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a b s t r a c t

Emergent application domains (e.g., Edge Computing/Cloud/B5G systems) are complex to be built
manually. They are characterised by high variability and are modelled by large Variability Models (VMs),
leading to large configuration spaces. Due to the high number of variants present in such systems, it is
challenging to find the best-ranked product regarding particular Quality Attributes (QAs) in a short time.
Moreover, measuring QAs sometimes is not trivial, requiring a lot of time and resources, as is the case
of the energy footprint of software systems — the focus of this paper. Hence, we need a mechanism
to analyse how features and their interactions influence energy footprint, but without measuring all
configurations. While practical, sampling and predictive techniques base their accuracy on uniform
spaces or some initial domain knowledge, which are not always possible to achieve. Indeed, analysing
the energy footprint of products in large configuration spaces raises specific requirements that we
explore in this work. This paper presents SAVRUS (Smart Analyser of Variability Requirements in
Unknown Spaces), an approach for sampling and dynamic statistical learning without relying on initial
domain knowledge of large and partially QA-measured spaces. SAVRUS reports the degree to which
features and pairwise interactions influence a particular QA, like energy efficiency. We validate and
evaluate SAVRUS with a selection of likewise systems, which define large searching spaces containing
scattered measurements.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A feature in variability modelling is any relevant character-
stic or functionality of a system or a software that runs in
t.1 In practice, features can be treated as Boolean or numerical
ariables [1]. Variability Models (VMs) describe running systems
i.e., valid configurations) by specifying incremental relationships
mong features and their compatibility constraints [2]. Devel-
pers and domain experts are often interested in knowing the
anking or distribution of these system configurations regarding
certain non-functional Quality Attribute [3] (QA) (e.g., perfor-
ance and energy consumption). This is especially important

n emergent application domains, such as Industry 4.0, Internet
f Things (IoT), Edge Computing and B5G systems, imposing
pecific challenges to represent variability and quality of configu-
ations [4] properly. One of the recurrent QAs addressed by these

∗ Corresponding author.
E-mail addresses: danimg@lcc.uma.es (D.-J. Munoz), pinto@lcc.uma.es

M. Pinto), lff@lcc.uma.es (L. Fuentes).
1 This notion of feature in variability modelling differs from the one in
achine learning, defined there as an individual measurable property or char-
cteristic of a phenomenon. Notice that this last definition matches the notion
f non-functional quality attribute in variability modelling.
ttps://doi.org/10.1016/j.knosys.2023.110558
950-7051/© 2023 The Authors. Published by Elsevier B.V. This is an open access art
domains is sustainability or, more concretely, the energy footprint
of software systems [5].

The first challenge is that these domains bring about highly
onfigurable systems, with thousands of options and complex con-
traints, leading to large configuration spaces. Such systems are
omposed of hundreds of heterogeneous devices (e.g., IoT devices,
loud servers) with many operating systems and communication
ptions (e.g., WiFi, 5G), among other features. This variability is
epresented using large VMs.

The second challenge is that for large spaces (e.g., BusyBox
as 2 ∗ 10213 [6]) and some QAs (e.g., energy consumption), it
s impossible to build and measure every configuration manually.
hese configurations contain hundreds of features representing
oftware distributed in heterogeneous devices. Often, it is not
ossible to use the same measuring tool (e.g., specific for devices
r operating systems), nor these tools or devices are always
ocally available [7]. In addition, energy estimation requires par-
icular expertise and a lot of time and resources, which is a
omplex task. Another issue is modelling or representing QAs
ike energy footprint in VMs. Attributed VMs enrich features with
ttributes that assess their influence in a particular QA [8];
or example, a cost attribute can indicate the monetary cost of
incorporating a specific device into a configuration. However, is it
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ealistic to specify that a WiFi feature always consumes 15 Watts
sing a single-valued attribute? We cannot use this approach to
epresent QAs like energy consumption, because the energy con-
umed changes dynamically based on other features. For the WiFi
eature, the energy consumption depends mainly on the amount
f data transferred and the WiFi version. Then, it is wrong to
alculate the energy footprint of a system configuration by simply
dding the consumption of isolated features [9], and instead, en-
rgy values have to be assigned to complete configurations [10].
lso, attributed VM techniques are typically unscalable when ap-
lied to the configurations space as the number of configurations
s exponentially more extensive than the number of features. For
nstance, imagine an attributed VM composed of 1000 features
nd one attribute. The size of its attributed feature space is a
aximum of a thousand; on the contrary, the size of its con-

igurations space can reach a million. While attributed VMs is a
inear technique, complex QAs need exponential techniques [11],
s measuring or predicting up to a thousand instances are minor
ssues compared to measuring or predicting a million instances.

However, what is true is that certain features influence a
articular QA more than others. Moreover, one feature can affect
nother feature’s impact on the quality value of a particular
onfiguration — interacting features. There are many examples
f interacting features in IoT/Edge/Cloud systems: microproces-
or and tasks parameters, operating system and virtualisation
echniques, among others. The effect is that any change in a
oncrete configuration could concur in a cascade of positive and
egative influences, which are then reflected in the QA values
f the configurations where any of those features are present.
eatures can interact individually and in higher order in the form
f sets (e.g., selecting features A and B degrades the behaviour
f C). However, detecting higher-order interactions is a polyno-
ial growth problem — e.g., quadratically for pairs, cubically for

riples. Hence, detecting them in large VMs is impossible in a
easonable time [12].

While it is not affordable to assign immutable accurate values
o each feature, an alternative is identifying the main culprits
ffecting a QA value (i.e., particular features and interactions
mong features or set of features) based on incomplete config-
ration measurements. The third challenge is then to develop
n approach to identify and analyse meaningful interactions when
any configuration measurements are unavailable and they cannot
e requested on the fly. Current approaches deal with QAs mostly
aking use of sampling [11] with machine learning [13], basically
s follows: sampling selects and measures a subset of the valid
onfigurations generating a partial solution space, and machine
earning predicts the rest of the space based on the (training)
amples. Focusing on the domain of IoT/Edge/Cloud, we have also
eviewed some approaches that estimate the energy footprint of
ode. GreenScaler [14], Palladio [15] and HADAS [16] are good
epresentations of these tools. But again, they all require specific
nitial domain knowledge to start the energy analyses (e.g., they
eed equitable samples).
Henceforth, this paper proposes the Smart Analyser of

ariability Requirements of Unknown Spaces (SAVRUS) approach.
SAVRUS uses sampling, machine learning, and statistical methods
for large and unknown spaces of complex QAs [17]. SAVRUS
searches for the specific features and interactions statistically
affecting a QA, like energy consumption, and provides a clear
report classifying them by their learned influence sufficiently
fast. Simply put, SAVRUS squeezes any available data to detect
features-QAs relationships smartly. Our objective is to guide
developers in optimising their products by pointing to the specific
features with a high probability of improving a QA if their alterna-
tives replace them. The main novelty of this tool is that it smartly
combines methods for analysing configuration spaces, consider-
ing large VM with scattered quality measurements. While we
2

share some existing techniques with other works, a complex
combination adapted to work at the configuration level without
relying on specific domain knowledge distinguishes SAVRUS from
current alternatives. The novel contributions of our paper are:

• Identification of the challenges imposed by the variability
modelling of emergent systems with huge configuration
spaces and multi-features dependent QAs, such as energy
consumption. These challenges prevent using most adopted
sampling and machine learning techniques (Section 3);
• Reasoned selection of the most suitable sampling, statistical

and learning methods and their configurable parameters for
complex systems and QAs (Section 4);
• The modular SAVRUS approach and the Algorithm 1 of Sec-

tion 5.1 integrate selected methods to detect pairwise qual-
ity insights in large, initial domain unknown spaces defined
by heterogeneous systems;
• We performed an empirical evaluation of SAVRUS in Sec-

tion 6 for a large case study using empirical data from
our domain (i.e., Watts) — a generic energy-efficiency edge
computing system [4] comprising 554 features and a total
of 108 legal configurations; and
• We present an empirical validation of SAVRUS in Section 7

with a set of completely measured real systems while dis-
cussing its accuracy and scalability.

SAVRUS prototype is available at:
https://hadas.caosd.lcc.uma.es/savrus

. Problem statement

In this section, we are going to discuss relevant issues for the
AVRUS proposal regarding (1) QAs modelling in highly config-
rable systems, (2) interacting features and their influence on
pecific QAs, and (3) sampling and machine learning techniques.

.1. Variability and quality modelling

Featured-Oriented Domain Analysis (FODA) is the standard to
epresent high variability — i.e., a domain analysis method based
n the concept of features used to describe the commonalities
nd variations of systems. With FODA, we specify the variability
f functional requirements and generate configurations, i.e., the
onfiguration space of a system. FODA-type VMs include simple
eature models [18], Clafer models [19], Extended VMs (EVMs) [8],
to name a few, but only a subset of them include numerical
features [1]. In this work, we use numerical VMs that are very
suitable to model parameters that influence energy consump-
tion as numerical features (e.g., feature message size), and from
now on in this paper, VM will refer to numerical VMs. Hence,
VMs consist of a tree-like hierarchical structure where the nodes
are Boolean or numerical features (i.e., variables) affected by
the defined branches’ cardinality (e.g., only 2 of the 3 optional
branches can be selected). Additionally, VMs support cross-tree
relationships, a combination of first-order logic and arithmetic
equations (e.g., (#Antennas + #RJ45s) = 0 implies not Network).

On the other hand, the QAs specify the non-behavioural as-
pects under which the system operates [20] (e.g., performance,
energy consumption, security level), where all the possible values
form the QAs measured space. There are two main alternatives to
measure the QAs of VMs: per feature and configuration. For sim-
ple QAs whose distribution profile is a linear equation (e.g., ad-
ditive), measuring per feature is feasible — this is the case of
EVMs [8,21,22]. However, complex non-linear QAs depending on
many interacting features and external factors, like energy con-
sumption, cannot be measured per feature. For instance, could we

https://hadas.caosd.lcc.uma.es/savrus
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efine a static energy consumption value of a specific micropro-
essor independently of its usage and overall hardware? Instead,
ode energy footprint should be measured per configuration [23,
4]; for example, code migration in Edge computing depends
n other features like code size, communication protocol, and
irtualisation mechanism, among others.
In this scenario, we consider that energy consumption val-

ues are directly linked to complete configurations by their
specific leaf nodes, as the tree hierarchy naturally traces back
the non-leaf features up to the root, as recently proposed in [10].
From an implementation point of view, complete configurations’
QAs can be integrated into the VM [10,19] or be hosted in data
storage repositories as databases [16,25–27]. Independently of
the QA nature, the measured space denotes the set of com-
lete configurations for which we have the corresponding QA
easurement.

.2. Interacting features and normality tests

The literature often assumes that individual features affect
As homogeneously; in other words, they behave equally inde-
endently of other features in every valid configuration. However,
ften, that scenario is very unlikely [28]. Interactions are identi-
ied when one feature behaviour is influenced by the presence
f another (or a set of others). Furthermore, interactions some-
imes cannot be deduced from individual behaviours, hindering
ompositional reasoning. This circumstance leads to scalability
roblems, as the number of potential interactions in a system is
xponential in the number of features. The higher the order of
nteractions, the harder to detect them (e.g., pairs are a quadratic
ncrease, and triplets are cubic). We must highlight that inter-
ctions are not simple equations (e.g., adding the proportional
nergy consumption of features or taking the absolute peak).
In this scenario, to ensure that the features and interactions

dentified as the ones most affecting a QA are meaningful, we can
heck that the analysed samples are as generally distributed as
he system — the null hypothesis. In the context of our problem,
statistical normality test tells if two sets of samples have equally
istributed interactions. Unfortunately, most real-world data sets
nd relationships are non-normal, and large sets will always
eject the null hypothesis [29]. To overcome this, the variability
ommunity uses non-parametric tests. The most common ones
re the Student’s t-test, the Unequal Variance t-test, and the
ann–Whitney U test (MWU). The most used is the Student’s t-

est, which is accurate for assumed normally distributed data.
n the other hand, it is stated that the Unequal Variance t-test
s superior to comparing the central tendency of 2 populations
ased on sets of unranked data. To sum up, the most accurately
lexible is the MWU, independent of the sets’ distribution, size
nd ranking. Furthermore, for ranked data, the MWU is superior
o the alternatives [30]. Therefore, the MWU is the best test to
ssess whether a particular feature or interaction influences a
A, as energy footprint.

.3. Sampling alongside machine learning

Traditionally, we find two domains that tackle the scalability
ssues raised, aiming to reduce the search space by avoiding the
eneration and QA measuring of every configuration. The first
ne is sampling, the selection and measurement of a subset of
he search space formed by pairs [configuration, QA] and [fea-
ure, QA] [11]. As sampling is used in many areas, we can find
any types depending on probabilities, knowledge and heuris-

ics [31–33]. The second is machine learning, a vast conglomerate
f predictive and self-learning techniques [13]. Some of them

re empirically demonstrated to be effective with small learning c

3

sets [17], which is crucial to improve scalability by reducing the
number of requested samples. We must highlight one of our
interests: Transfer Learning (TL). TL registers knowledge obtained
while solving specific problems and applies it to another similar
problem. A simple example is extrapolating Android 11 insights
to the Android 12 future analyses.

To cope with IoT/Edge/Cloud/B5G domain requirements and
the difficulties of estimating their energy consumption, in this
paper, we assume that our method has to work with domain-
unknown configuration spaces, with scattered measurements,
by using some of these techniques. But the question is, which of
these techniques or a combination of them fits the requirements
of our application domain IoT/Edge/Cloud/B5G.

3. Our objectives and goal

While numerous techniques and related works seem applica-
ble to analyse large VMs, energy consumption imposes concrete
requirements that constrain their accuracy. As that prevents us
from directly replicating past works, we have set the following
objectives:

• O1. Derive energy consumers and interactions without
predicting absolute values. Existing approaches declare
that they work with exact QA values (e.g., runtime). How-
ever, when measuring energy consumption, we need to
deal with external factors (e.g., temperature) and prediction
inaccuracies, which are only sometimes considered by some
measuring tools, going against that precision statement [5].
Thus, we aim to help software developers understand how
incorporating certain features into their configurations can
positively or negatively impact their energy consumption
rates [7]; bearing in mind the difficulties of achieving exact
energy measure values.
• O2. Not relying on initial domain knowledge. Techniques

that predict exact values require measuring specific samples
to be accurate, which is impossible for complex QAs [9].
We need smart techniques to improve software product
line analyses without requiring particular or initial domain
knowledge.2
• O3. Fast analysis. Using brute-force or predictive models in

large spaces takes more time than a developer’s patience
[11,34]. We need an approach that generates insights in
mere minutes — a practical approach.
• O4. Support a variable search space. IoT/Edge/Cloud sys-

tems tend to evolve quickly (e.g., new API variants). In these
situations, we need to request new samples and re-adjust
predictive models to keep accuracy [35]. For example, an
IoT device’s new, more powerful release extends the space,
probably causing a higher consumption of other features
(e.g., encrypting). On the other hand, requirements imposed
by developers (e.g., a programming language) will automat-
ically reduce the space by disabling several related features
(e.g., libraries and functions). So, the proposed approach
needs to consider that the results of the energy consumption
analysis of certain features will be affected by removing
other features from the analysis.

Synthesising, our goal is to design an interactive approach
hat, using sampling, learning, and some available measures
t hand, provides energy consumption (or similar QA) insights

2 The notion of without domain knowledge is used in this work as the lack
f domain experts who can guide the learning of QAs values, which will hinder
ost guided machine learning techniques. We only know the variability models
nd their reusable features, and cannot assume we have QA measures of any
oncrete number or type of configurations.
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o IoT/Edge/Cloud system developers in the range of minutes.
onsequently, developers can constrain the search space, quickly
nderstanding how that may affect the energy consumption of
ther features and product configurations.

. Motivated design choices

This section provides the motivations behind our selection of
echniques, arguing why others are discarded due to breaking our
bjectives or simply because they are less suitable for the energy
onsumption QA. For instance, proposals addressing attributed
Ms are discarded, as, in general, feature-level techniques do not
cale to the configuration level, including the ones requesting a
ubset (e.g., sampling or learning). The reason is that the space
ormed by the different configurations is exponentially larger
han the one formed by their respective features.

.1. Product sampling techniques

The range of techniques that potentially matches O1 and
4 belongs to probabilistic sampling, which includes the ones
mploying some randomness (i.e., equal probability of selec-
ion) [36]. In that case, the most representative strategies are:

• Uniform Random Sampling (URS) [37]: We select samples
randomly. Its accuracy depends on the uniform distribution
of the search space and the randomiser.
• Statistical Recursive Search (SRS) [37]: It is a refined URS

with recursion by fixing statistically meaningful features.
• T-wise sampling [38]: We should sample one valid config-

uration per T -tuple of features (i.e., discrete combination).
While a thoroughness of one (i.e., T = 1) is one sampled
configuration per existing feature, T = 2 selects one config-
uration per pair of existing features, and so forth. Depending
on T , the accuracy and computationally demands vary in an
increasing pattern; up to 2 is considered balanced, while 6
reaches exponential cost [39].
• Distance-based Sampling (DbS) [40]: It is a faster T-wise

where we select fewer samples and up to T interactions,
based on a configurable distance metric and probability
distribution. Distance-based metrics force sample diversity
compared to random approaches.
• Diversified Distance-based Sampling (DDbS) [40]: It is a

refined DbS where diversity is increased by prioritising con-
figurations containing the least frequently sampled features
and interactions.

We discarded the ones not offering experimentally demon-
strated advantages over the rest. Based on [40], DDbS outper-
forms other strategies for incomplete and probably biased search
spaces, also having a lower computational effort. On the other
hand, SRS is likewise empirically demonstrated to be superior to
URS [37] in terms of accuracy but with even higher computational
effort. Hence, we select SRS and DDbS as they are the best
strategies based on different metrics while matching O2 and
O4 (i.e., fast analyses without domain knowledge).

Notice that we do not use probabilistic sampling like in the
literature to generate a learning set — a requirement for predic-
tive techniques that breaks O1. The most famous examples are
Guo et al. [41], which uses them with classification and regression
trees to generate performance models, and SMTIBEA, which adds
the indicator-based evolutionary algorithm (IBEA) [42]. This us-
age would break O1 thru O3 as it requires specific configurations
to be measured dynamically and on-demand, often run out of
memory, does not terminate, or the calculation takes too much
time [11]. Instead, we consider the samples as a simplified rep-
resentation of the measured solution space at the configuration
4

level and directly analyse them. In any case, the ideal scenario for
the best accuracy is a uniformly distributed and representative
sample set and a small homogeneous measured space to make
accurate QA predictions — utopia in the real world, but standard
in academia [43].

Other types of sampling could have been guided sampling
(e.g., adapted progressive and projected sampling [44], L2S [45],
and genetic sampling [46]), alongside their specific learning tech-
niques. However, they would break O2 as they require spe-
cific initial samples to achieve low prediction error, runtime
measuring, and small sizes [47].

4.2. Interacting feature analyses

Regarding interacting features analysis, based on reviews [28,
48], direct approaches break O4 due to the poor scalability as de-
tailed in Section 2.2. Another conclusion is that detecting external
interactions, such as those with QAs, requires heavyweight and
dynamic analysis techniques. Large-scale T-wise sampling and
coverage are supported in the YASA tool [49]. However, initial
domain knowledge is needed for the heuristics, which breaks O2.
The effects of worsening granularity levels are analysed in [50].
Fortunately, Jeho et al. [38] conclude that higher-order inter-
actions are less likely to occur, advising a maximum of 3-wise
coverage. This matches [12,51], which suggests pairwise cover-
age as sufficient, meaning that it is unnecessary to test triples,
quadruples, etc. Additionally, it is stated that lower-order inter-
actions increase the probability of higher-order interactions [28].
Consequently, if we analyse up to pairs of features already
affecting a QA, we can generate minimal sample sets match-
ing O4. This ensures that we will cover meaningful feature
combinations.

4.3. Machine learning techniques

Among existing machine learning techniques, lazy learning
approaches are model-free and have no training stages, thus re-
lying on sample representativeness. In other words, lazy learners
postpone the learning process until an analysis is requested, and
in this moment they only use the available measured space. Lazy
learning is the proper approach when we have no assumptions
about the current shape of the search space (i.e., O2) [52].

The most popular lazy learning strategy is the k-Nearest Neigh-
ours (kNN). kNN algorithm is commonly used for classification
roblems by assigning the mode, the value that appears most
ften, of the k-closest observations as the predicted value. How-
ver in SPLs, different configurations rarely have the same QA
alues, especially if they are real numbers, such as the runtime
r energy consumption (e.g., two code executions rarely have the
ame run times). Consequently, we will use kNN as a regression
technique by assigning the mean of the k-closest observations.
kNN accuracy and performance depend on a few configurable
parameters such as the distance metric, where the Euclidean is
the baseline, and the k-value. Nevertheless, even for a modest k
nd a few measured samples, kNN performs sufficiently fast and

accurate [53].
Further, we are interested in ranking the features based on

their constant influence on a specific QA. The ranking is a list
of features with an assigned likelihood that defines the order.
Instead of purely relying on a single ranking analysis per exe-
cution, we can keep track of the frequency of feature detection
to create or update the ranking by transferring that information
into current analyses. However, past-experience counting will no
longer be accurate as the variability model evolves and/or the
user includes desired constraints. When this occurs, the config-

uration space, and in turn, the usage scenario, can change, so the
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Fig. 1. SAVRUS approach overview highlighting meaningful components.
oncluded general ranking will not always match the selected
eatures. For example, a specific programming library could be
ighly affecting the energy consumption of a system, but in a
pecific sub-system, it could behave equally as the other alterna-
ives, so the past ranking will not be accurate in the new analysis.
hen, we need a transfer learning technique where the source
nd target domains, and the analysis, are similar but not equal;
his is studied in Inductive TL [54]. Additionally, we can build the
ranking based on the weights of a Scoring Function [55]. The score
function is the gradient of features’ logarithmic likelihood for the
confident values of the function. Confident scores allow ordering
a set of values to compare to one another easily and indicate the
steepness of the function (i.e., the sensitivity to changes) [56].

As with sampling, the machine learning literature focuses on
prediction [57], but unfortunately, this breaks objective O1. For in-
stance, DECART [58] avoids verification samples, BEETLE takes ad-
vantage of the bellwether effect (group behaviour) [59], Jamshidi
et al. [60] correlates performance models, and LOKI only considers
the feature space [61]. Independently of that, off-the-shelf ap-
proaches do not necessarily succeed with our real-world require-
ments. Variability domains are complex due to the substantial
constraints among features and data scarcity; measuring QAs in
real-world systems could be complicated and tedious [17]. Addi-
tionally, better adjustments for specific domains degrade other
domains’ accuracy — typical in supervised learning techniques
such as general linear regression, support vector regression, and
kNN [62]. While unsupervised methods such as neural networks
have the potential for domain-unknown approaches, to date, they
underperform when applied to configurable systems [63].

5. SAVRUS approach

SAVRUS aims to quickly detect and rank interacting features
that noteworthily affect QAs in models with domain-unknown
QA spaces and dispersed QA values. Our approach integrates
sampling, learning and statistical strategies without relying on
training samples or specific on-demand measurements. While
Section 5.1 provides the approach overview, the algorithm with
the logic of the SAVRUS service and its implementation details
are described in Section 5.2.

5.1. SAVRUS overview

Fig. 1 shows the SAVRUS overview, which consists of 8 se-
quential steps numbered from left to right. 1⃝ and 2⃝ are data
and user inputs, 3⃝ to 7⃝ are the analysis strategy, and 8⃝ is the
final report. A user completely performs the sequence in each
execution analysis.

We now detail a user perspective. Let us consider an IoT appli-
cation engineer or her enterprise, which is worried about climate
change, so they want to know what feature(s) of their software
product line impact the energy footprint. Let us consider that
an IoT/Edge product line exists and that the leading application
engineer wants to deploy its devices and applications to be Ultra-
Low Energy (ULE). However, the number of options is so large,

complex and counter-intuitive that brute-force and on-demand

5

predictive tools are inaccurate in the best case. She decides that
the best choice in this situation is to use SAVRUS.

Consequently, she builds and measures the energy consump-
tion of a small fraction of the options based on the time, compo-
nents and tools she has available. Then, after configuring, partially
or totally, the VM according to her case study and specifying some
energy-related constraints (step 1⃝), she executes SAVRUS with
some parameters (i.e., sampling options and constraints 2⃝) as
a black box (steps 3⃝– 7⃝) and receives an analysis report (step
8⃝). She obtains a set of ranked features identified as energy
consumers — they are potential candidates to be substituted for
decreasing the energy consumption of the case study. She also
obtains a graphical VM, where she visualises the alternatives
that consume less energy and makes decisions (e.g., changing the
operating system of some devices).

Going into details, 1⃝ represents the configurable system
linked with some QAs measurements. As highlighted in Sec-
tion 2.1, in practice means connecting a VM containing features
and relationships with a QA repository implemented as a re-
lational database that stores QA values for each configuration.
These measurements presumably will be less than desired and
not uniformly distributed. Still, in 1⃝ this is all we have since
the development team does not dedicate more resources to
energy footprint experiments. Step 2⃝ represents the application
engineer inputs, which are the user requirements (i.e., selected
features and quality constraints), the maximum number of sam-
ples to consider and the k parameter of kNN. Generally, require-
ments (e.g., operating system = Android, energy consumption ≤
3 Watt) with a higher number of samples and k would produce
better results at runtime cost. Steps 3⃝– 7⃝ represent the SAVRUS
strategy. The first part, step 3⃝, is any sampling method. While we
have used probabilistic sampling for domain-unknown analyses,
SAVRUS is compatible with most guided, heuristic or solver-based
sampling methods — although, the chosen method will impact
the coverage and accuracy of the analyses.

Continuing, in step 4⃝, we include kNN to try to provide an
approximated value for the QA unmeasured samples if they are
requested by step 3⃝. If all the requested samples are already
measured, kNN is not necessary (i.e., not executed). Addition-
ally, if k-closer samples do not exist, the requested sample is
discarded.

At this point, having just QA valued samples, step 5⃝ is a statis-
tical test that identifies the noteworthy and noticeably interacting
features affecting a QA based on the sample data set. The notion of
noteworthy features is coined in [64–66], where normality tests
are used with a threshold of 95% confidence. The identified effects
depend on the objective; they could be positive (i.e., improv-
ing/maximising a QA), negative (i.e., degrading/minimising a QA),
or even more complicated (e.g., trade-offs).

Next, we use a TL method in step 6⃝ to keep a dynamic
track of the noteworthiness scoring of their features and their
t-combinations. This enriches SAVRUS’s current analyses based
on previously detected noteworthy interactions. Hence, in 7⃝,
SAVRUS uses the updated scoring weights to rank feature com-

binations — the highest the weights and lowest the rank, the
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trongest is the features-QA interaction. For example, if our ob-
ective was to minimise energy consumption, we could set the
ank as negatively affecting it. Then, if the CPU of a system is at
he top of the rank (i.e., rank 1), it must be the first to be replaced
o reduce the system’s energy footprint.

Finally, step 8⃝ is the output of SAVRUS, which comprises: (i)
n ordered list of features and interactions identified as notably
ffecting a QA, concerning a specific goal (i.e., minimising energy
onsumption); and, (ii) the VM provided as input in 1⃝ graphically
ighlighting and numbering features and interactions based on
he previous list. While a developer pragmatically uses the list
o improve the analysed system, the graphical VM provides an
verview of the domain knowledge from the energy consumption
oint of view.

.2. SAVRUS algorithm

Algorithm 1: SAVRUS analysis strategy
Data: Variability Model VM, Configurations Quality

Measurements CQMs, Ranking Scoring RS
Input: Number of Samples #S, user Requirements Rs,

Nearest Neighbour Parameter K
Result: Ranked Worst Influencing Features and

Interactions
1 if Rs then // User constrained the search space
2 VM ← Constraint(VM, Rs);
3 CQMs← Constraint(CQMs, Rs);
/* Generate #S valid configurations a solver

and a sampling algorithm */
4 Samples = Sampling(VM, CQMs, #S);
/* Unmeasured quality values are the distanced

weighted mean of k near measurements */
5 foreach S ∈ Samples do
6 if ¬S.QualityMeasurement then
7 S.QualityMeasurement ← KNearestNeighbours(K,S);
8 TUF ← TopUnderperfomingFeatures(Samples);
9 NoteworthyFeatures← MannWhitneyU(TUF );
/* Having detected influencing features, we

analyse their pairs and QAs interactions */
10 foreach F1 ∈ NoteworthyFeatures do
11 foreach F2 ∈ NoteworthyFeatures ∧ (F1 ̸= F2) do
12 if PairWiseMannWhitneyU([(F1,F2)], Samples) then
13 Append(NoteworthyFeatures,[(F1,F2)]);

/* Influencing features and interactions imply
recalculation of their scoring */

14 TransferLearningScoring(RS, NoteworthyFeatures);
15 foreach F ∈ NoteworthyFeatures do
16 F.NoteworthinessWeight ← RS.F ;

/* Sort interactions/features by learned
scoring */

Result: SortByWeight(NoteworthyFeatures)

The core of the SAVRUS approach is Algorithm 1, whose im-
lementation can be found at.3 The calling parameters Data and
nput are steps 1⃝ and 2⃝, respectively. At the same time, Result is
the ranked list of identified affecting features — the arrow to step
8⃝. In summary, 1⃝, 2⃝, and 8⃝ are part of the front end. In the
back end, the algorithm 1 shows the logic of the decisions taken
to analyse configurations and QA measures (SAVRUS Strategy
box at Fig. 1). The front-end is a web application, whereas the
back-end is developed in PHP 8, and a MariaDB 10 SQL database
stores the QAs’ measurements. In this prototype, the VM supports

3 SAVRUS prototype: https://hadas.caosd.lcc.uma.es/savrus.
6

Boolean and numerical features (i.e., numerical VMs). While in
this subsection we present specific techniques, each step of the
approach is modular and can be replaced by other alternatives
(e.g., different sampling, learning and statistic techniques).

Lines 1 to 3 of algorithm 1 correspond to the analyst constrain-
ng the VM and QA. An example is that a SAVRUS user indicates
hat ‘‘the operating system must be Android’’ and that ‘‘the en-
rgy consumption must be less or equal to 3 Watts’’. Practically,
onstraining the VMmeans to indicate in step 2 those constraints,
either graphically by clicking/tapping the required and excluded
features or as text-based propositional clauses for more advanced
relationships (e.g., (Feature X and Feature Y) exclude Feature Z).
Then, the automated reasoner will always limit the configura-
tion space by considering the user constraints as part of the
VM logic. Additionally, while the QA constraints are indicated
in the same format, they are routed to the database queries,
and hence the database manager will further limit the measured
space. If the automated solver requests a sample, it could be
discarded if the QA measurement value does not match the user
constraints. Alternatively, it can be replaced by a different one
generated by a new run of the automated solver. Considering
those feature selection constraints in the space, we obtain the
number of measured samples requested by the analyst in the
following line. While we have motivated SRS and DDbS strate-
gies in Section 4, we could replace them with other alternatives
without affecting the rest of the algorithm. We implement SRS
and DDbS Clafer solver-based,4 implying several solvers calls with
loops and different search seeds. We aim to generate a discrete
uniform distribution with fast (pseudo-random) procedures for
the randomisation tasks used by several methods. For this, we
use a combination of the Clafer self-randomiser and the PHP8
openssl_random_pseudo_bytes() function meant for cryptographic
applications.

In the following lines, we implement the kNN and MWU
techniques, based on the PHP-ML library.5 In lines 5 to 7 kNN
ries to approximate QAs values when the sampling method
equests unmeasured samples. As a lazy learning approach, only
hen sampling requests unmeasured configurations, it generalise
o calculate the [configuration, QA] tuples based on the mean
f the k-closest measured ones. We can find several distance
etrics already implemented in PHP-ML. In SAVRUS, we use the
anhattan distance,6 also called the City-Block distance, as it is the
ecommended one in the literature for the variety of dimensions
hat the configurations of our application domain comprise [67].
o make the reasoner output and the PHP-ML distances compati-
le, note that the generated samples are complete configurations
nd that configurations are a set of features. Consequently, we
ransform samples as collections, as we can vectorise them as
nordered feature sets with variable vector widths. We avoid the
ree root feature, as it is shared by all the complete configura-
ions, reducing the computational effort. Hence, the difference in
ize and the counting of features not present in the conjunction
i.e., counting the exclusive disjunction) increases the distance
etween samples. Regarding the k hyperparameter, while there
re techniques to predict accurate ones, they require pre-training
tages [68], which would break O2. Hence we decided to leave
t user-defined, as equal to the number of samples, larger ks
ould potentially result in more accurate QA means but with a

4 Clafer Suite [19] is the state-of-the-art variability-solving reasoner com-
osed of a modelling language, a numerical variability reasoner, a multi-objective
easoner, and a multi-dimensional interface. Given a VM in Clafer modelling
anguage, the Suite can randomly generate parts of the respective configuration
pace and search for optimal configurations based on feature attributes.
5 PHP-ML library: https://php-ml.readthedocs.io/en/latest/.
6 Manhattan distance of N dimension = |x1 − y1| + |x2 − y2| + · · · +
|x − y |.
N N

https://hadas.caosd.lcc.uma.es/savrus
https://php-ml.readthedocs.io/en/latest/
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roportional increase in computational cost and time. Therefore,
y default, we set k as the minimum for a mean (i.e., 2), meaning

assigning to the unmeasured samples the QA value of the mean
of the two most similar measured configurations.7 If k-closer
eighbours are unavailable, the sample is discarded.
In line 8 SAVRUS identifies which features are shared among

he worst performing configuration samples for the QA that we
re analysing. For this, it starts by computing the average perfor-
ance P(f ) of configurations with a feature f , and the average
erformance P(notf ) of configurations without f . Consequently,
AVRUS calculates the influence of a feature such as follows:

∆(f ) = P(f )− P(notf )

For QAs like runtime or energy consumption, where a higher
A value is underperforming, a P∆(f ) > 0 means that f de-
rades the QA performance of most of the configurations in the
ample set. Further, SAVRUS generates a set with the features
hared among the top N underperforming configurations from
he sample set. Based on [37], where a similar approach is used to
ind the best-performing features, it is experimentally concluded
hat an N = 2 is the most accurate. Elaborating, using only the
orst configuration (i.e., N = 1) is misleading, as only some

its features are potentially noteworthy. On the other hand, N ≥
3 is too constraining, as interesting features may not be in all
configurations.

SAVRUS continues in line 9 performing an MWU test to con-
firm that those interacting features significantly affect a QA with
a 95% confidence. In other words, we check if the influence of
those potentially noteworthy features is statistically significant.
Technically, confirming the null hypothesis, SAVRUS checks that
the current set is sampled from the same distribution as a new
random one containing those interacting features. In other words,
it verifies that those interactions are expected for most of the
configurations of the configuration space.

At this point, we have the measured sample set and the statis-
tically noteworthy features set. In lines 10 to 13, we apply [28,51]
by performing the same MWU tests to pair combinations of the
noteworthy features set. Hence, while SAVRUS does not cover all
possible interactions, it potentially identifies the most common
and meaningful ones affecting a QA with the minimum computer
resources. The loop ends with a pairwise noteworthy interacting
feature set.

Finally, we keep track of the influence scoring, which is the
composed likelihood of features affecting a QA based on the
accumulated search spaces. We apply TL in lines 14 to 16. We
follow a similar approach to TL anomaly detection with unsuper-
vised instance selection [69], but in our case, the ranking scoring
is shifted opposite of the anomaly. Anomaly detection involves
identifying QA-valued configurations containing noteworthy fea-
tures or interactions as outliers, meaning that their behaviour
differs from what was expected. Suppose that in an analysis,
we check if that noteworthiness conclusion holds for the k-close
configurations in which they are present. If the effect of that
feature or interaction in those exact configurations is an outlier,
the conclusion does not hold. Hence, the scoring will decrease
proportionally to the outlier scoring. Similarly, if the conclusion
holds, the ranking scoring increments inversely proportional to
the outlier scoring.

In this implementation, we rely on the PHP library Rubix
ML.8 Concretely, we make use of its Local Outlier Factor (LOF)
method, which measures the local deviation of the density of

7 While in classification problems the k hyperparameter must be an odd
umber to ensure no ties in the voting, this restriction does not apply to
egression problems.
8 Rubix ML library: https://rubixml.com/.
7

an unknown sample, regarding its kNNs. One can identify the
configuration with a substantially lower density than their neigh-
bours by comparing the local density of a configuration to the
local densities of its kNNs. As such, LOF only considers the k-
neighbourhood of an unknown configuration, which enables it
to detect anomalies within individual clusters of the measured
configuration space. LOF can be executed as unsupervised or as
semi-supervised learning. The unsupervised mode finds outliers
within itself (i.e., the configuration space). On the other hand, the
semi-supervised mode allows comparing the density of a given
configuration versus the density of the k-closest neighbours in the
measured configuration space. We execute the semi-supervised
mode as we considers an initial weight of 0 (i.e., not affecting) for
each feature and interaction and constantly update the weights.

As implicitly mentioned, we make use of kNN again, but this
time within the LOF method, which is a sequence of:

1. Defining the distance metric, the k hyperparameter, and
the algorithm used to compute the NNs. In this version, we
keep using the Manhattan distance and k = 5 for the same
reasons detailed above. Regarding the specific algorithm,
Rubyx ML implements the k-d Tree and the Ball Tree algo-
rithms, from which we choose the latter. The reason is that
the Ball Tree algorithm works well with various dimensions
since the partitioning schema does not rely on a finite
number of 1-dimensional axes aligned splits such as with
k-d Tree. Ball Tree is a binary spatial tree that partitions the
measured configuration space into successively smaller and
tighter configuration clusters.

2. Calculating the kth distances of the samples. As mentioned,
we chose the Manhattan distance again.

3. Pulling kNN configurations from the measured configura-
tion space that contains the noteworthy feature or inter-
action to rank. If k-closer configurations do not exist, the
scoring of that feature or interaction will not be updated.

4. Calculating each samples’ Local Reachability Density (LDR)
by estimating the distance at which a sample can be found
by its neighbouring configurations. Mathematically, LDR is
calculated as the count of the configurations in the specific
kNN set for a sample over the Reachability distance of the
sample to all the values in its kNN set. Formally, the LDR
of a configuration sample X:

LDR(X) =
#KSamples∑#KSamples[N]

Y=KSamples[1] Reachability(X, Y )
;where

Reachability(X, Y ) = Max{kDistance(Y ),Distance(X, Y )}

5. Calculating the final LOF value of each sample. It is cal-
culated as the sum of the LRD of all the samples in the
respective kNN set, multiplied by the sum of the Reachabil-
ity distance of all the samples in that kNN set, all divided
by the square of the size of that kNN set. Formally, the LDR
of a configuration sample X:

LOF(X) =

∑#KSamples[N]
Y=KSamples[1] LDR(Y ) ∗

∑#KSamples[N]
Z=KSamples[1] Reachability(X, Z)

(#KSamples)2

6. Defining a threshold to obtain conclusions based on the
resulting LOF values. Based on the literature [70], if the
measured configuration space is tight, clean, and uniform,
LOF values above 1 mean that how a feature or interac-
tion performed in the sample is an outlier and cannot be
generalised. However, in cases like emergent domains like
ours where the measured configuration space is probably
sparse, with a varying density, and with local fluctuations
in a local cluster, samples are considered outliers with LOF
values above 2.

https://rubixml.com/
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Fig. 2. VM of the Generic Edge Computing (GEC) large case study.
h

c

To clarify, instead of feeding the LOF method with sets of
eatures forming valid configurations as we did in the kNN step, it
nalyses a single set of QA measurements belonging to the set of
alid configurations containing the feature or interaction to rank.
he number of sets to analyse is the total number of features and
nteractions to rank.

Another clarification is about calculating a k-mean QA value
n the kNN step and then calculating the LOF value that again
ses kNN. First, they are two different and necessary instances of
NN. Second, their inputs and outputs are other. In the kNN step,
he inputs are unmeasured configurations, and the analyses rely
n the user-constrained measured configuration space. In the TL
tep, the inputs are single features and sets of interacting features,
nd the LOF analyses rely on the features-constrained measured
pace. On the other hand, the outputs are the k-mean value of
nmeasured configurations and a ranking scoring, respectively.
The ranking scoring goes from 0 to 1, meaning not affecting

nd always affecting, respectively. As mentioned, features and
alid interactions start with weights of value 0 (i.e., generally not
ffecting) by default. On each SAVRUS execution, if any of them
re detected as statistically noteworthy, the TL step with the LOF
ethod is executed. Then, the weights are updated depending
n the respective LOF values. If the LOFvalue of a feature X is

above the anomaly threshold, 2 in our case, it is normalised and
subtracted from its scoring weight wX as wX −= LOF(X)÷100. On
the other hand, if the LOF value is below the threshold, it is added
as wX += LOF(X) ÷ 100. The weights cannot decrease/increase
more than 0/1, respectively. Finally, features and interactions
are ordered from 1 to 0, creating the noteworthiness ranking of
features and interactions affecting a specific QA. This is the result
and output of the algorithm.

6. A proof of concept

This section is a proof of concept that accomplish Section 3 by
analysing an extensive IoT/Edge/Cloud system with our SAVRUS
prototype. We present a case study scenario aiming to detect the
features’ influences on the energy consumption rate of that sys-
tem. In the scenario, SAVRUS helps an IoT/Edge/Cloud developer
to decide on specific configuration changes to reduce the energy
consumption rate of that system while considering her recurrent
requirements.

As mentioned in Section 5.2, the prototype supports SRS
and DDbS strategies. They will be tested as, to our knowledge,
they have yet to be confronted in the literature. We use the
Generic Edge Computing (GEC) case study — a VM with a large
configuration space we have designed to represent a regular
IoT/Edge/Cloud system [71]. GEC VM is represented in Fig. 2, and
it comprises six main branches:
 e

8

• Device: Edge computing hardware, as single-board and
small devices; in this evaluation, four were considered.
• Architecture: The microprocessor running architecture —

the most common ones are x86 and x86_64.
• Operating System (OS): The running OS in which the

software will be executed, where, besides the top 100 UNIX
systems in use in 2021 yearly published by Distrowatch,9
Microsoft Windows is considered. Only the latest updated
version and the default kernel were considered. Addition-
ally, we defined cross-tree constraints for unsupported OSs.
• Programming Language (PL): The PL in which the opera-

tion is coded; in our evaluation, just the ones of the executed
benchmarks are considered.
• Edge technology: Our available libraries and peripherals are

considered, including wireless communication, data storage,
temperature sensors, remote controllers, etc.
• Edge Context: Three key branches are located at this level.

Parameters contain the numerical features as natural num-
bers, which usually are input calculation parameters.
Datatype represents the data types used in a specific oper-
ation. We used bytes for cases where several types are used
simultaneously, like in benchmarks. Operation contains the
tasks performed in an IoT device. Besides the common ones,
such as starting or shutting down a device, the benchmark
Phoronix Test Suite10 operations are included in our eval-
uation. The suite ranges from battery power consumption
monitoring for mobile devices to multi-threaded ray-tracing
benchmarks and spans the CPU, graphics, system memory,
disk storage, and motherboard components. While the suite
comprises 403 tests, not all of them suit every OS or device
of the VM, but, on average, 100 are compatible with each
system. Representing all the OSs, operations and cross-tree
constraints, Fig. 2 would not be graphically friendly. The
complete Clafer VM can be downloaded in the footnote
link.11

Following the planning process for the energy-efficient soft-
ware [72], we measured GEC energy consumption rate QA in
Watts,12 triple checking with three professional tools: Watts Up
Pro Portable Power Meter, Multimeter Eversame C, and Eversame

9 Ranking of UNIX systems in use in 2021 yearly published by DistroWatch:
ttps://distrowatch.com/index.php?dataspan=2021.
10 Phoronix Test Suite: https://openbenchmarking.org/tests/pts.
11 GEC Numerical variability model download as Clafer model: https://hadas.
aosd.lcc.uma.es/edgenvmfgcs.txt.
12 Watt is the derived unit of a joule per second and is used to quantify the
nergy rate.

https://distrowatch.com/index.php?dataspan=2021
https://openbenchmarking.org/tests/pts
https://hadas.caosd.lcc.uma.es/edgenvmfgcs.txt
https://hadas.caosd.lcc.uma.es/edgenvmfgcs.txt
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Table 1
Detailed real-world variability models ordered by their search space size, of which GEC QA is incompletely measured.
NVM Description #Booleans #Numericals Space QA #Measurements

Dune Multi-grid solver 11 3 2,304 Equation solving time 2,304
HSMGP Stencil-grid solver 14 3 3,456 Equation solving time 3,456
HiPAcc Image analysis framework 33 2 13,485 Equation solving time 13,485
Trimesh Triangle mesh library 13 4 239,360 Equation solving time 239,360
GEC Generic edge computing 552 2 ∼5.3 ∗ 108 Energy Consumption 132,500
PowerMeter 2n1. The devices were highly cooled in a quiet and
isolated room at all times to avoid external factors affecting the
readings.

Clarifying, we will analyse GEC in four different scenarios,
hasing four sets of results. In the first one, we run Clafer choco-
olver13 for the GEC VM to generate the entire solution space,
hecking that it is a correct VM. The second scenario is the
erspective of a random GEC systems developer interested in
mproving its products’ energy consumption by knowing which
re the most efficient component alternatives (i.e., features). In
his scenario, the developer acts as a SAVRUS user who interacts
ith its graphical web interface by running a sequence of SAVRUS

nstances with different analysis requirements. For the third per-
pective, we execute two sets of SAVRUS instances for a few VMs,
ncluding GEC. We focus on the averaged accuracy, coverage and
untime of each combination. In the last perspective, we evaluate
he scalability of SAVRUS for colossal QA spaces like the one of
EC.
Consequently, we have written the GEC VM of Fig. 2 in Clafer

odelling language comprising 552 Boolean and 2 numerical
eatures with parent–children and cross-tree constraints. As in-
roduced in Section 5, we used that VM as an input to Clafer
hocosolver and ran its reasoning command generating a solution
pace of ∼5.3 ∗ 108 configurations in ∼36 h. GEC VM details
re also specified in the last row of Table 1, where we can
ee that among all the VMs analysed in this work, GEC is the
argest one. We can assume that a team measuring the energy
onsumption of some GEC configurations is likely only to measure
pre-configured benchmark suite and similar configurations. In
ther words, it is doubtful, if not impossible due to the size of
he configuration space, that the team would physically have and
ctively run most of the compatible combinations of devices, OSs,
nd software and the proper energy rate measuring tools. Then,
o approximate the GEC study to a real scenario, we performed
ust 132,500 different measurements for the QA energy con-
umption rate, which account for 0.25% of the total search space.
dditionally, to faithfully reflect the likely scenario we have just
ommented on, this partially measured space includes random
lusters of measured and unmeasured configurations for the QA
nergy consumption rate. As detailed in Section 5.1, we need to
tore these energy consumption rate measurements with their
espective configuration references in a QAs values repository;
n the current SAVRUS prototype the repository is a MariaDB
atabase.
Evaluating fresh versus established instances of SAVRUS will

ot differ in detecting the noteworthy features and interactions.
n the contrary, it could affect the resulting ranking of those
eatures. The reason is elaborated in Section 5.2, and it is related
o the TL module (i.e., step 7) where we initially set the TL
coring weights to 0 (i.e., not affecting). To prevent this and
eflect actual usage of SAVRUS, we performed an initial set of
000 SAVRUS runs with random user parameters generated by
he PHP8 openssl_random_pseudo_bytes() like the strategy to use,

13 Chocosolver is one of the two variability reasoners of Clafer Suite. Choco-
olver is compatible with Boolean and numerical features and arithmetic
onstraints, and it can automatically generate between 1 and all possible
onfigurations of a VM in partially random orders.
9

Fig. 3. Improving GEC energy consumption rate by switching the noteworthy
red by alternative green features.

the number of samples, and feature constraints. After that, we
conducted 100 runs of the SAVRUS prototype and averaged the
results for a confidence level of 95% with a 10% margin of er-
ror [73]. In this second set of instances, k parameter was left by
default (k = 2).

The GEC averaged ranked list of the most to the lesser
influential top 10 noteworthy features and interactions
affecting the energy consumption rate was: 1. Runs, 2.
Phoronix Test Suite, 3. Windows, 4. (HP Elite X2) G1, 5.
Bluetooth + Send, 6. Wireless + Send, 7. Architecture, 8.
(Intel) NUC8i3BEH, 9. StartUp, and 10. Shutdown.

Additionally, that list is graphically represented, as shown
in Fig. 3, indicating changes in the order of effect. Noteworthy
features, coloured in bold red, are meant to be avoided to improve
the QA values — i.e., to decrease the energy consumption rate in
our study. Hence, the developer is implicitly advised to replace
those with whatever possible alternative, which, just for simplic-
ity, are marked as dotted green features in Fig. 3. The complete
model is presented in Fig. 2.

Nevertheless, SAVRUS is an interactive approach that devel-
opers will normally execute several times while taking decisions
based on previous executions. Thus, we now present a SAVRUS
usage scenario running a GEC analysis of a developer that needs
to understand which and how features affect the energy con-
sumption rate of her system. In this scenario, we leave aside the
algorithms options, like the number of samples, as we properly
evaluate them in the next section. First, the developer loads in
her favourite web browser SAVRUS, which welcomes her with
the graphical interface of Fig. 4. Then, she clicks the Analyse
button without selecting features or declaring numerical values
(i.e., cross-tree constraints). This results in receiving a similar
graphical list to Fig. 3 — an overview of GEC features and energy
interactions. While so much data can be overwhelming by itself,
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Fig. 4. The interactive graphical interface of the SAVRUS web prototype.

a quick look at the red indicators tells her that the Edge Context
eems to be playing a significant role in the energy consumption
f GEC, no matter the case. Runs is related to the number of
imes that a GEC operation is performed, while the Phoronix Test
uite features belong to benchmarking; hence both are useful to
et insights into GEC but unsuited to be replaced. On the other
and, she understands that we should avoid constantly restarting
device, as Shutdown and Startup are energy consumers features,
s well as Sending data. Additionally, she can notice that the
easuring operation was not considered noteworthy (i.e., did not
egatively affect GEC energy requirements), which was essential
o discard the observer’s paradox.14 After that, as she is interested

14 Observer’s paradox in our context: The quality measured tooling is
nwittingly influenced by the quality requirements of the measuring tools.
10
Fig. 5. SAVRUS results for GEC considering the features Send and Receive user
requirements as variability model constraints.

in Send and Receive data with GEC, she constraints those opera-
tions in the second run of SAVRUS. The new results are visible in
Fig. 5, where she sees a reduction in the number of noteworthy
features detected, simplifying the application of the obtained
insights. Based on that second run and the green-marked features,
some actions that she can pursue to reduce the system energy
requirement are: Switch the Device to a RapsberryPi and the OS
o Linux/BSD; Use External Storage instead of a constant Wireless
onnection; Not worrying about most of the peripherals. By just
witching the Device and OS to the green alternatives, she is
saving between 5 and 27 watts, based on our measurements. That
means a 16%–90% decrease in system’s energy requirements of
the system to perform the same task. On the other hand, based
on the noteworthy red features, she should avoid using Bluetooth
when wirelessly Sending data, using WiFi instead. Just changing
the Wireless interface of GEC to WiFi, she saved up to 1 watt in
every possible scenario. Furthermore, she could keep performing
newer runs of SAVRUS, hence obtaining deeper insights. As a
final note, current mandatory features as architecture could be
identified as noteworthy red features, yet irreplaceable in every
scenario of the current model.

Final results: The main features and interactions increasing
the energy consumption rate in GEC, and aimed to change
by an alternative, are Windows OS, larger devices such as
HP and Intel, and last, Sending Wireless data. Considering
that we performed the analyses with just 3% samples of the
0.25% measurements of the total space, and we can reduce
the energy consumption of GEC up to 90%, we conclude
that SAVRUS is a functional approach that matches our
objectives.

While the analysis results seemmeaningful, they cannot be as-
sumed as correct, as the SAVRUS approach has yet to be validated.
To validate SAVRUS with GEC, we must measure its configuration
space for the energy consumption rate ultimately, but that is
impossible in a human time frame. Consequently, in the next sec-
tion, we evaluate SAVRUS with different well-known and already
studied VMs for a similar and completely measured QA.
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In this section, we empirically demonstrate that SAVRUS gen-
rates meaningful results sufficiently fast by analysing two as-
ects of our prototype:

1. SAVRUS validity. We analyse how reliable SAVRUS is con-
cerning coverage and accuracy to identify feature influences
based on incompletely measured spaces.

2. SAVRUS scalability. We analyse the relationship among the
number of features, configurations and samples, and SAVRUS
analysis runtime.

We require VMs completely measured for a QA to demon-
strate that SAVRUS results are correct empirically. As stated, it
takes much time and resources to predict energy consumption —
note that energy is always estimated, never measured. According
to [24], large systems and VMs completely measured for any en-
ergy footprint are currently nonexistent and unlikely to happen.
GEC is an example of this issue; thus we cannot use it to derive
SAVRUS’ accuracy.

As an alternative, we search for the most similar QA in which
measuring is independent of complex expertise and tooling. Ac-
cording to Weber et al. [74], while the performance QAs runtime
and energy do not necessarily correlate in every situation, they
exhibit similar trends. Additionally, runtime performance is a
well-known QA commonly used in the variability reasoning com-
munity and measured per configuration. According to that, we
selected the four real-world VMs provided by authors of [75]:
Dune [75], HSMGP [75], HiPAcc [75] and Trimesh [76]. Table 1
shows them ordered by the configuration space size in ascend-
ing order. To emulate the scenario in which SAVRUS is usually
used, we purposely removed random chunks of measurements
mimicking the issues of large VMs modelling energy-aware IoT
systems (i.e., randomly spread measurements) like GEC. Then,
we sequentially execute SAVRUS prototype 20 times. We repeat
this process 5 times for each VM, degrading the measured space
differently 5 times, reaching 100 analyses per VM.

The prototype runs on an Intel(R) Core i7-4790 CPU@3.60 GHz
processor with 16 GB of memory RAM and an SSD running
an up-to-date Ubuntu server 20.04 LTS X86_64 with the latest
supported versions of NGINX web server, PHP 8.x, and MariaDB
10.x. k parameter was again left by default (k = 2).

7.1. SAVRUS approach validity

For each analysis, we calculated and averaged the following
metrics:

Definition 1 (Time). It is the averaged runtime in minutes (m)
performed with our implementation of SAVRUS of N analyses of
a variability model VMx as:

SAVRUS Time(VMx) =
∑N

i=1 Runtimei
N

efinition 2 (Coverage). It is the averaged percentage of covered
eatures f s and pairs of features pf s regarding the total number of
hem when running SAVRUS for N analyses of a variability model
Mx:

AVRUS Coverage(VMx) = (
∑N

i=1 #fi + #pfi
#fx + #pfx

) ∗ 100

efinition 3 (Accuracy). After initially computing the correctly
rdered list by a brute-force pairwise, we calculate the accuracy
f SAVRUS for N analyses of a variability model VM an averaged
x

11
Table 2
SAVRUS time, coverage and accuracy for SRS/DDbS querying 3% samples of the
incompletely measured space of four real-world systems.
Sampling SRS DDbS

Model

Time Coverage Accuracy Time Coverage Accuracy
Dune 1.5 m 73.2% 86.7% 1.3 m 76.9% 83.9%
HSMGP 1.9 m 72.4% 85.4% 1.4 m 75.7% 83.5%
HiPAcc 3.7 m 70.5% 84.1% 2.8 m 73% 83.3%
Trimesh 7.3 m 65.2% 83% 6.6 m 68.7% 82.8%
Mean: 3.6 m 70.3% 84.8% 3 m 73.6% 83.4%

percentage of correctly identified and ranked noteworthy features
rnf s up to pairwise interactions. In other words, the accuracy is
the probability of SAVRUS detecting and perfectly ordering the
most meaningful feature-quality interactions.

SAVRUS Accuracy(VMx) = (
∑N

i=1 #rnfi
#rnfx

) ∗ 100

For results fairness and to keep runtime below 10 min in all
cases, we fixed the number of samples per analysis to 3% of their
respective search space. Nevertheless, a user could increase the
number of samples to obtain better results at the cost of SAVRUS
runtime. However, this is most noticeable for initial space ex-
plorations; if similar analyses have been previously executed,
a heavy increment of the number of samples produces a large
server overhead without proportionally improving its accuracy.
Finally, to prevent SAVRUS server blocking, its current time-out
is set to 30 min.

The averaged results of the 20 ∗ 5 executions per VM are
presented in Table 2. We can see that SAVRUS runtime increases
linearly and proportionally to the space size, reaching ∼7 min
for Trimesh. The opposite occurs with coverage and accuracy, as
they slightly decrease, although they keep around [65.2, 76.9]%
and [83, 82.8]%, respectively. Hence, SAVRUS returned a correct
ranking of noteworthy features and interactions affecting a QA
above 80% of the runs; in other words, SAVRUS returned a par-
tially mistaken ordered list less than 20% of the times. Those could
be sufficiently good results for our purpose, i.e., to give energy
footprint advice, considering we have a degraded search space
and a relatively small sample set, domain unaware.

Regarding sampling, their means suggest that DDbS is slightly
faster (i.e., −0.6 min) and has a higher coverage (i.e., +3.3%)
than SRS, although SRS is more accurate (i.e., +1.4%) on average.
It is interesting to highlight that while SRS has lower coverage
than DDbS, it is more accurate; hence the covered SRS samples
seem more meaningful than the ones covered by DDbS but at
the cost of a higher runtime. That is also visible by looking at
each model metric, where the differences are more stressed when
the search space is smaller. DDbS accuracy generally seems more
stable than SRS, which decreases faster for larger models. Conse-
quently, the larger the search space, the more sense makes DDbS.
Nevertheless, SRS is superior for all tested models if runtime is
not considered.

Validity Results: SAVRUS generates a correct ranking of
noteworthy features and interactions 80% of the time for
every incompletely measured model. This accuracy is in-
versely proportional to the space size and the number of
samples. SRS is generally more accurate than DDbS, even
with lower coverage. On the other hand, DDbS is com-
paratively faster, especially for larger spaces. Hence, the
results are reasonably accurate without exploiting domain
knowledge, matching O1/2/4.



D.-J. Munoz, M. Pinto and L. Fuentes Knowledge-Based Systems 270 (2023) 110558

7

t
d
f
d
o
o
s
b
l
o
a

o
p
t
r
i
L
a
s
l

f
c
∼

f
t
i
c

Fig. 6. SAVRUS scalability graph with regard to #samples.

.2. SAVRUS prototype scalability

To test the scalability of SAVRUS implementation, we reused
he same models used in the previous section. In this case, we
egraded these models with an increasing number of samples
rom 25 to 6400, obtaining 9 sample set sizes, where each one
oubles the former one. We have followed the same procedure
f 5 ∗ 20 runs per case study (i.e., dotted marks), and the average
f the results is shown in Fig. 6. We have tested 8 scenarios (i.e., 4
ystems * 2 sampling strategies) for 9 different sample set sizes,
ut two of the VMs (Dune and HSMGP) were smaller than the
arger sample sizes (3200 and 6400). So, the graph shows a total
f 66 cases. The X-axis is the maximum number of samples per
nalysis, and the Y -axis is the execution time of the analysis.
The graph shows that, while there is a minimum workload

f ∼1 min, the runtime of a SAVRUS analysis linearly increases
roportionally to the number of samples. However, the curves
end to be smooth for larger sample sets. Additionally, the sepa-
ation between the curves suggests that the execution time also
ncreases based on the complexity and space size of the model.
ike the characteristics described in Table 1, the relationship
ppears linear again. Finally, and matching RQ2 results, DDbS is
lightly faster than SRS. Those differences tend to increase for
arger sample sets and more complex spaces.

Regarding numbers, the execution time was kept below 7 min
or the worst-case scenario: 6400 samples of the largest and most
omplex system — Trismesh. However, for standard sample sets,
2% of the total space, the execution time is always below 3 min

or all cases and scenarios. For simplicity, the graph values refer
o the full execution time of SAVRUS, but we have also measured
ts internals. We have identified that the most time-consuming
omponents of SAVRUS are in the relevant order:

1. The database queries and related functionality, such as
updating TL scoring weights or requesting k neighbours.

2. Solver-based functions. Clafer, as a Java application, has a
significant initial workload, even for small sample sets.

3. Lastly, machine learning PHP8 libraries. PHP is not a
mathematical-specific language, as it is meant for back-

ends.

12
Scalability Results: SAVRUS implementation presents an
initial analysis runtime of∼1 min, taking less than 3 min for
comprehensible cases and scenarios, and with a worst-case
of ∼7 min. We have empirically demonstrated that it has a
linear relationship with the number and complexity of the
samples, getting smoother based on how large the sample
set is. Finally, the main bottlenecks are the database and
the solver. Hence, linear scalability with reasonable base
analysis times accomplishes O3.

8. Discussion and threats to validity

First, we tested SAVRUS with the wide configuration space
of GEC, which is a system of our expertise, and where reducing
energy consumption is particularly critical in the current times.
In the process, we found interesting features interactions while
highlighting and ranking by their effect strength, the ones notably
affecting the QA energy consumption rate. This provided sev-
eral energy-aware optimisation insights based on excluding the
energy-hungry features while suggesting sustainable alternatives.

Then, we evaluated and compared the two implementations
of our approach, DDbS and SRS. To answer our RQs, we validated
SAVRUS effectiveness regarding (i) the quality of the features
insights, (ii) the size of the sample sets concerning the space size,
and (iii) the analyses times; in other words, we accomplished
objectives 1–4 that motivated our research in Section 3.

SAVRUS generated a correct ranking of noteworthy features
and interactions 80% of the time for every incompletely QA-
measured model. Regarding SAVRUS performance, the current
prototype has a base runtime of ∼1 min, taking less than 3 min
for comprehensible cases and scenarios.

Between the two sampling implementations, and considering
Table 2 and Fig. 6, DDbS was the most balanced alternative due
to its speed, accuracy, and scalability, especially for large and
complex systems. SRS is the most accurate alternative if the
analysis time is not an issue for the developer.

In summary, with SAVRUS, we can find the quality influences
of features and interactions in a system by analysing its unknown
configuration space. While some techniques in SAVRUS have al-
ready been used in other works, they are adapted and combined
in a novel sequence, as their traditional usage in feature-level or
learning-based solutions will completely break our objectives. In
other words, current works only considered quality analyses at
the configuration level with (prior) domain knowledge. Further-
more, SAVRUS metrics indicate sufficient accuracy, scalability and
adaptability to analyst requirements.

Hence, our contributions are summarised as identifying the
challenges of large emergent systems, a reasoned selection of
techniques, the modular SAVRUS approach, and the empirical ev-
idence obtained by running a SAVRUS implementation with em-
pirical data. With SAVRUS, developers can now get fast insights
into features and quality interactions of large yet partially mea-
sured models at the configuration level without requiring specific
domain knowledge, supporting features and quality constraints,
and sampling method selection and adjustment. With those in-
sights, developers optimise the systems by directly replacing the
noteworthy red features and shielding the noteworthy green
ones.

We evaluated our SAVRUS strategy with experiments that
provide completely measured models to avoid conceptual errors.
Regarding their construct validity, we analyse whether we use
the proper data set. To represent an incomplete measures space
of real-world Edge/IoT/Cloud systems, we properly degraded the
completely measured spaces according to the objectives of Sec-
tion 3. The degradation procedure is automatic and random and
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as independently applied to the original spaces a few times.
onsequently, we analysed the same space many times but de-
raded it differently to minimise the collateral effects that the
egradation procedure could have on the results.
The internal validity is determined by the accuracy of SAVRUS

results. Our specific implementation of SRS and DDbS meth-
ods could introduce some bias to the results. We aimed for an
equal balance between the fast seed randomisation and the com-
putationally expensive solver calls. We know that the selected
sampling and learning methods may not be the best choice for
all QAs and systems, but we are confident that they are proper
for energy consumption and edge systems. Nevertheless, we care-
fully implemented the state-of-the-art while using open-source
tools and libraries, which are widely tested in the referenced
repositories. However, we did not only validate SAVRUS outputs
but individually reviewed each strategy component (Fig. 1) to
avoid hidden errors. In all cases, we repeated the analyses and
presented averaged metrics to reduce a possible bias. Addition-
ally, we remind that SAVRUS comprises a normality test within
the process (i.e., MWU) with a 95% confidence, so the conclusion
validity is reasonably good.

To evaluate SAVRUS external validity, we selected 4 VMs
ell-known by the community with a different number of fea-
ures and space sizes. As highly configurable systems completely
easured for energy consumption are uncommon, we searched

or the well-known measured systems of Table 1, which share
ome issues in the scenarios of edge systems consuming energy.
s those models are additionally degraded to mimic the exact
ssues of GEC, we are not entirely sure that the results of our
valuations can be generalised to all VMs and QAs. However,
e are confident enough that SAVRUS could be extended for
hose domains in which it was partially inaccurate. Nevertheless,
omains with disparate and narrow normal distributions could
e challenging for SAVRUS to detect noteworthy features with
ufficient confidence. A possible workaround could be to adjust
i.e., reduce) the confidence level in those scenarios.

Another issue is the level of knowledge and optimisation that
company could obtain using the SAVRUS approach. For exam-
le, if they are managing small VMs or an almost unmeasured
pace, we can expect an improvement under 90%, as the level of
A variability is likely small. However, by using SAVRUS, those
ompanies could also benefit from other exotic QAs like sound,
ollution, temperature, runtime, or airflow, among others. This
s especially true if they share the same objectives described in
ection 3, as other tools were not designed with them in mind.
onsequently, SAVRUS coverage and accuracy are expected to
e superior for these configuration-level QAs. Finally, reasoning
pproaches for feature-level QAs could rival SAVRUS in this kind
f QAs. Notice that although SAVRUS covers both feature-level
nd configuration-level QAs, we designed SAVRUS to improve the
nalysis of configuration-level QAs.
While the prototype is online, we provide the 5 VMs of Ta-

le 1 in Clafer (.txt) format, their respective QAs measurements
s CSVs, and the SAVRUS analyses and readings as a .xlsx all
ompressed in a .zip file data set downloadable in:
https://doi.org/10.5281/zenodo.6251045
Limitations. As with most of the related work, SAVRUS re-

ults are influenced by the quality of the input data. Wrongly
onstructed VMs, poorly measured QAs, and a biased data distri-
ution certainly decrease SAVRUS accuracy. This could happen if
SAVRUS user does not choose adequate parameters for the de-
ired analysis. An example could be a user indicating a maximum
equest of only 5 samples to analyse an large space; naturally,
he results are expected to be inaccurate due to an insufficient
mount of data analysed. Also, if a feature or an interaction was

ever measured in a configuration, specific insights are purely

13
based on how their k-close neighbours perform. At the same time,
if those neighbours are unmeasured, those missing features are
discarded for analysis. Additionally, if the measured space size
predominantly grows, the probability of needing the kNN step is
proportionally reduced. While unlikely in practice, SAVRUS could
theoretically suffer from the Curse of Dimensionality. Variability
models in the Clafer language are defined as variability trees;
thereupon, the full dimension that SAVRUS analysis could have
is somewhere between the maximum depth of the tree plus the
number of grouped features if mandatory or disjunction cardinal-
ities are defined. As a worst-case scenario, we could calculate the
dimensionality of Linux 2.6.33.3, one of the colossal systems with
a configuration space of ∼3.90 × 101672. Its maximum dimen-
sionality is ∼192 [77]. However, that maximum dimensionality
is unlikely to arise in every analysis as the average depth of
the branches is 2.7, and the total number of features is 6467.
Finally, we need to remind the readers that SAVRUS accepts
feature constraints from the user, exponentially reducing the con-
figuration space size and, consequently, the probability of larger
dimensionalities. In parallel, we can further discard this curse
from the TL with the LOF step, as the measured configuration
size is reduced further to the configurations comprising a specific
feature, or set of interacting features, detected as noteworthy.

On the other hand, TL could suffer from another issue, which
is the Negative Transfer. The definition of negative transfer is still
nder debate and is based on the algorithms, domain divergence
nd target data of the specific study [78]. Based on that, negative
ransfer in SAVRUS could arise if an extended sequence of past
xecutions were based on a cluster of the configuration search
pace that behaves very differently from the ones in the current
nalyses. This would cause the resulting rankings to be shifted
ue to inaccurate scoring weights. However, it does not affect the
etection of noteworthy features and interactions but their order
i.e., likelihood) in the ranking. Additionally, its probability is low,
s that situation requires analysing one cluster many times and
hen analysing a cluster that performs very differently only once.
new sequence of analyses will properly readjust the scoring
eights. This behaviour is expected from any TL approach in the
arly stages of learning a new cluster, and with experience, they
orrect for these effects.
While unexpected results could arise for colossal VMs and

are QAs, we are confident that our preliminary results will hold.
ortunately, current tests show linear trends for different cases
nd sample sets. From a developer’s perspective, waiting a few
inutes for analysis could be undesirable, but a more powerful
omputer and fewer samples certainly alleviate this issue. Finally,
AVRUS might identify all the alternatives of a parent feature as
oteworthy affecting a QA. In other words, all the child features
re equally affecting a QA. An example of this is the Architecture

parent feature in the proof of concept of Section 6, where its two
children (x86 and x64) are notably increasing the energy con-
sumption rate of any configuration whenever they are present.
While it would be more interesting to directly suggest replacing
a feature with a better-performing alternative, only concluding
that all the other options affect equally is still a valuable piece of
information. Nonetheless, modelling and quality measuring new
features for SAVRUS will reduce this limitation in the long run.

9. Related work

This section completes the related work already discussed in
Sections 2 and 4. While those sections introduced the techniques
required to understand the motivation and contributions of our
approach, this section discusses specific strategies dealing with
the different issues considered in our approach.

Literature dealing with finding interactions without domain
knowledge is rare, especially in energy-aware edge computing. As

https://doi.org/10.5281/zenodo.6251045
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t is critical, most works aim to reduce costs while maintaining
erformance. However, they share only some of our objectives
imultaneously. [79] is a meta-review of predicting the energy
onsumption for software reuse by integrating data mining and
rtificial intelligence. Unfortunately, the authors conclude that all
he reviewed solutions need more efficient prediction. MIGRATE
s a three-step machine learning framework for intelligent energy
rofiling [80]. The two first steps of MIGRATE are incompatible
ith our domain unknown requirement: big data analysis, then
upervised learning, ending with unsupervised learning. MoMo
erforms analyses dynamically (dynamic variability) [81]. How-
ver, the domain is well known beforehand and works with
resumed absolute values, which breaks O2 and O1. Federated
earning generates performance models based on aggregation
earning providing a sophisticated balance between the accuracy
nd financial cost of wireless sensors [82], but this breaks all
ur objectives. With the same aim of optimising accuracy and
conomic cost, [83] uses orthogonal VMs with quality values
t the feature level and a series of mappings and transforma-
ions compatible with the constraint satisfaction problem FAMA
ramework. Again, this solution breaks all of our objectives, as
t works with absolute values and domain knowledge at the
eature level. The mappings and analyses are neither reusable nor
xtendable for evolved models or new user requirements. The
oncept of deep software variability is used in [84] to exploit
roduct lines with multiple concurrent layers. Instead of different
ayers, SAVRUS modelled them as separate branches. Thermal-
ware Scheduling and Tuning (TaSat) propose a Pareto algorithm

for performance, energy and temperature, which does not re-
quire specific measurements to perform accurately; however, its
domain is specifically heterogeneous embedded devices [85]. A
similar work is TOFFEE which uses a stochastic algorithm [86], but
both solutions consider the quality space as well-known, breaking
O2, O3 and O4.

Another approach proposes pre-defined templates based on
the software architecture for energy-aware edge FPGAs [87].
These are regularly called energy models in the literature and
tend to be used to detect worst-case scenarios like the tool
Serapis [88], but they do not match our objectives. GreenScaler is
a tool that contains automatic test generation for cyber–physical
systems, and the results are stored in a local repository and
used then to detect energy-aware configurations [14]. Finally,
HADAS [89] tool generates tendency graphs of energy consump-
tion for cyber–physical systems. The last two were the most
promising for our domain. However, they partially break O1, and
completely O2. As we can see, O2 is the most critical counter-
objective of the current solutions, as far from considering it,
recent works even exploited it.

In summary, the main differences between the related work
and our proposal are: (1) Other proposals derive estimation
models of feature level quality values for the generation of
nearly-optimal configurations. Opposite to that, we provide an
interactive approach to analyse QAs influences on QAs at the con-
figuration level. Thus, we provide means to software engineers to
understand the configuration space, which differs from predicting
absolute values or exploiting the much smaller feature space;
(2) Their usage of current learning methods requires substantial
domain knowledge. However, our usage of sampling, statistical
kNN and TL do not assume the entire QA space as granted; (3)
Accurate estimation models are not directly reusable for highly
variable search spaces, but this is mandatory for us considering
the energy efficiency of IoT/Edge/Cloud systems; and (4) Software
developers tend to use simple tools with fast insights for their
feature selections, which usually would take days if new estima-
tion models of large spaces need to be generated for every new

feature, constraint or requirement. 0
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10. Conclusions and future work

This paper presents the difficulties of analysing Edge
Computing/Cloud/B5G systems to improve products regarding
complex QA-like energy consumption. We presented the SAVRUS
approach that: navigates through large and hard-to-measure
spaces with domain-unknown QAs; works with just available
data; and provides fast identification of features and pairwise
interactions ranked by their importance. The SAVRUS strategy
comprises 5 sequential steps: solver-based sampling, kNN, statis-
ical tests, TL, and a weighted sorting of noteworthy features and
nteractions affecting a QA. We developed a prototype with SRS
nd DDbS for sampling, a statistical MWU test, and TL based on
hifted LOF values. We tested SAVRUS applicability by analysing
EC (a vast and partially measured Edge Computing/Cloud/B5G
ystem) to improve its energy consumption rate. Finally, we
mpirically demonstrated its linear scalability and sufficient accu-
acy by a series of analyses with 4 real-world highly configurable
ystems: Dune, HSMGP, HiPAcc and Trimesh.
For future work, firstly, we can study the possibility of reduc-

ng the Curse of Dimensionality by replacing in step 4 kNN with
pproximate Nearest Neighbours (ANN) techniques like Locality-
ensitive Hashing [90]. Additionally, to increase SAVRUS scalabil-
ty regarding the measured space size, we can include another
ampling step (i.e., 3.2) to use a measured sample set to feed
NN and ANN to try to predict the QA values of the unmeasured
ample set. In parallel, we can build in step 7 a scoring function
y defining its aggregation function (e.g., the weighted sum of
cores); we could rank the configurations by highly affecting a
A and use it to detect some of the effects of negative transfers.
urther, we are studying how to extend the analysis of the T-
ise interactions in step 3 (i.e. T-wise) in a scalable manner
e.g., self-guided sampling [91]). We could study the advantages
nd inconveniences of heuristically calculating the number of top
onfigurations in step 5 with software threshold techniques [92].
e are also researching the advantages of integrating unsuper-
ised machine learning techniques in SAVRUS’ step 6. Last but
ot least, we plan to support multi-objective analyses (i.e., Pareto
nd trade-offs), like energy footprint and latency, in step 8. In
ny case, we welcome larger systems with different QAs to test
hem in SAVRUS and connect the prototype with other tools
e.g., repositories and micro-services analysis).
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