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Abstract
We show a link between affine differential geometry and null submanifolds in a semi-
Riemannian manifold via statistical structures. Once a rigging for a null submanifold is
fixed, we can construct a semi-Riemannian metric on it. This metric and the induced con-
nection constitute a statistical structure on the null submanifold in some cases. We study
the statistical structures arising in this way. We also construct statistical structures on a null
hypersurface in the Lorentz–Minkowski space using the null second fundamental form. This
extends the classical construction to the null case.

Keywords Null submanifolds · Statistical structures · Dual connections · Rigging
technique · Blaschke metric

Mathematics Subject Classification 53B05 · 53B12 · 53B3

1 Introduction

Affine differential geometry deals with the study of an affine connection on amanifold, which
a priori is not the Levi–Civita connection of a metric. On the other hand, a submanifold in a
semi-Riemannian manifold is called null if the induced metric tensor is degenerate at every
point. Thus, it does not inherit an useful metric, but it inherits an affine connection once some
arbitrary choices are made. This suggests that we should study null submanifolds using the
affine geometry techniques.However, affine differential geometry and null submanifolds have
been developed independently and there is not much interplay between them, despite their
similarities. One of the reasons why affine geometry has not been applying systematically

All authors have contributed equally to this work.

B Benjamín Olea
benji@uma.es

Calvin B. Meli
calvinbricemeli@gmail.com

Ferdinand Ngakeu
fngakeu@yahoo.fr

1 Department of Mathematics and Computer Science, University of Douala, Douala, Cameroon

2 Departamento de Matemática Aplicada, Universidad de Málaga, Málaga, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13398-022-01381-8&domain=pdf
http://orcid.org/0000-0002-1177-2589


48 Page 2 of 29 C. B. Meli et al.

to null submanifolds is that the second fundamental form of a null submanifold is always
degenerate. This impedes to define a fundamental concept in affine differential geometry as
the Blaschke normal to the submanifold.

A statistical structure is another important concept in affine differential geometry. It is
basically formed by an affine symmetric connection ∇̄s , called statistical connection, and a
semi-Riemannianmetric g such that ∇̄s g is totally symmetric. This name is due to the fact that
they appear naturally in probability and statistical inference. Indeed, ifwe have a parametrized
probability density, then we can construct, under suitable conditions, a Riemannian metric
called the Fisher metric and an affine connection which constitute a statistical structure. This
provides a surprising link between probability and Riemannian geometry, [3]. In the context
of affine geometry, the statistical structures have often been called Codazzi structures.

In this paper we relate the affine differential geometry theory and the null submanifolds
theory. To handle a null submanifoldwe need to fix a rigging, which is a vector field transverse
to the orthogonal complement to the radical of the submanifold. We show that if there is a
rigging for the null submanifold with certain properties, then it gives rise to a statistical
structure on the null submanifold.

Due to the great variety of terminology and ambiguity in affine differential geometry and
null submanifolds, we have included preliminaries sections on both topics for the sake of
readability of this paper. In Sect. 2 we introduce basic facts about null submanifolds and
the rigging technique used to handle them. In particular, we show how to induce a semi-
Riemannian metric on a null submanifold, which is called rigged metric. In Sect. 3 we do
the same with affine geometry and statistical structures. We fix the terminology, review
some basic facts and study some special statistical structures that will appear throughout this
paper. These special types of statistical structures are constructed from one or two vector
fields. This is why we call them ξ -statistical structure or (ξ, E)-statistical structure, being ξ

and E vector fields. Conditions to being conjugate symmetric, statistical curvature symmetric
or geodesically complete are given in the last part of Sect. 3.

If we have a semi-Riemannian manifold furnished with a statistical structure, then the
statistical structure is inherited in a nice way by their nondegenerate submanifolds. In the
case of a null submanifold the statistical structure is not inherited due to the degeneracy of the
induced metric tensor. Nevertheless, under certain conditions, the induced connection from
the ambient statistical connection and the rigged metric constitute a statistical structure on
the null submanifold, Theorem 2. In Sect. 4 we study the constructed statistical structures on
a null submanifold by this way and we show that ξ -statistical and (ξ, E)-statistical structures
appear as fundamental pieces of them.

In Sect. 5 we construct statistical structures on some kind of null hypersurfaces in the
Lorentz–Minkowski space using their second fundamental form. This extends the classi-
cal construction for hypersurfaces in the Euclidean space. By definition, a strongly convex
hypersurface is a hypersurface in a Riemannian manifold such that its second fundamental
form induces a Riemannian metric on it, which is called the Blaschke metric. In the case
of a strongly convex hypersurface in the Euclidean space, the Codazzi equation implies
that the induced connection and the Blaschke metric constitute a statistical structure on the
hypersurface. This kind of statistical structure has been widely studied and classified. The
classical Maschke–Pick–Berwald theorem asserts that if it is trivial, which means that the
statistical connection coincides with the Levi–Civita connection, then the hypersurface is a
hyperquadric in R

n , [18].
If we consider a null hypersurface in the Lorentz–Minkowski space, thenwe can not expect

to do a similar construction because its second fundamental form is always degenerate. In
fact, it is ruled by null straight lines. However, we can construct a Riemannian metric on the

123



Statistical structures arising in null submanifolds Page 3 of 29 48

null hypersurface from the second fundamental form in those that are screen strongly convex
(Definition 6). We call this Riemannian metric rigged-Blaschke metric. For a suitable choice
of the rigging for a screen strongly convex null hypersurface, the induced connection and the
rigged-Blaschke metric constitute a statistical structure which is never trivial. We show that
it is conjugate symmetric if and only if the null hypersurface is contained in a null cone and
we also give some examples of this construction in the case of a null cone.

2 Preliminaries on null submanifolds

We review some facts about null submanifolds in a semi-Riemannian manifold. The main
references for this section are [4, 6, 8, 16].

Definition 1 A submanifold � of a semi-Riemannian manifold (M, g) is called null if
dim Tx� ∩ Tx�⊥ �= 0 for all x ∈ �. Given r ∈ N, a null submanifold is called r -lightlike
if dim Tx� ∩ Tx�⊥ = r for all x ∈ �.

It is straightforward to check that any null submanifold in a Lorentzian manifold and any
null hypersurface in a semi-Riemannian manifold are necessarily 1-lightlike.

Definition 2 Let � be a 1-lightlike submanifold in a semi-Riemannian manifold (M, g).
A rigging for � is a vector field ζ defined in some open set containing � such that ζx /∈
(
Tx� ∩ Tx�⊥)⊥

for all x ∈ �.

The above is equivalent to ζx /∈ Tx� + Tx�⊥ for all x ∈ �. If � is a null hypersurface,
then Tx�⊥ ⊂ Tx� and a rigging is just a vector field transverse to the hypersurface.

From now on, we focus on 1-lightlike submanifolds in semi-Riemannian manifolds and
we call them simply null submanifolds. Moreover, we suppose that it always exists a rigging
ζ for them.

The screen distribution and the transversal screen distribution are defined by

S = T� ∩ ζ⊥,

T = T�⊥ ∩ ζ⊥

respectively, which are nondegenerate distributions. The rigged vector field is the unique null
vector field ξ ∈ X(�) such that g(ζ, ξ) = 1 and the transversal null vector field is defined as

N = ζ − 1

2
g(ζ, ζ )ξ, (1)

which holds g(N , N ) = 0 and g(N , ξ) = 1. The rigged one-form ω is the one-form
on � given by ω(U ) = g(U , N ) = g(U , ζ ) for all U ∈ X(�). We have the following
decompositions.

T M |� = T� ⊕ T ⊕ span(N ), (2)

T� = S ⊕orth span(ξ),

T�⊥ = T ⊕orth span(ξ),

T M |� = S ⊕orth T ⊕orth span(ξ, N ). (3)

GivenU ∈ X(�), we callPS(U ) the canonical projection ontoS according to decomposition
(3).
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We denote the Levi–Civita connection of g by ∇. It can be projected onto � using the
decomposition (2) in an analogous way as for a nondegenerate submanifold. In fact, given
U , V ∈ X(�) and X ∈ �(S) we can write

∇UV = ∇UV + h(U , V ) + B(U , V )N , (4)

∇U N = −A(U ) + d(U ) + τ(U )N , (5)

where∇UV , A(U ) ∈ �(T�) and h(U , V ), d(U , V ) ∈ �(T ). In fact, we have A(U ) ∈ �(S)

since g(N , N ) = 0. It is easy to check that ∇ is a connection on � without torsion, which is
called the induced connection. The tensors B and h are symmetric and they are called null
second fundamental form and screen null second fundamental form respectively.

Moreover, using the decomposition (3) we have

∇U ξ = −A∗(U ) − τ(U )ξ,

∇U X = ∇∗
U X + C(U , X)ξ, (6)

where A∗(U ),∇∗
U X ∈ �(S). The tensor C is symmetric for all X , Y ∈ �(S) if and only if

S is integrable. In this case, the induced Levi–Civita connection on the leaves of S from the
ambient is just ∇∗.

The tensors B, C , h, d and τ are the fundamental tensors of the null submanifold and they
play the role of the second fundamental form in the case of a nondegenerate submanifold.
Obviously, these tensors and the induced connection ∇ depend on the chosen rigging.

The following relations hold for all U , V ,W ∈ X(�) and X ∈ �(S).

B(U , V ) = g(A∗(U ), V ) = −g(∇U ξ, V ),

B(U , ξ) = 0, A∗(ξ) = 0,

B(A∗(U ), V ) = B(U , A∗(V )), (7)

τ(U ) = g(∇U N , ξ) = g(∇U ζ, ξ), (8)

C(U , X) = −g(∇U N , X) = g(A(U ), X),

(∇U g) (V ,W ) = B(U , V )ω(W ) + B(U ,W )ω(V ), (9)

−2C(U , X) = dω(U , X) + (
Lζ g

)
(U , X) + g(ζ, ζ )B(U , X)

= 2g(∇U ζ, X) + g(ζ, ζ )B(U , X), (10)

where Lζ denotes the Lie derivative along ζ . The eigenvalues of A∗ : T� → T� are called
principal curvatures of�. Observe that A∗ is self-adjoint and 0 is always a principal curvature
with multiplicity at least 1.

If � is a null hypersurface, then T = 0 and thus h = d = 0. In this case, if we call R̄ the
curvature tensor of the Levi–Civita connection ∇ and R the curvature tensor of the induced
connection ∇ on �, then we have the following Gauss-Codazzi equations.

g(R̄UV W , ξ) = (∇U B) (V ,W ) − (∇V B) (U ,W ) (11)

+ τ(U )B(V ,W ) − τ(V )B(U ,W ),

g(R̄UV W , X) = g(RUVW , X) (12)

+ B(U ,W )C(V , X) − B(V ,W )C(U , X),

g(R̄UV W , N ) = g(RUVW , N ), (13)

g(R̄UV X , N ) = (∇∗∗
U C

)
(V , X) − (∇∗∗

V C
)
(U , X) (14)

+ τ(V )C(U , X) − τ(U )C(V , X),
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g(R̄UV ξ, N ) = C(V , A∗(U )) − C(U , A∗(V )) − dτ(U , V ) (15)

for all U , V ,W ∈ X(�) and X ∈ �(S). Here
(∇∗∗

U C
)
(V , X) means

(∇∗∗
U C

)
(V , X) = U (C(V , X)) − C(∇UV , X) − C(V ,∇∗

U X).

The induced connection ∇ is not the unique connection that appears naturally on a null
submanifold once a rigging is chosen. Indeed,

g̃ = g + ω ⊗ ω

is a semi-Riemannianmetric on� called the riggedmetric.We have thatS ⊥g̃ ξ , g̃(ξ, ξ) = 1
and ω is the g̃-metrically equivalent one-form to ξ . The Levi–Civita connection of g̃ is
denoted by ∇̃ and it is called the rigged connection. There are important relations between
the semi-Riemannian manifold (�, g̃) and the null submanifold �. For example, we have

(
Lξ g̃

)
(X , Y ) = −2B(X , Y ) (16)

for all X , Y ∈ �(S).
The rigged metric is the main ingredient of the so-called rigging technique introduced

in [6] (see also [8] for a review of the topic). It has been used as a key tool to prove some
results on null hypersurfaces, [1, 9–11, 14, 19] and it has played an important role in some
constructions on null hypersurfaces, [2].

3 Statistical connections on a semi-Riemannianmanifold

In the first part of this section we state some basic facts about statistical structures. The
main references are [13, 18]. We can also find useful short reviews on statistical structures
in [20–22]. In the second part, we study some special types of statistical structures that will
appear in the next section.

Given (M, g) a semi-Riemannian manifold and ∇̄s an affine connection on M , the tensor
∇̄s g is called the cubic form, which is symmetric in the last two arguments.

Definition 3 A symmetric connection ∇̄s on (M, g) is a statistical connection for g if the
cubic form ∇̄s g is totally symmetric, i.e.,

(∇̄s
U g

)
(V ,W ) = (∇̄s

V g
)
(U ,W ) (17)

for all U , V ,W ∈ X(M). We also say that (g, ∇̄s) is a statistical structure on M .

The dual or conjugate connection to ∇̄s is the unique connection ∇̄d such that

Ug (V ,W ) = g
(∇̄s

U V ,W
) + g

(
V , ∇̄d

UW
)

(18)

for all U , V ,W ∈ X(M). If T s and T d are the torsions of ∇̄s and ∇̄d respectively, then a
straightforward computation shows

g
(
T d(U , V ) − T s(U , V ),W

)
= (∇̄s

U g
)
(V ,W ) − (∇̄s

V g
)
(U ,W ).

Thus, ∇̄s is a statistical connection if and only if its dual connection ∇̄d is also a symmetric
connection.
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If (g, ∇̄s) is a statistical structure on M , then it is easy to check that the Levi–Civita
connection ∇ of g is given by

∇ = 1

2

(
∇̄s + ∇̄d

)
. (19)

The difference tensor is defined by

K̄ (U , V ) = ∇̄s
U V − ∇UV = 1

2

(
∇̄s
U V − ∇̄d

U V
)

for all U , V ∈ X(M), which is a symmetric (1, 2)-tensor. Moreover, using Eqs. (18) and
(19), it is easy to show that

(∇̄s
U g

)
(V ,W ) = −2g

(
K̄ (U , V ),W

)
, (20)

so the metrically equivalent (0, 3)-tensor to K̄ is totally symmetric.
Conversely, if K̄ is a (1, 2)-tensor whose metrically equivalent (0, 3)-tensor is totally

symmetric, then ∇̄s = ∇ + K̄ is a statistical connection with dual connection given by ∇̄d =
∇ − K̄ . Therefore, fixed a semi-Riemannian manifold, there is a bijective correspondence
between statistical connections and totally symmetric (0, 3)-tensors. Moreover, if K1 and
K2 are totally symmetric (0, 3)-tensors and f , h ∈ C∞(M), then it has sense to refer to the
statistical connection determined by f K1 + hK2.

The one-form α(U ) = trace K̄U is usually called the Tchebychev one-form and its met-
rically equivalent vector field is the Tchebychev vector field. This form is zero if and only
if ∇̄s	 = 0, where 	 is the (locally defined) volume form associated to g. In this case, the
statistical structure is called trace-free.More generally, it is called locally equiaffine if around
any point there is a locally defined ∇̄s-parallel volume form. This condition is equivalent to
dα = 0.

The curvature tensors R̄s and R̄d of the connections ∇̄s and ∇̄d respectively are defined in
the usual way. They hold the first and second Bianchi identities and they are skew-symmetric
in the first two arguments. Moreover, if R̄ denotes the curvature tensor of the Levi–Civita
connection ∇, then we have

g(R̄s
UV W , T ) = −g(R̄d

UV T ,W ), (21)

R̄s
UV W + R̄d

UV W = 2R̄UV W + 2
[
K̄U , K̄V

]
W , (22)

R̄s
UV W − R̄d

UV W = 2
((∇U K̄

)
(V ,W ) − (∇V K̄

)
(U ,W )

)
. (23)

If R̄s = R̄d , then the statistical structure is called conjugate symmetric. From Eq. (23),
this is equivalent to ∇ K̄ being totally symmetric. Moreover, it implies that the Tchebychev
one-form is closed and thus ∇̄s is locally equiaffine.

The statistical curvature is defined as

S̄UV W = 1

2

(
R̄s
UV W + R̄d

UV W
)

. (24)

If [K̄U , K̄V ] = 0, then the statistical curvature S̄ coincides with the Riemannian curvature
R̄ and we say that the statistical structure is statistical curvature symmetric.

The Ricci tensor of ∇̄s is defined as Ric
s
(U , V ) = trace

(
w 
→ R̄s

wUV
)
. It follows that

Ric
s
(U , V ) − Ric

s
(V ,U ) = −dα(U , V ).
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Therefore, Ric
s
is symmetric if and only if the statistical structure is locally equiaffine. If

the Tchebychev one-form is not closed, then Ric
s
is not symmetric and so the statistical

connection ∇̄s is not metric (it is not the Levi–Civita connection of some metric).
Themost simple example of statistical connection on a semi-Riemannianmanifold (M, g)

is the one corresponding to K̄ = 0, which are called self-dual or trivial. This is nothing but
the Levi–Civita connection of the metric. We can construct a nontrivial statistical structure
from a fixed vector field ξ ∈ X(M) taking

K̄ (U , V ) = g(U , V )ξ + ω(V )U + ω(U )V , (25)

where ω is the metrically equivalent one-form to ξ .
Another nontrivial statistical structure is obtained from

K̄ = ω ⊗ ωξ, (26)

which we call ξ -statistical structure. We can also construct a statistical structure from two
vector fields ξ, E ∈ X(M), called (ξ, E)-statistical structure, taking

K̄ = (ω ⊗ τ + τ ⊗ ω) ξ + ω ⊗ ωE

= s(ω ⊗ τ)ξ + ω ⊗ ωE, (27)

where ω and τ are the metrically equivalent one-form to ξ and E respectively. If E is
proportional to ξ , then this statistical structure turns into a ξ ′-statistical structure for a suitable
choice of ξ ′.

The statistical structures (25–27) appear naturally, under suitable conditions, when we
deal with null submanifolds. Some aspects of the statistical structure (25) were studied in
[15, 21]. Next, we study some properties of the ξ -statistical and (ξ, E)-statistical structures.

Proposition 1 Let (M, g) be a semi-Riemannian manifold and ξ ∈ X(M). Consider the
ξ -statistical connection given by (26).

1. The Tchebychev one-form is ω(ξ)ω.
2. It is statistical curvature symmetric.
3. If g(ξ, ξ) is a nonzero constant, then it is conjugate symmetric if and only if ξ is a

parallel vector field. Moreover, in this case the ξ -statistical connection is locally a metric
connection.

Proof Points (1) and (2) are trivial. On the other hand, we have
(∇U K̄

)
(V ,W ) − (∇V K̄

)
(U ,W ) = dω(U , V )ω(W )ξ

+ (
ω(V )g(∇U ξ,W ) − ω(U )g(∇V ξ,W )

)
ξ

+ω(W )
(
ω(V )∇U ξ − ω(U )∇V ξ

)
. (28)

Therefore, if ξ is parallel, then the ξ -statistical structure is conjugate symmetric.Now, suppose
that the ξ -statistical structure is conjugate symmetric and g(ξ, ξ) is a nonzero constant. Since
being conjugate symmetric implies that the Tchebychev one form is closed, we have dω = 0
and ∇ξ ξ = 0. Taking U ⊥ ξ and V = W = ξ in Eq. (28) we get ∇U ξ = 0 for all U ⊥ ξ

and so ξ is parallel.
Since g(ξ, ξ) = c is a nonzero constant, from the De Rham-Wu theorem we get that

(M, g) is locally isometric to
(
R × F, cdt2 + gF

)
, where (F, gF ) is a semi-Riemannian

manifold and ξ is identified with ∂t , [24]. Now, it is straightforward to check that the Levi–
Civita connection of the metric e2c

2t dt2 + gF coincides with the ξ -statistical connection.
��
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Proposition 2 Let (M, g) be a semi-Riemannian manifold and ξ, E ∈ X(M). Consider the
(ξ, E)-statistical structure given by (27).

1. The Tchebychev one-form is 2ω(E)ω + ω(ξ)τ .
2. It is statistical curvature symmetric if and only if for each point g(ξ, ξ) = 0 or ξ and E

are proportional.

Proof Point (1) is straightforward. For the second point, we have that

K̄U K̄V (W ) = (
s(ω ⊗ τ)(V ,W )s(ω ⊗ τ)(U , ξ)

+ s(ω ⊗ τ)(U , E)(ω ⊗ ω)(V ,W )
)
ξ

+ (
(ω ⊗ ω)(U , ξ)s(ω ⊗ τ)(V ,W )

+ (ω ⊗ ω)(U , E)(ω ⊗ ω)(V ,W )
)
E .

Therefore, taking into account that ω(E) = τ(ξ) we get

[K̄U , K̄V ](W ) = ω(ξ)(ω ∧ τ)(U , V )
(
ω(W )E − τ(W )ξ

)

and the conclusion follows. ��
Theorem 1 Let (M, g) be a semi-Riemannian manifold with dim M ≥ 3 and ξ, E ∈ X(M)

such that g(ξ, ξ) = c, g(ξ, E) = 0 and g(E, E) �= 0 at every point in M, where c �=
0 is certain constant. If the (ξ, E)-statistical structure is conjugate symmetric, then the
distributions D = span(ξ, E) and D⊥ are integrable, the leaves of D⊥ are totally geodesic
and the leaves of D are totally umbilical with mean curvature vector given by

PD⊥
(
∇ ln

√|g(E, E)|
)

,

beingPD⊥ the projectionontoD⊥.Moreover, (M, g)decomposes locally as a twisted product
(
L × S, g|L + h2g|S

)
,

where L is a leaf of D⊥, S is a leaf of D and h ∈ C∞(L × S).

Proof A long but easy computation gives us
(∇U K̄

)
(V ,W ) − (∇V K̄

)
(U ,W )

= (dω(U , V )τ (W ) + dτ(U , V )ω(W ))ξ

+ dω(U , V )ω(W )E + g(ω(V )∇U ξ − ω(U )∇V ξ,W )E

+ g(ω(V )∇U E − ω(U )∇V E,W )ξ + g(τ (V )∇U ξ − τ(U )∇V ξ,W )ξ

+ τ(W )(ω(V )∇U ξ − ω(U )∇V ξ) + ω(W )(τ (V )∇U ξ − τ(U )∇V ξ)

+ ω(W )(ω(V )∇U E − ω(U )∇V E) (29)

for all U , V ,W ∈ X(M). If the (ξ, E)-statistical structure is conjugate symmetric, then
the above vanishes. Observe that D is a two-dimensional nondegenerate distribution and
τ(ξ) = ω(E) = 0 since g(ξ, E) = 0.

If we take U = ξ and V ,W ∈ D⊥ in formula (29), then we get that

∇V ξ = μ(V )E,

∇V E = −τ(E)

c
μ(V )ξ + β(V )E

123
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for all V ∈ D⊥ and certain one-forms μ and β. If we chooseU = W = ξ and V ∈ D⊥, then
we get

μ(V ) = − 1

3τ(E)
g(∇ξ E, V ),

β(V ) = 1

c
g(∇ξ ξ, V ) (30)

for all V ∈ D⊥, but takingU = W = E and V ∈ D⊥ we get that μ(V ) = 1
2τ(E)

g(∇Eξ, V ).
Therefore,

g(∇ξ E, V ) = −3

2
g(∇Eξ, V ) (31)

for all V ∈ D⊥.
If we take now U = ξ and V = W = E in formula (29), then we get that ∇Eξ ∈ D

and thus from the Eq. (31) we also have ∇ξ E ∈ D, which implies that D is integrable and
μ(U ) = 0 for all U ∈ D⊥.

Next, we show that the leaves of D are totally umbilical. Taking U = E , V ∈ D⊥ and
W = ξ in formula (29), we also have that

β(V ) = 1

τ(E)
g(∇E E, V ). (32)

If we call ID the second fundamental form of the leaves of D, then I
D(ξ, E) = 0 and Eqs.

(30) and (32) show that

1

g(ξ, ξ)
I
D(ξ, ξ) = 1

g(E, E)
I
D(E, E),

which implies that the leaves of D are totally umbilical. Call H the mean curvature vector
field, i.e. ID = g · H . If we chooseU = ξ , V ∈ D⊥ andW = E in formula (29), then we get
g(∇ξ ξ, V )τ (E) = cg(∇V E, E) or equivalently g(H , V ) = g(∇ ln

√|g(E, E)|, V ), which
means that H = PD⊥

(∇ ln
√|g(E, E)|).

Since ∇U ξ = 0 and ∇U E = β(U )E for allU ∈ D⊥, it follows thatD⊥ is also integrable
with totally geodesic leaves. From [23] we get the local decomposition of the manifold as a
twisted product. ��

In a twisted product
(
L × S, g|L + h2g|S

)
the mean curvature vector field of the second

canonical foliation is P1
(−∇ ln h

)
, where P1 is the projection onto the first factor, [5, 23].

Therefore, in the above theorem we have that

h = A√|g(E, E)| ,

where A ∈ C∞(S) is some function.

Corollary 1 Let (M, g) be a semi-Riemannian manifold and ξ, E ∈ X(M) such that
g(ξ, E) = 0 and g(E, E) and g(ξ, ξ) are nonzero constants. If the (ξ, E)-statistical struc-
ture is conjugate symmetric, then ξ and E are parallel and (M, g) decomposes locally as a
direct product L × R

2.

Proof Suppose first that dim M = 2. Since g(ξ, ξ) and g(E, E) are constant, then ∇E E is
proportional to ξ and ∇ξ ξ and ∇Eξ are proportional to E . If we take U = ξ , V = W = E
in formula (29), then we get
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g(∇ξ ξ, E)g(E, E)ξ − g(∇Eξ, E)g(ξ, ξ)E = 0.

Since ξ and E are linearly independent, then ∇ξ ξ = ∇Eξ = 0.
On the other hand, if we takeU = ξ , V = E andW = ξ in formula (29), then we deduce

that ∇E E = 0. Since g(E, E) is constant and g(E, ξ) = 0 we also have that ∇ξ E = 0 and
therefore ξ and E are parallel and (M, g) is locally isometric to the semi-euclidean space
R
2.
If dim M ≥ 3, then we know from the above theorem that the leaves ofD are also totally

geodesic. Therefore, (M, g) decomposes locally as a direct product (L×S, g|L +g|S), where
S is a leaf ofD, [23, 24]. If we restrict the (ξ, E)-statistical structure of the ambient manifold
to (S, g|S), then we get a (ξ, E)-structure on (S, g|S), which is also conjugate symmetric.
Using the two-dimensional case we get the conclusion. ��

In [21] some conditions for the statistical structure given by (25) to be complete are stated.
We can also give some results about the completeness of a ξ -statistical and a (ξ, E)-statistical
connection. For this, we need the following lemma.

Lemma 1 Let (M, g) be a complete Riemannianmanifold, ∇̄s a connection and γ : (a, b) →
M a maximal ∇̄s -geodesic. If there are t0, c ∈ R such that g(γ ′(t), γ ′(t)) ≤ c2 for all
t ∈ [t0, b), then b = ∞.

Proof It is a standard argument, so we only sketch the proof. Suppose that b < ∞ and take
a sequence tn < b converging to b. If d is the Riemannian distance associated to g, then

d(γ (tn), γ (tm)) ≤
∣∣∣∣

∫ tm

tn

√
g(γ ′(t), γ ′(t))dt

∣∣∣∣ ≤ c|tn − tm |.

Therefore, γ (tn) is a Cauchy sequence and it follows that it exists p = limt→b− γ (t). Using a
∇̄s-convex neighbourhood of p [12, p. 149], we can conclude that γ can be extended, which
contradicts the maximality of γ . ��

We say that a function f : [0, b) → R is not oscillating when t approaches to b if there
exists t0 < b such that f ′(t) ≥ 0 or f ′(t) ≤ 0 for all t ∈ [t0, b).
Proposition 3 Let (M, g) be a complete Riemannianmanifold and take f ∈ C∞(M) and ξ ∈
X(M) such that f and g(ξ, ξ) are bounded on M. Take ∇̄s the (ξ, E)-statistical connection,
being E = ∇ f . If γ : (a, b) → M is a maximal ∇̄s -geodesic such that f (γ (t)) is not
oscillating when t approaches to b, then b = ∞.

Proof Suppose that | f (p)| ≤ A and g(ξ, ξ)p ≤ B for some A, B ∈ R and for all p ∈ M . If
we call y(t) = g(γ ′(t), γ ′(t)), then

y′ = −6ω(γ ′(t))2τ(γ ′(t)) ≤ 6|τ(γ ′(t))|g(ξ, ξ)g(γ ′(t), γ ′(t)) ≤ 6|τ(γ ′(t))|By.
Since τ(γ ′(t)) = d

dt f (γ (t)) and f (γ (t)) is not oscillating, we can suppose that there exists
t0 such that τ(γ ′(t)) ≥ 0 for all t with t0 ≤ t < b. Therefore,

y(t) ≤ y(0)e6B( f (γ (t))− f (γ (0))) ≤ y(0)e6B(A− f (γ (0)))

for all t ∈ [t0, b). Applying the above lemma, b = ∞. ��
Observe that in this context, if f (γ (t)) is oscillating, then the angle between ∇ fγ (t) and

γ ′(t) is oscillating around π
2 .
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Proposition 4 Let (M, g) be a Riemannian manifold and ξ ∈ X(M) a Killing vector field.
Take ∇̄s the ξ -statistical connection and γ a ∇̄s -geodesic.

1. If g(ξγ (0), γ
′(0)) = 0, then γ is also a g-geodesic orthogonal to ξ .

2. If g(ξγ (0), γ
′(0)) �= 0 and 0 < A ≤ g(ξ, ξ)γ (t) ≤ B for all t and certain A, B ∈ R, then

γ is incomplete.
3. If γ is periodic, then γ is a g-geodesic orthogonal to ξ .

Proof The function h(t) = ω(γ ′(t)) holds h′ = −h2g(ξ, ξ). If h(0) = 0, then h(t) = 0 for
all t and if h(0) �= 0, then

h(t) = 1
1

h(0) + ∫ t
0 g(ξ, ξ)γ (s)ds

.

In the first case, we have ∇γ ′γ ′ = 0 and γ is also a g-geodesic. In the second case, if γ is
complete, then there is a value t0 ∈ R with limt→t0 |h(t)| = ∞, which is a contradiction. If
γ is periodic, then it is complete and we have necessarily the first case. ��

4 Null submanifolds and statistical structures

If� is a nondegenerate submanifold in a semi-Riemannian manifold (M, g) furnished with a
statistical connection ∇̄s , then the induced connection on� from ∇̄s is a statistical connection.
We obtain in this manner an induced statistical structure on �. Its dual connection is the
induced connection on � from ∇̄d and the Tchebychev vector field is the projection onto �

of the Tchebychev vector field of ∇̄s . Moreover, if ∇̄s is trace-free or locally equiaffine, then
so is the induced statistical structure on �.

However, the above does not work for a null submanifold. Furthermore, the definition of
statistical structure in this case is distorted because the inherited metric is degenerate and so
even the dual connection is not well-defined. Anyway, there are some interesting questions
concerning null submanifolds and statistical structures that arise in a natural way.

For example, fixed a rigging for a null submanifold �, we can construct the induced
connection ∇ and the rigged connection ∇̃ on �, so we can wonder under what conditions
they coincide. A rigging with this property was called a preferred rigging in [16], where some
obstructions for its existence were also given. Observe that if ∇ and ∇̃ coincide, then we
can also say that (g̃,∇) is a self-dual or trivial statistical structure on �. Therefore, a more
general question than before is: under what conditions (g̃,∇) is a (not necessarily trivial)
statistical structure?

Since the Levi–Civita connection ∇ is a trivial statistical connection on M and ∇ is its
induced connection on �, we can consider an even more general situation. Let (M, g) be a
semi-Riemannian manifold, (g, ∇̄s) a statistical structure on M and � a null submanifold.
We can project ∇̄s onto � as we did with the Levi–Civita connection ∇ in Sect. 2. We write

∇̄s
U V = ∇s

U V + hs(U , V ) + Bs(U , V )N ,

∇s
U ξ = −A∗s(U ) − τ s(U )ξ,

∇s
U X = ∇∗s

U X + Cs(U , X)ξ, (33)

for all U , V ∈ X(�) and X ∈ �(S), obtaining in this way the analogous geometric objects
to those in Sect. 2. We also have in this case that Bs and hs are symmetric tensors and ∇s is
a connection without torsion on �, but now Bs(ξ,U ) and A∗s(ξ) are not necessarily zero.
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Now, the questions stated before are particular cases of the following one: under what
conditions (g̃,∇s) is a statistical structure on �? This will be answered in Theorem 2.

If we also project the dual connection ∇̄d onto � and we write

∇̄d
U V = ∇d

U V + hd(U , V ) + Bd(U , V )N ,

∇d
U ξ = −A∗d(U ) − τ d(U )ξ,

∇d
U X = ∇∗d

U X + Cd(U , X)ξ,

then we obtain another torsion free connection ∇d and the tensors Bd ,Cd and τ d . We can
easily deduce that

Bs(U , V ) = −g(∇̄d
U ξ, V ) = g(A∗d(U ), V ) − Bd(ξ,U )ω(V ), (34)

Cs(U , X) = −g(∇̄d
U N , X), (35)

τ s(U ) = g(∇̄d
U N , ξ). (36)

We have similar equations for Bd ,Cd and τ d . Moreover, from Eq. (19) we immediately
have

B = 1

2

(
Bs + Bd

)
, (37)

C = 1

2

(
Cs + Cd

)
, (38)

τ = 1

2

(
τ s + τ d

)
, (39)

A∗ = 1

2

(
A∗d + A∗s) , (40)

∇UV = 1

2

(
∇s
U V + ∇d

U V
)

. (41)

Recall that Eq. (41) does not imply that ∇s is a statistical connection. On the other hand,
from Eq. (37) we get that Bs(ξ,U ) = −Bd(ξ,U ) for all U ∈ X(�). From the definition of
K̄ we also get

Bs(U , V ) = B(U , V ) + g(K̄ (U , V ), ξ), (42)

Bd(U , V ) = B(U , V ) − g(K̄ (U , V ), ξ) (43)

Cs(U , X) = C(U , X) + g(K̄ (U , X), N ), (44)

Cd(U , X) = C(U , X) − g(K̄ (U , X), N ) (45)

τ s(U ) = τ(U ) − g(K̄ (U , ξ), N ), (46)

τ d(U ) = τ(U ) + g(K̄ (U , ξ), N ). (47)

We can relate the tensors Cs,Cd , τ s and τ d as follows.

Lemma 2 Let� be a null submanifold in a semi-Riemannianmanifold (M, g) and ζ a rigging
for it. If ∇̄s is a statistical connection on M, then

1. For all U , V ∈ X(�) it holds
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Cd(U ,PS(V )) − Cd(V ,PS(U )) =
(
τ d(U ) − τ s(U )

)
ω(V )

+
(
τ s(V ) − τ d(V )

)
ω(U ) + Cs(U ,PS(V ))

− Cs(V ,PS(U )).

2. S is integrable if and only if Cs is symmetric for all X , Y ∈ �(S) if and only if Cd is
symmetric for all X , Y ∈ �(S).

Proof If we subtract Eqs. (44) and (45) , then

Cs(U ,PS(V )) − Cd(U ,PS(V )) = 2g(K̄ (U ,PS(V )), N ).

Analogously, from Eqs. (46) and (47) we get

τ d(U ) − τ s(U ) = 2g(K̄ (U , ξ), N ).

Therefore,

Cs(U ,PS(V )) − Cd(U ,PS(V )) + ω(V )
(
τ d(U ) − τ s(U )

)
= 2g(K̄ (U , V ), N ).

Since K̄ is totally symmetric, we get point one. The second point follows directly from Eqs.
(44) and (45). ��

The following theorem gives us necessary and sufficient conditions for a null submanifold
to inherit a statistical structure from the ambient respect to the rigged metric.

Theorem 2 Let (M, g) be a semi-Riemannian manifold furnished with a statistical connec-
tion ∇̄s and � a null submanifold. Fixed a rigging for �, the connection ∇s on � obtained
in (33) is a statistical connection with respect to the rigged metric g̃ if and only if

Bs(X , Y ) = Cs(X , Y ), (48)

Bs(ξ, X) + Cs(ξ, X) = −2τ s(X) (49)

for all X , Y ∈ �(S). In particular, if (g̃,∇s) is a statistical structure on �, then the screen
distribution is integrable.

Proof We have to check that ∇s g̃ = ∇s g + ∇sω ⊗ ω is totally symmetric. Using Eqs. (19)
and (33) we have that

(∇s
U g

)
(V ,W ) = Ug(V ,W ) − g(∇s

U V ,W ) − g(V ,∇s
UW )

= −2g(K̄ (U ,W ), V ) + Bs(U , V )ω(W ) + Bs(U ,W )ω(V ).

On the other hand, from Eqs. (35) and (36), we get

(∇s
Uω

)
(V ) = Ug(V , N ) − g(∇s

U V , N ) = g(∇̄d
U N , V )

= −Cs(U ,PS(V )) + τ s(U )ω(V ).
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Now,

(∇s
Uω ⊗ ω

)
(V ,W ) = (∇s

Uω
)
(V )ω(W ) + ω(V )

(∇s
Uω

)
(W )

= −Cs(U ,PS (V ))ω(W ) − Cs(U ,PS (W ))ω(V ) + 2τ s(U )ω(V )ω(W ).

(50)

Therefore, since Bs is symmetric and K̄ is totally symmetric, we have
(∇s

U g̃
)
(V ,W ) − (∇s

V g̃
)
(U ,W )

= (
Cs(V ,PS(U )) − Cs(U ,PS(V )

)
ω(W )

+ (
Bs(U ,W ) − Cs(U ,PS(W ))

)
ω(V ) − (

Bs(V ,W ) − Cs(V ,PS(W ))
)
ω(U )

+ 2
(
τ s(U )ω(V ) − τ s(V )ω(U )

)
ω(W ).

If we call φ(U , V ,W ) = (∇s
U g̃

)
(V ,W ) − (∇s

V g̃
)
(U ,W ), then it is clear that φ is skew-

symmetric in the first two entries and C(φ) = 0, where C stands for the cyclic permutation.
Therefore, ∇s g̃ is totally symmetric, i.e., φ = 0, if and only if φ(X , Y , Z) = φ(ξ, Y , Z) =
φ(X , ξ, ξ) = 0 for all X , Y , Z ∈ �(S). These three conditions are equivalent to

Bs(X , Y ) = Cs(X , Y ),

Bs(ξ, X) = −2τ s(X) − Cs(ξ, X)

for all X , Y ∈ �(S). Finally, since Bs is symmetric, from Lemma 2 we have that the screen
distribution is integrable. ��

Remark 1 From Lemma 2 we have Cd(ξ, X) = Cs(ξ, X) + τ s(X) − τ d(X), so using Eqs.
(37) and (39), we get that Eqs. (48) and (49) are equivalent to

Bs(X , Y ) = Cs(X , Y ),

Cd(ξ, X) − Bd(ξ, X) = −2τ(X)

for all X , Y ∈ �(S).

Definition 4 Let (M, g) be a semi-Riemannian manifold furnished with a statistical connec-
tion ∇̄s . If ζ is a rigging for a null submanifold � such that

Bs(X , Y ) = Cs(X , Y ),

Bs(ξ, X) + Cs(ξ, X) = −2τ s(X)

for all X , Y ∈ �(S), then we say that ζ is a ∇̄s-statistical rigging for �.

If the screen distribution is integrable, then their leaves are nondegenerate submanifolds in
(M, g) and thus they inherit the statistical structure of the ambient. More concretely, if L is a
leaf of the screen S, then (g|L ,∇∗s) is a statistical structure on L with dual connection ∇∗d .
If there exists a ∇̄s-statistical rigging, then the statistical structure (g|L ,∇∗s) on L coincides
with the one inherited from (g̃,∇s).

Proposition 5 Let (M, g) be a semi-Riemannian manifold furnished with a statistical con-
nection ∇̄s . If ζ is a ∇̄s -statistical rigging for a null submanifold�, then the difference tensor
K = ∇s − ∇̃ is given by
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K (U , V ) = PS(K̄ (U , V )) + (
Bs(U , V ) − B(U , V )

)
ξ

+ s(β ⊗ ω)(U , V )ξ + ω(U )ω(V )A∗s(ξ)

+ (
2τ s(ξ) − Bs(ξ, ξ)

)
ω(U )ω(V )ξ

− s(ω ⊗ τ s)(U , V )ξ − ω(U )ω(V )Es,

for all U , V ∈ X(�), where Es is the g̃-metrically equivalent vector field to τ s and β is the
g̃-metrically equivalent one-form to A∗s(ξ).

Proof We know that −2g̃(K (U , V ),W ) = (∇s g̃) (U , V ,W ), but from the proof of the
above theorem we have that
(∇s g̃

)
(U , V ,W ) = −2g(K̄ (U , V ),W ) + Bs(U , V )ω(W ) + Bs(U ,W )ω(V )

− Cs(U ,PS(V ))ω(W ) − Cs(U ,PS(W ))ω(V ) + 2τ s(U )ω(V )ω(W ).

Using Eq. (48) we get

Cs(U ,PS(V )) = Bs(U , V ) − ω(U )Bs(ξ, V ) − ω(V )Bs(ξ,U )

+ ω(U )ω(V )Bs(ξ, ξ) + ω(U )Cs(ξ,PS(V )).

But from Eq. (49) we have that

Cs(ξ,PS(V )) = −Bs(ξ, V ) + ω(V )Bs(ξ, ξ) − 2τ s(V ) + 2τ s(ξ)ω(V )

and so

Cs(U ,PS(V )) = Bs(U , V ) − 2ω(U )Bs(ξ, V ) − ω(V )Bs(ξ,U )

+ 2ω(U )ω(V )Bs(ξ, ξ) − 2ω(U )τ s(V ) + 2τ s(ξ)ω(U )ω(V ).

We compute Cs(U ,PS(W )) in the same way and we get

g̃(K (U , V ),W ) = g(K̄ (U , V ),W ) + 2Bs(ξ, ξ)ω(U )ω(V )ω(W )

− ω(V )ω(W )Bs(ξ,U ) − Bs(ξ, V )ω(U )ω(W ) − Bs(ξ,W )ω(U )ω(V )

+ 2τ s(ξ)ω(U )ω(V )ω(W )

− ω(U )ω(W )τ s(V ) − ω(U )ω(V )τ s(W ) − τ s(U )ω(V )ω(W ).

From Eq. (34) we have that

Bs(ξ, V )ω(U ) + Bs(ξ,U )ω(V ) = g(A∗d(ξ),U )ω(V ) + g(A∗d(ξ), V )ω(U )

− 2Bd(ξ, ξ)ω(U )ω(V )

= −g(A∗s(ξ),U )ω(V ) − g(A∗s(ξ), V )ω(U )

− 2Bd(ξ, ξ)ω(U )ω(V )

and taking into account that Bs(ξ, ξ) + Bd(ξ, ξ) = 0 we can write

g̃(K (U , V ),W ) = g(K̄ (U , V ),W ) + s (β ⊗ ω) (U , V )ω(W )

− Bs(ξ,W )ω(U )ω(V ) + 2τ s(ξ)ω(U )ω(V )ω(W )

− s(τ s ⊗ ω)(U , V )ω(W )

− ω(U )ω(V )τ s(W ),

where β is the one form given by β(U ) = g(A∗s(ξ),U ) for all U ∈ X(�). Observe that β

is the g̃-metrically equivalent one form to A∗s(ξ), since A∗s(ξ) ∈ �(S).
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Using again Eq. (34) we get

Bs(ξ,W ) = g̃(A∗d(ξ),W ) − Bd(ξ, ξ)ω(W )

− g̃(A∗s(ξ),W ) + Bs(ξ, ξ)ω(W ).

From the decompositions (2) and (3) we can write

g
(
K̄ (U , V ),W

) = g̃(PS(K̄ (U , V )),W ) + g(K̄ (U , V ), ξ)ω(W )

= g̃(PS(K̄ (U , V )),W ) + (
Bs(U , V ) − B(U , V )

)
ω(W ).

Replacing the expression for Bs(ξ,W ) and g(K̄ (U , V ),W ) we get the result. ��
Observe that in the statistical structure constructed in the null submanifold �, it appears

a combination of a ξ -statistical structure, a (ξ, Es)-statistical structure and a (ξ, A∗d(ξ))-
statistical structure.

On the other hand, if ∇s is a statistical connection respect to the rigged metric g̃, then
∇d is not in general its dual connection. In fact, if ζ is a ∇̄s-statistical rigging, then ∇d does
not need to be a statistical connection respect to the rigged metric. However, the following
relations hold.

Proposition 6 Let (M, g) be a semi-Riemannian manifold furnished with a statistical con-
nection ∇̄s . Suppose that ζ is a ∇̄s -rigging for a null submanifold � and call ∇ds the dual
connection of ∇s respect to g̃. Given X , Y ∈ �(S) it holds

1. ∇ds
X Y = ∇d

XY + 2 (B(X , Y ) − C(X , Y )) ξ .
2. ∇ds

X ξ = ∇d
X ξ + 2τ(X)ξ .

3. ∇ds
ξ ξ = −∇d

ξ ξ + 2PS(Es) + (τ s(ξ) − τ(ξ)) ξ , where Es is the g̃-metrically equivalent
vector field to τ s .

Proof Since ∇s is a statistical connection on � respect to the rigged metric g̃, then S is
integrable. Moreover, since its leaves are nondegenerate submanifolds, then (g,∇∗s) is a
statistical structure when we restrict to a leaf. If we take X , Y , Z ∈ �(S), then

g(∇∗s
X Z , Y ) + g(Z ,∇∗d

X Y ) = Xg(Z , Y )

= Xg̃(Z , Y ) = g̃(∇s
X Z , Y ) + g̃(Z ,∇ds

X Y ).

But g(∇∗s
X Y , Z) = g̃(∇s

XY , Z) and so ∇ds
X Y = ∇∗d

X Y + g̃(∇ds
X Y , ξ)ξ . Since

g̃(∇ds
X Y , ξ) = −g̃(Y ,∇s

X ξ) = Bd(X , Y )

we get ∇ds
X Y = ∇∗d

X Y + Bd(X , Y )ξ = ∇d
XY + (

Bd(X , Y ) − Cd(X , Y )
)
ξ . From Eqs. (37),

(38) and (48) we have

Bd(X , Y ) − Cd(X , Y ) = 2 (B(X , Y ) − C(X , Y ))

and we obtain the first point.
For the second one, we have in the same manner as above that

g̃(∇ds
X ξ, ξ) = −g̃(ξ,∇s

X ξ) = −g(N ,∇s
X ξ) = τ s(X).

On the other hand, using Eq. (48), we get

g̃(∇ds
X ξ, Y ) = −g̃(ξ,∇s

XY ) = −g(N ,∇s
XY ) = −Cs(X , Y ) = −g(A∗d(X), Y ).
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Therefore,

∇ds
X ξ = −A∗d(X) + τ s(X)ξ = ∇d

X ξ + 2τ(X)ξ.

Finally, using Eq. (49) we get

g̃(∇ds
ξ ξ, ξ) = −g̃(ξ,∇s

ξ ξ) = τ s(ξ),

g̃(∇ds
ξ ξ, X) = −g̃(ξ,∇s

ξ X) = −Cs(ξ, X)

= Bs(ξ, X) + 2τ s(X) = g̃(A∗d(ξ), X) + 2g̃(Es, X)

and we obtain the last point. ��
Proposition 7 Let (M, g) be a semi-Riemannian manifold furnished with a statistical con-
nection ∇̄s . If ζ is a ∇̄s -rigging for a null hypersurface �, then the Tchebychev one-form of
∇s is given by

α(U ) = α(U ) − τ d(U )

for all U ∈ X(�), where α is the Tchebychev one-form of ∇̄s .

Proof From Eqs. (4) and (33) we have that

K̄ (U , V ) = K (U , V ) − D(U , V ) + (Bs − B)(U , V )N (51)

for allU , V ∈ X(�), where D(U , V ) = ∇UV − ∇̃UV . If we take u ∈ Tx� for some x ∈ �

and {e1, . . . , en−2} an orthonormal basis of Sx , then

α(u) = 2g(K̄ (ξ, N ), u) +
n−2∑

i=1

g(K̄ (u, ei ), ei ). (52)

On the other hand, taking into account Eq. (51), we can write

α(u) = g̃(K (u, ξ), ξ) +
n−2∑

i=1

g̃(K (ei , u), ei ) = g(K (u, ξ), N ) +
n−2∑

i=1

g(K (ei , u), ei )

= g(K̄ (ξ, N ), u) + g(D(u, ξ), N ) +
n−2∑

i=1

g(K̄ (ei , u), ei ) + g(D(ei , u), ei ).

From [6, Corollary 3.6] we know that g(D(ei , u), ei ) = 0 and from Eq. (6) we get

g(D(u, ξ), N ) = g(∇uξ, N ) − g̃(∇̃uξ, ξ) = −τ(u).

Using Eq. (52) we arrive at

α(u) = α(u) − g(K̄ (ξ, N ), u) − τ(u).

But g(K̄ (ξ, N ), u) = g(K̄ (u, ξ), N ) = −τ s(u) + τ(u) and from Eq. (39) we get the result.
��

As a corollary of the above results, we obtain conditions for the induced connection ∇
from the ambient Levi–Civita connection ∇ to be a statistical structure respect to the rigged
metric g̃. Following the Definition 4, in this case the rigging should be called a ∇-statistical
rigging, but we call it Levi–Civita statistical rigging to emphasize that we are dealing with
the trivial statistical structure given by the ambient Levi–Civita connection.
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Table 1 Conditions for (g̃,∇) to be a statistical structure

Conditions for all X , Y ∈ �(S) The statistical structure
(g̃, ∇) on � is

The rigging ζ for � is called

B(X , Y ) = C(X , Y ) Combination of
(ξ, E)-statistical and
ξ -statistical

Levi–Civita statistical rigging

C(ξ, X) = −2τ(X)

B(X , Y ) = C(X , Y ) ξ ′-statistical where
ξ ′ = 3√τ(ξ)ξ

Strong Levi–Civita statistical rigging

C(ξ, X) = τ(X) = 0

B(X , Y ) = C(X , Y ) Self-dual or trivial Preferred rigging

C(ξ, X) = τ(X) = 0

τ(ξ) = 0

Corollary 2 Let (M, g) be a semi-Riemannian manifold and� a null submanifold. A rigging
ζ for � is a Levi–Civita statistical rigging if and only if

B(X , Y ) = C(X , Y ), (53)

C(ξ, X) = −2τ(X) (54)

for all X , Y ∈ �(S). Moreover, in this case, the Tchebychev one-form is−τ and the difference
tensor K = ∇ − ∇̃ is given by

K = 2τ(ξ)ω ⊗ ωξ − s(ω ⊗ τ)ξ − ω ⊗ ωE, (55)

where E ∈ X(�) is the g̃-metrically equivalent vector field to τ .

Proof It immediately follows taking into account that in this case K̄ = 0, Bs = Bd = B,
τ s = τ and A∗s = A∗. ��

Observe that the statistical structure obtained in the above corollary is a combination of a
ξ -statistical structure and a (ξ, E)-statistical structure.

Definition 5 Let (M, g) be a semi-Riemannian manifold and � a null submanifold. If ζ is a
rigging for � such that

B(X , Y ) = C(X , Y ),

C(ξ, X) = τ(X) = 0

for all X ∈ �(S), then we say that ζ is a strong Levi–Civita statistical rigging.

If ζ is a strong Levi–Civita statistical rigging, then τ = τ(ξ)ω and E = τ(ξ)ξ . Thus,
the statistical structure (g̃,∇) given in Corollary 2 turns into a ξ ′-statistical structure, where
ξ ′ = 3

√
τ(ξ)ξ . On the other hand, from [16, Theorem 4.2] if B(U , X) = C(U , X) and

τ(U ) = 0 for all U ∈ X(�) and X ∈ �(S), then the statistical structure (g̃,∇) is trivial, i.e.
∇̃ = ∇. In this case ζ was called in [16] a preferred rigging for �. We summarize all this in
the Table 1.

Example 1 Let (M0, g0) be a Riemannian manifold and consider the Lorentzian manifold

(M, g) =
(
R
2 × M0, 2e

u−vdudv + (
eu + ev

)2
g0

)
.

123



Statistical structures arising in null submanifolds Page 19 of 29 48

For a fixed u0 ∈ R we have that � = {(u0, v, x) : v ∈ R, x ∈ M0} is a null hypersurface
and ζ = ev−u∂u is a rigging for it. The rigged vector field is ξ = ∂v and the null transverse
vector field is N = ζ . Moreover, the screen distribution at a point (u0, v, x) can be identified
with L(T M0), the lift of T M0.

Using the formulas for the Levi–Civita connection of a warped product we can check that

∇XY = − 1

eu−v + 1
g(X , Y )N − 1

eu−v + 1
g(X , Y )ξ + ∇0

XY ,

∇ξ X = ev

eu + ev
X

where ∇0 is the Levi–Civita connection in (M0, g0) and X , Y ∈ L(T M0). Therefore,

B(X , Y ) = − 1

eu−v + 1
g(X , Y ),

C(X , Y ) = − 1

eu−v + 1
g(X , Y ),

C(ξ, X) = 0,

τ (X) = 0

for all X , Y ∈ �(S). Moreover, ∇ξ ξ = −ξ , so τ(ξ) = 1. Thus, ζ is a strong Levi–Civita
statistical rigging for � which is not a preferred rigging.

Example 2 Let (M0, g0)be aRiemannianmanifold and f ∈ C∞(M0) a positive functionwith
g0(∇0 f ,∇0 f ) = 1. Consider the standard static space (M, g) = (

M0 × R, g0 − f 2(x)dt2
)

and � = {(x, ln f (x)) ∈ M0 × R : x ∈ M0}. We can check that � is a null hypersurface,

ζ =
√
2
f ∂t is a rigging for it with associated rigged vector field

ξ = − 1√
2 f

∂t − 1√
2
∇0 f

and the screen distribution is given by S = {X ∈ T M0 : X( f ) = 0}.
On the other hand, we have that ∂t is Killing and orthogonally closed in (M, g). Thus, it

holds

∇X∂t = X( f )

f
∂t

for all X ∈ X(M0). From Eqs. (10) and (8) we get

C(X , Y ) = −g(∇X ζ, Y ) − 1

2
g(ζ, ζ )B(X , Y ) = B(X , Y ),

−2C(ξ, X) = 2g(∇ξ ζ, X) = 0,

τ (X) = 0

for all X ∈ �(S). Therefore, ζ is a strong Levi–Civita statistical rigging for �.

If we assume some additional conditions on a Levi–Civita statistical rigging, then we get
that it is in fact a preferred or a strong Levi–Civita statistical rigging.

Corollary 3 Let (M, g) be a semi-Riemannian manifold and � a null submanifold. Suppose
that ζ is a Levi–Civita statistical rigging for �.

1. If ζ is closed, then it is a strong Levi–Civita statistical rigging.
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2. If ζ is conformal, then it is a preferred rigging.

Proof 1. From Eqs. (8) and (10) we get that

−2C(ξ, X) = 2g(∇ξ ζ, X) = 2g(∇X ζ, ξ) = 2τ(X)

for all X ∈ �(S). Since ζ is a Levi–Civita rigging, we have that C(ξ, X) = −2τ(X) and
thus C(ξ, X) = τ(X) = 0. This means that ζ is a strong Levi–Civita statistical rigging.

2. As before, from Eqs. (8) and (10) we have

−2C(ξ, X) = 2g(∇ξ , X) = −2g(∇X ζ, ξ) = −2τ(X)

for all X ∈ �(S), but being ζ a Levi–Civita statistical rigging, it follows that τ(X) =
C(ξ, X) = 0. Moreover, τ(ξ) = g(∇ξ ζ, ξ) = 0. Thus ζ is a preferred rigging.

��
The following corollary shows a relationship between geometric conditions on a null

submanifold and the statistical structure constructed from a Levi–Civita statistical rigging.

Corollary 4 Let (M, g) be a semi-Riemannian manifold and � a null submanifold. Suppose
that ζ is a Levi–Civita statistical rigging for �.

1. If τ(ξ) = 0 but τ is not identically zero at any point and the statistical structure (g̃,∇)

is conjugate symmetric, then the multiplicity of the 0-principal curvature is at least
dim� − 2.

2. If the metrically equivalent one form to ζ is closed, τ(ξ) is a nonzero constant and � is
totally geodesic, then the statistical structure (g̃,∇) is conjugate symmetric.

3. If ζ is a strongLevi–Civita statistical rigging, τ(ξ) is a nonzero constant and the statistical
structure (g̃,∇) is conjugate symmetric, then � is totally geodesic.

Proof 1. Since τ(ξ) = 0, the statistical structure in Corollary 2 is a (ξ, E)-statistical struc-
ture, being E the g̃-metrically equivalent vector field to τ . Observe that τ(ξ) = 0 implies
that g̃(E, ξ) = 0. Moreover, g̃(E, E) �= 0 because τ is not identically zero at any point.
Theorem 1 ensures that (�, g̃) locally decomposes as a twisted product L ×h S, where
S is a leaf ofD = span(ξ, E) and L a leaf ofD⊥g̃ . Using formula (16) and the formulas
for the Levi–Civita connection of a twisted product, we get

B(X , Y ) = −1

2

(
Lξ g̃

)
(X , Y ) = 0

for all X , Y ∈ span(ξ, E)⊥g̃ . Therefore, if we take an orthonormal basis
{
X1, . . . , Xk−2,

1√|τ(E)| E
}

of S, being k = dim�, then the associated matrix of A∗ : S → S is of the form
⎛

⎜⎜⎜
⎝

0 0 . . . γ1
0 0 . . . γ2
...

...
...

γ1 γ2 . . . γk−1

⎞

⎟⎟⎟
⎠

.

Thus, the multiplicity of the 0 eigenvalue of A∗ : T� → T� is at least k − 2.
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2. If � is totally geodesic, then the Eq. (16) gives us that
(
Lξ g̃

)
(X , Y ) = 0 for all X , Y ∈

�(S). Since the metrically equivalent one form to ζ is closed, we have that the rigged
one form ω is also closed, dω = 0. Hence, ξ is g̃-parallel. Moreover, from Corollary 3,
ζ is a strong statistical rigging and the statistical structure (g̃,∇) is conjugate symmetric
due to Proposition 1.

3. From Proposition 1 we know that ξ is g̃-parallel. Equation (16) implies that � is totally
geodesic.

��
As we said before, if we have a statistical connection ∇̄s on a semi-Riemannian manifold

and a null submanifold �, then (g̃,∇d) does not need to be a statistical structure on �, even
if (g̃,∇s) is a statistical structure on �. The following corollary gives us conditions for this
to happen.

Corollary 5 Let (M, g) be a semi-Riemannian manifold furnished with a statistical con-
nection ∇̄s and � a null hypersurface. Fixed a rigging, the following properties are
equivalent.

• ζ is a ∇̄s -statistical and a ∇̄d -statistical rigging simultaneously, i.e. both (g̃,∇s) and
(g̃,∇d) are statistical structures on �.

• ζ is a Levi–Civita statistical rigging and K̄ (U , ξ − N ) ∈ span(ξ, N ) for all U ∈ X(�).

Proof Suppose that (g̃,∇s) and (g̃,∇d) are statistical structures on �. From Theorem 2 it
holds

Bs(X , Y ) = Cs(X , Y ), (56)

Bs(ξ, X) + Cs(ξ, X) = −2τ s(X), (57)

Bd(X , Y ) = Cd(X , Y ), (58)

Bd(ξ, X) + Cd(ξ, X) = −2τ d(X). (59)

for all X , Y ∈ �(S). From Eqs. (56), (58) and (37) we get that B(X , Y ) = C(X , Y ) and
from Eqs. (57), (59), (38) and (39) we get that C(ξ, X) = −2τ(X). Applying Corollary 2
we have that ζ is a Levi–Civita statistical rigging for �. Moreover, from Eqs. (42), (44) and
(46) the Eqs. (56) and (57) can be written as

g(K̄ (X , Y ), ξ) = g(K̄ (X , Y ), N ),

g(K̄ (ξ, X), ξ) + g(K̄ (ξ, X), N ) = 2g(K̄ (ξ, X), N )

for all X ∈ �(S). In other words, g(K̄ (U , ξ − N ), X) = 0 for allU ∈ X(�) and X ∈ �(S),
which is equivalent to K̄ (U , ξ − N ) ∈ span(ξ, N ) for all U ∈ X(�).

Conversely, suppose that ζ is a Levi–Civita statistical rigging and K̄ (U , ξ − N ) ∈
span(ξ, N ) for all U ∈ X(�). Using Eqs. (42–47) we can easily check that Eqs. (56–59)
hold and thus ζ is a ∇̄s-statistical and a ∇̄d -statistical rigging. ��
Example 3 Let (M0, g0)be aRiemannianmanifold and consider theLorentzian direct product
(M, g) = (

R × M0,−dt2 + g0
)
. From Eqs. (8) and (10) we have that ζ = √

2∂t is a
preferred rigging for any null hypersurface � in M . In particular, it is also a Levi–Civita
statistical rigging for any null hypersurface. Moreover, � is locally given by the graph of a
function h : θ ⊂ M0 → R with ||∇h||M0 = 1 and

ξ = − 1√
2
∂t − 1√

2
∇M0h,
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N = 1√
2
∂t − 1√

2
∇M0h.

Suppose that ∇̄s is a statistical connection on M . Using the above corollary, the induced
connections ∇s and ∇d on � are statistical connections on � respect to the rigged metric if
and only if K̄ (U , ∂t) ∈ span

(
∂t,∇M0h

)
for all U ∈ X(�).

5 Screen strongly convex null hypersurfaces and statistical structures

Strongly convex hypersurfaces in the Euclidean space carry a natural statistical structure.
We recall some basic facts, [18]. Let M be a manifold and ∇ an affine connection without
torsion on M . Given a hypersurface �, we fix a transversal vector field ζ , which gives us the
decomposition TxM = Tx� ⊕ span(ζx ) for all x ∈ �. Using this, we can decompose

∇UV = ∇ζ
UV + hζ (U , V )ζ,

∇U ζ = −Sζ (U ) + τ ζ (U )ζ

for all U , V ∈ X(�). We have that ∇ζ is an affine connection without torsion on �, hζ

is a symmetric tensor called affine second fundamental form and Sζ is called affine shape
operator. If we consider R̄ the curvature tensor of ∇ and Rζ the curvature tensor of ∇ζ , then
we can check that

(
R̄UV W

)T� = Rζ
UVW + Sζ (V )hζ (U ,W ) − Sζ (U )hζ (V ,W ), (60)

(
R̄UV W

)span(ζ ) =
( (

∇ζ
Uh

ζ
)

(V ,W ) −
(
∇ζ
V h

ζ
)

(U ,W )

+ τ ζ (U )hζ (V ,W ) − τ ζ (V )hζ (U ,W )
)
ζ (61)

for all U , V ,W ∈ X(�), where
(
R̄UV W

)T�
denotes the projection onto T� and

(
R̄UV W

)span(ζ )
the projection onto span(ζ ).

We say that � is strongly convex if hζ (U ,U ) �= 0 for all U ∈ X(�). This property
does not depend on the chosen transversal vector field. Moreover, changing the sign of ζ if
necessary, we can suppose that hζ defines a Riemannian metric on �, which is called the
Blaschke metric. If ∇U ζ is tangent to � for all U ∈ X(�), then we say that ζ is equiaffine.

Now we particularize to the case
(
R
n,∇)

, where ∇ is the standard flat connection on Rn .
If � is a strongly convex hypersurface and ζ is equiaffine, then from Eq. (61) we have that(
hζ ,∇ζ

)
is a statistical structure on �, which turns out to be always locally equiaffine. The

classical Maschke–Pick–Berwald theorem asserts that if this statistical structure is trivial,
then � is a hyperquadric in R

n , [18, Theorem 4.5, p. 53]. Moreover, it can be shown that
this statistical structure is conjugate symmetric if and only if � is an equiaffine sphere, [20,
Lemma 12.5]. Observe that the unitary and normal vector field to � (respect to the standard
Euclidean metric) is equiaffine.

Now, we consider the Lorentz–Minkowski space

L
n = (

R × R
n−1,−dt2 + dx21 + . . . + dx2n−1

)
.

The same construction as before works for timelike or spacelike hypersurfaces inLn , provid-
ing a statistical structure on them. However, it does not work for a null hypersurface, because
the null second fundamental form holds B(ξ,U ) = 0 for all U ∈ X(�), i.e. it is always
degenerate.
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Observe that the family of null hypersurfaces in L
n is large enough to deserve the effort

in generalizing the above construction. If we have θ ⊂ R
n−1 an open set and d : θ → R

a function with ||∇d|| = 1, then {(d(x), x) ∈ L
n : x ∈ θ} is a null hypersurface in L

n .
Conversely, any null hypersurface in L

n can be locally described in this way. On the other
hand, such a function d can be obtained as the signed distance function from an arbitrary
hypersurface S ⊂ R

n−1, [7, 17].
Nevertheless, despite of the degeneracy of B, we can do a similar construction for null

hypersurfaces following the spirit of the rigging technique.

Definition 6 Let (M, g) be a semi-Riemannian manifold, � a null hypersurface and ζ a
rigging for it. We say that � is screen strongly convex if B(v, v) �= 0 for all v ∈ Sx with
v �= 0 and all x ∈ �.

The above definition does not depend on the chosen rigging. Indeed, if ζ ′ is another rigging
for �, then ξ ′ = 1

�
ξ and B ′ = 1

�
B, where � = g(ζ ′, ξ). Therefore, if w ∈ S ′

x , then we
can decompose it as w = v + ω(w)ξ , where v ∈ Sx is nonzero, and thus B ′(w,w) =
1
�
B(v, v) �= 0. Moreover, observe that being screen strongly convex trivially implies that

the null mean curvature never vanishes.
Now we can construct a Riemannian metric from B as we did with g. Fix a rigging ζ for

� and consider

Bs = B + ω ⊗ ω.

Observe that Bs is the second fundamental form induced on � from the ζ -statistical con-
nection ∇̄s = ∇ + η ⊗ ηζ , being η the metrically equivalent one form to ζ . If � is screen
strongly convex, then, changing the sign of ζ if necessary, Bs defines a Riemannian metric
on �, which will be called the rigged-Blaschke metric.

Theorem 3 Let � be a screen strongly convex null hypersurface in the Lorentz–Minkowski
spaceLn. Fix a rigging for� such that Bs is Riemannian and consider the induced connection
∇ on� from the standard flat connection onLn.We have that (Bs,∇) is a statistical structure
on � if and only if

C(U , X) = τ(ξ)B(U , X), (62)

τ(X) = 0 (63)

for all U ∈ X(�) and X ∈ �(S).
Moreover, in this case, dτ = 0, the screen distribution S is integrable, X(τ (ξ)) = 0 for

all X ∈ �(S) and the Tchebychev one-form of the statistical structure (Bs,∇) is

α = −1

2
d ln |H | − τ = −1

2
d ln |H | − τ(ξ)ω,

where H is the null mean curvature. In particular, the statistical structure (Bs,∇) is locally
equiaffine.

Proof From Eqs. (11) and (50) we have
(∇U Bs) (V ,W ) − (∇V B

s) (U ,W ) = τ(V )B(U ,W ) − τ(U )B(V ,W )

+ (
C(V ,PS(U )) − C(U ,PS(V ))

)
ω(W )

+ 2
(
τ(U )ω(V ) − τ(V )ω(U )

)
ω(W )

+ C(V ,PS(W ))ω(U ) − C(U ,PS(W ))ω(V ).

(64)
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Thus, if Eqs. (62) and (63) hold, then (∇U Bs) (V ,W ) = (∇V Bs) (U ,W ) for allU , V ,W ∈
X(�) and thus (Bs,∇) is a statistical structure on �.

Conversely, suppose that (Bs,∇) is a statistical structure on�. Since� is screen strongly
convex, then for each point x ∈ � we can take {e1, . . . , en−2} a basis of Sx such that
B(ei , e j ) = δi j . If we takeU = ei , V = e j ,W = e j in Eq. (64), thenwe get τ(ei ) = 0 and so
τ(X) = 0 for all X ∈ �(S). On the other hand, if we takeU = ξ and V = Y ,W = Z ∈ �(S)

in Eq. (64), then we get C(Y , Z) = τ(ξ)B(Y , Z). Finally, if we take U = X ∈ �(S) and
V = W = ξ , then we obtain that C(ξ, X) = 0 and therefore Eqs. (62) and (63) hold.

We prove the rest of the statements. From Eqs. (7), (15) and (62) it follows that dτ = 0.
From Eq. (62) it is clear that S is integrable. On the other hand, using Eq. (62) we have

(∇∗∗
U C

)
(V , X) = U (τ (ξ))B(V , X) + τ(ξ) (∇U B) (V , X)

and so from Eqs. (11) and (14), we get

U (τ (ξ))B(V , X) − V (τ (ξ))B(U , X) = 2τ(ξ) (τ (U )B(V , X) − τ(V )B(U , X))

for allU , V ∈ X(�) and X ∈ �(S). Ifwe takeV = X andU = Y ∈ �(S)with B(X , X) �= 0
and B(X , Y ) = 0, then we get Y (τ (ξ)) = 0.

Now we compute the Tchebychev one-form of the statistical structure (Bs,∇). Fix a
point x ∈ � and a vector u ∈ Tx�. Since A∗ : S → S is self-adjoint respect to g and S
is spacelike, it exists a g-orthonormal basis {e1, . . . , en−2} of Sx such that A∗(ei ) = λi ei .
Moreover, since we are assuming that Bs is Riemannian, then λi > 0. If we call vi = 1√

λi
ei ,

then {v1, . . . , vn−2, ξ} is a Bs-orthonormal basis of Tx� and so

α(u) = Bs(K (ξ, ξ), u) +
n−2∑

i=1

Bs(K (vi , vi ), u),

where K is the difference tensor. But from Eq. (20) we can write

−2α(u) = (∇u B
s) (ξ, ξ) +

n−2∑

i=1

(∇u B
s) (vi , vi ).

Now, taking into account Eq. (6), we have
(∇u B

s) (ξ, ξ) = u(Bs(ξ, ξ)) − 2Bs(∇uξ, ξ) = −2ω(∇uξ) = 2τ(u).

To compute the last term, we extend each vi to a vector field Vi defined in a neighbourhood
of x in � such that Vi ∈ �(S), g(Vi , Vj ) = 0 for i �= j and g(Vi , Vi ) is constant and equal
to 1

λi (x)
. This can be done taking a local basis which spans S and applying Gram-Schmidt.

We have
(∇u B

s) (vi , vi ) = u(Bs(Vi , Vi )) − 2Bs(∇uVi , vi )

= u(B(Vi , Vi )) − 2g(∇uVi , A
∗(vi ))

= 1

λi (x)
u

(
B

(√
λi (x)Vi ,

√
λi (x)Vi

)
− 2λi (x)g(∇uVi , vi

)
.

Since g(Vi , Vi ) is constant, we have g(∇uVi , vi ) = 0. On the other hand, we know that
{√λ1(x)V1, . . . ,

√
λn−2Vn−2} is a g-orthonormal basis of S. Hence the above is u(H)

Hx
(recall

that x is fixed) and thus

α(u) = −1

2

u(H)

H
− τ(u).
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Since τ(X) = 0 for all X ∈ �(S), we have that τ = τ(ξ)ω and we get the result. ��
Remark 2 Under the conditions of the above theorem, since τ = τ(ξ)ω and d(τ (ξ)) =
d(τ (ξ))(ξ)ω, if there is x ∈ � with τ(ξ)x �= 0, then dωx = 0. There are important
consequences from the fact dω = 0. For example, an explicit expression for the rigged
connection ∇̃ in terms of the induced connection ∇ and the tensors B, C and τ can be given
in this case, [16, Proposition 2.10]. Moreover, if � is totally umbilical, then (�, g̃) can be
decomposed as a twisted product, [6, Theorem 5.3].

If we take a parallel null rigging for � (which always exists at least locally), then from
Eqs. (8) and (10) we have C = τ = 0 and the above theorem ensures that (Bs,∇) is a
statistical structure. We can prove that it also exists a timelike rigging such that (Bs,∇) is a
statistical structure with the additional property that τ(ξ) never vanishes.

Lemma 3 Let � be a null hypersurface in the Lorentz–Minkowski space Ln. For each point
of � there is a locally defined timelike rigging for � such that

C(U , X) = τ(ξ)B(U , X),

τ (X) = 0

for all U ∈ X(�) and X ∈ �(S) and τ(ξ)x �= 0 for all x ∈ �. In particular, dω = 0.

Proof We can suppose without loss of generality that � passes through the origin of coor-
dinates. Take ζ = �

√
2∂t , where t is the timelike coordinate in L

n and � is the solution to
the differential equation

�′(t) = −√
2�(t)4 (65)

with �(0) = 1.
From Eqs. (8) and (10) we have that C(U , X) = �2B(U , X) and τ(X) = 0 for all

U ∈ X(�) and X ∈ �(S). Moreover,

τ(ξ) = √
2ξ(�)g(∂t, ξ) = 1

�
ξ(�) = − 1√

2�2
�′ = �2.

Thus τ(ξ)x �= 0 for all x ∈ � and from Remark 2 we also have dω = 0. ��
The solution to the differential Eq. (65) with the initial condition �(0) = c �= 0 is

�(t) = 3

√
1

1
c3

+ 3
√
2t

,

which is not defined for t = − 1
3
√
2c3

. Therefore, the rigging constructed in Lemma 3 is

defined globally for null hypersurfaces in Ln which are lower or upper timelike bounded, i.e.
they are contained in {(t, x1, . . . , xn−1) ∈ L

n : t < K } or {(t, x1, . . . , xn−1) ∈ L
n : t > K }

for some constant K . Observe that being screen strongly convex does not ensure that the null
hypersurface is lower or upper timelike bounded, as the following example shows.

Example 4 Consider � the parametrized surface X : A → L
3 given by

X(u, v) =
(

v, u − 2uv√
1 + 4u2

, u2 + v√
1 + 4u2

)
,
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where A = {(u, v) ∈ R
2 : 2v <

√
(1 + 4u2)3}. We can check that g(Xu, Xv) =

g(Xv, Xv) = 0, so it is a null surface and ξ = Xv is a null tangent vector field to it. Obviously
is not upper neither lower timelike bounded. Moreover, it is screen strongly convex since

B(Xu, Xu) = −g(∇Xu Xv, Xu) = −1

2

d

dv
g(Xu, Xu)

=
2

(√
(1 + 4u2)3 − 2v

)

(1 + 4u2)2
> 0.

The most simple example of null hypersurfaces in L
n are the degenerate hyperplanes

through the origin. These are in fact the unique totally geodesic null hypersurfaces in Ln . On
the other hand, the future null cone and the past null cone are given by

C+ = {
(t, x1, . . . , xn−1) ∈ L

n : t2 = x21 + . . . + x2n−1, t > 0
}

and

C− = {
(t, x1, . . . , xn−1) ∈ L

n : t2 = x21 + . . . + x2n−1, t < 0
}

respectively. Given p0 ∈ L
n we call future null cone with vertex p0 to C+

p0 = p0 + C+ and
analogously for C−

p0 . It is well-known that C
+
p0 and C

−
p0 are totally umbilical null hypersurfaces.

Conversely, if n ≥ 4, a totally umbilical null hypersurface in L
n is totally geodesic or it is

contained in a null cone, see for example [7, Theorem 4.15]. In [10, 11] a characterization
of totally umbilical null hypersurfaces as a null cone is given for more general ambient
manifolds than the Lorentz–Minkowski space.

Proposition 8 Let � be a screen strongly convex null hypersurface in the Minkowski space
L
n and consider a rigging such that

C(U , X) = τ(ξ)B(U , X),

τ (X) = 0,

τ (ξ)x �= 0

for all U ∈ X(�), X ∈ �(S) and x ∈ �.

1. If (Bs,∇) is conjugate symmetric, then � is contained in a null cone.
2. (Bs,∇) is never trivial.

Proof Suppose that the statistical structure (Bs,∇) on � is conjugate symmetric. In this
case, from Eq. (21) we get Bs(RXY Y , Y ) = 0. Using Eqs. (12) and (13) we have that

RUVW = B(U ,W )A(V ) − B(V ,W )A(U )

and so the above equation reads

B(X , Y )B(A(Y ), Y ) = B(Y , Y )B(A(X), Y )

for all X , Y ∈ �(S). Take {e1, . . . , en−2} a Bs-orthonormal basis of Sx , i.e. B(ei , e j ) = δi j .
If we set X = ei and Y = e j for i �= j in the above equation, then B(A(ei ), e j ) = 0 and so
A(ei ) = αi ei for some αi ∈ R. From this, it follows that A(X) = μX for some μ ∈ C∞(�)

and all X ∈ �(S) and thus B = ρg, being ρ = μ
τ(ξ)

. Since � is screen strongly convex, then
it can not be totally geodesic and thus, applying [7, Theorem 4.15], � is contained in a null
cone.
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Suppose now that (Bs,∇) is trivial. In particular, it is conjugate symmetric and so � is
totally umbilical. Moreover, it holds ∇Bs = 0, but we have

(∇U Bs) (V ,W ) = U (ρ)g(V ,W ) + ρ (∇U g) (V ,W ) + (∇Uω ⊗ ω) (V ,W )

= U (ρ)g(V ,W ) + ρ(ρ − τ(ξ))
(
ω(W )g(U , V ) + ω(V )g(U ,W )

)

+ 2τ(ξ)ω(U )ω(V )ω(W )

for all U , V ,W ∈ X(�). If we take U = V = W = ξ , then we have τ(ξ) = 0, which is a
contradiction. ��
Example 5 The most simple screen strongly convex null hypersurfaces in L

n are the totally
umbilical but no totally geodesic ones, i.e. the null cones. We show how looks the statistical
structure (Bs,∇) in this case.

Take a parallel null vector field ζ , which will be a rigging for a piece of �. We know that
C = τ = 0 and B = ρg for certain ρ ∈ C∞(�). Therefore, from Eqs. (20) and (9) we have

−2Bs(K (U , V ),W ) = U (ρ)

ρ
B(V ,W ) + ρ2 (g(U , V )ω(W ) + g(U ,W )ω(V ))

for all U , V ,W ∈ X(�). If we take U = X , V = Y ,W = Z ∈ �(S) in the above equation,
then we get Bs(K (X , Y ), Z) = − X(ρ)

2ρ Bs(Y , Z) and if we take U = X , V = Y ∈ �(S)

and W = ξ , then we arrive to Bs(K (X , Y ), ξ) = − ρ2

2 g(X , Y ) = − ρ
2 B

s(X , Y ). Therefore,
since Bs is non-degenerate, we get

K (X , Y ) = − X(ρ)

2ρ
Y − ρ2

2
g(X , Y )ξ.

Since K is symmetric, it holds X(ρ) = 0 and thus

K (X , Y ) = −ρ2

2
g(X , Y )ξ

for all X , Y ∈ �(S). In an analogous way we can check that K (X , ξ) = − ρ
2 X , K (ξ, ξ) = 0

and ξ(ρ) = ρ2. Therefore,

K (U , V ) = −ρ

2

(
Bs(U , V )ξ + ω(U )V + ω(V )U

) + 3ρ

2
ω ⊗ ωξ,

which is a combination of a ξ -statistical structure and the statistical structure given in (25)
(recall that here Bs plays the role of the metric and the Bs-metrically equivalent one-form to
ξ is ω).

Now, suppose that we take a timelike rigging as in Lemma 3. We want to compute the
difference tensor for the statistical structure (Bs,∇) in this case. As before, we have

−2Bs(K (U , V ),W ) = U (ρ)g(V ,W ) + ρ(ρ − τ(ξ))
(
g(U , V )ω(W )

+ g(U ,W )ω(V )
) + 2τ(U )ω(V )ω(W )

for all U , V ,W ∈ X(�). From this we deduce that X(ρ) = 0, ξ(ρ) = ρ2 − τ(ξ)ρ,
K (X , Y ) = − ρ

2 (ρ − τ(ξ))g(X , Y )ξ , K (X , ξ) = − 1
2 (ρ − τ(ξ))X and K (ξ, ξ) = −τ(ξ)ξ

for all X , Y ∈ �(S). Therefore,

K (U , V ) = −1

2
(ρ − τ(ξ))

(
Bs(U , V )ξ + ω(U )V + ω(V )U

)

+ 3(ρ − τ(ξ))

2
ω ⊗ ωξ,
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which is again a combination of a ξ -statistical structure and the statistical structure given in
(25).
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