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Abstract: This paper presents a procedure for classifying objects based on their compliance with
information gathered using tactile sensors. Specifically, smart tactile sensors provide the raw moments
of the tactile image when the object is squeezed and desqueezed. A set of simple parameters from
moment-versus-time graphs are proposed as features, to build the input vector of a classifier. The
extraction of these features was implemented in the field programmable gate array (FPGA) of a
system on chip (SoC), while the classifier was implemented in its ARM core. Many different options
were realized and analyzed, depending on their complexity and performance in terms of resource
usage and accuracy of classification. A classification accuracy of over 94% was achieved for a
set of 42 different classes. The proposed approach is intended for developing architectures with
preprocessing on the embedded FPGA of smart tactile sensors, to obtain high performance in real-time
complex robotic systems.

Keywords: tactile sensors; object recognition; FPGA implementation; real-time feature extraction

1. Introduction

Tactile sensors are increasingly being used in a variety of applications. This has
led to the development of electronic skin (e-skin) devices, which open up possibilities
for healthcare, human–machine interfaces, virtual reality, artificial intelligence-related,
and robotic applications [1]. In this context, object manipulation and interaction with the
environment involves the detection of properties such as the friction coefficient, texture,
geometry, and stiffness [2,3].

Stiffness can be estimated in a fairly straightforward manner from measurements of the
force and displacement when the object is squeezed [4]. However, the force–displacement
curve of a compliance object can be far from linear, being quite complex instead [5]. In
reference [5], FPCA was used to approximate the force–displacement curve obtained from
two pressure sensors with three basis functions. Eight different soft objects were classified,
and the best results were obtained with a k-NN classifier. Eight parameters were computed
from the readings of two force sensors when a vegetable was squeezed until it collapsed
in [6]. These parameters were the mean value, variance and standard deviation, maximum
force, quality factor, quartiles, and quartile factor. All data recorded from the two sensors
were reduced to these eight parameters, and a decision tree algorithm obtained good results
in classifying tomatoes into three categories depending on their stiffness. Hardness can
also be estimated from analysis of data such as the reaction force when an object is explored
using some predefined motions [7,8].

On the other hand, the compliance of an object can be estimated from the output of
tactile sensors, taking advantage of advanced artificial hands and grippers equipped with
them. The whole tactile image can be the input of complex neural network architectures
such us convolutional neural networks (CNN), which estimate the stiffness from the image
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sequences taken while the object is deformed [9,10]. In these cases, the preprocessing of the
tactile images is essentially filtering, normalization, and reshaping, to adapt them to the
neural network input.

Another approach consists in using certain features from the tactile images instead
of the whole image. This reduces the volume of data to be recorded and processed, and
simplifies the computation. The maximum force measured by a taxel (force sensing unit
in the tactile sensor), the area of contact, and the displacement of its centroid were used
in [11]. Different combinations of features and algorithms were explored and good results
were obtained with hidden Markov models, to classify eight objects into four categories.

The first two colour moments of the tactile image, i.e., the mean value and the standard
deviation of the taxels, were proposed as features in [12]. A k-NN classifier was used
with the distance computed with the dynamic time warping algorithm (DTW). A similar
strategy was followed in [13], with a tactile sensor focused on a large compliance and the
displacement of their taxels.

Previous proposals achieved a good performance with a limited number of objects
and categories. However, though the proposed features reduced the data storage and the
computation complexity, both remain high in the case of embedded systems. These systems
can perform distributed computation with smart sensors, which improves the latency and
reduces data traffic in communication buses. A smart tactile sensor based on an embedded
FPGA and direct sensor-FPGA interface was proposed in [14]. This sensor provides the
first raw moments of the tactile image. These moments give information about the area
of contact, contact force, location, shape, and orientation of the tactile image. Therefore,
the time series of these moments taken while an object is being squeezed and de-squeezed
provides much information about how it is deformed. Use of the entire registered series
of moment values is proposed by the authors of this paper, as a feature vector for the
classifier detailed in the conference paper in [15], where nine objects were classified with up
to 86.7% accuracy. Since the thus-obtained feature vector is large, here we propose a further
step, aimed at reducing the complexity and data management required, which consists in
extracting features similar to those used in realizations not based on tactile sensors [16,17].
In this way, complex computations such as the DTW distance of the whole moment series
are not required, only the Euclidean distance of the feature vector whose components
are the selected features, which is much simpler. This approach was implemented on a
system on chip-based architecture and many different options were analyzed, in terms of
the performance and complexity during the task of the classification of a set of 42 classes.

The rest of this paper is organized as follows: Section 2 proposes the feature extraction
algorithm. Section 3 describes the materials and methods. Section 4 is devoted to the
implementation of the approach on a system on chip. Finally, the results and related
discussions are detailed in Section 5, while Section 6 summarizes the main conclusions of
the work and considers future extensions.

2. Proposed Features for Classification

As mentioned in the Introduction, the raw moments of the tactile image are computed
locally in the robotic finger and the palm [18,19]. In particular, the {p, q} order of moments
of the tactile image is computed as follows:

Mp,q =
N

∑
x=1

M

∑
y=1

xpyq I(x, y) (1)

where I(x, y) is the output from the taxel at row x and column y.
The raw moments of the tactile images versus time curves that are registered as the

objects are compressed or decompressed. Figure 1 shows these curves for an example object
(potato) and moment (M0,0). The following set of features are defined from this graph, to
significantly reduce the consumption of resources and the dimensions of the classifier input
feature vector:
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• AR (Figure 1a): Area under the raw moment curve;
• MAX (Figure 1b): Magnitude value at the maximum displacement;
• H1 (Figure 1c): Magnitude value before one third of the time needed to reach the peak

of the curve;
• H2 (Figure 1d): Magnitude value after one third of the time to needed reach the peak

of the curve.

H1 and H2 are related to the object hysteresis, which can be significant in objects made
of elastomers. This hysteresis causes the graph to not be symmetric with respect to the
axis defined by the peak. The three times related to the features MAX, H1, and H2 are
known in advance, since the whole sequence is controlled by the robotic system. Therefore,
the corresponding features do not require any computation and can be directly registered.
Moreover, the area under the curve only requires a cumulative sum.
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Figure 1. Proposed features for the moment M0,0 and the object #OBJ-2 (potato): (a) area under the
curve (AR feature), (b) maximum value (MAX feature), (c) magnitude value in the ascending part at
2/3 of the time to reach the maximum (H1 feature), and (d) magnitude value at 1/3 of the same time
after the maximum is reached (H2 feature).

Note that there are six different raw moment curves (Mp,q) for each exploration, which
involves both the finger (f) and the palm (p). When we consider the raw moments for both
sensors and the four feature values (AR, MAX, H1, H2), there are a total of 48 features for
each exploration. To avoid the issue of having redundant information, we included the option
of reducing the data dimensions using principal component analysis (PCA) techniques.

3. Materials and Methods

In this section, we start by introducing the artificial finger and palm sensors used to
gather the tactile data. Then, we describe the experimental setup and the objects of study.
Afterwards, we explain the procedure we followed to collect the moment sequences during
the explorations and the training algorithm used to classify the objects.

3.1. Sensors Technology

In this study, we acquired tactile data using two smart sensors from the tactile suite
of the artificial hand reported by the authors in [19] (see Figure 2). The artificial finger
shown in Figure 2a is equipped with tactile sensors made of a laser-isolated piezoresistive
layer on an array of electrodes. The outer layer or cover is made of a thermoplastic
elastomer (Filaflex®), and it has one dome per taxel in the tactile array. This design helps
to concentrate the force and reduce the crosstalk between taxels. The sensor is capable of
registering changes in the area and size of the tactile image when the objects are pressed
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and deformed. The spatial resolution of the sensor, that is, the minimum distance between
two taxels, is 3.7 mm, and the size of the sensor is 40.7× 15.0 mm. The electronics of the
sensor are based on an FPGA (Spartan-6®). Data are sampled at a frequency of Fs = 485 Hz,
or a sampling period of Ts = 2.06 ms.

The artificial palm in Figure 2b was built in a similar way. However, unlike for
the finger, the palm sensor does not require laser isolation of the piezoresistive material,
because the crosstalk is reduced by the electronics. Therefore, a cover made of a continuous
rubber attached to a continuous piezoresisitve layer is placed atop the electrodes. The palm
sensor electronics were also based on a Spartan-6® FPGA. It implements the interface with
the palm raw tactile sensor and also communicates with the finger sensor through an SPI
serial bus, and with a personal computer through USB.

Artificial finger

Semi-rigid printed circuit board
with an electrode matrix area

Laser-isolated
piezoresistive

layer

Structured cover
with elliptical

cylinders

Electrode Array Local FPGA 
(finger)

Power
electronics

SPI/JTAC 
Connector

(a)

Back side of the continuous rubber layer
where the continuous piezoresistive

layer is attached

Front side of the
continuous rubber layer

Electrode Array

Printed-Circuit Board with an electrode matrix
area corresponding to the artificial palm

Artificial palm with the 
continuous rubber

(b)

Figure 2. (a) The artificial finger is made of a semi-rigid printed circuit board, with a structured cover
that helps to concentrate the force on the taxels (force sensing units in the tactile array). (b) Artificial
palm with continuous cover. Dimensions are given in mm.
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3.2. Experimental Setup

Figure 3 shows the experimental setup built to perform the object explorations. The ar-
tificial finger with the smart tactile sensor is at the top of Figure 3, while the palm is placed
at the bottom. A strain gauge is used to provide a reference value of the force exerted by
the palm. The finger is moved in the vertical axis using a motor controlled via an Arduino
Mega 2560® board, so that a compression–decompression movement between the finger
and palm can be carried out. As said above, the tactile data and locally computed moments
are gathered by the finger and palm electronics and sent to the computer via USB.

Holder piece

Artificial finger with the
acquisition electronics
and the cover mounted

Cable for transmitting
data via SPI protocol

Control electronics

Artificial 
palm

Load cell

Data acquisition and 
communication
electronics

Figure 3. Experimental setup with the artificial finger and palm.

3.3. Objects to Explore

We selected 42 objects with different shapes and compliances (see Figure 4 and Table 1),
which were grouped into four sets. The first set consisted of 3D printed objects (#OBJ-7,
#OBJ-31, #OBJ-32, and #OBJ-37 to #OBJ-41) made of the flexible thermoplastic materials
Filaflex® and TPU®. The second set comprised hand-therapy grip 3D ovoids of varying
stiffness (#OBJ-16 to #OBJ-18 with middle-high stiffness; #OBJ-19 to #OBJ-21 with high
stiffness; #OBJ-22 to #OBJ-24 with low stiffness; #OBJ-25 to #OBJ-27 with middle-low
stiffness). The third set consisted of objects selected from real-world scenarios (#OBJ-4,
#OBJ-5, #OBJ-6, and #OBJ-29), some of which were used in different positions. Last,
to consider applications such as smart agriculture and food processing, we included
17 pieces of fruits and vegetables in varying states of preservation: immature, mature,
or rotten (#OBJ-1, #OBJ-2, #OBJ-3, #OBJ-9 to #OBJ-15, #OBJ-28, #OBJ-30, #OBJ-33 to #OBJ-36,
and #OBJ-42).
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#OBJ-1 #OBJ-2 #OBJ-3 #OBJ-4 #OBJ-5 #OBJ-6

#OBJ-7 #OBJ-8 #OBJ-9 #OBJ-10 #OBJ-11 #OBJ-12

#OBJ-13 #OBJ-14 #OBJ-15 #OBJ-16 #OBJ-17 #OBJ-18

#OBJ-19 #OBJ-20 #OBJ-21 #OBJ-22 #OBJ-23 #OBJ-24

#OBJ-25 #OBJ-26 #OBJ-27 #OBJ-28 #OBJ-29 #OBJ-30

#OBJ-31 #OBJ-32 #OBJ-33 #OBJ-34 #OBJ-35 #OBJ-36

#OBJ-37 #OBJ-38 #OBJ-39 #OBJ-40 #OBJ-41 #OBJ-42

Figure 4. Set of 42 object classes used to carry out the palpation exploration, also see Table 1.

Table 1. Table with the forty-two classes employed in this work, also see Figure 4.

Object Label Object Description Exploring
Position Object Label Object Description Exploring

Position

#OBJ-1 Avocado Horizontal #OBJ-22 Hand-therapy grip orange 3D ovoid Face Down
#OBJ-2 Eggplant Horizontal #OBJ-23 Hand-therapy grip orange 3D ovoid Face Up
#OBJ-3 Plum Standard #OBJ-24 Hand-therapy grip orange 3D ovoid Horizontal
#OBJ-4 Foam cube Vertical #OBJ-25 Hand-therapy grip green 3D ovoid Face Down
#OBJ-5 Foam cube Vertical #OBJ-26 Hand-therapy grip green 3D ovoid Face Up
#OBJ-6 Hand-therapy grip sphere Standard #OBJ-27 Hand-therapy grip green 3D ovoid Horizontal
#OBJ-7 Green Filaflex 3D printed sphere Standard #OBJ-28 Potato Horizontal
#OBJ-8 Hydro-alcoholic gel Horizontal #OBJ-29 Paddle ball Standard
#OBJ-9 Kiwi Horizontal #OBJ-30 Pear Horizontal

#OBJ-10 Lettuce Horizontal #OBJ-31 TPU 3D printed pyramid Face Down
#OBJ-11 Ripe lemon Horizontal #OBJ-32 TPU 3D printed pyramid Face Up
#OBJ-12 Green lemon Horizontal #OBJ-33 Green banana Horizontal
#OBJ-13 Ripe tangerine Horizontal #OBJ-34 Ripe banana Horizontal
#OBJ-14 Green tangerine Horizontal #OBJ-35 Rotten banana Horizontal
#OBJ-15 Rotten nectarine Horizontal #OBJ-36 Tomato Horizontal
#OBJ-16 Hand-therapy grip blue 3D ovoid Face Down #OBJ-37 Filaflex 3D printed toroid Horizontal
#OBJ-17 Hand-therapy grip blue 3D ovoid Face Up #OBJ-38 Filaflex 3D printed toroid Vertical
#OBJ-18 Hand-therapy grip blue 3D ovoid Horizontal #OBJ-39 TPU 3D printed triangle Face Down
#OBJ-19 Hand-therapy grip purple 3D ovoid Face Down #OBJ-40 TPU 3D printed triangle Face Up
#OBJ-20 Hand-therapy grip purple 3D ovoid Face Up #OBJ-41 TPU 3D printed triangle Horizontal
#OBJ-21 Hand-therapy grip purple 3D ovoid Horizontal #OBJ-42 Carrot Horizontal

3.4. Data Gathering Procedure

The following procedure was performed to obtain data for training and testing:

• Step 1: An object from the set shown in Figure 4 and Table 1 was manually placed
between the artificial finger and the palm;

• Step 2: The palm was moved vertically to grasp the object, until the load cell de-
tected a low-level threshold force of Finit = 0.1 N. This position was recorded as the
initial point;

• Step 3: The palm was moved further vertically, so that the object was compressed until
the palm reached a maximum relative distance from the initial point of approximately
≈1.2 cm (although the palm–finger gripper had a certain compliance, this limit was
forced to avoid damage to the system when rigid objects were explored);
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• Step 4: The palm was moved vertically in the reverse direction, so that the object was
decompressed until the initial position defined in the Step 2 was reached.

This procedure was repeated at a velocity of v = 10 mm/s and 47 times per object.
During the squeeze–desqueeze sequences, the finger and palm tactile sensors collected
data in real time, and they were sent to a personal computer and saved in text files using
the Labview® application. Figure 5 provides an overview of the methodology for the
exploration of an object #OBJ-17 .

Initial position
(F = 0.1 N, d = 0 cm)

Maximum displacement
position 

(d ~1.2 cm)

End position 
(F = 0.1 N, d = 0 cm)

Maximum displacement for the
hand-therapy grip blue ovoid

(Face Up position)

Figure 5. Illustration of the exploration sequence for the object class #OBJ-17.

Once the experiments had been performed with the 42 objects shown in Figure 4, we
obtained the first six raw moments curves for the tactile images (1) of these objects. Figure 6
displays the example six first raw moment Mp,q curves for the finger and palm and for the
#OBJ-17 and #OBJ-38 objects in Figure 4 and Table 1, respectively.
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Figure 6. Curves obtained for the first six raw moments (Mp,q) obtained with the finger (a,c), and palm
(b,d) from the exploration of the #OBJ-17 and #OBJ-38 classes.

3.5. Training Algorithm

This study utilized an unsupervised k-means classifier to obtain the results. The k-
means classifier was selected due to its simplicity and speed of convergence compared to
other machine-learning techniques such as support vector machines (SVM) or K-nearest
neighbors (KNN), which require a significant amount of data storage for real-time tasks.
The k-means++ method [20] was used to initialize the centroids, which represented the
different classes, either randomly or in a systematic manner. The training process involved
updating the centroids in response to the presented training set. This process was repeated
with shuffled data until the centroids did not change or a maximum number of iterations
was reached. The final trained classifier was selected based on the best accuracy achieved
over one hundred repetitions of the whole procedure, using data from the test set [21].
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4. Implementation on the Zynq7000® SoC

To demonstrate the feasibility of the approach and estimate its performance, a two
step procedure was followed. First, data gathering was carried out using the finger and
palm sensors, as described in Section 3.4, and the obtained moment–time graphs were
transferred to the external DDR3 memory of an AVNET® ZedBoard™ development board.
This board is based on the Zynq™-7000 System on Chip (SoC) XC7Z020-CLG484-1 device,
which has an FPGA and an ARM® dual-core Cortex™ A9 processor. The feature extraction
procedure described in Section 2 was then implemented on the FPGA of this SoC, while the
classification algorithm was implemented in the ARM core. The use of this development
board added flexibility for assessing the different alternatives before the implementation
of a final system, where the features from the finger and palm sensors were transferred
directly to a specific board with an embedded processor that implemented the classifier.
Figure 7 illustrates this system and the overall datapath and processing logic actually imple-
mented on the FPGA of the SoC. The FIFO (first-input first-output) output (32-bit words)
was transmitted to an AXISTREAM Serial to Parallel Interface , which utilized the AMBA®

AXI-Streaming protocol for the communication between the FPGA hardware modules in
the system. This allowed the input data (raw moments Mp,q of the finger and palm) from
the FIFO to be distributed to multiple preprocessing modules (VHDL Features Computing
Module in Figure 7), while synchronization signals ensured their parallel execution in
hardware. This is beneficial as we are maximizing the capabilities of the FPGA. In a sce-
nario where both the finger and palm, and the maximum number of raw moments and
features were utilized, the execution time remained unchanged compared to using a single
module. This could be particularly useful for situations where the complexity of the system
is increased.

The Vivado Design Suite™ environment was used to implement the preprocessing
modules in Figure 7). This software integrates a hardware-description code written in
VHDL/Verilog, as well as presynthetized cores from IP libraries or from the High-Level
Synthesis (HLS) tool. The VHDL Features Computing Module blocks produce synchronized
output data (Dp,q) for the finger and palm, respectively. These data are then transmitted to
an AXISTREAM Parallel to Serial Interface through the use of the AMBA® AXI-Streaming
protocol. The feature vectors are serially transferred to a DDR memory for storage via
a FIFO buffer and a DMA module. This setup allows the ARM core to access the stored
data without having to manage data traffic. The FIFO output module allows frequency
decoupling between the processing logic (PL) and processing system (PS) parts.

Figure 8 illustrates the obtention of the AR, MAX, H1, and H2 features from the
p, q order moment of the tactile images (Equation (1)) the VHDL Features Computing
Module. The instants required to read the values of H1, MAX, and H2 are provided in a
field of the 32-bit input data (they are determined by the gripper controller in the squeeze–
desqueeze sequence), and their reading only requires simple comparisons implemented in
LUT Logic. On the other hand, the AR feature is computed with an adder that takes the
32-bit input data per clock cycle and adds this to the aggregated summation stored in a
register. The values of the features are then concatenated into a single 32-bit output. This
module also uses the t_valid and t_ready signals from the AMBA® AXI-Streaming protocol
for input/output synchronization. The clock frequency is fclk = 100 MHz. The feature
output is provided only three clock cycles after the last input vector is read.
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if END bit = 1)

MAX 
if MAX bit = 1

H1 
if H1 bit = 1

H2 
if H2 bit = 1

clk (100MHz)

32 bits 
(data input)

32 bits feature
(data output)

tvalid_out tready_slave

tvalid_int tready_out

Synchronization Signals

Synchronization Signals

𝑡𝑡0 →

𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸 →
𝑡𝑡0 𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸

clk (100MHz)

Figure 8. Proposed implementation of the VHDL Features Computing Module in Figure 7.
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An optional module to perform PCA is included in Figure 7. The inclusion of this
module requires more memory and logical resources (Section 5), but a smaller number
of features can be sent to the classifier implemented in the ARM core. The HLS principal
component analysis (PCA) computing module implementation in Figure 7 was developed
using System C in Vivado® HLS. The corresponding pseudocode is shown in Figure 9.
The Vivado optimization directive #HLS DATAFLOW enhances the concurrency of the RTL
implementation. The pipeline implementation at RTL level is achieved through the use
of #HLS PIPELINE and #HLS INLINE Vivado optimization directives. For each new Dp,q
feature vector, the pre-computed µ vector is subtracted and then, this result is multiplied
by the PCA matrix coefficients coeff.

Finally, the k-means classifier (Section 3.5) was implemented in the ARM core using
the SDK® (System Development Kit) from Xilinx®. For this work, the classifier was trained
offline and the calculated centroids were stored in the memoy of the SoC. High-speed
communication with a personal computer was achieved using a real-time operating system
(RTOS) and a lightweight TCP/IP stack, both implemented in the ARM core.

Input: Input observation vector 𝑿𝑿𝒏𝒏 (𝑛𝑛-length vector with the 𝑛𝑛 computed features)
Variables:

• 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 (internal 𝑚𝑚 × 𝑛𝑛 matrix with the PCA coefficients, 𝑚𝑚 is the number of principal components)
• 𝝁𝝁 (internal 𝑛𝑛-length buffer with the mean vector)
• 𝑿𝑿𝝁𝝁 (internal 𝑛𝑛-length vector with the subtracted mean vector 𝝁𝝁)
• 𝑠𝑠𝑠𝑠𝑚𝑚 (internal sum for each iteration in the matrix multiplication)

#Apply→HLS DATAFLOW directive
1) Subtract 𝝁𝝁 from 𝑿𝑿𝒏𝒏:
for 𝑖𝑖 ← 1 𝑡𝑡𝑡𝑡 𝑛𝑛 do

#Apply→HLS PIPELINE directive
𝑋𝑋𝜇𝜇 𝑖𝑖 = 𝑋𝑋𝑛𝑛 𝑖𝑖 − 𝜇𝜇 𝑖𝑖

end

2) Multiply 𝑿𝑿𝝁𝝁 by the 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 PCA coefficient matrix:
#Apply→HLS INLINE directive
for 𝑎𝑎 ← 1 𝑡𝑡𝑡𝑡 𝑚𝑚 do

for 𝑏𝑏 ← 1 𝑡𝑡𝑡𝑡 𝑛𝑛 do
𝑠𝑠𝑠𝑠𝑚𝑚 = 0
𝑠𝑠𝑠𝑠𝑚𝑚 = 𝑠𝑠𝑠𝑠𝑚𝑚 + 𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎, 𝑏𝑏 × 𝑋𝑋𝜇𝜇(𝑏𝑏)

end
𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎 = 𝑠𝑠𝑠𝑠𝑚𝑚

end
Result: Output 𝑚𝑚-length reduced observation vector 𝑿𝑿𝒓𝒓𝒄𝒄𝒓𝒓 with the 𝑚𝑚 principal components

Figure 9. Pseudocode for the HLS principal component analysis (PCA) computing module in Figure 7.

5. Results and Discussion

This section shows the results obtained from the object palpations described in
Section 3. The processes of data gathering, feature extraction, and training for classification
were explained in Section 3.4, Section 2, and Section 3.5, respectively.

5.1. Results Obtained without PCA

In order to determine the best implementation, we needed to consider different combi-
nations of sensors (finger, palm), features (see Table 2), numbers of image moments per
sensor, and bits per feature. Matlab® was used to obtain the results in Table 3, which shows
the highest accuracy percentage achieved without PCA, for different combinations of Mp,q
moments, features, and bits per feature (nbits/feature), respectively.
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Table 2. Labels for the combination of features: area under the curve (AR), maximum value (MAX),
magnitude value in the ascending part at 2/3 of the time needed to reach the maximum (H1) and
magnitude value at 1/3 of the same time after the maximum was reached (H2).

Combination of Features Label

AR d1
MAX d2

H1 d3
H2 d4

AR and MAX d5
AR and H1 d6
AR and H2 d7

MAX and H1 d8
MAX and H2 d9

H1 and H2 d10
AR, MAX and H1 d11
AR, MAX and H2 d12

AR, H1 and H1 d13
MAX, H1 and H2 d14

AR, MAX, H1 and H2 d15

Table 3. Classification accuracy without PCA.

Combination of Mp,q Moments

Sensor Nbits/Feature M0,0 M0,0,M0,1
M0,0,M0,1,

M1,0

M0,0,M0,1,
M1,0,M0,2

M0,0,M0,1,
M1,0,M0,2,

M2,0

M0,0,M0,1,
M1,0,M0,2,
M2,0,M1,1

8 <23%
(all cases)

<45%
(all cases)

68.8%
(d15)

82.3%
(d15)

88.4%
(d11)

89.1%
(d5)

Finger 12 63.2%
(d11)

80.5%
(d5)

86.8%
(d11)

91.7%
(d5)

89.6%
(d5)

90.5%
(d5)

16 75%
(d11)

83.6%
(d11)

88.5%
(d11)

90.9%
(d11)

90.2%
(d5)

89.9%
(d5)

8 <50%
(all cases)

79.2%
(d11)

86.2%
(d11)

86.9%
(d11)

86.9%
(d5)

89%
(d5)

Palm 12 84.8%
(d11)

87.5%
(d5)

88.2%
(d5)

88%
(d5)

87.7%
(d5)

89.3%
(d5)

16 82%
(d5)

84.2%
(d11)

88.4%
(d5)

87.1%
(d5)

87.8%
(d5)

89.6%
(d5)

8 68.6%
(d11)

93.3%
(d11)

97.3%
(d11)

95.5%
(d11)

97.2%
(d11)

98.5%
(d11)

Finger and
Palm 12 94.5%

(d5)
96.4%
(d5)

97%
(d5)

95.5%
(d5)

95.7%
(d5)

98.2%
(d5)

16 93.5%
(d5)

96.3%
(d5)

97.5%
(d5)

95.1%
(d5)

96.1%
(d5)

98.2%
(d8)

To assess the consumption of resources, we first identified cases with high accuracy
(bolded in Table 3). These selected cases were implemented on the Zynq™-7000, and the
consumption of resources was taken from the Utilization Report provided by the Vivado
IDE®. The results are shown in Table 4.
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Table 4. Performance data for the implementation of the feature extraction without PCA (VHDL
features computing module in Figure 7), as provided by the real Vivado IDE® Utilization Report.
The last two columns are the input–output delay of the module (in ns), and its power consumption
(in mW).

Sensor Best Case LUTRAM BRAMs FF
Pairs

LUT
Logic

DSPs F-
MUXES

t f eature extraction
(ns)

Power
Consumption

(mW)

Finger
M0,0,M0,1,
M1,0,M0,2

d5, 12 bits/feature
0 0 14 19 0 0 30 4

Finger and Palm M0,0
d5, 12 bits/feature 0 0 28 38 0 0 30 2

Finger and Palm M0,0,M0,1
d5, 12 bits/feature 0 0 56 76 0 0 30 4

Finger and Palm
M0,0,M0,1,

M1,0
d5, 16 bits/feature

0 0 108 136 0 0 30 6

Finger and Palm
M0,0,M0,1,
M1,0,M0,2

d11, 8 bits/feature
0 0 72 128 0 0 30 12

Finger and Palm
M0,0,M0,1,
M1,0,M0,2

d5, 12 bits/feature
0 0 112 152 0 0 30 8

Finger and Palm

M0,0,M0,1,
M1,0,M0,2,

M2,0
d11, 8 bits/feature

0 0 90 160 0 0 30 15

Finger and Palm

M0,0,M0,1,
M1,0,M0,2,
M2,0,M1,1

d11, 8 bits/feature

0 0 108 192 0 0 30 18

Palm

M0,0,M0,1,
M1,0,M0,2,
M2,0,M1,1

d5, 16 bits/feature

0 0 84 114 0 0 30 6

As shown in Table 4, only a limited number of memory elements (distributed mem-
ory (LUTRAM), embedded block RAMs (BRAM), and flip-flop pairs (FF)) were required
for these implementations. Specifically, the implementation only required slice registers
(Flip-Flops). It is also worth noting that neither BRAMs nor Embedded DSPs (DSPs) were
used in the computation of the features, which would make the migration of this design to
other FPGA platforms easier.

At this point, to compare different options, we proposed the use of the figure of merit
defined in (2).

f (α, d, nBits, r) =
α

d · nBits · r (2)

where α corresponds to the classification accuracy, d is the total number of input features for
the classifier, nBits is the number of bits per feature, and r is the total number of hardware
resources, as defined in (3).

r =
1
6
·
[

LUTRAM
max(LUTRAM)

+
BRAMs

max(BRAMs)
+

FF Pairs
max(FF Pairs)

+
DSPs

max(DSPs)
+

+
LUT Logic

max(LUT Logic)
+

F-MUXES
max(F-MUXES)

] (3)

where max(LUTRAM), max(BRAMs), max(FF Pairs), max(DSPs), max(LUT Logic), and
max(F-MUXES) are the maximum number of LUTRAM, BRAMs, FF Pairs, DSPs, LUT
Logic, and F-MUXES in the Zynq™-7000 System on Chip (SoC) XC7Z020-CLG484-1 device,
respectively.
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Figure 10 displays the figure of merit for each case in Table 4. The labels in the fig-
ure show the corresponding case and its classification accuracy. The best performance
in terms of hardware resources and accuracy percentage was achieved by the case Fin-
ger&Palm (nMom1-12bits/feature-d5). This is because it required fewer resources com-
pared to the other implementations, which used more moments per sensor (right side of
Figure 10). These other implementations achieved a high accuracy but consumed more hard-
ware resources. In contrast, the Finger&Palm (nMom1-12bits/feature-d5) implementation
only used the first raw moment for both the finger and palm, the d5 feature (combination of
AR and MAX features in Table 2), and 12 bits per feature, while achieving a classification
accuracy close to 94%.

0

0.2

0.4

0.6

0.8

1

Finger & Palm 
nMom2 (d5) 
nBits/feature 12

Finger & Palm
nMom3 (d5)
nBits/feature 16

Finger & Palm
nMom4 (d11)
nBits/feature 8

Finger & Palm
nMom4 (d5)
nBits/feature 12

Finger & Palm
nMom5 (d11)
nBits/feature 8

Finger & Palm
nMom6 (d5)
nBits/feature 16

Palm
nMom6 (d5)
nBits/feature 16

Finger 
nMom4 (d5) 
nBits/feature 12

Finger & Palm 
nMom1 (d5) 
nBits/feature 12

Figure 10. Result of the figure of merit in (2) normalized with respect to the best case.

The confusion matrix for the best case Finger&Palm (nMom1-12bits/feature-d5) in
Figure 10 is depicted in Figure 11. This confusion matrix shows that this implementation
accurately classified the 42 objects in Figure 4, reaching an accuracy of 94.5% in our
experiments. Despite the large size of the test set (673 feature vectors), there were only a
few misclassifications.

Finger&Palm (nMom1-12bits/feature-d5) 
Accuracy: 94.5%
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Figure 11. Confusion matrix of the optimal implementation in Figure 10. This case (second row
of Table 4) used the first raw moment M0,0 for both finger and palm, the d5 feature, and 12 bits
per feature.
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With respect to the computation time, it was the same for all cases in Table 4 (three
clock cycles after the last input vector was read, see Section 4), thanks to the parallel
implementation illustrated in Figure 8.

5.2. Results Obtained with PCA

When PCA was applied, the accuracy results for the same cases of Table 3 were as
shown in Table 5, where nCm means the number of principal components.

Table 5. Classification accuracy with PCA.

Combination of Mp,q Moments

Sensor Nbits/Feature M0,0 M0,0,M0,1
M0,0,M0,1,

M1,0

M0,0,M0,1,
M1,0,M0,2

M0,0,M0,1,
M1,0,M0,2,

M2,0

M0,0,M0,1,
M1,0,M0,2,
M2,0,M1,1

8 <30%
(all cases)

<45%
(all cases)

64.4%
(d15, nC5)

81.4%
(d11, nC5)

85.9%
(d11, nC5)

89%
(d11, nC6)

Finger 12 64.1%
(d15, nC4)

83%
(d5, nC3)

89.3%
(d5, nC4)

90.9%
(d5, nC3)

90.6%
(d5, nC6)

91.1%
(d5, nC5)

16 76.2%
(d5, nC2)

85.3%
(d5, nC4)

90.5%
(d5, nC4)

91.2%
(d5, nC6)

90.5%
(d11, nC6)

90.8%
(d5, nC4)

8 <41%
(all cases)

75.2%
(d11, nC4)

85.2%
(d5, nC6)

87.2%
(d5, nC6)

88%
(d5, nC6)

89.4%
(d5, nC5)

Palm 12 84.5%
(d11, nC3)

86.5%
(d5, nC4)

88.5%
(d5, nC6)

89%
(d5, nC5)

87.1%
(d5, nC5)

89.1%
(d5, nC6)

16 82.7%
(d11, nC3)

87.5%
(d5, nC3)

88.2%
(d11, nC6)

88.5%
(d5, nC5)

87.8%
(d5, nC5)

89%
(d5, nC5)

8 64.7%
(d15, nC4)

92%
(d11, nC5)

95.8%
(d11, nC4)

94.5%
(d11, nC5)

96.3%
(d11, nC5)

94.4%
(d11, nC3)

Finger and
Palm 12 94.6%

(d5, nC3)
97.3%

(d5, nC5)
97.3%

(d5, nC5)
95.2%

(d5, nC5)
96.1%

(d5, nC5)
95.5%

(d8, nC3)
16 95.1%

(d5, nC4)
96.9%

(d5, nC5)
97%

(d11, nC5)
95.1%

(d5, nC6)
96.9%

(d5, nC6)
97%

(d8, nC5)

Figure 12 shows a comparison in three-dimensional feature space with three principal
components, when the finger, palm, and finger–palm were used. In all cases, six moments
were used, the d5 feature was applied, and there were 8 bits per feature. The training sets
for each class in Figure 12 are represented as Gaussian ellipsoid distributions. The centroid
of each class, a 3-value array, was determined through the training procedure outlined in
Section 3.5. The classes in Figure 12c are more separated from each other than in Figure 12a,b;
therefore, the classifier was more accurate when it received information from multiple
sources. This can be seen in Table 5 and was also observed when PCA was not applied,
as mentioned in the previous section.

As done when PCA was not applied, we selected the top-performing cases in terms of
accuracy (bolded in Table 5). The results of the consumption of hardware resources in these
cases are presented in Table 6. This time, the number of cycles the PCA computation took
depended on the number of PCA components (see last column in Table 6). The consumption
of memory resources was similar in all cases, which means that increasing the feature vector
dimension did not imply a significant increment in hardware resources.

Figure 13 shows a comparison of the cases in Table 6 with the figure of merit defined
in (2). The best case now was Finger&Palm, nMom1 (d5), nBits/feature 12, nC3 and its
corresponding confusion matrix is displayed in Figure 14.
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Figure 12. Comparison of a three principal component dimensional feature space for (a) finger,
(b) palm, and (c) finger and palm. In all cases, the number of moments was six, the feature used was
d5 from Table 2, and the number of bits per feature was 8. In the figure, PC1 stands for principal
component 1, PC2 stands for principal component 2, and PC3 stands for principal component 3.

Table 6. Performance data for the implementation of the feature extraction with PCA (VHDL features
computing module plus HLS principal component analysis (PCA) computing module in Figure 7),
as provided by the real Vivado IDE® Utilization Report. The columns of the Table are the same as in
Table 4.

Sensor Best PCA Case LUTRAM BRAMs FF
Pairs

LUT
Logic

DSPs F-MUXES t f eature extraction
(µs)

Power
Consumption

(mW)

Finger
M0,0,M0,1,
M1,0,M0,2

d5, 12 bits/feature, nC3
40 2 441 1076 7 6 2.75 34

Finger and Palm M0,0
d5, 12 bits/feature, nC3 36 2 443 1078 7 6 1.43 32

Finger and Palm M0,0,M0,1
d5, 12 bits/feature, nC5 36 3 454 1110 7 6 4.55 37

Finger and Palm
M0,0,M0,1,

M1,0
d5, 16 bits/feature, nC4

48 3 516 1219 7 6 5.41 39

Finger and Palm
M0,0,M0,1,
M1,0,M0,2

d11, 8 bits/feature, nC5
36 3 478 1185 7 6 13.35 46

Finger and Palm
M0,0,M0,1,
M1,0,M0,2

d5, 12 bits/feature, nC5
36 3 518 1198 7 6 8.95 41

Finger and Palm

M0,0,M0,1,
M1,0,M0,2,

M2,0
d11, 8 bits/feature, nC5

36 3 507 1235 7 6 16.65 49

Finger and Palm

M0,0,M0,1,
M1,0,M0,2,
M2,0,M1,1

d11, 8 bits/feature, nC5

24 4 495 1310 7 6 19.95 54

Palm

M0,0,M0,1,
M1,0,M0,2,
M2,0,M1,1

d5, 16 bits/feature, nC5

48 3 506 1202 7 6 13.35 40
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Figure 13. Result of the figure of merit in (2) normalized with respect to the best case in Figure 10.
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Figure 14. Confusion matrix of the optimal implementation in Figure 13. This case (second row of
Table 6, used the first raw moment M0,0 for both finger and palm, the d5 feature, and 12 bits per
feature, and three principal components.

Figure 15 depicts the result of adding the input–output delay of the feature extraction
(see Tables 4 and 6) to the delay of the classifier. The latter was measured with a MDO4104B-
6 Mixed Domain Tektronix® 6 GHz Oscilloscope. The dimension of the feature vector
(number of features as components) is the variable on the x-axis of Figure 15. It can be seen
that the larger the number of features, the longer it took for the classifier to provide an
output. Since the number of features was lower in implementations with the PCA module,
these realizations performed better for this aspect.
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Figure 15. Feature extraction delay plus classification delay vs. the classifier input feature vector
dimension. The results correspond to the cases in Tables 4 and 6, for the implementations without
PCA and with PCA, respectively.

6. Conclusions

This paper proposes a strategy for recognizing the compliance of objects with tactile
sensors. This strategy is intended to be implemented in smart sensors that have embedded
electronics. Specifically, previously reported sensors with electronics based on FPGAs
were mounted on the gripper. These sensors provide the raw moments of the tactile
image, and they are registered when the target object is squeezed and desqueezed. Four
parameters from the thus-obtained curve were proposed as input features for the classifier.
Principal component analysis was also considered, to reduce the dimensions of the feature
vector. Many different options were then analyzed, depending on the number of moments
and features, and the size in bits of these features, in terms of the classification accuracy and
performance of the realization in the Zynq™-7000 System on Chip. The feature extraction
was carried out on the FPGA of the SoC, while the k-means classifier was implemented in
its ARM core.

From the analysis of the results, it can be concluded that the best results in terms
of classification accuracy were achieved when both finger and palm sensors were used
(above 94% accuracy). In this case, the implementation of the feature extraction on the FPGA
that ddid not apply PCA was much more efficient in terms of resources (see Tables 4 and 6)
and power consumption (2 mW versus 32 mW with PCA).

The application of PCA could be advantageous to reduce the input–output delay of
the classifier and increase the separation between classes. This work was carried out with
a large set of 42 classes, and the application of PCA provided a slight improvement in
the input–output delay. Moreover, it is interesting to consider the case of using only the
finger sensor, which simplified the system. In this case, if the first four raw moments of
the tactile image were registered, the achieved classification accuracy was 91.7% without
PCA and 90.9% with PCA and three components. Therefore, the classification accuracies
were similar, although the consumption of resources by feature extraction was much higher
when PCA was applied, and the power consumption of this part was 34 mW versus 4 mW
without PCA. However, the time of the feature extraction plus the input–output delay of
the classifier was 65.7 µs with PCA and 82 µs without PCA.

In summary, with the setup and set of classes used in this paper, the procedure that
did not apply PCA was better, because the proposed strategy based on four simple features
from the raw moments graphs resulted in a very efficient realization. An improvement in
the input–output delay was observed with PCA, which was more significant if only the
finger sensor was used. The choice between both options also depends on the complexity
of other tasks that have to be carried out in real time.

Further works could be carried out considering different aspects. First, the influence of
the object size and spatial resolution of the tactile sensors on the classification performance
and consumption of resources should be assessed. Second, other learning and classification
algorithms could be implemented and evaluated. Third, the capability for recognizing
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the object compliance has to be integrated with other functions, such as that of texture
detection. Finally, the proposed procedure could be implemented in other commercial
artificial hands and grippers equipped with tactile sensors.
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