N∑

k=0

f̂N (k)ωn+k

)
rn

�
7N∑

n=6N

ωn+N

(n + 1)ω2n+1

(
N∑

k=0

1

(k + 1)1−
1

p−1

)
rn

� (N + 1)
1

p−1
ω8N

ω12N
r7N , N ∈ N, 0 ≤ r < 1.

So,

‖Hω( fN )‖p
H(∞,p) � (N + 1)

1
p−1

(
ω8N

ω12N

)p

, N ∈ N.

By Lemmas 11 and 8,

‖ fN‖p
X p

� ‖ fN‖p
HL(p) =

N∑
n=0

1

(n + 1)1−
1

p−1

� (N + 1)
1

p−1 .

Consequently,

(N + 1)
1

p−1

(
ω8N

ω12N

)p

� ‖Hω( fN )‖p
H(∞,p) � ‖ fN‖p

X p
� (N + 1)

1
p−1 , N ∈ N.

Therefore, there is C = C(ω, p) such that ω8N ≤ Cω12N , N ∈ N. From now on, for
each x ∈ R, �x� denotes the biggest integer≤ x . For any x ≥ 120, take N ∈ N such that
8N ≤ x < 8N + 8, and then

ωx ≤ ω8N ≤ Cω12N ≤ Cω8� 3N
2 � ≤ C2ω12� 3N

2 � ≤ C2ω18N−12 ≤ C2ω16N+16 ≤ C2ω2x .

So, ω ∈ D̂ by Lemma 6.

Second Step. We will prove that Mp(ω) < ∞.
Case Yp = HL( p). Set an arbitrary N ∈ N. Then, bearing in mind that {ωk}∞k=0 is decreas-
ing,

(
N∑

n=0

1

(n + 1)2ωp
2n+1

) ( ∞∑
k=N

f̂ (k)ω2k+1

)p

≤
∞∑
n=0

1

(n + 1)2ωp
2n+1

( ∞∑
k=0

f̂ (k)ωn+k

)p

� ‖Hω‖p
X p→HL(p)‖ f ‖p

X p
.

(3.6)
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Take M, N ∈ N, M > 4N + 1, and consider the family of test polynomials

fN ,M (z) =
M∑

k=N

ω
p′−1
2k+1(k + 1)p

′−2zk, z ∈ D. (3.7)

Then, Lemmas 8 and 11 yield

M∑
k=N

ω
p′
2k+1(k + 1)p

′−2 = ‖ fN ,M‖p
HL(p) � ‖ fN ,M‖p

X p

where the constants do not depend on M or N .
So, testing this family of functions in (3.6), there exists C = C(p, ω) > 0 such that

(
N∑

n=0

1

(n + 1)2ωp
2n+1

)(
M∑

k=N

ω
p′
2k+1(k + 1)p

′−2

)p−1

≤ C, for anyM, N ∈ N, M > 4N + 1.

By letting M → ∞, and taking the supremum in N ∈ N, (3.5) holds.

Case Yp ∈ {H(∞, p), H p, Dp
p−1}. Let fN ,M be the functions defined in (3.7), then

Hω( fN ,M ) = H̃ω( fN ,M ). This together with the fact that ω ∈ D̂ and Lemma 9, yields

‖Hω( fN ,M )‖Yp � ‖Hω( fN ,M )‖HL(p)

where the constants in the inequalities do not depend on M or N .
Therefore, using Lemmas 8, 9 and 11, there exists C = C(p, ω) > 0 such that

‖Hω( fN ,M )‖HL(p) ≤ C‖ fN ,M‖HL(p).

So, arguing as in the case Yp = HL(p), we obtain Mp(ω) < ∞.

Third Step.We will prove that the condition Mp(ω) < ∞ implies that ω ∈ M. Indeed, set
K , M ∈ N, K , M > 1 and N ∈ N. By (3.5),

∞ > Mp(ω) ≥
⎛
⎝ K N∑

j=N

1

( j + 1)2ωp
2 j+1

⎞
⎠

1
p
⎛
⎝(K+M)N−1∑

j=K N

ω
p′
2 j+1( j + 1)p

′−2

⎞
⎠

1
p′

≥ ω2(K+M)N

ω2N

⎛
⎝ K N∑

j=N

1

( j + 1)2

⎞
⎠

1
p
⎛
⎝(K+M)N−1∑

j=K N

( j + 1)p
′−2

⎞
⎠

1
p′

,

So, there is C = C(p) > 0 such that

ω2N ≥ ω2(K+M)N
1

Mp(ω)
C

(
(K + M)p

′−1 − K p′−1
) 1

p′
, for allN ∈ N. (3.8)

Now, fix K > 1 and take M ∈ N large enough such that

1

Mp(ω)
C

(
(K + M)p

′−1 − K p′−1
) 1

p′ = C(K , M, p, ω) > 1.

Let x ≥ 1 and take N ∈ N such that 2N − 2 ≤ x < 2N . Then, by (3.8)

ωx ≥ ω2N ≥ C(K , M, p, ω)ω2(K+M)N ≥ C(K , M, p, ω)ω(K+M)x+2(K+M)

≥ C(K , M, p, ω)ω3(K+M)x ,

so ω ∈ M. Since ω ∈ D̂, [23, Theorem 3] yields ω ∈ D. The proof is finished. ��
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3.2 Sufficiency part of Theorem 1

For the purpose of proving Theorem 1we need some additional preparations. In particular, we
aim for reformulating the necessary discrete condition on the moments of the radial weight
ω, Mp(ω) < ∞, as a continuous inequality in terms of ω̂(r). Observe that a radial weight ω
satisfies the condition

Kp,c(ω) = sup
0<r<1

(
1 +

∫ r

0

1

ω̂(t)p
dt

) 1
p
(∫ 1

r

(
ω̂(t)

1 − t

)p′

dt

) 1
p′

< ∞

if and only if Mp,c(ω) < ∞. This fact will be used repeatedly throughout the paper.

Lemma 13 Let 1 < p < ∞ and ω ∈ D̂. Set

K p,c(ω) = sup
0<r<1

(
1 +

∫ r

0

1

ω̂(t)p
dt

) 1
p
(∫ 1

r

(
ω̂(t)

1 − t

)p′

dt

) 1
p′

.

Then,

∫ 1

0

(
ω̂(t)

1 − t

)p′

dt �
∞∑
k=0

ω
p′
2k+1(k + 1)p

′−2

and

Mp(ω) � Kp,c(ω).

Proof Let 0 < r < 1 and set N ∈ N such that 1 − 1
N ≤ r < 1 − 1

N+1 . Then, by using
Lemma 6,

N∑
k=0

1

(k + 1)2ωp
2k+1

�
N∑

k=0

1

(k + 1)2ω̂
(
1 − 1

k+1

)p � 1 +
N∑

k=1

∫ k+1

k

1

x2ω̂
(
1 − 1

x

)p dx

= 1 +
∫ 1− 1

N+1

0

1

ω̂(s)p
ds ≥ 1 +

∫ r

0

1

ω̂(s)p
ds.

In addition, by Lemma 6 again,

∫ 1

r

(
ω̂(t)

1 − t

)p′

dt ≤
∫ 1

1− 1
N

(
ω̂(t)

1 − t

)p′

dt =
∞∑

k=N

∫ 1− 1
k+1

1− 1
k

(
ω̂(t)

1 − t

)p′

dt

≤
∞∑

k=N

ω̂

(
1 − 1

k

)p′ ∫ 1− 1
k+1

1− 1
k

1

(1 − t)p′ dt �
∞∑

k=N

ω
p′
2k+1(k + 1)p

′−2.

(3.9)

Therefore, Kp,c(ω) � Mp(ω).
Conversely, in order to obtain the reverse inequality, a similar argument to (3.9) yields

N∑
k=0

1

(k + 1)2ωp
2k+1

� 1 +
N∑

k=1

1

(k + 1)2ω̂
(
1 − 1

k

)p � 1 +
∫ 1− 1

N+1

0

1

ω̂(s)p
ds.
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Now, on the one hand, if r ≤ 1
2 then

∑N
k=0

1
(k+1)2ωp

2k+1
� 1 ≤ 1 + ∫ r

0
1

ω̂(s)p ds. On the other

hand, if 1
2 ≤ r < 1,

N∑
k=0

1

(k + 1)2ωp
2k+1

� 1 +
∫ r

0

1

ω̂(s)p
ds +

∫ 1− 1
N+1

1− 1
N

1

ω̂(s)p
ds

� 1 +
∫ r

0

1

ω̂(s)p
ds + 1

N ω̂
(
1 − 1

N+1

)p

So, Lemma 6 yields

N∑
k=0

1

(k + 1)2ωp
2k+1

� 1 +
∫ r

0

1

ω̂(s)p
ds + 1 − r

ω̂ (2r − 1)p

� 1 +
∫ r

0

1

ω̂(s)p
ds +

∫ r

2r−1

1

ω̂(s)p
ds

� 1 +
∫ r

0

1

ω̂(s)p
ds,

1

2
≤ r < 1.

Next,

∞∑
k=N

ω
p′
2k+1(k + 1)p

′−2 �
∞∑

k=N

ω̂

(
1 − 1

k + 2

)p′

(k + 1)p
′
∫ 1− 1

k+2

1− 1
k+1

dt

�
∫ 1

1− 1
N+1

(
ω̂(t)

1 − t

)p′

dt ≤
∫ 1

r

(
ω̂(t)

1 − t

)p′

dt, (3.10)

and consequently, Mp(ω) � Kp,c(ω). Finally, (3.9) and (3.10) imply

∫ 1

0

(
ω̂(t)

1 − t

)p′

dt �
∞∑
k=0

ω
p′
2k+1(k + 1)p

′−2.

This finishes the proof. ��
We will also need the following description of the class D.

Lemma 14 Let ω be a radial weight. Then the following conditions are equivalent:

(i) ω ∈ D;
(ii) The function defined as ω̃(r) = ω̂(r)

1−r , 0 ≤ r < 1, is a radial weight and satisfies

ω̂(r) � ̂̃ω(r), 0 ≤ r < 1.

Proof (i)⇒(ii). By Lemma 7, there is α > 0 such that
∫ 1

r
ω̃(s) ds � ω̂(r)

(1 − r)α

∫ 1

r
(1 − s)α−1 ds � ω̂(r), 0 ≤ r < 1,

which, in particular, implies that ω̃ is a radial weight. On the other hand, by Lemma 6, there
is β > 0 such that

∫ 1

r
ω̃(s) ds � ω̂(r)

(1 − r)β

∫ 1

r
(1 − s)β−1 ds � ω̂(r), 0 ≤ r < 1.
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Reciprocally, if (ii) holds, there are C1,C2 > 0 such that

C1ω̂(r) ≤ ̂̃ω(r) ≤ C2ω̂(r), 0 ≤ r < 1.

So, for any K > 1,

ω̂(r) ≥ 1

C2

∫ 1− 1−r
K

r
ω̃(s) ds ≥ log K

C2
ω̂

(
1 − 1 − r

K

)
, 0 ≤ r < 1.

Therefore, taking K such that log K
C2

> 1, ω ∈ Ď.
Moreover, for any K > 1

ω̂(r) ≤ 1

C1
̂̃ω(r) ≤ log K

C1
ω̂(r) + 1

C1

∫ 1

1− 1−r
K

ω̃(s) ds 0 ≤ r < 1.

If log K
C1

< 1, then

ω̂(r) ≤ C2

1 − log K
C1

ω̂

(
1 − 1 − r

K

)
, 0 ≤ r < 1.

So, ω ∈ D̂. This finishes the proof. ��

The previous lemma may be used to prove that a differentiable non-decreasing function
h : [0, 1) → [0,∞) belongs to L p

ω,[0,1) if and only if it belongs to L p
ω̃,[0,1). This result is

essential for our purposes. In particular, bearing in mind Lemma 14 and two integration by
parts,

∫ 1

0
h(t)ω(t) dt � h(0)ω̂(0) +

∫ 1

0
h(t)ω̃(t) dt, (3.11)

for any differentiable non-decreasing function h : [0, 1) → [0,∞).
Bearing in mind Lemma 13, our next result ensures that the Hilbert-type operators Hω and

H̃ω are well defined on X p ∈ {H(∞, p), H p, Dp
p−1, HL(p)}, 1 < p < ∞ when ω ∈ D

and Mp(ω) < ∞.

Lemma 15 Let ω ∈ D and 1 < p < ∞ such that
∫ 1
0

(
ω̂(t)
1−t

)p′
dt < ∞.

Then

∫ 1

0
M∞(t, f )ω(t) dt � ‖ f ‖H(∞,p)

(∫ 1

0

(
ω̂(t)

1 − t

)p′

dt

)1/p′

, f ∈ H(D).

In particular, T ( f ) ∈ H(D) for any f ∈ X p, where X p ∈ {H(∞, p), H p, Dp
p−1, HL(p)}

and T ∈ {Hω, H̃ω}.

Proof By (3.11)

∫ 1

0
M∞(t, f )ω(t) dt ≤ | f (0)|ω̂(0) +

∫ 1

0
M∞(t, f )ω̃(t) dt . (3.12)
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Then, by Hölder’s inequality

∫ 1

0
M∞(t, f )ω(t) dt ≤ | f (0)|ω̂(0) +

(∫ 1

0
Mp∞(t, f ) dt

)1/p (∫ 1

0
ω̃(t)p

′
dt

)1/p′

� ‖ f ‖H(∞,p)

(∫ 1

0
ω̃(t)p

′
dt

)1/p′

< ∞, f ∈ H(∞, p).

Joining the above chain of inequalities with Lemma 8, the proof is finished. ��

Next, for p, q > 0 and α > −1, let H1(p, q, α) denote the space of f ∈ H(D) such that

‖ f ‖H1(p,q,α) =
(

| f (0)|p +
∫ 1

0
Mp

q (r , f ′)(1 − r)αdr

) 1
p

< ∞.

It is worth mentioning that H1 (p, p, p − 1) = Dp
p−1.

The following inequality will be used in the proof of Theorem 1. It was proved in [16,
Corollary 3.1].

Lemma 16 Let 1 < q < p < ∞. Then,

‖ f ‖H p � ‖ f ‖
H1

(
p,q,p

(
1− 1

q

)), f ∈ H(D).

Now, we are ready to prove the main result of this section.

Proof of Theorem 1 The implication (i)⇒(ii) was proved in Proposition 12. The implication
(ii)⇒(iii) is clear, and (iii)⇒(ii) follows from the third step in the proof of Proposition 12. On
the other hand, bearing in mind that Mp,c(ω) < ∞ if and only if Kp,c(ω) < ∞, (iii)⇔(iv)
follows from Lemma 13. Then, it is enough to prove (ii)⇒(i).
(ii)⇒(i).

First Step.We will prove the inequality

‖T ( f )‖Yp � ‖ f ‖X p + ‖H̃ω( f )‖Yp , f ∈ X p. (3.13)

By Lemmas 8 and 16, it is enough to prove

‖Hω( f )‖
H1

(
p,q,p

(
1− 1

q

)) � ‖ f ‖X p + ‖H̃ω( f )‖Yp , 1 < q, p < ∞, f ∈ X p.

(3.14)

Let f ∈ X p . Then, Lemmas 13 and 15 ensure that Hω( f ) ∈ H(D). By [16, Theorem 2.1]

‖Hω( f )‖p

H1
(
p,q,p

(
1− 1

q

)) � |Hω( f )(0)|p + |Hω( f )′(0)|p

+
∞∑
n=0

2
−n

(
p
(
1− 1

q

)
+1

)
‖	n(Hω( f ))′‖p

Hq . (3.15)

Due to

(Hω( f ))′(z) =
∞∑
n=0

n + 1

2(n + 2)ω2n+3

(∫ 1

0
f (t)tn+1ω(t)dt

)
zn,
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and using the proof of [8, Lemma 7], Lemma 10 and (3.1),

‖	n(Hω( f ))′‖p
Hq �

(∫ 1
0 t2

n−2+1| f (t)|ω(t)dt
)p

ω
p
2n+2+3

2
np

(
1− 1

q

)
, n ≥ 3.

Hence, by using Lemma 6,

∞∑
n=3

2
−n

(
p
(
1− 1

q

)
+1

)
‖	n(Hω( f ))′‖p

Hq �
∞∑
n=3

2−2n

ω
p
2n+2

2n−2∑
k=2n−3

(∫ 1

0
tk | f (t)|ω(t)dt

)p

�
∞∑
k=1

(∫ 1
0 tk | f (t)|ω(t)dt

)p

ω
p
2k+1(k + 1)2

� ‖H̃ω( f )‖p
HL(p).

(3.16)

In addition, by Lemmas 8 and 15

|Hω( f )(0)|p + |Hω( f )′(0)|p +
2∑

n=0

2−np‖	n(Hω( f ))′‖p
H p � ‖ f ‖p

X p
. (3.17)

Therefore, by putting together (3.15), (3.16) and (3.17)

‖Hω( f )‖p

H1
(
p,q,p

(
1− 1

q

)) � ‖ f ‖p
X p

+ ‖H̃ω( f )‖p
HL(p).

The above inequality, together with Lemma 9, yields (3.14).

Second Step.We will prove the inequality

‖H̃ω( f )‖Dp
p−1

� ‖ f ‖H(∞,p), f ∈ H(∞, p). (3.18)

We denote by

Gω
t (z) = d

dz

(
1

z

∫ z

0
Bω
t (ζ )dζ

)
. (3.19)

By [26, Lemma B]

Mp(r ,G
ω
t ) �

(
1 +

∫ r t

0

ds

ω̂(s)(1 − s)p

)1/p

� 1

ω̂(r t)(1 − r t)1−
1
p

, 0 ≤ r , t < 1,

which together with Minkowski’s inequality yields

‖H̃ω( f )‖p
Dp

p−1
� |H̃ω( f )(0)|p +

∫ 1

0

(∫ 1

0
| f (t)|ω(t)Mp(r ,G

ω
t )dt

)p

(1 − r)p−1 dr

� |H̃ω( f )(0)|p +
∫ 1

0

(∫ 1

0

| f (t)|ω(t)

ω̂(r t)(1 − r t)1−
1
p

dt

)p

(1 − r)p−1 dr

≤ |H̃ω( f )(0)|p +
∫ 1

0

(∫ 1

0

M∞(t, f )ω(t)

ω̂(r t)(1 − r t)1−
1
p

dt

)p

(1 − r)p−1 dr .
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Now, by (3.11)

‖H̃ω( f )‖p
Dp

p−1
� |H̃ω( f )(0)|p + | f (0)|p

+
∫ 1

0

(∫ 1

0

M∞(t, f )

ω̂(r t)(1 − r t)1−
1
p

ω̂(t)

1 − t
dt

)p

(1 − r)p−1 dr . (3.20)

Next, by Lemma 13, Mp,c(ω) < ∞ holds, so [17, Theorem 2] yields

∫ 1

0

(∫ 1

r

M∞(t, f )

ω̂(r t)(1 − r t)1−
1
p

ω̂(t)

1 − t
dt

)p

(1 − r)p−1 dr

�
∫ 1

0

(∫ 1

r
M∞(t, f )

ω̂(t)

1 − t
dt

)p
1

ω̂(r)p
dr

� ‖ f ‖p
H(∞,p) (3.21)

On the other hand, by [17, Theorem 1],

∫ 1

0

(∫ r

0

M∞(t, f )

ω̂(r t)(1 − r t)1−
1
p

ω̂(t)

1 − t
dt

)p

(1 − r)p−1 dr

�
∫ 1

0

(∫ r

0

M∞(t, f )

(1 − t)2−
1
p

dt

)p

(1 − r)p−1 dr

� ‖ f ‖p
H(∞,p), (3.22)

where in the last inequalitywehaveused that sup0<r<1

(∫ 1
r (1 − t)p−1

) 1
p
(∫ r

0 (1 − t)−1−p′) 1
p′

<

∞. So, joining Lemma 15, (3.20), (3.21) and (3.22), we get (3.18).

Third Step. Since ω ∈ D̂, by Lemma 9

‖H̃ω( f )‖Dp
p−1

� ‖H̃ω( f )‖Yp , f ∈ X p,

for Yp ∈ {H(∞, p), H p, Dp
p−1, HL(p)}. This, together with (3.13), (3.18) and Lemma 8

implies

‖T ( f )‖Yp � ‖ f ‖X p + ‖H̃ω( f )‖Yp

� ‖ f ‖X p + ‖H̃ω( f )‖Dp
p−1

� ‖ f ‖X p + ‖ f ‖H(∞,p)

� ‖ f ‖X p , f ∈ X p.

This finishes the proof. ��

3.3 H! : X p → Yp versus H! : L p
[0,1) → Yp, 1 < p < ∞

An additional byproduct of Theorem 1 is the following improvement of [26, Theorem 3].

Proof of Corollary 3 (i)⇒(ii). By Lemma 8, T : Yp → Yp is bounded, and so by Theorem 1,
ω ∈ D. Next, by the proofs of [26, Theorems 3 and 4] we obtain mp(ω) < ∞.

(ii)⇒(iii) is clear. Finally, (iii)⇒(i) follows from Lemma 8 and [26, Theorem 3].
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Putting together Lemma 8, Theorem 1 and Corollary 3, we deduce the following result.

Corollary 17 Let ω be a radial weight and 1 < p < ∞. Let X p, Yp ∈ {H(∞, p),
H p, Dp

p−1, HL(p)} and let T ∈ {Hω, H̃ω}. If there exists C > 0 such that

ω(t) ≤ C
ω̂(t)

1 − t
for all0 ≤ t < 1. (3.23)

Then, the following statements are equivalent:

(i) T : L p
[0,1) → Yp is bounded;

(ii) T : X p → Yp is bounded;
(iii) ω ∈ D and Mp,c(ω) < ∞;
(iv) ω ∈ D̂ and Mp,c(ω) < ∞;
(v) ω ∈ D and mp(ω) < ∞;
(vi) ω ∈ D̂ and mp(ω) < ∞.

Proof The implication (i)⇒(ii) follows from Lemma 8, and (ii)⇔(iii)⇔(iv) follows from
Theorem 1. Next, (iii)⇒(v) is a byproduct of the hypothesis (3.23). The equivalence (v)⇔(vi)
and the implication (vi)⇒(i) have been proved in Corollary 3. This finishes the proof. ��

Next, we will prove that there are weights ω ∈ D, such that Mp,c(ω) < ∞ and mp(ω) =
∞, so in particular they do not satisfy (3.23). Consequently, the boundedness of the operator
Hω : L p

[0,1) → Yp is not equivalent to the boundedness of the the operator Hω : X p → Yp ,

where X p, Yp ∈ {H(∞, p), H p, Dp
p−1, HL(p)}. With this aim we prove the next result,

which shows that despite its innocent looking condition, the classD has in a sense a complex
nature.

Lemma 18 Let 1 < p < ∞ and ν ∈ D. Then, there exists ω ∈ D such that

ω̂(t) � ν̂(t), t ∈ [0, 1),
ω ∈ L p′

[0,r0] for any r0 ∈ (0, 1) and ω /∈ L p′
[0,1).

Proof By Lemma 14, ν̃ ∈ D. So, we can choose K > 1 so that ν̃ satisfies (2.1). Next,
consider the sequences rn = 1 − 1

Kn , tn = rn + an , with

0 < an < min

(
rn+1 − rn,

(̂̃
ν(rn)

)p
(n + 1)p−1

)
, n ∈ N ∪ {0}.

Let

ω(t) =
∞∑
n=0

hnχ[rn ,tn ](t )̃ν(t), t ∈ [0, 1), where hn = ̂̃ν(rn) − ̂̃ν(rn+1)

̂̃ν(rn) − ̂̃ν(tn)
, n ∈ N ∪ {0}.

Observe that the sequence {hn}∞n=0 is well-defined because

̂̃ν(rn) − ̂̃ν(tn) =
∫ tn

rn

ν̂(s)

1 − s
ds ≥ ν̂(tn) log

(
1 + an

1 − tn

)
> 0, n ∈ N ∪ {0}.

Moreover, ω is non-negative and
∫ 1

0
ω(t) dt =

∞∑
n=0

hn
(̂̃
ν(rn) − ̂̃ν(tn)

)

=
∞∑
n=0

(̂̃
ν(rn) − ̂̃ν(rn+1)

) = ̂̃ν(0) =
∫ 1

0
ν̃(t) dt �

∫ 1

0
ν(t) dt < ∞,
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where in the last equivalence we have used Lemma 14.
Next, take t ∈ [0, 1) and N ∈ N ∪ {0} such that rN ≤ t < rN+1. By Lemmas 14 and 6,

ω̂(t) ≤ ω̂(rN ) =
∞∑

n=N

(̂̃
ν(rn) − ̂̃ν(rn+1)

) = ̂̃ν(rN ) � ν̂(rN ) � ν̂(t) and

ω̂(t) ≥ ω̂(rN+1) =
∞∑

n=N+1

(̂̃
ν(rn) − ̂̃ν(rn+1)

) = ̂̃ν(rN+1) � ν̂(rN+1) � ν̂(t),

so ω̂(t) � ν̂(t) and hence ω ∈ D.

It is clear that ω ∈ L p′
[0,r0] for any r0 ∈ (0, 1), so it only remains to prove that ω /∈ L p′

[0,1).
Bearing mind (2.1), we get that

hn � ̂̃ν(rn)
̂̃ν(rn) − ̂̃ν(tn)

, N ∈ N ∪ {0}.

This, together with Lemma 6 and Hölder’s inequality, implies

∫ 1

0
ω(t)p

′
dt =

∞∑
n=0

h p′
n

∫ tn

rn

(
ν̂(t)

1 − t

)p′

dt �
∞∑
n=0

(̂̃
ν(rn)

)p′
∫ tn
rn

(
ν̂(t)
1−t

)p′
dt

(∫ tn
rn

ν̂(t)
1−t dt

)p′

≥
∞∑
n=0

( ̂̃ν(rn)

(tn − rn)1/p

)p′

=
∞∑
n=0

(̂̃ν(rn)

a1/pn

)p′

≥
∞∑
n=0

(n + 1) = ∞.

��
Corollary 19 Let 1 < p < ∞ and X p, Yp ∈ {H(∞, p), H p, Dp

p−1, HL(p)}. For each

radial weight ν such that Q : L p
[0,1) → Yp is bounded, where Q ∈ {Hν, H̃ν}, there is a

radial weight ω such that

ω̂(t) � ν̂(t), t ∈ [0, 1),
ω ∈ L p′

[0,r0] for any r0 ∈ (0, 1), T : X p → Yp is bounded and T : L p
[0,1) → Yp is not

bounded. Here T ∈ {Hω, H̃ω}.
Proof Since Q : L p

[0,1) → Yp is bounded, by Theorem 1, ν ∈ D and Mp,c(ν) < ∞. Now,

by Lemma 18 there is a radial weight ω such that ω̂(t) � ν̂(t), ω ∈ L p′
[0,r0] for any r0 ∈ (0, 1)

and ω /∈ L p′
[0,1). So, mp(ω) = ∞ and by Corollary 3, T : L p

[0,1) → Yp is not bounded.
Moreover, ω ∈ D and Mp,c(ω) < ∞ because ν satisfies both properties, so Theorem 1
yields T : X p → Yp is bounded. ��

3.4 Compactness of Hilbert-type operators on Xp-spaces. Case 1 < p < ∞

For X , Y two Banach spaces, a sublinear operator L : X → Y is said to be compact provided
L(A) has compact closure for any bounded set A ⊂ X . Once it has been understood the radial
weights ω such that Hω : X p → Yp is bounded, X p, Yp ∈ {H(∞, p), Dp

p−1, H
p, HL(p)},

1 < p < ∞, it is natural to consider the analogous problem, replacing boundedness by
compactness. Theorem 22 in this section answers this question, but firstly we need some
previous results.
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Lemma 20 Let 1 < p < ∞ and ω ∈ D such that ‖ω̃‖
L p′

[0,1)
< ∞. Let { fk}∞k=0 ⊂ X p ∈

{H(∞, p), Dp
p−1, H

p, HL(p)} such that supk∈N ‖ fk‖X p < ∞ and fk → 0 uniformly on
compact subsets of D. Then the following statements hold:

(i)
∫ 1
0 | fk(t)|ω(t)dt → 0 when k → ∞.

(ii) If T ∈ {Hω, H̃ω}, then T ( fk) → 0 uniformly on compact subsets of D.

Proof (i). Let ε > 0. By hypothesis
∫ 1
0 ω̃(t)p

′
dt < ∞, so there exists 0 < ρ0 < 1 such that∫ 1

ρ0
ω̃(t)p

′
dt < ε.Moreover, there exists k0 such that for every k ≥ k0 and z ∈ M = D(0, ρ0),

| fk(z)| < ε. Then, by Lemma 14, (3.11), and Hölder inequality
∫ 1

0
| fk(t)|ω(t)dt ≤ | fk(0)|ω̂(0) +

∫ 1

0
M∞(t, fk)ω̃(t)dt

�
∫ ρ0

0
M∞(t, fk)ω̃(t)dt +

∫ 1

ρ0

M∞(t, fk)ω̃(t)dt

< ε

∫ ρ0

0
ω̃(t)dt + sup

k∈N
‖ fk‖H(∞,p)

∫ 1

ρ0

ω̃(t)p
′
dt

< ε

(∫ 1

0
ω̃(t)dt + sup

k∈N
‖ fk‖H(∞,p)

)
= Cε,

where in the last step we have used Lemma 8.
(ii). Let be M ⊂ D a compact set and Kω

t (z) = 1
z

∫ z
0 Bω

t (u) du. If z ∈ M

|T ( fk)(z)| ≤
∫ 1

0
| fk(t)| |Kω

t (z)|ω(t)dt ≤ sup
z∈M

t∈[0,1)
|Kω

t (z)|
∫ 1

0
| fk(t)|ω(t) dt .

Since, M ⊂ D(0, ρ0), for some ρ0 ∈ (0, 1), then

sup
z∈M

t∈[0,1)
|Kω

t (z)| = sup
z∈M

t∈[0,1)

∣∣∣∣∣
∞∑
k=0

tk zk

2(k + 1)ω2k+1

∣∣∣∣∣ ≤
∞∑
k=0

ρ0
k

2(k + 1)ω2k+1
= C(ω, ρ0) < ∞,

so, by (i), T ( fk) → 0 uniformly on M . This finishes the proof. ��
Theorem 21 Let ω be a radial weight, 1 < p < ∞, X p, Yp ∈ {H(∞, p), Dp

p−1, H
p,

HL(p)} and let T ∈ {Hω, H̃ω}. Then, the following assertions are equivalent:

(i) T : X p → Yp is compact;
(ii) For every sequence { fk}∞k=0 ⊂ X p such that supk∈N ‖ fk‖X p < ∞ and fk → 0 uniformly

on compact subsets of D, limk→∞ ‖T ( fk)‖Yp = 0.

Proof (i)⇒(ii). Let { fn}∞n=0 ⊂ X p such that supn∈N ‖ fn‖X p < ∞ and fn → 0 uniformly
on compact subsets of D. Assume there exist ε > 0 and a subsequence {nk}k ⊂ N such that

‖T ( fnk )‖Yp > ε, for anyk. (3.24)

Since T is compact, there exists a subsequence {nk j } j ⊂ N and g ∈ Yp such that
lim j→∞ ‖T ( fnk j )−g‖Yp = 0.Moreover, Theorem 1 ensures thatω ∈ D andMp,c(ω) < ∞,
so ‖ω̃‖

L p′
[0,1)

< ∞. Therefore Lemma 20, implies that T ( fnk j ) → 0 uniformly on compact

subsets of D, so lim j→∞ ‖T ( fnk j )‖Yp = 0 which yields a contradiction with (3.24).
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(ii)⇒(i). Let { fn} ⊂ X p such that supn∈N ‖ fn‖X p < ∞. Then, { fn} is uniformly bounded
on compact subsets of D. Then, by Montel’s Theorem there exists { fnk }k and f ∈ H(D)

such that fnk → f uniformly on compact subsets of D. Let gnk = fnk − f , then gnk → 0
uniformly on compact subsets of D and supk∈N ‖gnk‖X p < ∞. Therefore, by hypothesis
limk→∞ ‖T (gnk )‖Yp = 0, that is, T is compact. ��
Theorem 22 Let ω be a radial weight, 1 < p < ∞, X p, Yp ∈ {H(∞, p), Dp

p−1, H
p,

HL(p)}, and let T ∈ {Hω, H̃ω}. Then, T : X p → Yp is not compact.

Proof Assume that T : X p → Yp is compact. For each 0 < a < 1, set

fa(z) =
(

1 − a2

(1 − az)2

)1/p

=
∞∑
n=0

f̂a(n)zn, z ∈ D,

where f̂a(n) = (1 − a2)1/p �(n+2/p)
n!�(2/p) a

n ≥ 0. So, by Stirling’s formula

f̂a(n) � (1 − a2)1/p(n + 1)2/p−1an, n ∈ N ∪ {0}. (3.25)

Consequently, ‖ fa‖HL(p) � 1, a ∈ (0, 1). Moreover, ‖ fa‖H(∞,p) � ‖ fa‖Dp
p−1

�
‖ fa‖H p = 1. Furthermore, it is clear that fa → 0, as a → 1 uniformly on compact
subsets of D, and Hω( fa) = H̃ω( fa). Since T : X p → Yp is compact, ω ∈ D̂ by Theorem 1.
So, Lemma 9 implies that

‖T ( fa)‖Yp � ‖T ( fa)‖HL(p), a ∈ (0, 1).

Therefore, by using (3.25) we have

‖Hω( fa)‖p
Yp

� ‖Hω( fa)‖p
HL(p) =

∞∑
n=0

(n + 1)p−2
(∑∞

k=0 f̂a(k)ωk+n

2(n + 1)ω2n+1

)p

� (1 − a2)
∞∑
n=0

1

(n + 1)2

( ∞∑
k=0

(k + 1)2/p−1ak
ωk+n

ω2n

)p

≥ (1 − a)

∞∑
n=0

1

(n + 1)2

(
n∑

k=0

(k + 1)2/p−1ak
ωk+n

ω2n

)p

≥ (1 − a)

∞∑
n=0

1

(n + 1)2

(
n∑

k=0

(k + 1)2/p−1ak
)p

≥ (1 − a)

∞∑
n=0

a pn

(n + 1)2

(
n∑

k=0

(k + 1)2/p−1

)p

� (1 − a)

∞∑
n=0

a pn = 1 − a

1 − a p
� 1, (3.26)

so using Theorem 21 we deduce that T : X p → Yp is not a compact operator. ��

4 Hilbert type operators acting on X1-spaces

The first result of this section gives the equivalence of conditions (iii)–(vi) of Theorem 2.
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Lemma 23 Let ω ∈ D̂. Then, the following conditions are equivalent:

(i) K1,c(ω) = supa∈[0,1) 1
1−a

∫ 1
a ω(t)

(
1 + ∫ t

0
ds

ω̂(s)

)
dt < ∞;

(ii) K1,d(ω) = supa∈[0,1)
ω̂(a)
1−a

(
1 + ∫ a

0
ds

ω̂(s)

)
< ∞;

(iii) M1(ω) = supN∈N(N + 1)ω2N
∑N

k=0
1

(k+1)2ω2k
< ∞.

Moreover,

K1,c(ω) � K1,d(ω) � M1(ω), (4.1)

and ω ∈ Ď when ω satisfies any of the three previous conditions.

Observe that for any radial weight, K1,c(ω) < ∞ holds if and only if M1,c(ω) < ∞, and
analogously K1,d(ω) < ∞ if and only if M1,d(ω) < ∞. This fact will be used repeatedly
throughout the paper.

Proof On the one hand,

ω̂(a)

1 − a

(
1 +

∫ a

0

ds

ω̂(s)

)
≤ 1

1 − a

∫ 1

a
ω(t)

(
1 +

∫ t

0

ds

ω̂(s)

)
dt

≤ K1,c(ω), a ∈ [0, 1),
so (i)⇒(ii) and K1,d(ω) � K1,c(ω).

On the other hand assume that (ii) holds. Since ω ∈ D̂, [22, Lemma 3(ii)] (for ν(t) = 1)
yields

1

1 − a

∫ 1

a
ω(t)

(
1 +

∫ t

0

ds

ω̂(s)

)
dt ≤ K1,d(ω)

(
1

1 − a

∫ 1

a

ω(t)(1 − t)

ω̂(t)
dt

)

� K1,d(ω), 0 < a < 1,

that is (i) holds and K1,c(ω) � K1,d(ω). Finally, by mimicking the proof of Lemma 13,

K1,d(ω) � M1(ω),

so (ii)⇔(iii) and (4.1) holds.
Next, for any K > 1 and r ∈ (0, 1)

M1,d(ω) ≥ K ω̂
(
1 − 1−r

K

)
1 − r

∫ 1− 1−r
K

r

ds

ω̂(s)

≥ (K − 1)
ω̂

(
1 − 1−r

K

)
ω̂ (r)

,

that is

ω̂ (r) ≥ K − 1

M1,d(ω)
ω̂

(
1 − 1 − r

K

)
, 0 < r < 1,

so taking K > M1,d(ω) + 1, we get ω ∈ Ď. This finishes the proof. ��

The following result will be used to prove the equivalence (ii)⇔(iii) of Theorem 2.

123



Hilbert-type operator on Hardy spaces... Page 25 of 36     2 

Proposition 24 Letμbeafinite positiveBorelmeasureon [0, 1)and X1 ∈ {H(∞, 1), HL(1)}.
Then μ is a 1-Carleson measure for X1 if and only if μ is a classical Carleson measure.
Moreover,

‖Id‖X1→L1(μ) � sup
a∈[0,1)

μ([a, 1))

1 − a
.

Proof Ifμ is a 1-Carleson measure for X1, then by (2.2) and (1.3),μ is a 1-Carleson measure
for H1. So, by [6, Theorem 9.3] and its proof, μ is a classical Carleson measure and

sup
a∈[0,1)

μ([a, 1))

1 − a
� ‖Id‖X1→L1(μ).

Conversely, if μ is a classical Carleson measure, two integration by parts yield
∫
D

| f (z)|dμ(z) =
∫ 1

0
| f (t)|dμ(t) ≤

∫ 1

0
M∞(t, f ) dμ(t) � ‖ f ‖H(∞,1) sup

a∈[0,1)
μ([a, 1))

1 − a
.

This inequality, together with Lemma 8, finishes the proof. ��
We introduce some more notation to prove Theorem 2. For any C∞-function � : R → C

with compact support, define the polynomials

W�
n (z) =

∑
k∈Z

�

(
k

n

)
zk, n ∈ N.

A particular case of the previous construction is useful for our purposes. Some properties
of these polynomials have been gathered in the next lemma, see [12, Section 2] or [19, p.
143–144] for a proof.

Lemma 25 Let � : R → R be a C∞-function such that � ≡ 1 on (−∞, 1], � ≡ 0 on
[2,∞) and � is decreasing and positive on (1, 2). Set ψ(t) = �

( t
2

) − �(t) for all t ∈ R.
Let V0(z) = 1 + z and

Vn(z) = Wψ

2n−1(z) =
∞∑
j=0

ψ

(
j

2n−1

)
z j =

2n+1−1∑
j=2n−1

ψ

(
j

2n−1

)
z j , n ∈ N.

Then,

f (z) =
∞∑
n=0

(Vn ∗ f )(z), z ∈ D, f ∈ H(D), (4.2)

and for each 0 < p < ∞ there exists a constant C = C(p, �) > 0 such that

‖Vn ∗ f ‖H p ≤ C‖ f ‖H p , f ∈ H p, n ∈ N. (4.3)

In addition

‖Vn‖H p � 2n(1−1/p), 0 < p < ∞. (4.4)

Let us denote fr (z) = f (r z), z ∈ D, r ∈ (0, 1). Now we are ready to prove the main
theorem of this section.

123



    2 Page 26 of 36 N. Merchán et al.

Proof of Theorem 2 First of all, recall that M1,c(ω) < ∞ if and only if K1,c(ω) < ∞
and analogously M1,d(ω) < ∞ if and only if K1,d(ω) < ∞, so that the equivalences
(iii)⇔(iv)⇔(v)⇔(vi) follow from Lemma 23. The equivalence between (ii) and (iii) is a
consequence of [6, Theorem 9.3] when X1 = H1, [29, Theorem 2.1] when X1 = D1

0 and
Proposition 24 when X1 ∈ {H(∞, 1), HL(1)}.

(i)⇒(iii). In order to obtain both conditions, ω ∈ D̂ and M1,c(ω) < ∞, we are going to
deal with functions f ∈ H(D) such that f̂ (n) ≥ 0 for all n ∈ N ∪ {0}, so it is enough to
prove the result for T = Hω.

First Step. Let us prove ω ∈ D̂. Bearing in mind Lemma 8 and (1.4)

∞∑
n=0

ωn+N

(n + 1)2ω2n+1

(
N∑

k=0

f̂ (k)

)
≤ ‖Hω( f )‖H(∞,1) � ‖Hω( f )‖Y1 � ‖ f ‖X1

� ‖ f ‖D1
0
, N ∈ N, (4.5)

for any f ∈ H(D) such that f̂ (n) ≥ 0, n ∈ N ∪ {0}. Next, for each N ∈ N, consider the
test functions fα,N (z) = ∑N

k=0(k + 1)αzk, α > 0. Set M ∈ N such that 2M < N ≤ 2M+1.
Then, bearing in mind (4.2),

( f ′
α,N )s(z) =

∞∑
n=0

(Vn ∗ ( f ′
α,N )s)(z) =

M∑
n=0

(Vn ∗ ( f ′
α,N )s)(z),

which together with [16, Lemma 3.1], [19, Lemma 5.4] and (4.4) gives

‖ fα,N‖D1
0

≤
∫ 1

0
M1(s, f ′

α,N )ds ≤
M∑
n=0

∫ 1

0
‖Vn ∗ ( f ′

α,N )s‖H1ds

�
M∑
n=0

∫ 1

0
s2

n−1
2n(α+1)‖Vn‖H1ds �

M∑
n=0

2nα � 2Mα � (N + 1)α.

Testing the functions fα,N in (4.5), supN∈N(N+1)
∑∞

n=0
ωn+N

(n+1)2ω2n+1
< ∞.Therefore, there

exists C = C(ω) > 0

ω8N

ω12N
� ω8N

ω12N
(N + 1)

7N∑
n=6N

1

(n + 1)2
≤ (N + 1)

7N∑
n=6N

ωn+N

(n + 1)2ω2n+1
≤ C .

So, arguing as in the first step proof of Proposition 12, ω ∈ D̂.

Second Step. We will prove M1,c(ω) < ∞. Let us consider the test functions fa(z) =
1−a2

(1−az)2
, a ∈ (0, 1). A calculation shows that ‖ fa‖D1

0
� 1, a ∈ (0, 1). Then, by Lemma 8

and (1.3),

‖Hω‖X1→Y1 � sup
a∈(0,1)

‖Hω( fa)‖Y1 � sup
a∈(0,1)

‖Hω( fa)‖L1[0,1)
.

Consequently, using that ω ∈ D̂ and mimicking the proof (4.2) of [26, Theorem 2], we get
M1,c(ω) < ∞.

Now let us prove (iv) ⇒ (i). Firstly, observe that the condition M1,c(ω) < ∞ implies
K1,c(ω) < ∞ so that ω̃(t) = ω̂(t)

1−t is bounded on [0, 1). So, using Lemma 8 and (3.11),
∫ 1

0
M∞(t, f )ω(t) dt �

∫ 1

0
M∞(t, f )ω̃(t) dt � ‖ f ‖H(∞,1) � ‖ f ‖X1 ,
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that is Hω( f ) ∈ H(D) for any f ∈ X1. Secondly, by (1.4) and Lemma 8, it is enough to
prove the inequality

‖Hω( f )‖D1
0

� ‖ f ‖H(∞,1), f ∈ H(∞, 1),

to end the proof. Indeed,

‖Hω( f )‖D1
0

≤
∫ 1

0
M1(s, Hω( f )′)ds ≤

∫ 1

0

(∫ 1

0
| f (t)| ω(t)M1(s,G

ω
t )dt

)
ds

=
∫ 1

0
| f (t)|ω(t)

(∫ 1

0
M1(s,G

ω
t )ds

)
dt .

Then by (3.19) and [26, Lemma B]

M1(s,G
ω
t ) � 1 +

∫ st

0

dx

ω̂(x)(1 − x)
, 0 ≤ s, t < 1.

Bearing in mind that M1,c(ω) < ∞ implies K1,c(ω) < ∞ and applying Proposition 24,

the measure μω defined as dμω(z) = ω(z)
(
1 + ∫ |z|

0
ds

ω̂(s)

)
χ[0,1)(z) d A(z) is a 1-Carleson

measure for H(∞, 1), so by Tonelli’s theorem,

‖Hω( f )‖D1
0

�
∫ 1

0
| f (t)| ω(t)

(
1 +

∫ 1

0

(∫ st

0

dx

ω̂(x)(1 − x)

)
ds

)
dt

=
∫ 1

0
| f (t)| ω(t)

(
1 +

∫ t

0

(1 − x
t )

ω̂(x)(1 − x)
dx

)
dt

≤
∫ 1

0
| f (t)| ω(t)

(
1 +

∫ t

0

dx

ω̂(x)

)
dt � ‖ f ‖H(∞,1). (4.6)

This finishes the proof. ��

4.1 H! : X1 → Y1 versus H! : L1
[0,1) → Y1

Firstly, we will study the boundedness of T : L1
[0,1) → Y1, T ∈ {Hω, H̃ω}, Y1 ∈

{H(∞, 1), H1, D1
0, HL(1)}.

Theorem 26 Let ω be a radial weight, let Y1 ∈ {H(∞, 1), H1, D1
0, HL(1)} and let T ∈

{Hω, H̃ω}. Then the following statements are equivalent:

(i) T : L1
[0,1) → Y1 is bounded;

(ii) ω ∈ D and m1(ω) = ess supt∈[0,1) ω(t)
(
1 + ∫ t

0
ds

ω̂(s)

)
< ∞.

(iii) ω ∈ D̂ and m1(ω) = ess supt∈[0,1) ω(t)
(
1 + ∫ t

0
ds

ω̂(s)

)
< ∞.

Proof (i)⇒(ii). If (i) holds, then ω ∈ D by Lemma 8 and Theorem 2. Next, using Lemma 8
again and making minor modifications in the proof of [26, Theorem 2] we get

‖T ( f )‖Y1 � ‖Hω( f )‖L1[0,1)
�

∫ 1

0
f (t)ω(t)

(
1 +

∫ t

0

ds

ω̂(s)

)
dt,

for any f ≥ 0, f ∈ L1
[0,1). So,∫ 1

0
f (t)ω(t)

(
1 +

∫ t

0

ds

ω̂(s)

)
dt � ‖ f ‖L1[0,1)

, f ≥ 0
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which implies that m1(ω) < ∞.
(ii)⇒(iii) is clear.
(iii)⇒(i). If (iii) holds, then Hω( f ) ∈ H(D) for any f ∈ L1

[0,1) and arguing as in (4.6)

‖Hω( f )‖D1
0

�
∫ 1

0
| f (t)| ω(t)

(
1 +

∫ t

0

dx

ω̂(x)

)
dt � ‖ f ‖L1[0,1)

.

This together with (1.3) and Lemma 8 gives that Hω : L1
[0,1) → Y1 is bounded. This finishes

the proof. ��
Joining Theorems 2, 26 and Lemma 8 we deduce the following.

Corollary 27 Let ω be a radial weight, X1, Y1 ∈ {H(∞, 1), H1, D1
0, HL(1)} and let T ∈

{Hω, H̃ω}. If ω satisfies the condition (3.23), then the following statements are equivalent:

(i) T : L1
[0,1) → Y1 is bounded;

(ii) T : X1 → Y1 is bounded;
(iii) ω ∈ D̂ and M1,c(ω) < ∞;
(iv) ω ∈ D and M1,c(ω) < ∞;
(v) ω ∈ D̂ and m1(ω) < ∞;
(vi) ω ∈ D and m1(ω) < ∞.

Proof (i)⇒(ii) follows from Lemma 8, and (ii)⇔(iii)⇔(iv) were proved in Theorem 2. Next,
since M1,c(ω) < ∞ implies K1,c(ω) < ∞, (iii)⇒(v) is a byproduct of the hypothesis (3.23).
Finally, the equivalences (v)⇔(vi)⇔(i) follow from Theorem 26. This finishes the proof. ��

Asimilar comparison between the conditionsM1,c(ω) < ∞ andm1(ω) < ∞, to thatmade
for the conditions Mp,c(ω) < ∞ and mp(ω) < ∞, 1 < p < ∞, can also be considered.
The following result shows that they are not equivalent.

Corollary 28 Let X1, Y1 ∈ {H(∞, 1), H1, D1
0, HL(1)}. For each radial weigth ν such that

Q : L1
[0,1) → Y1 is bounded, where Q ∈ {Hν, H̃ν}, there is a radial weight ω such that

ω̂(t) � ν̂(t), t ∈ [0, 1),
ω ∈ L∞[0,r0] for any r0 ∈ (0, 1), T : X1 → Y1 is bounded and T : L1

[0,1) → Y1 is not

bounded. Here T ∈ {Hω, H̃ω}.
Proof Since Q : L1

[0,1) → Y1 is bounded, by Theorem 2, ν ∈ D and M1,c(ν) < ∞. Now,
by Lemma 18 and its proof, there is a radial weight ω such that ω̂(t) � ν̂(t), ω ∈ L∞[0,r0]
for any r0 ∈ (0, 1) and ω /∈ L∞

[0,1). So, m1(ω) = ∞ and by Theorem 26, T : L1
[0,1) → Y1

is not bounded. Moreover, ω ∈ D and M1,c(ω) < ∞ because ν satisfies both properties,
consequently T : X1 → Y1 is bounded. ��

4.2 Compactness of Hilbert-type operators on X1-spaces

Lemma 29 Let ω ∈ D such that M1,d(ω) < ∞. Let { fk}∞k=0 ⊂ X1 ∈ {H(∞, 1),
D1
0, H

1, HL(1)} such that supk∈N ‖ fk‖X1 < ∞ and fk → 0 uniformly on compact subsets
of D. Then the following statements hold:

(i)
∫ 1
0 | fk(t)|ω(t)dt → 0 when k → ∞.

(ii) If T ∈ {Hω, H̃ω}, then T ( fk) → 0 uniformly on compact subsets of D.

123



Hilbert-type operator on Hardy spaces... Page 29 of 36     2 

Proof Firstly, let us prove that

lim
a→1−

ω̂(a)

1 − a
= 0. (4.7)

Since M1,d(ω) < ∞, then

∫ 1+a
2

0

ds

ω̂(s)
≥ (

M1,d(ω)
)−1

∫ 1+a
2

0

(∫ s

0

dt

ω̂(t)

)
ds

1 − s

≥ (
M1,d(ω)

)−1
∫ 1+a

2

1
2

(∫ s

0

dt

ω̂(t)

)
ds

1 − s

≥ (
M1,d(ω)

)−1

(∫ 1
2

0

dt

ω̂(t)

) ∫ 1+a
2

1
2

ds

1 − s

= (
M1,d(ω)

)−1

(∫ 1
2

0

dt

ω̂(t)

)
log

1

1 − a
, 0 < a < 1.

So lima→1−
∫ a
0

ds
ω̂(s) = ∞, and then using again the condition M1,d(ω) < ∞, (4.7) holds.

From now on, the proof follow the lines of Lemma 20. Let ε > 0. By (4.7) there exists
0 < ρ0 < 1 such that ω̃(t) < ε for any t ∈ [ρ0, 1). Moreover, there exists k0 such that for
every k ≥ k0 and z ∈ M = D(0, ρ0), | fk(z)| < ε. Then, by Lemma 14 and (3.11)

∫ 1

0
| fk(t)|ω(t)dt ≤ | fk(0)|ω̂(0) +

∫ 1

0
M∞(t, fk)ω̃(t)dt

�
∫ ρ0

0
M∞(t, fk)ω̃(t)dt +

∫ 1

ρ0

M∞(t, fk)ω̃(t)dt

≤ ε

(∫ 1

0
ω̃(t)dt + sup

k∈N
‖ fk‖X1

)
= Cε,

where in the second to last step we have used Lemma 8.
The proof of (ii) is analogous to that of Lemma 20 so we omit its proof. ��
Using the previous lemma and Theorem 2we obtain the following bymimicking the proof

of Theorem 21.

Theorem 30 Let ω be a radial weight and X1, Y1 ∈ {H(∞, 1), D1
0, H

1, HL(1)} and let
T ∈ {Hω, H̃ω}. Then, the following assertions are equivalent:

(i) T : X1 → Y1 is compact;
(ii) For every sequence { fk}∞k=0 ⊂ X1 such that supk∈N ‖ fk‖X1 < ∞ and fk → 0 uniformly

on compact subsets of D, limk→∞ ‖T ( fk)‖Y1 = 0.

Theorem 31 Let ω be a radial weight and X1, Y1 ∈ {H(∞, 1), D1
0, H

1, HL(1)}, and let
T ∈ {Hω, H̃ω}. Then, T : X1 → Y1 is not compact.

Proof The proof is analogous to that of Theorem 22, so we provide a sketch of the proof.

Assume that T : X1 → Y1 is compact. For each 0 < a < 1, set fa(z) = 1−a2

(1−az)2
, z ∈ D. A

calculation shows that supa∈(0,1) ‖ fa‖X1 � 1 and fa → 0, as a → 1 uniformly on compact
subsets of D. Moreover, since T ( fa) has non-negative Taylor coefficients,

‖T ( fa)‖Y1 � ‖Hω( fa)‖H(∞,1) � ‖Hω( fa)‖HL(1) � 1, a ∈ (0, 1),
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where the last inequality follows taking p = 1 in (3.26). So, using Theorem 30 we deduce
that T : X1 → Y1 is not a compact operator. ��

5 Hilbert-type operators acting on H∞

Wewill prove a result which includes Theorem 4.With this aimwe need somemore notation.
The space Qp , 0 ≤ p < ∞, consists of those f ∈ H(D) such that

‖ f ‖2Qp
= | f (0)|2 + sup

a∈D

∫
D

| f ′(z)|2(1 − |ϕa(z)|2)p d A(z) < ∞,

where ϕa(z) = a−z
1−az , z, a ∈ D. If p > 1, Qp coincides with the Bloch space B. The space

Q1 coincides with BMOA (see, e. g., [10, Theorem 5.2]). However, if 0 < p < 1, Qp is a
proper subspace of BMOA [30]. The space Q0 reduces to the classical Dirichlet space D.

We recall that

Qp � BMOA � B, 0 < p < 1.

H∞
� BMOA � B,

(5.1)

however if 0 < p < 1, H∞ �⊂ Qp , and Qp �⊂ H∞, see [30].
Moreover, HL(∞) � Qp . This embedding might have been proved in some previous

paper, however we include a short direct proof for the sake of completeness.

Lemma 32 Let 0 < p ≤ ∞, then HL(∞) � Qp and

‖ f ‖Qp � ‖ f ‖HL(∞), f ∈ H(D).

Proof Let f ∈ HL(∞), then

M2
2 (ρ, f ′) =

∞∑
n=1

n2| f̂ (n)|2ρ2n−2 ≤ ‖ f ‖2HL(∞)

∞∑
n=1

ρ2n−2 = ‖ f ‖2HL(∞)

1 − ρ2 ,

So for any 0 < p < ∞,

sup
a∈D

∫
D

(1 − |ϕa(z)|2)p| f ′(z)|2 d A(z) � sup
a∈D

∫ 1

0

(
(1 − |a|)(1 − s2)

(1 − |a|s)2
)p

M2
2 (s, f ′) ds

≤ ‖ f ‖2HL(∞) sup
a∈D

∫ 1

0

(1 − |a|)p(1 − s2)p−1

(1 − |a|s)2p ds

� ‖ f ‖2HL(∞),

so ‖ f ‖Qp � ‖ f ‖HL(∞). The lacunary series f (z) = ∑∞
k=0 2

−k log (k + 2)z2
k ∈⋂

0<p Q p\HL(∞). This finishes the proof. ��

Now we will prove the main result of this section, which is an extension of Theorem 4.

Theorem 33 Let ω be a radial weight and let T ∈ {Hω, H̃ω}. Then, the following statements
are equivalent:
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(i) T : H∞ → HL(∞) is bounded;
(ii) T : H∞ → Qp is bounded for 0 < p < 1;
(iii) T : H∞ → BMOA is bounded;
(iv) T : H∞ → B is bounded;
(v) ω ∈ D̂.

Proof of Theorem 33 By Lemma 6,

‖Hω( f )‖HL(∞) = sup
k∈N∪{0}

(k + 1)

∣∣∣∣∣
∫ 1
0 f (t)tkω(t)dt

2(k + 1)ω2k+1

∣∣∣∣∣

≤ sup
k∈N∪{0}

(k + 1)

∫ 1
0 | f (t)|tkω(t)dt

2(k + 1)ω2k+1

= ‖H̃ω( f )‖HL(∞) � ‖ f ‖H∞ ,

so (v)⇒ (i). The implications (i)⇒(ii)⇒(iii)⇒(iv) follow from (5.1) and Lemma 32.
The implication (iv)⇒(v) was proved in [26, Theorem 1], and this finishes the proof. ��

It is worth mentioning that for f (z) = log 1
1−z ∈ HL(∞) and ω a radial weight,

Hω( f )′(x) =
∞∑
n=1

n

2(n + 1)ω2n+1

( ∞∑
k=1

ωn+k

k

)
xn−1

≥
∞∑
n=1

n

2(n + 1)

(
n∑

k=1

1

k

)
xn−1

�
∞∑
n=1

log(n + 1)xn−1,

so Hω( f ) /∈ B. So, the space H∞ cannot be replaced by HL(∞) and by any Qp space,
0 < p < ∞, in the statement of Theorem 33. That is, the remaining cases for p = ∞,
analogous to those of Theorems 1 and 2, which do not appear in Theorem 33, simply do not
hold for any radial weight.

Finally, we will prove the analogous result to Theorem 22 for p = ∞.

Theorem 34 Let ω be a radial weight and let T ∈ {Hω, H̃ω}. Then T : H∞ → Y∞ is not a
compact operator, where Y∞ ∈ {Qp,B,BMOA, HL(∞)}, 0 < p < 1.

We need the following result, whose proof can be obtained by mimicking the proof The-
orem 21.

Theorem 35 Let ω be a radial weight and T ∈ {Hω, H̃ω}. Then, the following assertions are
equivalent:

(i) T : H∞ → B is compact;
(ii) For every sequence { fk}∞k=0 ⊂ H∞ such that supk∈N ‖ fk‖H∞ < ∞ and fk → 0

uniformly on compact subsets of D, limk→∞ ‖T ( fk)‖B = 0.
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Proof of Theorem 34 By (5.1) and Lemma 32, it is enough to prove that T : H∞ → B is
not compact. Let consider for every k ∈ N the function fk(z) = zk , z ∈ D. It is clear that
‖ fk‖H∞ = 1 for every k ∈ N and fk → 0 uniformly on compact subsets of D. Since

T ( fk)(z) =
∞∑
n=0

∫ 1
0 fk(t)tnω(t) dt

2(n + 1)ω2n+1
zn =

∞∑
n=0

ωn+k

2(n + 1)ω2n+1
zn,

for any k ≥ 2

‖T ( fk)‖B ≥ sup
x∈(0,1)

(1 − x)
∞∑
n=1

nωn+k

2(n + 1)ω2n+1
xn−1 ≥ 1

4
sup

x∈(0,1)
(1 − x)

∞∑
n=1

ωn+k

ω2n
xn−1

≥ 1

4
sup

x∈(0,1)
(1 − x)

2k∑
n=k

ωn+k

ω2n
xn−1 ≥ 1

4
sup

x∈(0,1)
(1 − x)

2k∑
n=k

xn−1

≥ 1

4
sup

x∈(0,1)
(1 − x)kx2k−1 ≥ 1

8

(
1 − 1

2k

)2k−1

≥ 1

8
inf
m≥2

(
1 − 1

m

)m

≥ C > 0

so limk→∞ ‖T ( fk)‖B �= 0 and hence, by Theorem 35, T : H∞ → B is not compact. ��

Before ending this section, we briefly compare the action of the Hilbert-type operator Hω

and the Bergman projection

Pω( f )(z) =
∫
D

f (ζ )Bω
z (ζ ) ω(ζ )d A(ζ ),

induced by a radial weight ω. As a consequence of Theorem 33 and [23, Theorem 1], the
condition ω ∈ D̂ characterizes the boundedness of the operators Hω : H∞ → B and
Pω : L∞ → B. Moreover, Pω : L∞ → B is bounded and onto if and only if ω ∈ D
[23, Theorem 3]. So, it is natural to think about the radial weights such that the operator
Hω : H∞ → B is bounded and onto. A straightforward argument proves there is no radial
weights such that Hω : H∞ → B satisfies both properties: If Hω : H∞ → B is bounded,
Theorem 33 yields that Hω : H∞ → BMOA is also bounded, so if g ∈ B \ BMOA, e.g.
g(z) = ∑∞

k=0 z
2k , there does not exist f ∈ H∞ such that Hω( f ) = g. Consequently,

Hω : H∞ → B is not surjective.

6 Comparisons and reformulations of theMp,c-conditions

In order to prove Theorem 5 we will study the relationship between some of the conditions
which describe the boundedness of the Hilbert-type operators Hω and H̃ω from X p to Yp ,
and Xq to Yq .

Theorem 5 Firstly, assume 1 < q < p < ∞. Since T : Xq → Yq is bounded, Theorem 1
yields ω ∈ D̂ and Mq,c(ω) < ∞, and as a consequence, Kq,c(ω) < ∞. By using Lemma 6,

1 +
∫ r

0

ds

ω̂(s)q
� 1 − r

ω̂(r)q
, 0 ≤ r < 1. (6.1)

123



Hilbert-type operator on Hardy spaces... Page 33 of 36     2 

On the other hand, Hölder’s inequality with exponents x = q ′
p′ > 1 and x ′ = x

x−1 , implies

(∫ 1

r

(
ω̂(s)

1 − s

)p′

ds

) 1
p′

≤
(∫ 1

r

(
ω̂(s)

1 − s

)q ′

ds

) 1
q′

(1 − r)
1
p′ − 1

q′ , 0 ≤ r < 1.

(6.2)

Moreover,

(
1 +

∫ r

0

1

ω̂(s)p
ds

) 1
p

� ω̂(r)
q
p −1

(
1 +

∫ r

0

1

ω̂(s)q
ds

) 1
p

, 0 ≤ r < 1. (6.3)

So, the identity 1
p′ − 1

q ′ = 1
q − 1

p , together with (6.1), (6.2) and (6.3) yield

(
1 +

∫ r

0

1

ω̂(t)p
dt

) 1
p
(∫ 1

r

(
ω̂(t)

1 − t

)p′

dt

) 1
p′

�
(
1 − r

ω̂(r)q

) 1
q − 1

p
(
1 +

∫ r

0

1

ω̂(s)q
ds

) 1
p
(∫ 1

r

(
ω̂(s)

1 − s

)q ′

ds

) 1
q′

�
(
1 +

∫ r

0

1

ω̂(s)q
ds

) 1
q

(∫ 1

r

(
ω̂(s)

1 − s

)q ′

ds

) 1
q′

.

Consequently Kp,c(ω) < ∞, and by Theorem 1, T : X p → Yp is bounded.
Assume that q = 1, that is, T : X1 → Y1 is bounded. By Theorem 2, ω ∈ D̂ and

M1,d(ω) < ∞, so K1,d(ω) < ∞. Then,

∫ 1

r

(
ω̂(s)

1 − s

)p′

ds ≤ K p′
1,d(ω)

∫ 1

r

(
1 +

∫ s

0

1

ω̂(t)
dt

)−p′

ds

≤ K p′
1,d(ω)(1 − r)

(
1 +

∫ r

0

1

ω̂(t)
dt

)−p′

� K p′
1,d(ω)

ω̂(r)p
′

(1 − r)p′−1
, 0 ≤ r < 1,

where in the last inequality we have used (6.1) with q = 1. Moreover,

(
1 +

∫ r

0

1

ω̂(s)p
ds

) 1
p

� 1

ω̂(r)1−
1
p

(
1 +

∫ r

0

1

ω̂(s)
ds

) 1
p

≤ (1 − r)
1
p

ω̂(r)
K1,d(ω)1/p, 0 ≤ r < 1.

So, Mp,c(ω) < ∞, and by Theorem 1, T : X p → Yp is bounded. This finishes the proof.

Finally, we present two more conditions which characterize the radial weights ω such that
T : X p → Yp , 1 < p < ∞, is bounded, where X p, Yp ∈ {H(∞, p), H p, Dp

p−1, HL(p)}
and T ∈ {Hω, H̃ω}.
Proposition 36 Let ω be a radial weight and 1 < p < ∞. Then, the following conditions
are equivalent:
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(i) ω ∈ D̂ and K p,d(ω) = sup0<r<1
ω̂(r)

(1−r)
1
p

(
1 + ∫ r

0
1

ω̂(s)p ds
) 1

p
< ∞;

(ii) ω ∈ D̂ and K p,e(ω) = sup0<r<1
(1−r)

1
p

ω̂(r)

(∫ 1
r

(
ω̂(s)
1−s

)p′
ds

) 1
p′

< ∞;

(iii) ω ∈ D̂ and K p,c(ω) = sup0<r<1

(
1 + ∫ r

0
1

ω̂(t)p dt
) 1

p
(∫ 1

r

(
ω̂(t)
1−t

)p′
dt

) 1
p′

< ∞.

Proof Assume that (i) holds. A calculation shows that F(r) = (1−r)κ
(
1 + ∫ r

0
ds

ω̂(s)p

)
, with

κ = 1
K p

p,d (ω)
, is non-decreasing in [0, 1). So,

∫ 1

r

(
ω̂(s)

1 − s

)p′

ds ≤ K p′
p,d(ω)

∫ 1

r

1

1 − s

(
1 +

∫ s

0

1

ω̂(t)p
dt

)− p′
p

ds

≤ K p′
p,d(ω)F(r)−

p′
p

∫ 1

r
(1 − s)

κ p′
p −1ds

� K p′+p
p,d (ω)

(
1 +

∫ r

0

1

ω̂(t)p
dt

)− p′
p

� K p′+p
p,d (ω)

ω̂(r)p
′

(1 − r)p′−1
, 0 ≤ r < 1,

where in the last inequality we have used (6.1). That is (ii) holds.
Now, assume that (ii) holds. Since ω ∈ D̂

∫ 1

r

(
ω̂(s)

1 − s

)p′

ds � ω̂(r)p
′

(1 − r)p′−1
, 0 ≤ r < 1.

Moreover, H(r) = (1 − r)−η
∫ 1
r

(
ω̂(s)
1−s

)p′
ds, with η = 1

K p′
p,e(ω)

, is non-increasing in [0, 1).
So,

1 +
∫ r

0

ds

ω̂(s)p
≤ 1 + K p

p,e(ω)

∫ r

0

1

1 − s

(∫ 1

s

(
ω̂(t)

1 − t

)p′

dt

)− p
p′

ds

≤ 1 + K p
p,e(ω)H(r)

− p
p′

∫ r

0

1

(1 − s)
1+η

p
p′
ds

� K p+p′
p,e (ω)

(∫ 1

r

(
ω̂(t)

1 − t

)p′

dt

)− p
p′

� K p+p′
p,e (ω)

1 − r

ω̂(r)p
, 0 ≤ r < 1,

therefore (i) holds.
Next, if (i) holds, then (ii) holds and so it is clear that (iii) holds. Finally, (iii) together

with (6.1) implies (ii). This finishes the proof. ��
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