Automated Software Engineering (2023) 30:3
https://doi.org/10.1007/s10515-022-00367-5

®

Check for
updates

STAN: analysis of data traces using an event-driven
interval temporal logic

Laura Panizo'® - Maria-del-Mar Gallardo’

Received: 26 July 2021 / Accepted: 22 October 2022
© The Author(s) 2022

Abstract

The increasing integration of systems into people’s daily routines, especially smart-
phones, requires ensuring correctness of their functionality and even some perfor-
mance requirements. Sometimes, we can only observe the interaction of the system
(e.g. the smartphone) with its environment at certain time points; that is, we only have
access to the data traces produced due to this interaction. This paper presents the tool
STAN, which performs runtime verification on data traces that combine timestamped
discrete events and sampled real-valued magnitudes. STAN uses the SPIN model
checker as the underlying execution engine, and analyzes traces against properties
described in the so-called event-driven interval temporal logic (eLTL) by transforming
each eLTL formula into a network of concurrent automata, written in PROMELA, that
monitors the trace. We present two different transformations for online and offline
monitoring, respectively. Then, SPIN explores the state space of the automata network
and the trace to return a verdict about the corresponding property. We use the proposal
to analyze data traces obtained during mobile application testing in different network
scenarios.

Keywords Interval temporal logic - Runtime verification - Trace analysis

This work has been supported by the Spanish Ministry of Science, Innovation and Universities project
RTI12018-099777-B-100, the Spanish Ministry of economic affairs and Digital Transformation project
TSI-063000-2021-11 (5G+TACTILE-1) and the European Union Horizon 2020 research and innovation
programme under grant agreements No. 101016521 (5G-EPICENTRE) and 101016608 (EVOLVED-5G).

B4 Laura Panizo
laurapanizo@uma.es

Maria-del-Mar Gallardo
mdgallardo@uma.es

ITIS Software, Andalucia Tech, Universidad de Malaga, Malaga, Spain

Published online: 30 November 2022 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00367-5&domain=pdf
http://orcid.org/0000-0002-6399-6162
http://orcid.org/0000-0003-3481-5307

3 Page2of47 Automated Software Engineering (2023) 30:3

1 Introduction

Nowadays, many electronic devices play an important role in our daily life, from in-
home monitoring systems (Botia et al. 2012) or medical devices (Cameron et al. 2015),
to smartphones that also allow interacting with other devices (Espadaetal. 2019). Since
we increasingly depend on these systems, it is important to check that they satisfy some
correctness properties which, in many cases, imply fulfilling different non-functional
requirements. In the domain of smartphones, an example of these properties could be
“the energy consumed by the device during the download of a given application is
always less than a threshold K. The evaluation of this property involves handling the
energy consumption of the device that is usually represented by a magnitude variable
whose value evolves over time.

In this paper, we describe an approach to perform runtime verification of non-
functional properties of event-driven systems that include magnitude variables and
evolve by reacting to internally or externally triggered events. Figure 1 shows our
proposal, which has been implemented in the tool STAN. The inputs of STAN are the
non-functional properties described in the event-driven temporal logic (eLTL in short)
(Gallardo and Panizo 2019), and the data trace under analysis, which is a sequence of
observable system states that includes timestamps and sampled real-valued variables.

eLTL is a temporal logic that extends LTL to support the definition of properties with
real-valued variables that must be evaluated on sub-traces delimited by events. Thus,
intuitively, the eLTL formulae Ojp,41¢ and <y 41¢ indicate that the nested formula
¢ has to be true in all/some sub-traces of the input data trace satisfying that the first
and the last sub-trace states satisfy p and ¢, respectively. These specifications allow
an unknown number of sub-traces of the data trace (of an unknown duration) to be
described. In addition, the nested formula ¢ can describe properties on the values of
any system variable, such as energy consumed or time elapsed, inside the sub-traces
provided by the corresponding operator.

Inspired by Pnueli and Zaks (2006), STAN transforms each eLTL operator into an
instance of a monitor template; that is, an automaton that analyzes the input data trace.
Thus, each eLTL formula is represented by a network of automata that monitors the
data trace and determines whether it satisfies the property. This approach is suitable for

o e g,

el | /
formula| |

: Parser (eltl2pml)
i Interval
i Formula (¢)
- elTL operator II (external)
i Monitor templates
| 1
: Network of

T?aa:; 5 o Monitor
AN Automata

e

Fig. 1 Runtime verification of event-driven hybrid systems with STAN

@ Springer

Automated Software Engineering (2023) 30:3 Page 3 of 47 3

runtime verification of event traces, but also for system model checking as proposed
in Pnueli and Zaks (2006).

The current implementation of STAN is publicly available in GitLab' and relies
on the SPIN model checker (Holzmann 2003) to perform the analysis. To ease the
transformation from eLTL to PROMELA, which is SPIN’s modeling language, we provide
a parser, called elfl2pml, that transforms a textual representation of a formula into the
instantiation of the corresponding monitors.

Although an implementation based on a programming language could be more
efficient, SPIN and its modelling language PROMELA introduces several advantages.
Firstly, itis possible to easily implement both automata and their composition by means
of the PROMELA process type (proctype). Thus, each eLTL formula is implemented
by the synchronized execution of instances of the corresponding proctypes of their
nested operators. Second, PROMELA models can embed C code, which provides high
flexibility for the implementation and further extensions. For instance, STAN currently
uses C functions to obtain and store data traces, and also to externally monitor the
magnitude variables. A similar approach was followed in Gallardo and Panizo (2014),
where the embedded C code made it possible to work in a transparent manner with
abstractions of the continuous variables for the exploration algorithm.

In Gallardo and Panizo (2019), we presented the eLTL logic and a first version of the
implementation. In the current paper, we extend this work with the following contribu-
tions: (1) the tool STAN that includes a new offline and online monitoring approaches;
(2) an intermediate tree-based implementation of the monitors that demonstrates the
correct transformation of eLTL operators into monitors; (3) study of the temporal and
space complexities of both implementations; (4) extended case study based on realistic
traces.

The rest of the paper is organized as follows. Section?2 presents the syntax and
semantics of eLTL. In Sect. 3, we introduce some features of PROMELA and SPIN to
facilitate the reading of Sect. 4, which first introduces an intermediate implementation
of eLTL monitors and then presents the two approaches to transform eLTL operators into
PROMELA monitor templates. To ease the reading of the paper, most of the PROMELA
code of the online and offline implementations is included in Appendix A. Section5
presents complexity results of the two monitoring approaches. The proofs of these
results are detailed in Appendix B. Then, Sect.6 presents a case study based on the
analysis of non-functional properties of mobile apps in different network scenarios.
Section 7 discusses related work on languages and algorithms to analyze data traces
in different contexts. Finally, Sect. 8 presents the conclusions and future work.

2 Event-driven systems and the eLTL logic

In this section, we define the behavior of event-driven systems (EDSs) by means of
the well-known and classic notion of labeled transition systems. We consider EDSs
as black boxes whose states can be observed at some time instants. In particular,
states are visible just after an external or internal event occurs or when a certain

I Available at https://gitlab.com/morse-uma/formal-methods/stan.

@ Springer

https://gitlab.com/morse-uma/formal-methods/stan

3 Page4of47 Automated Software Engineering (2023) 30:3

amount of time has passed. An EDS state contains two types of variables: the discrete
variables, whose value only changes as the result of events, and the other of system
variables, called magnitudes, whose value may evolve over time. Our aim is to monitor
these magnitudes. For instance, assume we are measuring the gasoline consumption
(variable gas) of a car, which changes depending on the engine status and the car
speed. The variable status is discrete, since it can only change as the result of a user
event to turn the engine on/off, while both gas and speed are magnitudes since their
values may evolve over time and also as the result of some user events (brake, speed up
and so on).

Definition 1 (Event-driven systems (EDS)) An EDS is a tuple H = (X, —,E U
{tick}, so) where X is a non-numerable set of system states. E is a finite set of events,

tick being a special one used to denote the time passing, - C X x E U {tick} x X is
the transition relation, and so € X is the initial state.

We now introduce some notation in order to define the semantics of the transition
relation — of an EDS ‘H. First, we define the states of X as tuples of variables as
follows. We denote with Var; and Var,, the ordered sets of the discrete and magnitude
variables, respectively. We assume that discrete variables take values in set Val,,
where symbol _L represents the unknown value. In contrast, magnitude variables are
real-valued, i.e., take values in R. We assume that the first variable of Var, is ev,
which registers the last fired event (or _L if no event has been fired). Similarly, the first
variable of Var,, is ts, which contains the timestamp where the corresponding state
has been observed. Thus, if Vary = {ev,dy, --- ,dy} and Var,, = {ts,my--- ,m,},
states s € X of H are 4-tuples of the form s = (vey, V4, Vrs, Upm), Where vey € Val |
and v,y € RZ0 are the values of ev and 7s in state s, and ¥ € Val’i and v,, € R”" are
vectors with the values of the discrete variables and magnitudes in s.

Events of E are abstract representations of both internal discrete actions, carried
out by the system, and external actions, fired by the environment to change the system
operating mode. In any case, events typically update some discrete variables of the
system; however, it is also possible that events update some magnitude variables.
Continuing with the car example, when the car’s engine is turned off (the discrete
event), variable gas is set to zero or, inversely, when the engine is turned on, gas is
set to an initial positive value.

We define the intermediate transition relation ~~C ¥ x E x X that models how a
state (Vey, U4, Urs, Upy) changes when event e € E occurs:

- - e -
(Vevs Vd, Urs, Upm) ~ (e, U;” Uts U;,,)

The new state (e, U);, vy, Uy,) stores in variable ev that e has just happened. We
rewrite discrete variables and magnitudes as v/, and v, to indicate that their values
may be modified by the transition. Observe that the value of variable s does not
change, since we are assuming that the transition is instantaneous.

Transition relation —C X x E U {tick} x X models the system evolution by means
of the two following rules:

@ Springer

Automated Software Engineering (2023) 30:3 Page 5 of 47 3

Pure timed transitions

§>0

_ _ tick _ _
(Vev, Vds Vrs, Um) —> (L, Vg, vrs + 8, 0y,)

EDSs may evolve when a pure timed transition occurs, i.e., when the only change
in the system is produced by the passing of § > 0 time units. As commented above, we
use the special label fick to identify the timed transitions. Observe that the transition
updates the value of variable s properly. In addition, it rewrites the value of magnitudes
as), since their values could be changed by the transition. In contrast, transition does
not change the value of the discrete variables except for ev that is updated to L to
indicate that no event has occurred.

Mixed transitions
PRLLLY s s S
s > 5"

Transitions labeled with an event express both time passing and event firing before
the final time instant. In this case, the variable ev registers the event and the other
state variables are properly updated. Some discrete and magnitude variables may be
updated as the result of the event. We have decided not to deal with discrete transitions
in isolation to model the fact that it is not possible to observe two consecutive discrete
transitions at the same time instant. This also avoids the Zeno behavior that could
occur when infinite discrete transitions take place between two time instants.

Following the car example, assume Vary; = {ev, status} and Var,, = {ts, speed, gas}.

If (Vev, Ustatus» Vis» Uspeeds Vgas) 1s the state with each variable var € Vary, U Vary

bound to value vy, transition (L, on, 10, 10, 0.2) U—Ck> (L, on,15,0,0.5) repre-

sents the evolution of speed and gas consumption after passing 5 time units. In this

case, the car is reducing its speed from 10 to 0 Km/h but the gas consumption is

off
increased from 0.2 to 0.5 I since the engine is on. Moreover, (L, on, 15,0, 0.5) —————>mm el

(turnOff', off , 20, 0, 0.0) represents that the engine has been turned off (event furnOff)
at timestamp 20, which causes the change in the status variable but also a reset to 0
of the gas variable.

Given an EDS H, we denote with Oy (H) the set of traces of finite length of the

en— . . .
form 7 = 59 Q028 $p—1 with n > 0 determined by H produced applying pure
timed or mixed transitions. The length of a trace 7 is the number n of states.

2.1 Syntax and semantics of eLTL

In this section, we first describe the syntax of eLTL and then, given H = (X, N
, E U {tick}, so), we present the eLTL semantics on the traces of Or(H).

We assume that events of E constitute the state formulae to be checked on states.
Recall that given a transition s 4 s’, state s’ stores in variable ev the event! = e € E
that occurred in the transition, or L, if no event took place, i. e., [= tick. Thus, it

@ Springer

3 Page6of47 Automated Software Engineering (2023) 30:3

is possible to know whether an event has happened by observing a state. We define
relation FC X x E that associates states and events as follows. Given s € X', and

e € E, s - e iff variable ev of state s is equals to e, i.e. if event e has just occurred.

. /! l”, . .
Given a trace T = sy S sp—1 of length n,and 0 < j < k < n, 7[j, k]

1 I _— . .
denotes the sub-trace s ; oL gof . To simplify the notation, in the following

we denote with zs; the value of variable s in state s;. Recall that since time evolves
in both the pure timed and mixed transitions, we have that ts; < fsy.

Our proposal is inspired by the duration calculus introduced in Chaochen and
Hansen (2004), where the interval logic domain is the set of time intervals I defined
as {[t1, bl 1 € RZ0, 1 < 1)

To analyze the evolution of magnitude variables (and also discrete variables, if
necessary) on intervals, we use the so-called interval formulae as defined below.

Definition 2 An interval formula is a function of the type ¢ : I — {true, false} that
associates each time interval with a truth value.

Let @ be the set of all these interval formulae. We assume that @ contains the special
interval formula True : I — {true, false} that returns true for all time intervals; that is,
VI € I.True(I) = true. The elements of @ will be the atomic propositions on which
the eLTL logic is constructed.

For instance, consider the real-valued magnitude speed in the car example intro-
duced above. Interval formula ¢ ([#;, tr]) = speed(t;) > speed(tr) can be used to
determine whether the speed at the interval end points is decreasing.

The following two definitions are used to determine the time intervals at which

the interval formulae should be evaluated. To do this, we use the so-called interval of
events of the form [p, q] where p, g € E. The idea is that, given a data trace &, each
interval of events [p, g] may determine different sub-traces of 7w and, consequently,
different time intervals. Event p fixes the initial timestamp of the interval, and g the
final one.
Definition 3 Given a trace m = sg ﬂ ﬁ) sn—1 € Of(H), two events p,q € E
and two states s;, sy of w such that j < k, we say that sub-trace m[j, k] satisfies
the interval of events [p, ¢], and we denote it as [j, k] IF [p, ¢], iff the following
four conditions hold: 1) s; = p; 2) Vr.j < r < k,s, ¥ q;3) sp = g; and 4) if
p and g are different events, there is no state s, with 7 < j, such that s, - p and
Vr.h <r < js Fgq.

Intuitively, given , [j, k] IF [p, q] holds iff states s; and s; occur in different
timestamps, s; satisfies p and si is the first state following s; that satisfies ¢. In
addition, when the events are different, the fourth condition ensures that sub-trace
m[j, k] is maximal in the sense that it is not possible to find a larger sub-trace ending
at sy satisfying the previous conditions. This notion of maximality guarantees that the
evaluation of interval formulae starts at the state when event p first occurs.

Example 1 The following trace 7 tries to clarify Definition 3. Let us first assume that
D, q € E are different. Then we have that [j, k] I [p, ¢, but =[j’, k] ¥ [p, q] and

@ Springer

Automated Software Engineering (2023) 30:3 Page 7 of 47 3

w[j’, k'1 ¥ [p, q], since condition (4) does not hold. In addition, 7[j, k'] ¥ [p, q],
since condition (2) does not hold.

- p - p - q q
[it 1ot e o
S0 S S Sk % Sn—1
; 6))
[p.q]

Now assume that p, g € E are the same event. Then, following Definition 3, we
have that w[j, r] I [p, p] and 7 [r, k] IF [p, p]. Note that, in this case, condition (4)
does not apply.

S0 Sj Sy Sk Sn—1

@)

[p. pl [p, Pl

The following trace 7 has more than one sub-trace satisfying the interval of events
[p.ql

- p q p - q
I - - - --- 20 o - - - - -~ o
S0 Sji : Sky Sj» Sk Sn—1
z z 3)
: :
[p.q] [p.q]

The fourth condition in Definition 3 guarantees that the logic manages maximal
intervals wrt the first occurrence of event p that makes it easy to represent properties in
some application domains. For example, if we are interested in analyzing some prop-
erty of a network during a video streaming session, the current definition determines
that the session is given by the first occurrence of events that initiate and end the video
stream, independently of whether the user tries to start the session several times until
the video is observed.

Remark 1 1t is worth noting that relation I of Definition 3 could have been differently
defined to produce other types of sub-traces. For instance, we could modify condition
(2) of Definition to consider the last state where event g occurs (before p appears
again) instead of the first one. This would lead us to extract sub-trace [, k'] instead
of [, k] in the first trace of the previous example. In the same line, relation |- could
have been defined less restrictively to take into account all sub-traces determined by
p and g, including the nested and overlapped ones. In this case, for the same trace
of Example 1 just mentioned, we would obtain that 7[j, k] I+ [p, q], ®[j, k'] IF
[P, ql, 7[j’", k1I- [p, qland = [j', K'T I [p, q].

The next definition is used to simplify the semantics of eLTL given in Definition 6.

@ Springer

3 Page8of47 Automated Software Engineering (2023) 30:3

. I In
Definition 4 Given a trace 7 = sy — - - - Y sn—1 € Or(H), two state formulae
P, q € E,wedenote with S(7, [p, q]) the ordered set of sub-traces { [j, k]| [}, k] IF
[p, ql}. Similarly, we use S(rr, p) to denote the ordered set of states {s;|s; I p}.

That is, S(7, [p, q]) is the set of sub-traces of 7 satisfying Definition 3. The set
S(m, [p, q]) can contain several sub-traces as illustrated in trace (3) of Example 1. In
addition, S(r, [p, ¢]) is ordered with respect to the value of the starting timestamp of
each sub-trace. Similarly, S(r, p) is ordered with respect to the timestamps of their
states. Considering this, and given a Boolean condition C, we write fst(S (T, [p, q]), C)
for the first sub-trace in S(7r, [p, ¢]) that satisfies C, if it exists. Otherwise, we define
fst(S(m, [p, q]), C) as the empty trace €. Similarly, we write fst(S(, p), C) for the
first state in S (77, p) that satisfies C (fst(S(xr, p), C) = €, if no state of S(ir, p) satisfies
p)-

Definition 5 (eLTL formulae) Given p, q € E, and ¢ € @, the formulae of eLTL logic
are recursively constructed as follows:

V=@ | =y | Y1V | ynlp v | vildpyn

The other temporal operators are defined accordingly as:
Op.q)¥ = True Upp V> Dip.g1¥ = ~(Crp.q1=¥)s
Cp¥ = TrueUpyr, Opyr = —(Cp—Y)

The following definition provides the semantics of eLTL formulae given above.
Recall that given a trace 7 € Op(H) of length n, 7[i, f] is the sub-trace of 7 from
state s; to state sy.

Definition 6 (Semantics of eLTL formulae)
Given p,q € E, ¢ € @, and the eLTL formulae v, 1, ¥, the satisfaction relation
= is defined as follows:

nli.fl1E¢ if ¢ ([tsi, tsp]) 2.0
mli, f1 -y if wli, f1 =¥ 2.2
mli, f1E Y1V ¥ if nli, fl1E Y ornli. f1 = 2 (2.3)

i, f1 & vilip.q1¥2 iff Arnlj, kl € S(xli,f1, [p, gDl (2.4)
wlj, k1 =fst(S(x[i, f1, [P, q]), ¥2)
and [i, j1 = ¥
i, f1 E vilpn iff Isj € S(xli, f1, p)l
sj =fst(S(li, f1, p), ¥2)
and li, j1 = ¥ 2.5)

Finally, given m € Of(H) a trace of length n and v an eLTL formula, = |= iff
w[0,n—1] .

The semantics given by = is similar to that of LTL, except that = manages interval
formulae instead of state formulae. For instance, case 2.1 states that the sub-trace

@ Springer

Automated Software Engineering (2023) 30:3 Page 9 of 47 3

(i, f] of m satisfies an interval formula ¢ iff ¢ holds on the time interval determined
by timestamps of states s; and sy (¢ ([ts;, tsr])). Case 2.4 establishes that VU q1¥2
holds on trace 7 [i, f] iff we can find two timestamps ts; < tsy, determined by events
p and g, that split the trace into two sub-traces [i, j] and [, k], each one satisfying
Y1 and Y, respectively. Observe that | must hold in the sub-trace determined by the
first interval of events [p, g] on which v, is true. This way, the until operator follows
the same semantics of the classical LTL until. However, other alternative approaches
are also possible. For instance, in Maler and Nickovi¢ (2013) the authors provide a
more relaxed definition for until, since they do not require that v be true the first time
Y holds. Nonetheless, we could easily change the until definition to also accept these
behaviors if in the future we think this is necessary. Finally, case 2.5 is similar to case
2.4, except that ¥ is satisfied at a time instant rather than an interval. Similarly, in
Op ¥ (or <) the nested formula v will be evaluated at a single point.

Remark 2 Observe that the semantics of operator U, 4] completely depends on rela-
tion I of Definition 3. The sub-traces of i,] produced by I- determine the sub-trace
m[J, k] chosen to evaluate ¥» (and, consequently, the sub-trace to evaluate yr1). How-
ever, as discussed in Remark 1, relation IF could be differently defined, which would
lead to different semantics of operator U, 41 and, therefore, to different logic imple-
mentations. For instance, if we define IF- to produce maximal sub-traces wrt both events
p and g, the current definition of U, 41 would not change, although the sub-traces
on which sub-formulae 1| and vy, are evaluated would be different. However, to take
into account nested or overlapping sub-traces, the definition and the implementation
of Up,q1 would have to change significantly. The current definition of I- preserves
the balance between having enough expressiveness in eLTL to describe a set of rich
properties and having an efficient implementation as it is shown in Sects.4 and 5.

Proposition 1 Operators Ojp 41, Crp,q1, Op and &, given in Definition 5 have the
following meaning:

nli, f1E Cp.av iff Irnlj, k]l € S(xli,f1, [p, gDl
wlj, kKl =¥ (2.6)
wli, f1 = Op.q¥ iff vrlj, k] € S(xli,f]. [p, gDl
nlj, kIl =V 2.7)
wli,f1ECp¥ iff 3sj € S(xli, f1, p)
wlj, j1E¥ (2.8)
7li,f1 = Opy iff Vsj € S(li,f1. p)l
wlj, jl1E v (2.9)

Proof 1. Cases 2.6 and 2.8 follow from the definition of <, 41 and <, taking into
account that the interval formula True holds for all intervals.

2. Case 2.7. By definition O[p g1 = —p,q1—¥; that is, w[i, f] = Opp,q ¢ iff
[i, f1 ¥ Orp,q1—¥. Using expression 2.6, we have that 7 [i, f] = $pp g1 iff

@ Springer

3 Page 100f47 Automated Software Engineering (2023) 30:3

forall Z[j, k] € S(xli,f],[p,q]), [, k] = — which, according to case 2.2,
means that for all 7 [, k] € S(x[i, f], [p, q]), wlj, k] = .
3. The proof for case 2.9 is similar to the one above.
O

Remark 3 At this point it is worth highlighting that eLTL preserves the separation of
concerns related to where interval formulae have to be evaluated and what interval
formulae must be checked in each sub-trace found. This independence (illustrated in
Fig. 1) means that the logic provides, on the one hand, the temporal operators in charge
of determining the sub-traces of interest to analyze a given property and, on the other,
the interval formulae ¢ to be evaluated on these sub-traces.

In addition, the way eLTL deals with interval formulae allows hiding the possi-
ble complexity of its evaluation. For instance, consider function ¢’ € @ defined as
o' (¢, r]) = trueift vy, 1 € RZ9, i <1 <ty <ty speed(t]) > speed(ty), that
is, iff the speed is decreasing in [#;, #]. Formally, the eLTL semantics given above just
need that the interval formula ¢’ can be computed. It is an implementation issue to
determine how ¢’ ([1;, tr]) is calculated in practice. For example, an implementation of
¢’ could use only the observable states of the trace under analysis to decide whether
speed is decreasing in [1;, f¢], or it could use the actual dynamic behaviour of speed in
[4i, tr], if it is available.

2.2 Examples

Now, we mention some examples of eLTL properties to show its expressiveness and
motivate the usefulness of the logic. We specify some properties of interest on data
traces of smartphones running applications (apps) in different network scenarios. This
case study is further discussed in Sect. 6.

In the Introduction, we stated a non-functional property that must hold when an
app is downloaded. The property says that “the energy consumed by a mobile device
during the download of a given app is always less than a constant K. The following
eLTL formula represents this property:

true if ¥Vt € [t;, tr], energy(t) < K

Oiastr,dstp)Pe, where ¢ (1, 1r]) = Julse otherwise
where dStt and dStp are the events raised when the download of an app starts and
ends, respectively, and ¢, is the interval formula that determines whether the energy
is below the limit K each time the application is downloaded.

In addition, we can express that “the app is downloaded at least once in less than
T time units” using the following formula:

Oldset,dsip)r, where ¢ ([ti, 7)) =t —t; < T

The previous property can be refined to express that “the app has to be downloaded
at least once, and the download always takes less than 7' time units and the energy

@ Springer

Automated Software Engineering (2023) 30:3 Page 11 of 47 3

— dStt - oh — dStp dStt dStp
o-=-==-==- -0 o= - = === e - == === -0
50 : N : : : S
: : * True : : : :

Pn
NI
orlonTTuE oo True

O (astt,dstp) (Prllon TTue)

Fig.2 Example of evaluation of Oys17,astp] (PnlonTrue)

consumed is always less than K as follows:

Ordset,dsip) True N Oiast,dstp)(Pr N de)

Combining operators with one and two events, we can describe the property “if
during the download of an app the mobile raises an overheated event (oh), the device
temperature has increased at least C degrees from the download start” as follows:

Opastr,dsep)(@nlhon True), where ¢p([t;, tr]) = temp(tr) — temp(t;) > C

Figure 2 shows, for the previous formula, how each temporal operator determines
the sub-trace where its nested formula has to be evaluated. For instance, Ogssr,d51p]
scans the complete trace to find sub-traces delimited by [d St¢, dStp]. In each sub-
trace, ¢nldyn True detects the first occurrence of event oh (this state satisfies True),
and then ¢, can be evaluated in the sub-trace delimited by events d St¢ and oh. Observe
that to satisfy the property, in the second sub-trace determined by [dSt?, dStp] the
event oh must occur and ¢ must hold.

3 Background of PROMELA and SPIN

This section introduces the main characteristics of the SPIN model checker (Holzmann
2003) and its modeling language PROMELA. A more complete description of both the
tool and the language may be found at Holzmann (1997).

SPIN is able to verify the correctness of systems typically composed of concurrent
processes against safety and liveness properties described in LTL. SPIN is an explicit
model checker that works as follows. The system under analysis and the properties to
be analyzed are both translated into Biichi automata. Then, the property automaton is
executed synchronously with the model automaton, which is exhaustively explored by
an efficient double depth-first search algorithm, which builds the system state space on-
the-fly. To better understand the interaction between the execution of both automata, we
can consider that the property automaton acts as an observer of the system automaton
and is able to stop the analysis when an anomalous behavior of the system is observed.

@ Springer

3 Page120f47 Automated Software Engineering (2023) 30:3

Although SPIN is a very efficient model checking tool, the exhaustive exploration of the
state space can lead to the so-called state space explosion problem when the number
of states generated exceeds the available memory. Thus, system abstraction plays an
important role in the analysis work.

PROMELA, SPIN’s modeling language, has a syntax similar to language C. A
PROMELA model is composed of a finite set of concurrent processes, whose execution
is, by default, interleaved. PROMELA provides asynchronous/synchronous communi-
cation channels, and global/local variables of a non-floating type. System states are
given by the values of variables, channels and the program counter (the next statement
to be executed) of each process in execution. When some of these elements change, a
new state is generated and stored (if it has not yet been visited), building this way the
system state space.

Listing 1 shows an example of a PROMELA process called formula which, in fact,
is the instantiation of the eLTL formula Oy, 41(¢1 V ¢2). The behavior of the process is
written in a proctype (line 17), where the keyword act ive indicates that initially
there is a running instance of this process. PROMELA has a rich syntax that includes
enumerate types (lines 3 and 4), variable assignments (line 18), logic operations (line
31), dynamic process creation (line 27) and unconditional jumps (goto) to labeled
statements (line 30). Regarding labeled statements, it is worth clarifying that some
labels have a special meaning that directly affects the analysis. For instance, labels
starting with end mark valid termination states.

SPIN simulates the execution a PROMELA program by interleaving the execution of
its processes in a non-deterministic manner. A process can only be selected to continue
the execution ifitis executable, i.e.,if it has an executable statement to be run next. If no
executable process exists, the program blocks. Thus, the executability of statements
is key to understand how a PROMELA program may progress. Boolean expressions
constitute a special case in the language. A Boolean expression is a basic statement,
in the sense that it can be used such as an assignment. The main difference is that a
Boolean expression can only be executed if it evaluates to true, while assignments are
always executable. This semantics is very useful to easily model the synchronization
by shared variables in the language. The executability of the other statements is defined
similarly to that of other languages.

PROMELA provides 1 f selection statements (lines47-52), and do loop statements
(lines 29-45). Both statements can be composed of multiple guarded branches (starting
with symbols : :) and can exhibit a non-deterministic behavior. If multiple branch
guards are executable, one of these branches is non-deterministically selected to be
executed. Otherwise, when all guards are non-executable, the process containing the
statement is suspended.

In addition to the process synchronization through shared variables, PROMELA also
provides synchronization via messages passing through channels. When the channel
size is zero (line 5) the communication is synchronous (rendezvous), which implies
that the transmission and reception of a message takes place simultaneously in the
two end-point processes. Thus, if one of the processes is not ready to send/receive
the message through a synchronous channel, the other process is suspended. Asyn-
chronous channels are used as bounded buffers. The transmitting process can send a
message if the channel is not full, while the receiving process can read messages if the

@ Springer

Automated Software Engineering (2023) 30:3 Page 13 of 47 3

/*Definition of constants with #define*/

2 #define FORM 4 /* Number of operators of the formula?*/
3 mtype:event = {g,p};

4 mtype:command = {START, STOP};

5 chan rd[FORM] = [0] of {bool};

6 chan cm[FORM] = [0] of {int,h mtype:command};

7 c_decl{ #include "eltl_ccode.h"

8 TTrace events,h6 measures;

9 ChannelEv *ev;

10 P_Event proc[FORM];

11}

12 /***/

13 int 1i;

14 mtype:event e;

15 inline sendEvent () {c_code{insertEvent (ev,proc, FORM,
now.i,now.e);};}

TG K Kk ko ko ok ok ok ok ko ok ok ok ok ok ok ok ok ok ko ok ok ok oK koK ok ok ok o ok ok ko ko ko kK kK X K/

17 active proctype formula () {

18 bool result, rx=0;

19 int t;

20 c_code{ int 1i;

21 readTraceCSV (MEASURES_FILE, COLS_M, ROWS_M, &measures) ;

22 readTraceCSV (EVENTS_FILE, COLS_E, ROWS_E, &events) ;

23 ev = createEmptyChannel () ;

24 for (i=0; 1<FORM; 1i++) proc[il= ev->h;

25 }

26 /*A_{p,q} (Phil || Phi2)*/

27 atomic{ run ALWAYS_PQ(0,1,p,q);

28 run OR(1,2,3); run PHI_1(2); run PHI_2 (1) ;}

29 do

30 :: stop && rx -> goto init_stop;

31 :: ! (stop && rx) && 1>=0 && 1<ROWS_E ->

32 c_code{now.e = events.varTraces[now.i][1];};

33 if

34 i == 0 -> cm[0]!i, START; sendEvent () ;

35 :: 1 == ROWS_E -1 -> sendEvent(); cm[0]!i, STOP;

36 :: else -> sendEvent () ;

37 £i;

38 i++;

39 :: rd[0]?result, t;

40 rx=1;

41 if

42 :: !stop -> cm[0]!i,STOP; stop=1;

43 :: else;

44 £i;

45 od;

46 {

47 init_stop:

48 if

49 ::result -> c_code{printf ("Property SATISFIED at ") ;

50 printTime (events.varTraces [Pformula->t][0]) ;};

51 :: else -> c_code{printf ("Property NOT SATISFIED at ");

52 printTime (events.varTraces [Pformula->t]1[0]) ;};

53 £i;

54 c_code{ destroyTrace (&measures); destroyTrace (&events) ;
destroyChannel (ev) ;}

55 assert (false) ;

Listing 1 Online implementation of a formula

@ Springer

3 Page 14 0of 47 Automated Software Engineering (2023) 30:3

channel is not empty. Otherwise, the corresponding process is suspended. Symbols !
and ? after the channel name represent, respectively, the transmission and reception
of messages through channels (lines 34 and 39). Observe that messages can comprise
multiple values. For example, in line 34, the message includes the value of the integer
variable 1 and the enumerated value START.

From PROMELA 4.0, the language supports embedded C code in the models.
The basic statements to embed C code are c_decl (line 7) to declare C vari-
ables or include native libraries, c_expr that allows the use of C expressions in
guarded statements, and c_code (line 21) that allows the unconditional execu-
tion of C code. As we will see in further examples, PROMELA variables can be
accessed from c_expr and c_code blocks. Global variables are referenced using
the notation now. < var_name >, whereas local variables are referenced using
P < proctype_name > — >< var_name >. It is worth mentioning that, by
default, the C variables are not part of the system states, and thus changes in the C
variables values do not produce new system states. This way, it is possible to keep part
of the system behavior in the C variables and maintain an abstract representation in
the PROMELA model (which takes fewer values) and a tractable system’s state space.

4 Implementation

As described in Fig. 1, STAN analyzes execution traces of an EDS against properties
described in eLTL. The goal of this section is to show how each elLTL formula is
translated into a network of finite automata which are, in fact, PROMELA processes
capable of monitoring and analyzing the input trace. Once the network has been
constructed, STAN uses the SPIN model checker to determine whether each trace
satisfies the formula by analyzing the network of finite automata.

To better understand the approach followed by STAN, in Sect. 4.1 we first introduce
an intermediate implementation using the recursive function evalT that makes use of
a tree representation of the formulae to be evaluated. Then, we present the imple-
mentation of the monitor templates of the eLTL operators described in Sect.2, which
are the patterns of the above mentioned automata. We describe the offline and online
implementations of the templates in Sects. 4.2 and 4.3, respectively.

4.1 Tree based implementation

We can represent each eLTL formula vy by means of a binary tree 7y, where each
node corresponds to an eLTL operator of 1 and branches relate each operator with the
sub-trees of its nested formulae. For example, formula ¢ = Ojp ¢1(¢1 = O k192),
rewritten as O p,q1(—¢1 V O k1$2), induces the binary tree 7y, of Fig. 3. As one can
see, the tree structure completely matches the structure of . Thus, the root node
(Orp.q1) corresponds to the outer operator of . As Opp 4] is a unary operator, the root
node has only one child, and so on.

@ Springer

Automated Software Engineering (2023) 30:3 Page 15 of 47 3

Fig.3 Tree 7y corresponding to ¢ = O[p 41(#1 = [k1P2)

[Root node | Sub-trees | Ty.evalT(x[i, f])

1) - return ¢(ts;,tsy)
- T, return 7, .evalT (x[i, f])
v Tors Ty | if (Ty, -evalT (7, f])) return true
else return 7y, .evalT(xli, f])
for (w[j, k] « S(xli, f], [p, a]){
Clpal Ty, if (Ty, .evalT (n[j, k])) return true
return false
for (7lj, k] S([i, f1, [p, al)){
Op,q] Tpy if (=(Ty, -evalT(w[j,k]))) return false
return true
for (r[j, k] < S([i, 1, [, a]){
Upp,q] Tp1s Tops if (Ty,-evalT (n[j, k])) return Ty, .evalT (n[i, j])
return false

Fig.4 Definition of Ty .evalT (r[i, f1)

Now assume that we want to check whether a given eLTL formula 1 holds on a trace
w[i, f1. Once the tree Ty, has been constructed, the role of each tree node is to evaluate
a sub-formula of ¥ on a sub-trace of n[i, f]. For instance, in Fig.3, the root node
Oip.q1 evaluates sub-formula ¢1 v <, x1¢2 on each sub-trace of S([i, f1, [p, q).
Thus, the node Oj, 4) behaves as an iterator searching for the sub-traces of 7 [i, f]
satisfying [p, ¢] that, once found, are sent to their child, in this case the node V. When
the node V finishes the evaluation of the sub-trace, it returns the result to its parent
node (Qpp,q))-

Figure 4 shows the definition of the Boolean function evalT that, based on a tree
Ty, evaluates ¥ on a trace 7 [i, f]. The left column contains the eLTL operator of the

@ Springer

3 Page 160f47 Automated Software Engineering (2023) 30:3

root node of 7y, the middle column contains the name of its sub-trees, if any, and
finally, the right column shows the algorithm to evaluate i on the trace w[i, f]. For
instance, when ¥ = ¢ is an interval formula, the tree 7y only has the root node ¢,
and the function evalT returns the value of ¢ on the interval determined by the initial
and final states of 7 [i, f]. The cases in which ¥ = =y, ¥ = ¥ Vv ¥ are simple:
the root node — or Vv only has to propagate the trace to its sub-tree 7y, (or sub-trees
Ty, and 7y,) and wait for the result.

However, when ¥ = Ojp 11, ¥ = Op,q1¥1 O ¥ = Y1ld[p 412, the evaluation
of i involves both an iteration through trace x[i, f] searching for the sub-traces
satisfying [p, ¢] and recursive calls to evaluate the sub-formula /| on the sub-traces
using the sub-trees 7y, (and evaluate yr, using 7y, for U, 4)).

In Fig. 4, we use a notation close to the object oriented programming. For example,
the statement 7y, .evalT (z[i, f]) denotes the tasks carried out by 7y, to evaluate
whether trace 7 [i, f] satisfies ¥1. This way, we emphasize that once the tree 7y, is
constructed, it executes method evalT every time its parent (7) asks it.

The following result gives us the correctness of algorithm evalT .

Theorem 1 For each eLTL formula v and trace [i, f],
wli,fl =¥ < Ty.evalT (nli,f]) returns true

Proof The proof proceeds by induction of the structure of . The base case when
Y = ¢ is an interval function is trivial. The other cases hold from the definition of the
logic using induction. The most interesting point to be noted is that in all cases iterator
for produces the sub-traces of 7 [i, f] ordered with respect to time instants when the
corresponding states have occurred. In consequence, for instance in the U, 4 case,
when a sub-trace [, k] is found that satisfies v, it is in fact the first sub-trace of
these characteristics in 7 [i, f], which matches the definition of operator U4, 4| in the
logic. O

The offline and online implementations presented in the next sections, follow this
approach; that is, to evaluate an eLTL formula ¢ on a trace z[i, f], they construct a tree
Ty representing the formula, in which each tree node is a PROMELA process in charge
of evaluating a sub-formula of i on a sub-trace of 7 [i, f], as explained above. Since
the behaviour of each tree is completely determined by the operator in its root node, the
implementations described below focus on providing the so-called monitor templates
for each of the eLTL operators. Once a particular formula v is given, the monitor
templates can be automatically instantiated into PROMELA processes organized in a
tree like 7y, . The concurrent execution of all these processes is able to evaluate i on
any trace.

4.2 Offline implementation in PROMELA
This section describes how STAN analyzes a trace m[i, f] offline against an eLTL

formula v using a hierarchical tree of processes. To simplify this section, the PROMELA
implementation of most of these processes is in Appendix A.

@ Springer

Automated Software Engineering (2023) 30:3 Page 17 of 47 3

Each elLTL operator is represented by an instance of a PROMELA process
(proctype) that is parameterized with a number (1d) that identifies the process
instance (1d=0 is assigned to the outer formula operator) and the identifiers of the
nested formulae (c1 and/or ¢2), if any. In the following, we will call each one of these
PROMELA processes monitor. In addition, STAN always adds an extra monitor called
formula connected with the monitor of the outer formula operator. The monitor
formula initializes the system execution (including the construction of the tree of
monitors) at the beginning of the analysis and receives the result at the end.

To simplify the following discussion, we assume that the monitor id corresponds
to an eLTL operator with two nested sub-formulae whose behaviors are implemented
by monitors c1 and c2. The case when the operator only has one (or no) nested
formula is simpler. The templates also have as parameters the events in which the
corresponding monitor is interested (to carry out the iteration work over the trace, as
explained in the previous section).

In the offline implementation, monitors inspect the trace when the execution has
finished; thus, each monitor knows a priori the end of the trace to be analyzed. This fact
is directly reflected in the way in which monitors communicate with each other, which
is based on the message passing through different PROMELA channels (see Sect. 3).
Thus, the monitor id receives from its parent, through channel cm[id], the time
interval of the sub-trace on which it should perform its analysis work (as a message
of the form (ti, tf) with the interval endpoints). Similarly, the monitor 1d can
propagate the time interval information to the monitors of its sub-formulae via channels
cm[cl] and cm[c2]. Inversely, the monitor id uses the (output) channel rd [id]
to return its evaluation to the outer operator’s monitor (or to the formula monitor, if
it is the monitor of the outer formula operator). Both channels are synchronous, which
means that the two monitors in communication have to execute the send and receive
statements simultaneously. Observe that channels cm and rd correspond, respectively,
to the down and up arrows connecting the nodes in the tree of Fig. 3.

As discussed in Sect. 4.1, the monitors of eLTL operators with events (e.g. Op 4] OF
Olp.q1) have to identify the sub-intervals determined by [p, ¢] and propagate them to
the monitor of its nested operators. In the offline implementation, each monitor makes
use of the C function nextEv that, given a complete trace, a time instant t and an
event of interest e, returns the next time instant following t when the event e occurs
in the trace. Op ¢

As an example, we now describe the behavior of the tree of monitors constructed
to evaluate the formula O 41(¢1 V ¢2) by using the Message Sequence Chart (MSC)
of Fig. 5 and the PROMELA code shown in Listings 2 and 3, which show, respectively,
the offline PROMELA implementation of the formula and Ofp, 4] monitor templates.

The proctype formula is the only initially active process (observe the key-
word active in Listing 2, line 7). It is in charge of instantiating the monitors of
the eLTL operators (Listing 2, line 14) and sending the message with the endpoints
of the trace through channel cm[0] (Listing 2, line 15) to the outermost operator’s
monitor. In this example, the process ALWAYS_ PQ receives this first message (Listing
3, line 5). Then, it searches for the first time sub-interval [tp, tg] € [ti, tf] that
satisfies [p, gl (Listing 3, line 7), propagates the time interval to the monitor OR
through cm[1] and waits for OR to return the result of the evaluation. The OR mon-

@ Springer

3 Page 18 0f47 Automated Software Engineering (2023) 30:3

[orme] [e e J
: loop) (result) 8&(tq <=1f) | : :

cm[0]1(ti,tF) |

h 4

1]1(tp, t ' !
cm[1]!(tp,tq) emi2]i(tp,tq) Bl
cm[3]!(tp,tq ‘D

rd[3]!(r2,t2)

A

result = (ri1||r2)
rd[1]!(result,t)

rd[2]1(r1,t1)

P rd[0]!(result,t")

<

Fig.5 Synchronization of offline monitors for formula Oy 41(¢1 V ¢2)

itor propagates the received time interval to its two nested monitors through cm[2]
and cm[3] and waits for their results, which will be received through rd[2] and
rd[3], respectively. Monitors PHI_1 and PHI_2 are the functions that implement
the interval formulae ¢ and ¢, and, for this reason, they do not have any other nested
monitor. Thus, if both PHI_1 and PHI_2 evaluate to false, the OR monitor and the
ALWAYS_PQ also evaluate to false, and the formula evaluation is finished. Other-
wise, ALWAYS_PQ searches for the following sub-interval [tp’, tqg’] € [ti, tf]
(after [tp, tqg])satistying [p, g] and proceeds as previously described. When there
are no more sub-intervals in [ti, tf] that satisfy [p, gl, ALWAYS_PQ evaluates
to true and sends the result via channel rd [0] to the process formula. Observe
that the condition result && tg <= tf is needed to stop the execution when the
value of result obtained is false or when the sub-trace found is not inside the
original trace (in the interval [ti, tf]).

Finally, when the formula receives the evaluation from cm[0] (Listing 2,
line 16), it prints the result and executes assert (false) to produce an assertion
violation error that stops the analysis. It is worth mentioning that SPIN can be config-
ured to produce a counterexample (a trail fail) when assertion violations occur. The
counterexample can be reproduced to see how the monitors synchronize to evaluate
the formula on the trace.

4.3 Online implementation in PROMELA

The online implementation follows a similar approach to the offline; that is, there is
a hierarchical tree of monitors, each one in charge of analyzing a sub-formula of the
original formula. The main difference is that the online monitors scan the trace while
it is being produced; thus, the end of the trace is initially unknown. In addition, the
online monitors use a slightly different synchronization scheme in order to return a
verdict as soon as possible, avoiding if possible the analysis of the complete trace.

@ Springer

o Ul W N

15
16
17
18
19

SIS NN
o

N

24

Automated Software Engineering (2023) 30:3 Page 19 of 47 3

/*Definition of constants with #define*/
#define FORM 4 /* Number of operators */
mtype:event = {qg,p};
chan rd[FORM] = [0] of {bool};
chan cm[FORM] = [0] of {int,6 int}; //ti,tf
/** */
active proctype formula () {
bool result;
int t=0;
c_code{ readTraceCSV (MEASURES_FILE, COLS_M, ROWS_M,
&measures) ;
readTraceCSV (EVENTS_FILE, COLS_E, ROWS_E,
&events) ;
}
/*A_{p,q} (Phil || Phi2)*/
atomic{run ALWAYS PQ(0,1,p,q); run OR(1,2,3); run
PHI1 (2); run PHI2 (3) ;}
cm[0]!'0, (ROWS_E-1) ;
rd[0]?result, t;
if
:result -> c_code{printf ("Property SATISFIED at ") ;}
::else -> c_code{printf ("Property NOT SATISFIED at
")}
fi;
c_code{ printTime (events.varTraces [Pformula->t][0]) ;
destroyTrace (&measures) ;
destroyTrace (&events); 1};
assert (false) ;
}

Listing 2 PROMELA offline implementation of a formula

However, it is worth noting that the online monitors of eLTL operators with intervals
cannot always return the final verdict even though their nested formulae have sent them
their results. Assume, for instance, the tree of monitors for formula Oy 4% . When
the monitor of O, 4] detects that event p has occurred, it may start the monitor of .
However, although the monitor of v returns it false, it has to wait to know if event ¢
occurs before deciding whether the whole formula holds or not. This is because if no
q event occurs in the trace, O[p 41V is true.

We now describe how the online monitors evaluate the formula Oy 41(¢1 V ¢2)
by using the MSC shown in Fig. 6. Listing 1 shows the online implementation of the
process formula. As in the offline version, the proctype formula, which is the
only initially active process, is in charge of instantiating the tree of monitors for the
eLTL operators.

The first difference in the online monitoring approach is that each monitor
receives two different messages, (ti, START) and (tf, STOP), through the chan-
nel cm[id], which, respectively, announce the start and the end of the sub-trace
evaluate. Between these two messages, the ALWAYS_PQ monitor has to search for
the time intervals satisfying [p, g] and propagate them to its nested monitor OR.
Finally, as in the offline implementation, the synchronous channel rd[id] is used

@ Springer

15
16
17
18
19

20

NN
g W N

)

3 Page200f47 Automated Software Engineering (2023) 30:3

proctype ALWAYS_PQ (int id; int cl; int P; int Q) {
int ti,tf,t,tp,tqg;
bool result;

end_always_pg: cm[id]?ti,tf; t = ti;
getEvents:
c_code{PALWAYS_PQ->tp = nextEvent (events,
PALWAYS_PQ->t, PALWAYS_PQ->P) ;};
if
tp ==-1 -> tg= -1;
else -> c_code{PALWAYS_PQ->tg = nextEvent (events,
PALWAYS_PQ->tp+1,
PALWAYS_PQ->0Q) ;};
£fi;
if
(tg ==-1) || (tg > tf) -> result = true; t = tf;
goto always_pqg;
else -> cm[cl]!tp, tqg;

fi;
waitCl:rd[cl]?result, t;
if
result -> t=tqg; goto getEvents;
else;
fi;

always_pqg:
rd[id]!result, t;
goto end_always_pqg;
}

Listing 3 PROMELA offline monitor of the Always operator

to return the result of the evaluation to the outer operator’s monitor. Observe that an
online monitor could send its result before receiving the message (tf, STOP) (see
the left lower diagram of Fig. 6). For instance, the ALWAYS_PQ monitor can send its
evaluation when ¢; and ¢, evaluate to false. Butin any case, the monitor waits for
the (tf, STOP) message to be received.

The second difference in the online implementation is that each monitor receives the
events through the asynchronous channel ev. A monitor should only consider events
between the reception of the (ti, START) and (tf, STOP) messages. Thus, any
event received outside this interval is ignored. In Listing 1, the process formula
simulates how the system probes transmit the events by using the inline function
sendEvent that inserts events in the channel. Since PROMELA asynchronous chan-
nels are buffers of limited size, we have implemented ev channel as a combination
of two external C structures (ev and proc), in such a way that the number of events
can dynamically grow and each monitor can process the events of its interest indepen-
dently.

Apart from these changes in the synchronization of monitors, the evaluation of the
formulas follows the principles described in Sect.4.1.

@ Springer

Automated Software Engineering (2023) 30:3 Page 21 of 47 3

[formula] [ALWAYS_PQ] [OR] [PHI_1] PHI_2
loop) (iresult) a&(tq <t |

cm[0]!(ti,START) |]

cm[1]!(tp,START) []
_—’

alt)

cm(1]!(tq,STOP) cm[2]!(tq,STOP)

cm[2]!(tp,START) [] i+
cm[3]!(tp,START)

cm[3]!(tq,STOP)‘

rd[3]!(r2,t2)

3

result = (r1||r2) - rd[2]!(r1,t1)
rd[1]!(result,t) <«

result = true rd[3]!(true,t2)
rd[1]!(result,t)

cm[1]!(tq,STOP) em[3]1(ta,STOP)

cm[2]!(tq,STOP)
rd[2]!(r1,t1)

alt
rd[0]!(false,t")

cm[0]!(tf,STOP) |

cm[0]!(tf,STOP) |

rd[0]!(true,t')

Fig. 6 Synchronization of online monitors for formula Oy 41(¢1 V ¢2)

5 Complexity results

In this section, we enunciate two results concerning the asymptotic time and space
complexity of the implementation based on the tree of monitors described in Sect. 4.1.
Since the actual behavior of the monitors is in Appendix A, the proofs of these results
have also been moved to Appendix B.

We will denote as Cy (v,) and C;(y,) the space and time complexities of the
evaluation of the formula ¥y by means of the monitor templates on a finite data trace
7 € Or(H). When necessary, we will distinguish the complexity of the online/offline

implementations using super-indexes n and f, respectively, as C (,)/ C]; (yr, w) and

C (y, 1) /CL (r, 7).

@ Springer

3 Page220f47 Automated Software Engineering (2023) 30:3

5.1 Space and time complexities of interval formulae

We start by discussing the complexities of the interval formulae and then, we reason
on the formula structure to extract the complexities of other eLTL operators.

Given an interval formula ¢ and a finite trace 7 [i, f1, the calculation of ¢ ([zs;, £57])
requires two well defined steps: (i) reading of the interval endpoints ¢s; and ¢s¢ from
7 and (ii) evaluating ¢ ([ts;, ts¢]). This last step is carried out by a C function which
is called from the PROMELA code using the constructor c_code.

In both the offline and online implementations, reading ¢s; and sy from 7 involves
a spatial constant cost (we only need two variables to store ts; and ts¢). Regarding
the time complexity, the offline implementation also has a constant cost, since the two
interval extremes are known at the beginning of the analysis. In contrast, the online
implementation has a linear complexity wrt the length of = (denoted by n from now
on), since the monitor has to wait until the last state of 7 (sy) occurs to know #sy.

Evidently, as ¢ is a generic interval formula, we cannot estimate exactly the space
or time needed to evaluate it. Despite this, in this section, we study the complexity of
some interval formulae, and then we establish a condition under which the complexity
of eLTL formulae can be approximated. In the following, we discuss some C functions
that implement interval formulae with the worst-case time complexity proportional
to the length of the trace n, i. e., C;(¢p, m) € O(n). The space complexity C;(¢, 1)
is usually constant, since the evaluation of ¢ normally requires a finite number of
variables.

Let us study the complexities of evaluating two eLTL formulae on a finite trace
of length n:

1. Consider ¢yep, defined as ¢pen ([t;, tr]) =t — ;.

— Time complexity In this case, we clearly have that C{ (¢1en, m) € O(1) and
Cl'(@1en, m) € O(n) as it was commented above.

— Space complexity It is similar in both cases, since only a finite number of
variables are needed to calculate ¢y.,, i. €., Cs(Pren,) € O(1)

2. Consider ¢y, defined as ¢y, ([ti, tr]) =V t; <t < tr. c(t) < max.

— Time complexity Since trace w must be completely traversed to calculate ¢, .,
the time complexity of both implementations has to be proportional to the length

of the trace, and so C{(qﬁfnax,), Cl (P> T) € O(n).
— Space complexity Assuming that the evaluation of ¢, only makes use of
observable states, as in the previous example, the space complexity of both
monitors is constant because a finite number of variables is sufficient to evaluate

¢ ax ON any trace. In consequence, Cy (¢5,,,, 7) € O(1).

We now impose a condition on the functions that measure the time and space
complexity of interval formulae to be able to reason on the complexity of more complex
eLTL formulae. The intuition behind the condition is the following. Assume that g4 (n)
gives us an estimation of the time/space complexity of the calculation of ¢ over a trace
of length n. From the tree based implementation of Sect. 4.1, we know that the monitors
for operators Ojp 4], Crp,q1 and U 4) have to include some kind of iteration on the

@ Springer

Automated Software Engineering (2023) 30:3 Page 23 of 47 3

original trace m[i,] searching for the sub-traces 7 [, k] that satisfying [p, ¢]. The
nested interval formulae must be evaluated over these sub-traces. This means that the
calculation of the complexity of Oy 41, Cp,q] and U], 41 Operators typically involves
summing up functions of the form g (n) for each of those sub-traces. Assume we have
s sub-traces of this type. The intuition tells us that calculating ¢ on the whole trace
is more costly than calculating it on each of the sub-traces. That is, if ny, - - - , ng are
the length of these sub-traces, the cost of calculating gg¢(n1) + - - - + g¢(ng) should
be less than g4 (n). In consequence, this is the condition we impose on the complexity
functions of interval formulae:

Inverse Triangular Condition(ITC): We assume that worst-case time and space com-
plexities of interval formulae satisfy the inverse triangular condition wrt the trace
length, i.e., given ¢ € @ and a finite data trace 7 of length n, if g4 is the time/space
complexity of calculating ¢ and ny, - - - , ny € N satisfy that ny 4 - - - + ny < n then
gp(n1) + -+ gp(ng) < gp(n).

5.2 Complexities of eLTL formulae

Now, we enunciate two propositions that establish the time and space complexities of
eLTL formulae on traces under the ITC assumption. Proposition 2 shows how the length
of the trace, the number of operators of the formula and the time complexity of the
nested interval formulae influence the time complexity of the formula. In Proposition
3, we obtain a similar result, but considering the space used by the monitors that
implement the formula.

Proposition 2 Given an eLTL formula r with m nested eLTL temporal operators and
adata trace w of length n, then if g4 is the asymptotically worst time complexity of the
interval formulae nested in and it satisfies the ITC assumption, and we have that
Ci(y,) € O(gp(n) +m *n).

Proof The proof may be found in Appendix B. O

Proposition 3 Given an elLTL formula v with m nested elLTL operators and a data
trace 7 of length n, then if g4 and Cs () are, respectively, the asymptotically worst
space complexity of the interval formulae nested in \ and the monitors implementing

¥, we have that Cs(Y, w) € O(gg(n) + m x Cs ().
Proof The proof may be found in Appendix B. O

It is important to remark that polynomial functions trivially satisfy ITC. Thus, we
have the following corollary.

Corollary 1 Given an eLTL formula v with m eLTL operators and a data trace & of
length n, then if the worst time complexity of the interval formulae nested in is in
Om?) for 0 € N, we have that C;(yr, w) € O’ + m * n).

Similarly, if the worst space complexity of the interval formulae nested in ¥ is in
On?), then Cs(Wr, w) € Om? + m x C;(W)), Cs(W) being the worst spatial cost of
the monitors implementing the operators of V.

@ Springer

3 Page240f47 Automated Software Engineering (2023) 30:3

When complexity functions of interval formulae do not satisfy ITC, the calculation
of complexity of the monitors of more complex eLTL formulae must introduce addi-
tional linear factors depending on the number of eLTL operators nested in the formula.
This case is studied in depth in Appendix B.

6 Use case

In Espada et al. (2019) and Panizo et al. (2020), we presented a model-based testing
approach to test mobile applications (apps) under different network scenarios. We used
the SPIN model checker to generate different test cases, along with the TRIANGLE
testbed, which provides a controlled mobile network environment. In Panizo et al.
(2020), the complete approach was used to evaluate the performance of Exoplayer, a
video streaming app that implements different video streaming protocols. The appli-
cation is instrumented in order the TRIANGLE testbed can log different events of
interest, such as the start and stop of the video playback (events st and stp, respec-
tively), the video resolution (the event 7 means that the video is in high resolution,
whilst event / marks that the video is in low resolution), or when the first picture is
loaded (event fp). In addition, the testbed captures network traffic using libpcap® and
periodically measures different magnitudes used to compute Key Performance Indi-
cators (KPIs), such as transmitted and received data and data rates, or the strength of
the radio signal (rssi).

Using the TRIANGLE testbed we can obtain two types of event traces: first, traces
at the app level (Exoplayer) that include video events (e.g. change of video resolution);
and second, traces based on the network traffic level that include TCP protocol events
(e.g. connection established or released). In the following sections, we show how
STAN can effectively perform the analysis of these two types of traces against different
non-functional properties described in eLTL.

6.1 Analysis of video event traces

We have analyzed 5 video event traces produced in a network scenario recreating
an internet café at busy hours, and 5 other traces obtained in a network scenario
simulating a trip in a high-speed train. In each test, the app tries to play a 2-min long
video. Depending on the network conditions, the resulting trace can include (or not)
stt,fp, stp events and a variable number of resolution changes. Each trace has between
5 and 10 events and around 140 measures of the rssi, received data, and received data
rate parameters. Since the length of traces is short and the number of traces is reduced,
we have also generated synthetic traces that have between 40 and 120 events and nearly
700-2000 measure points. We analyze these traces against the following properties:

1. O sipTrue This formula checks whether the trace includes a video play-
back (from stt to stp events). This formula requires an instance of the template
EVENTUALLY_PQ and an instance of interval formula TRUE, which is an interval
formula monitor that always evaluates to true.

2 https://www.tcpdump.org/.

@ Springer

https://www.tcpdump.org/

Automated Software Engineering (2023) 30:3 Page 25 of 47 3

Table 1 Analysis of real and synthetic traces

Real traces Synthetic traces
F1 F2 F3 F4 F1 F2 F3 F4
Off tmax <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01
State size 152 224 228 348 152 224 228 348
n? states 18 42 43 50 18 78 130 69
On tmax <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.01 0.01
State size 160 240 244 372 160 240 244 372
n? states 103 191 230 188 103 444 795 346

2. Ogste,stp1PLste fp1Pel Where @ey (8, 1) = tr > t; + 1 Aty < 1; + 6 This formula
checks whether in a complete video playback, which is delimited by s¢¢ and szp
events, the first image (fp) is loaded between 1 and 6s after the video playback
starts.

3. Oste,stp1(Opn,11Prssi) Where @i ([4, tr]) = 3t € [t;, tr].rssipmin(t) < —99 This
formula checks whether a downgrade of resolution is preceded by a fall of the rssi
below -99 dB. This formula uses a total of 3 monitors.

4. (D[h,l]¢erate) A (O[Stt,stp](prxData) where ¢pxpare = Vt € [1;, tf].erate(t) =<
1Mbps and ¢« parq is defined as follows. We assume that »x Data : RZ0 — R=0
represents the size of the packets received at each time instant. Thus, given an
interval [¢;, tr], we know that rxData(t) # O for a finite number {71, ..., %} of
t € [t;, t]. Then, the function ¢, pa:a is defined as follows

@rxpara([ti, tf]) = E}(:lrxData(tj) > 14MB

The complete formula checks the conjunction of two properties: on the one hand,
whether the change in resolution from high to low is preceded by a low reception
rate (e.g. the rate is below 1 Mbps) and whether the data corresponding to the
video has been received (e.g. it receives more than 14 MB).

Table 1 summarizes the performance of STAN when analyzing the 4 properties. It
shows, for offline and offline implementations, the time to evaluate the property, the
state vector size and the number of states stored. In addition, we report the maximum
values for the real and the synthetic traces without specifying the result of the eval-
uation. In all cases, the time to evaluate the property is at most 0.01 sec. (this is the
minimum time reported by SPIN).

Observe that the size of the state vector only depends on the number of operators
in the formula. For instance, formula 4, which requires running 5 monitors, uses 348
bytes in the offline implementation and 372 in the online version. The number of states
explored depends on the length of the trace and the number of event intervals scanned
to determine whether the property is satisfied or not. The size of the state and the
number of states give us an idea of the memory used in each analysis, which depends
on both the number of monitors and the length of the trace. These experimental results

@ Springer

3 Page260f47 Automated Software Engineering (2023) 30:3

OFFLINE mode compilation
Property NOT SATISFIED at 11:13:7.800000
pan:1: assertion violated 0 (at depth 65)
pan: wrote aux.pml.trail

(Spin Version 6.5.1 -- 31 July 2020)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:

never claim - (not selected)
assertion violations +
acceptance cycles - (not selected)

invalid end states +

State-vector 348 byte, depth reached 65, errors: 1
50 states, stored
0 states, matched
50 transitions (= stored+matched)
4 atomic steps
hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.018 equivalent memory usage for states (storedx(State-vector + overhead))
0.264 actual memory usage for states
128.000 memory used for hash table (-w24)
53.406 memory used for DFS stack (-ml000000)
181.601 total actual memory usage

pan: elapsed time 0 seconds

Fig.7 SPIN report trace not satisfying F4 (offline implementation)

match the temporal and spatial complexity analysis of both implementations, which
is summarized in Sect. 5 and detailed in Appendix B.

Figure 7 shows SPIN’s report for a synthetic trace that fails formula 3, as stated
in the two first lines. The time shown in the second line indicates the timestamp of
the trace of events at which the monitors determined the evaluation of the property. It
is worth clarifying that the memory usage reported includes the auxiliary structures
used by SPIN associated to the model checking algorithm (e.g. the hash table and the
DFS stack). However, it does not consider the memory used by the external C data
structures, since they are hidden to SPIN. To obtain this information, we have used the
profiling tool included in Valgrind.? In the real traces, Valgrind reports SOKB more
than SPIN and, in the longest synthetic trace, it reports 200KB more. This difference
is the space needed to load event and measure files, which is done in C structures.

3 Valgrind available at https://valgrind.org/.

@ Springer

https://valgrind.org/

Automated Software Engineering (2023) 30:3 Page 27 of 47 3

Client Dash Server

SYN]

SYN, ACK
ACK
——

Connection Established

Data Transmission
N

FIN, ACK

ACK

I —

Connection Release

Fig.8 TcCP connection establishment and release

6.2 Analysis of traffic captures

We have also analyzed the network traffic captured during the video sessions using a
DASH video server and a mobile phone as client. Network traffic has been captured
and exported as cvs files using Wireshark* protocol analyzer, which internally uses the
libpcap library. The events of interest are the combination of the TCP flags activated
in each packet (SYN, ACK, FIN, PUSH, RESET). In the following, we refer to event
as the sequence of active flags. For instance, SA represents an event produced by the
reception of a packet with SYN and ACK flags activated.

The magnitude variables considered are data included in the packet headers, such
as the source and destination TCP ports, and other performance metrics, such as the
round trip time calculated by Wireshark. As the traces produced have more than 33.000
events, this example allows us to show the performance of STAN when analyzing long
traces.

During a video session, the client and the DASH server establish different con-
nections between different pairs of TCP ports in order to send video segments with
different quality. Each TCP connection is established using the so-called TCP 3-way
handshake and can be explicitly closed. In both cases, the peers exchange a sequence
of messages activating different flags, as shown in Fig. 8.

We analyze the traces (network traffic) against the following three properties:

4 https://www.wireshark.org/.

@ Springer

https://www.wireshark.org/

3 Page280f47 Automated Software Engineering (2023) 30:3

Table 2 Analysis of traffic traces

F1 F2 F3
Off tmax (sec.) 0.06 0.04 0.06
State size 224 592 532
n? states 41 831 2229
On tmax (sec.) 0.06 0.09 0.69
State size 240 632 564
n? states 556 14011 274073

L. s, 51015, 1P pores This property determines whether there exists a connection
which is closed (message FIN,ACK) before a new one starts the handshake (mes-
sage SYN). Observe that the outer Eventually operator considers two consecutive
occurrences of the event SYN (at different time stamps). In addition, ¢4 is an
interval formula that checks whether the same TCP ports are registered in the end
points of the sub-trace determined by [S,FA], not necessarily in the same source
and destination order. This property requires 2 instances of EVENTUALLY_PQ
and one instance of the interval formula.

2. (15,541 pores) = (CEADores V CFPAG), 0n): This property determines whether
the establishment of a connection between the ports p; and p, (messages with
flags SYN and SYN,ACK) implies that, at some point, this connection will be closed
using a message FIN,ACK, or FIN,PUSH,ACK. The current implementation of STAN
does not provide a specific monitor for the implication operator (y; —). Thus,
the property can be analyzed by transforming it into —v; V . In order to ease
the specification of this kind of formulae, the eltl2pml parser, shown in Fig. 1,
generates the PROMELA formula process with the suitable instantiation of 9
monitors.

3. (OL5.RAIBors) = (O15.RA1 @ porrs A Brer)) With gy defined as @y ([1;. 17]) =
Vt € [t;, tr].rtt(t) > 35 ms: This property determines whether fact that the con-
nection between p; and p; ports is reset implies that during this connection the
round trip time was greater than 35 ms.

Observe thatin the second and third formulae, ¢),,,,,, checks the connection between
the specific ports p1 and p2 to determine that these events are associated to the same
TcP connection. As we will see in Sect.7, other specification languages allow free
variables associated to events, in such a way that they can express that for any (or for
all) ports p1 and p2 the property is fulfilled.

Table 2 shows the performance metrics of STAN when analyzing the traces of the
network traffic generated during the playback of the 2-minute long video against the
3 previous properties. Observe that the online implementation of formula 2 explores
10 times more states than the offline one. In formula 3, the online implementation
explores 100 times more states than the offline implementation. This difference is due
to the fact that the offline monitor of EVENTUALLY_PQ obtains the end points of the
interval of events making two queries, while the online monitor explores the events of
the trace one-by-one. Clearly, the online approach explores a greater number of states
and consumes more time and memory. In the offline implementation of formula 3,

@ Springer

Automated Software Engineering (2023) 30:3 Page 29 of 47 3

SPIN reports 181.7 MB and Valgrind detects 3.5 MB more, which is the memory used
to load the event and measure files. In contrast, in the online implementation, SPIN
reports 669 MB and Valgrind detects 3.5 MB more.

7 Related work

In the last few decades, runtime verification has gained attention in research and
industry. As a result, a variety of specification languages, algorithms and tools have
appeared to support different types of case studies, such as the analysis of unmanaged
vehicles (Reinbacher et al. 2014), mixed signal circuits (Maler and Nickovi¢ 2013),
or stream processing systems (Espinosa et al. 2019; Awad et al. 2019). This section
briefly describes some related works from different perspectives. Some of them have
inspired us in the definition of the eLTL logic and the implementation of the monitoring
algorithms. In Sanchez et al. (2019), the reader can find an extensive survey on runtime
verification work.

7.1 Specification languages for interval properties

Linear temporal logic (LTL) has been traditionally used to describe properties that
must hold along the traces of concurrent systems (Rosu and Havelund 2005; Pnueli
and Zaks 2006). When execution traces are state sequences with timestamped events,
many studies use enriched versions of LTL that are able to capture events or time
intervals. For instance, Metric temporal logic (MTL) (Alur and Henzinger 1993) and
Signal temporal logic (STL) (Maler and Nickovi¢ 2013) are extensions of LTL with
real-time intervals. Formulae in MTL can describe what should happen in a (predefined)
time interval after (or before) an event occurs. Moreover, STL extends MTL to introduce
a dense-time model and real-valued variables. Observe that, unlike these logics, eLTL
focuses on describing what should happen in a time interval, determined by two events,
of a priori unknown length. In addition, eLTL formulae are evaluated over intervals of
states, while the other logics evaluate over single states.

Some of the properties described in the case studies can be also expressed in STL.
However, it worth noting that the philosophy behind the two logics is different. In
particular, expressing bounded interval determined by events is not natural in STL.
For instance, the property “always during a video playback (delimited by events s¢¢
and stp) the first picture (fp event) takes place between 1 and 6s after the start” is
expressed as follows in eLTL:

Olstr,stp) PLsee 1@ Where ¢t tp) =ty >t +1 Aty <t; +6

Assuming that there are some signals that rise when events s¢z, stp and fp take place,
a first attempt to express the property in STL will be the following:

O[0,00) (1 stt = ((— 1 stp U160 1 f0) A (C1,00) 1 SEP)))

@ Springer

3 Page300f47 Automated Software Engineering (2023) 30:3

We have used the until operator to describe that szp cannot rise before fp.

It is also worth noting that in the case of STL, the boolean constraint over signals
supported are predicates of the form x o ¢, where x is asignalando € <, <, =, >, >
and ¢ € Q. Thus, the properties defined in Sect. 6.2, which requires comparing the
ports involved in two different time instants, would be difficult to define in STL.

Unlike STL and eLTL, which can express properties in future time, other lan-
guages such as past-time Metric Temporal Logic (pMTL) (Reinbacher et al. 2014)
and Quantified Temporal Logic (QTL) (Havelund and Peled 2020) are suitable to
express properties in past time. pMTL is the past fragment of MTL. Thus, pMTL pro-
vides past temporal operators defined over time intervals where the nested properties
are evaluated. On the contrary, in QTL the logic operators do not explicitly include
time intervals, but time is managed as a variable defined in N. The key feature of QTL
is the use of events parameterized with variables which can be existentially quantified.

Transforming an eLTL property into a past-time logic is not straightforward. We
have adapted the first two properties analyzed in Sect. 6.2 to QTL. For instance, we have
rewritten the property “if a new connection is open, the previous opened connection
is closed” as “if a connection is closed it was previously opened and not closed since
then”, which is specified in QTL as follows:

dp1.3pa. fin(p1, p2) — @lsyn(p1, p2), fin(p1, p2))

where @ is the previous operator and interval [syn, fin) is a syntactic sugar for
—fin S syn, S being the since operator. It is worth noting that in QTL you cannot
define events intervals, instead they are a simplified notation of operator since.

The second property establishes whether “if a connection is correctly established
then it is closed using fin or finP events”. It could be similarly specified in QTL as
follows:

dp1.3pa. fin(py, p2) V finP(p1, p2) — @[syn(p1, p2), fin(p1, p2) Vv finP(p1, p2))

Observe that to simplify the previous QTL formula, we are only checking that the
source and destination ports match in the syn and fin events. The original property in
eLTL checks that ports can be swapped in the syn and fin events. The third property of
Sect. 6.2 cannot be expressed in QTL because it does not support comparing variables
with constants or with other variables. Observe that despite eLTL (and STAN) is not
currently aimed to support event parameterization; thanks to the interval formulae
@ ports We can express that in the maximal interval of events [syn, fin] the source and
destination ports are the same (or swapped) without specifying specific ports values,
similarly to QTL.

In the same line, EAGLE (Barringer et al. 2004) is a more sophisticated framework in
which temporal logics with different characteristics can be defined. To do this, EAGLE
uses parameterized and recursive equations (called rules), quantifiers and the temporal
operators next (), previous (()) and concatenation (-). Rules can be combined to
construct monitors which can describe complex properties when properly instantiated.

Although eLTL formulae could be described in EAGLE, we think that, from the
user point of view, this language is harder to manipulate. For instance, in EAGLE the

@ Springer

Automated Software Engineering (2023) 30:3 Page 31 of 47 3

elLTL formula <y 419 could be written as Eventually(¢, p, q), where Eventually is
recursively defined as the minimal fixed point (min) of the following rule and Form
is the predefined type of EAGLE formulae:

Similarly, the rule for Eventually(F, P, Q) is constructed as

min Eventually(Form F, Form P, Form Q)
= P A Maximal(P, Q) A Search(F, Q, clock) v QEventually(F, P, Q)

where clock is a real-time clock that registers the current time, Maximal is a rule that
checks whether the interval found is maximal (in the sense given by Definition 3) and
Search is a rule that searches for the next occurrence of F2 to evaluate the interval
formula F. These two rules can be defined in EAGLE as follows where max is the
maximal fixed point of the corresponding function:

max Maximal(Form P, Form Q)

= 0V (=P A () Maximal(P, Q)
min Search(Form F, Form Q, float t)
= Q A F(t,clock) vV (=Q A OSearch(F, Q, 1))

EAGLE’s expressiveness implies a huge cost in the implementation of a monitoring
algorithm. This is why its authors defined other less expressive languages, such as
RULER (Barringer et al. 2010) or LOGSCOPE (Barringer et al. 2010), that have less
complex implementations.

In Kauffman et al. (2016) and Kauffman et al. (2018), the authors define the specifi-
cation language nfer for the description of properties to be specifically held by streams
containing telemetry data produced by spacecraft rovers. The language is based on the
Allen’s interval logic (Allen 1983) augmented with rule-based predicates on how the
interval must be combined. Although language nfer is constructed from the operators
of Allen logics, it is interesting to note the importance of having an interval-based
specification language to make the precise description of properties easier for users.

7.2 Monitoring algorithms for interval properties

Regarding the monitoring algorithms, we can find multiple approaches depending
mainly on the length of the trace (e.g. bounded or unbounded traces), and when the
analysis is performed (e.g. online or offline). Perhaps the most general approach is
presented in Kesten and Pnueli (2005), where a compositional transformation of CTL*
formulae is defined using the so-called temporal testers, which are monitors induc-
tively constructed from the formula structure. The tester processes organize according
to the formula structure and evolve in a synchronous manner. Later, Pnueli and Zaks
(2006) proposed an algorithm based on the composition of these temporal testers to
perform online analysis of unbounded traces. In D’Souza and Matteplackel (2012),
the authors also apply a compositional approach to construct monitors from LTL for-
mulas inspired by Kesten and Pnueli (2005). However, the monitor construction is

@ Springer

3 Page320f47 Automated Software Engineering (2023) 30:3

more concise in this case, since they focus on LTL instead of the more general CTL*
logic. The hierarchical Biichi automata built in this work are structured in a kind of
tree of processes that communicate through synchronous actions, which is similar
to our approach. Our current algorithm, which is based on the transformation of the
eLTL operators into automata, is similar to Pnueli and Zaks (2006) and the first algo-
rithm presented in Rosu and Havelund (2005), but thanks to SPIN, we can deal with
abstract representations of the real-valued variables by using external libraries through
embedded C code.

Rosu and Havelund (2005) proposed three different algorithms to perform online
monitoring of finite traces. The first one synthesizes a monitor of the complete formula
solving a dynamic programming problem, while the other two use rewriting techniques
to monitor the trace or produce the automata-like monitor. In Reinbacher et al. (2014),
the objective is to perform online monitoring of signals bounded by a mission time.
In this case the MTL formula is transformed into a pair of observers, which can be
implemented in hardware in order to achieve a high performance. In Basin et al. (2015),
the proposed algorithm is able to perform online and offline analysis of unbounded
signals. It is inspired by relational databases, and it incrementally works out the result
of the formula (as a structure) for each point of time. In Maler and Nickovi¢ (2013), the
authors propose two algorithms to monitor finite continuous signals by interpolating
the evolution of the continuous variables between two sampled values; both algorithms
are implemented in the tool AMT. More recently, Havelund et al. (2020); Havelund
and Peled (2020) presented monitoring algorithms based on BDD to support runtime
verification of properties specified in QTL, which are implemented in the DejaVu tool.
We have used DejaVu to analyze the traces used in Sect. 6.2 against the QTL properties
described in the previous section. DejaVu reports that the time elapsed in the analysis
of each property is around 0.45 s, which is more than the time reported by SPIN
(around 0.05 s in both cases). DejaVu does not report the memory consumed during
the analysis, so we cannot compare this metric.

7.3 Stream runtime verification

In the recent years, some works have focused specifically on stream runtime verifica-
tion (SRV), in which the trace of events is in fact a set of (possibly infinite) streams
or signals (numerical or boolean) and the specifications represent the temporal and
data manipulation dependencies between input and output streams. These works can be
classified into those that assume that the input streams are synchronous (all streams are
produced following a global clock and thus the sequence of data is not timestamped),
such as Hallé (2016), and those that assume asynchronous input streams, such as
Volanschi and Serpette (2019), Faymonville et al. (2019) and Convent18TeSSLa. In
general, SRV tools use very expressive specification languages in order to describe
the complex relation between input and output streams.

Currently, STAN does not perform SRV, but the eLTL logic could be used as a
specification language in this context. For example, we could assume that the trace &
over which an eLTL formula is evaluated is the result of merging multiple SRV input
streams. In addition, the eLTL verdict must be a Boolean output stream instead of a

@ Springer

Automated Software Engineering (2023) 30:3 Page 33 of 47 3

single Boolean value. In this new context, we could design SRV tools based on this
extended eLTL.

In the domain of SRV, we have identified two main features. On the one hand, these
tools have to deal efficiently with infinite (or very long) streams. Most of them use
some operator to define a (fixed or sliding) temporal window in which a property has to
be fulfilled (Convent et al. 2018; Espinosa et al. 2019; Faymonville et al. 2019; Awad
et al. 2019). In eLTL, we could analyze a property v in a time window of fixed size
with Oy, 41 formula, where p and g are events triggered at the beginning and end of
each temporal window. On the other hand, some SRV tools (Hallé 2016; Volanschi and
Serpette 2019; Gorostiaga and Sdnchez 2021) implement monitors in such a way that
they can support customized or user-defined operations to deal with their rich input
language. In this sense, eLTL maintains a balance between the fixed set of operators
and the interval formulae that can be defined by the user.

8 Conclusions

In this paper, we have presented the approach followed by the tool STAN, which
performs runtime verification on finite data traces against properties expressed in the
Event-driven Interval Logic eLTL.

STAN transforms each eLTL operator into a monitor (automata-like) template that
determines the sub-traces in which a property must be satisfied. This way, an eLTL for-
mula is transformed into a tree of monitors, which is the composition of the operators’
templates included in the formula.

We have presented two different transformations of eLTL operators into monitors,
and both of them have been implemented in PROMELA. The online implementation
is intended for the analysis of properties during the execution of the system, and the
offline implementation is suitable for the analysis of previously produced traces.

We have evaluated both implementations by analyzing the data traces of a real
system, a testbed for mobile apps, against some non-functional properties. In particular,
we analyze some traces produced during the testing of a streaming video app in
different network scenarios (Panizo et al. 2020). Since the traces are published when
the tests have completely finished, in the online implementation we have also included
an auxiliary mechanism that emulates the reception of events. Both implementations
have shown good performance in terms of execution time and memory (measured as
states explored).

Although our objective is the analysis of data traces, the use of monitors can also
be employed to model check a system against a set of properties described in eLTL.
This also justifies the use of SPIN as an underlying analysis engine. To model check
a system against eLTL properties, we only need a PROMELA model of the system that
is slightly instrumented to inject events in STAN. In addition, in order to model the
evolution of real-valued variables, the model can be enriched with embedded C code.
In Gallardo and Panizo (2014), we presented an extension of PROMELA and SPIN to
model some sub-classes of hybrid systems and analyze them against LTL properties.
The combination of this previous work and the current eLTL monitors will allow the
analysis of very interesting properties on hybrid systems.

@ Springer

3 Page340f47 Automated Software Engineering (2023) 30:3

We consider three main future lines of work. First, the integration of STAN in the
new testing framework (Diaz Zayas et al. 2020), which is an evolution of TRIANGLE.
The objective is to use the results of STAN analysis to refine the generation of new
tests. This future work will require enriching STAN results with some degree of quality,
similar to the robustness degree introduced in Donzé et al. (2013) to avoid running new
tests that will produce the same quality or performance indicators. Second, we would
like to improve the reports of STAN in such a way the user has a better understanding of
the causes of properties failure. Finally, inspired by related works (Barringer et al. 2004,
2010; Havelund and Pressburger 2000; Convent et al. 2018; Faymonville et al. 2019),
we would like to extend eLTL and the monitoring algorithms to support parameterized
formulae and also to produce the verdict as a Boolean output stream to perform SRV
analysis.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A Offline and online monitors of eLTL operators

This appendix presents the online and offline monitors for different eLTL operators
that are used in STAN. We do not explicitly present the monitors of operators over
single events (e.g. <), since they are simplifications of the monitors over intervals of
events.

Interval formula ¢

Listing 4 shows the offline (left) and online (right) PROMELA monitor templates of the
interval formula ¢. An interval formula is evaluated on a time interval [ti, tf] that
is communicated via the channel cm.

In the offline case, the complete time interval is received through channel cm (line 4),
while in the online case the interval is received in two distinct messages when the sub-
trace is identified (lines 4 and 5). In these simple implementations, after receiving the
end of the interval, the monitor calls the C function phi (line 7), which implements
the evaluation of the interval formula, and the returned value is propagated as the
monitor result through the corresponding rd channel.

As commented in Remark 3 in Sect. 2.1, phi hides the complexity of evaluating
the behavior of real-valued variables in the interval, and in the implementation this
is achieved by using external C code. For instance, we can define a function that
determines the maximum or the average of the median value of a continuous variable
in the interval, or we can call an external library that interpolates the dynamics of the
variables of interest.

@ Springer

http://creativecommons.org/licenses/by/4.0/

UV N

o

© oUW N

Automated Software Engineering (2023) 30:3 Page 35 of 47 3

Not operator

Listing 5 shows the offline (left) and online (right) monitor templates of the negation
operator.

In the offline implementation, the NOT monitor synchronizes with the monitor of the
nested formula (/) as soon as its parent monitor sends the initial and final timestamps
through channel cm (lines 5 and 6). When the nested formula i has been evaluated,
the process NOT negates the result and sends it through the rd channel.

The online implementation behaves in a similar way. The only difference is that
the synchronization with the outer and inner operators through channel cm consists of
two messages with the START and STOP commands.

Or operator

Listings 6 and 7 present the online and offline monitor templates of the disjunction
operator. The proctype OR monitors if any of the two sub-formulae 1| and
holds on the interval [ti, t£] over which OR monitor is being evaluated.

1 proctype PHI (int id) {
2 int ti, tf;
bool phi;

4 end_phi: cm([id]?ti, START;
cm[id]?tf, STOP;
c_code{

PPHI ->phi =

phi (PPHI->ti, PPHI->tf) };

proctype PHI (int id) {
int ti, tf;
bool phi;

end_phi: cm[id]?ti,tf;

U

1 o

c_code{
PPHI ->phi =
phi (PPHI ->ti, PPHI->tf) };
rd[id]!phi, tf;

goto end_phi; 8 rd[id]!phi, tf;

9 goto end_phi;
10}

Listing 4 Offline (left) and online (right) monitors of interval formulae

| proctype NOT (int id; int cl) {

2 int ti, tf, t;
3 bool phiCl, sr, st;
proctype NOT (int id; 4 end_not: cm[id]?ti, START;
int cl) { cm[cl]!ti, START;
int ti,tf,t; 5 sr=0; st=0;
bool phicCl; 6 do
end_not: 7 cm[id]?tf, STOP ->
cm[id]?ti, tf; cm[cl]!tf, STOP; st=1;
cm[cl]!ti,tf; 8 rd[cl]?phiCl,t ->
rd[cl]?phiCl, t; rd[id]! (!phiCl) ,t; sr=1;
stopped_not: 9 sr && st -> break;
rd[id]! (!phiCl),t; 10 od;
goto end_not; 11 goto end_not;

Listing 5 Offline (left) and online (right) monitors of Not operator

@ Springer

3 Page360f47 Automated Software Engineering (2023) 30:3

proctype OR(int id; int cl; int c2){
2 int ti, tf, tcl, tc2,t;
3 bool phi, phiCl, phiC2, readyCl, readyC2, sr, st;
I init_or:
5 readyCl=0; readyC2=0; sr=0; st = 0;
6 end_or: cm[id]?ti, START; cm[cl]!ti, START;
cm[c2]!ti, START;

7 do
8 :: cm[id]?tf,STOP -> st = 1; cm[cl]!tf, STOP;
cm[c2]!tf, STOP;
9 :: rd[cl]l?phiCl,tcl -> readyCl = 1;
10 if
1 :: phiCl && !sr -> sr = 1; rd[id]!phiCl, tcl;
12 :: else;
13 £i;
14 :: rd[c2]?phiC2,tc2 -> readyC2 = 1;
15 if
16 :: phiC2 && !sr -> sr = 1; rd[id]! phiC2,tc2;
17 :: else;
18 £i;
19 :: Ilsr && readyCl && readyC2 -> t = (tcl<tc2 -> tc2
tcl) ;
20 rd[id] ! false, t;
21 sr = 1;
2. :: sr && st -> break;
2 od;

goto init_or;

g W N

)

}

Listing 6 Online monitor of the Or operator

In the online implementation, the OR monitor waits for the successive reception
of the START and STOP commands and resends them to its sub-formulae monitors
to start and stop their execution, respectively. Then, it waits for the result of the sub-
formulae via channels rd[c1] and rd[c2]. If any of the sub-formulae monitors
evaluate to true, the OR monitor propagates the result to its parent monitor; if not it
waits until both monitors end and returns the disjunction. Observe that the proctype
OR finishes its execution at line 6, which is labeled with end_or, in order to mark
that it is a valid end state. This way, the monitor can observe new trace intervals, for
instance in formulae of the form Oy 41(¢1 Vv ¢2).

@ Springer

Automated Software Engineering (2023) 30:3 Page 37 of 47 3

proctype OR(int id; int cl; int c2){
int tf,ti,tl,t2;
bool phi, phiCl, phiC2;
bool readyCl, readyC2;
init_or:
readyCl=0; readyC2= 0;
end_or: cm[id]?ti, tf;
cm[cl]!tti,tf; cm[c2]!'ti,tf;
do
readyCl && readyC2 -> goto stopped_or;
rd[cl]?phiCl,tl -> readyCl = 1;
rd[c2]1?phiC2,t2 -> readyC2 = 1;
od;
stopped_or: phi= phicl || phicC2;
if
'phi -> tl= (tl<t2 ->t2:tl);
phiCl && phiC2 -> tl= (tl<t2 ->tl:t2);
else -> tl= (phiCl ->tl:t2)
fi;
rd[id]!phi, tl;
goto init_or;

}

Listing 7 Offline monitor of the Or operator

Similarly to the NOT and ¢ monitor templates, the offline implementation of the
OR monitor only differs from the online implementation in the synchronization with
inner and outer operators in lines 6 and 8, which are replaced by the corresponding
send and receive statements.

Eventually operator

The operator <), 41 (and <) have to scan the trace to find the sub-traces delimited
by events p and g (or just p) in order to determine whether the sub-formula is satisfied.
In both implementations, the monitor’s parameters are its identifier (1d), the identifier
of the monitor for its sub-formula (c1), and the events p and g that delimit the time
instants where the sub-formula must be evaluated. However, each implementation uses
a different approach to find the sub-traces delimited by events p and q.

Listing 8 shows the offline implementation of the EVENTUALLY_PQ monitor. Sim-
ilarly to other offline monitors, the time interval [ti, t£f] is received in a single
message through the channel cm[id] (line 4). In order to determine sub-traces delim-
ited by [p, g, the monitor calls the function nextEv that, given an event e and a
timestamp ¢, returns the timestamp of the next occurrence of e after ¢, or -1 if no event
is found. For example, in line 9, variable tq stores the timestamp of the first event g
that occurs after tp. In the label waitC1, the monitor receives the evaluation of the
inner sub-formula. If it is t rue, the eventually formula is satisfied, and thus, it propa-
gates this result to its parent monitor. Otherwise, the monitor continues analyzing the
trace (line 18).

@ Springer

3 Page380f47 Automated Software Engineering (2023) 30:3

1 proctype EVENTUALLY_PQ (int id; int cl; mtype:event P;
mtype:event Q) {

2 int ti,tf,t,tp,tq;
3 bool result;
4 end_eventually: cm[id]?ti,tf; t = ti;
5 getEvents:
6 c_code{ PEVENTUALLY_PQ->tp = nextEv (events,
PEVENTUALLY_PQ->t, PEVENTUALLY_PQ->P) ;};
7 if
8 : tp ==-1 -> tg=-1;
9 :: else -> c_code{ PEVENTUALLY_PQ->tg =
nextEvent (events, PEVENTUALLY_PQ->tp+1,
10 PEVENTUALLY_PQ->Q) ; };
11 £i;
12 if
13 ::(tqg ==-1) || (tqg > tf) -> result = false; goto
eventually_pqg;
14 c:(tg !'= -1) && (tg <= tf) -> cm[cl]!tp, tqg;
15 £i;
16 waitCl: rd[cl]l?result,t; t = tqg;
17 if
18 :: l!result -> goto getEvents;
19 :: else;
20 £i;
21 eventually_pg: rd[id]!result,t; goto end_eventually;
22}
Listing 8 PROMELA offline monitor of the Eventually operator
1 proctype EVENTUALLY_PQ (int id; int cl; mtype:event P;
mtype:event Q) {
2 int ti,tf,t,tp,tq;
3 bool stop, result, sr, clresult, clstop;
4 mtype:event e;
5
6 init_eventually_pg: stop = 0; result = false;
7 end_eventually: cm[id]?ti, START;
8 waitP: clstop=0; clresult= 0; sr = 0;
9 if
10 :: c_expr{ev->h->next && proc [PEVENTUALLY_PQ->id]} ->
11 c_code{ processEvent (*ev,
&proc [PEVENTUALLY_PQ->id], &(PEVENTUALLY_PQ->t),
12 & (PEVENTUALLY_PQ->e)) ;};
13 if
14 :: e == P && ti<=t && (!stop || (stop && t<=tf)) ->
15 tp = t; cm[cl]!tp, START; goto waitQ;
16 :: (!stop && (e!=P || t<ti))|]|(stop && e!=P &&
t<=tf) -> goto waitP;
17 :: stop && tf<t -> t = tf; goto eventually_pqg;
18 £i;
19 :: stop && c_expr{!(ev->h->next &&
proc [PEVENTUALLY_PQ->id])} -> t = tf;
20 goto eventually_pg;
] cm[id]?tf, STOP; stop = 1; goto waitP;
22 £i;

@ Springer

NN
U W

o

42
43
44
45
46
47
48
49

NS
O 0 J

5C

[SINC; BT S, BT
=W N

Ul U
o o < o Ul

o o U1 Ul
o

iy

Automated Software Engineering (2023) 30:3 Page 39 of 47 3
waitQ:
if
c_expr (ev->h->next && proc [PEVENTUALLY_PQ->id]) ->
c_code{ processEvent (*ev,
&proc [PEVENTUALLY_PQ->id], & (PEVENTUALLY_PQ->t),
& (PEVENTUALLY_PQ->e)) ; };
if
e == Q && (!stop || (stop && t<tf)) -> tg = t;
goto waitCl;
e!=Q && (!stop || (stop && t<=tf) -> goto waitQ;
stop && tf<t -> t = tf; goto waitClF;
£fi;
stop && c_expr{!(ev->h->next &&
proc [PEVENTUALLY_PQ->1id])} -> goto waitClF;
cm[id]?tf, STOP; stop = 1; goto waitQ;
£i;
waitClF:
do
rd[cl]?_,t -> clresult= 1;
cm[cl]!t,STOP -> clstop =1;
clstop && clresult -> t =tf; break;
od;
goto eventually_pqg;
waitCl:
do
rd[cl]l?result,t -> clresult= 1;
m[cl]!'tg, STOP -> clstop =1;
clstop && clresult -> t = tqg; break;
od;
if
lresult && !stop ->
c_code{backtrackTo (*ev,
&proc [PEVENTUALLY_PQ->id],
PEVENTUALLY_PQ->tqg) ;};
goto waitP;
else;
£i;
eventually_pg: rd[id]!result, t;
if
:stop;
::else -> cm[id]?tf, STOP;
fi;
if
t >= tf ->
c_code{backtrackTo (*ev,
&proc [PEVENTUALLY_PQ->id],
PEVENTUALLY_PQ->tf) ;};
else;
£fi;
goto init_eventually_pqg;
}

Listing 9 Online template of the Eventually operator

Listing 9 shows the online monitor. The identification of the interval of events
[p,al is performed in the two states identified by labels waitP and waitQ. In

@ Springer

3 Page40o0f47 Automated Software Engineering (2023) 30:3

waitP (lines 8-22), it waits for an event p or for the STOP message. When a valid
event p is received (line 14), the monitor sends START to monitor c1 to start evaluating
the inner formula. Then, it jumps to waitQ (line 23-35) to wait for the next event
q (or STOP message). When a valid event g arrives (line 29), the monitor jumps to
waitCl. At this label two tasks happen non-deterministically. On the one hand, the
monitor receives the evaluation of the inner formula. On the other hand, the monitor
sends the STOP message to c1 monitor. Similarly to the offline monitor, if the sub-
formula evaluates to true, the eventually monitor propagates this result to its parent
monitor and waits for the STOP message. Otherwise, the eventually monitor continues
analyzing the trace.

The other branches in waitP and wai tQ define the behavior of the monitor when
the events and messages processed are not the expected ones, or when the STOP
message is received and therefore there are no more events to process. For instance,
in line 31, the monitor has previously received the STOP from its parent (stop is
true) and is processing an event with the timestamp greater than t £. This means
that no event p occurs in the interval [ti, tf], and consequently, the formula is
false. This last event cannot be discarded, since it might be part of the next interval

[ti, tf] analyzed by the monitor. For this reason, the event channel goes back to
tf in line 62.

Observe that although the monitor ¢l could evaluate its formula before
EVENTUALLY_PQreceives the event g, the eventually monitor can not decide whether
it evaluates true. If no g event occurs before the end of the trace, EVENTUALLY_PQ
evaluates to false independently of the c1 result. For this reason, EVENTUALLY_PQ
only receives the c1 evaluation when g arrives (line 45) or if the traces ends (line 38).

Clearly, the online implementation is more complex than the offline implementation
due to the uncertainty of the end of the sub-trace. In addition, the use of two different
channels, cm and the ev C channel, to obtain the end of the trace and the events
requires checking whether or not a processed event is part of the current sub-trace.
Always operator

The Always operator over an interval of events is defined as Oppq ¥ =
=(Orp,q1—¥). Given the equivalence of eventually and always, the online and offline
monitors of the Always operator are modified versions of the Eventually monitors. For
example, the offline implementation shown in Listing 3 presents two differences with
respect to the eventually monitor (Listing 8). The first one is that the Always operator
evaluates to true when the end of the trace is reached and no interval of events is
found (line 13). The second difference is in line 18, since the monitor has to continue
the analysis of the trace if the sub-formula evaluates to true.

Until operator

The semantics of the Eventually operator relies on the Until operator. We can
transform an eventually formula in terms of the Until operator, but the inverse is
not possible in all cases. The online and offline monitors of the Eventually operator
explained above are simplifications of the until monitor.

To make the presentation simpler, we will briefly explain the offline implementation
(UNTIL_PQ)shownin Listing 10. A similar approach is followed in the online version.
The UNTIL_PQ monitor (online or offline) has to identify the interval [tp, tg] and
determines whether monitor c2 returns true in that interval. If not, the monitor has

@ Springer

o W N

&)

15

Automated Software Engineering (2023) 30:3 Page 41 of 47 3

proctype UNTIL_PQ (int id; int cl; int c2; mtype:event P;
mtype:event Q) {

int ti,te,t,tp,tq;
bool result;
end_until_pg: cm[id]?ti,tf; t = ti;
getEvents:
c_code{PUNTIL_PQ->tp = nextEvent (events,
PUNTIL_PQ->t, PUNTIL_PQ->P);};
if
tp == -1 -> tg= -1;
else -> c_code{PUNTIL_PQ->tg = nextEvent (events,
PUNTIL_PQ->tp+1, PUNTIL_PQ->Q);};
£i;
if
(tg ==-1) || (tp > tf) -> result = false; t = tf;
goto until_pqg;
(tg '=-1) && (tg <= tf) -> cm[c2]!tp,tqg; goto
waitC2;
fi;
waitC2: rd[c2]?result, t;
if
lresult -> t = tg; goto getEvents;

else -> cm[cl]!ti, tp;
fi;
waitCl: rd[cll?result, t;
until_pg: rd[id]!result,t; goto end_until_pqg;
}

Listing 10 PROMELA offline template of the Until operator

to find the next interval of events. However, if on the contrary monitor c2 returns
true, the UNTIL_PQ monitor returns the same response as monitor c1.

Appendix B Complexity

In this Appendix, we complete Sect.5, giving all the definitions needed to prove
Propositions 2 and 3.

In Sect. 5, we denoted the space and time complexities of the evaluation of an eLTL
formula ¥ over atrace m € Or(H) with C; (Y,) and C; (¢,). In addition, we added
super-indexes n and f as C} (¢, n)/Cf(tp,) and C} (¢, n)/C{(lp,) to distinguish
between the online and offline implementation of the operators, when necessary.

In Appendix A, we have presented the implementation of eLTL operators. Thus,
we can now discuss in detail the calculation of these complexities. Recall that the
calculation of the cost of each eLTL operator mainly resides in the cost of its nested
interval formulae, which is a priori unknown. To get around this, in Sect. 5 we assumed
that the worst case complexity of interval functions satisfies the so-called inverse
triangular condition (ITC).

In the rest of the section, we study the time and space complexities of eLTL for-
mulae that have Boolean and temporal operators. The space complexity of evaluating

@ Springer

3 Page42of47 Automated Software Engineering (2023) 30:3

each operator depends not only on the monitor template described in Appendix A
but also on the SPIN memory used to implement the corresponding PROMELA process
instance. Thus, in the following, given op € {V, =, Op 41, Oip,q1> Ulp,q1}> We denote
with Cs(M,,) the memory used by SPIN to execute the process instance of the corre-
sponding monitor template. In the following discussion, we assume that n is the length
of the trace 7 being analyzed.
Complexities of Not and Or operators

As Listing 5 shows, the offline monitor of =y only has to wait for the evaluation
of ¥ to return the result. In contrast, the online monitor has to wait both the end of the
trace 7 and the result provided by the monitor of formula . In consequence,

=y, m) e OC (v, 1) B.1)
Cl(—=y,) € OC! (Y,) + n) (B.2)

Thus, to simplify the calculations below, we choose the worst case time complexity
as:

Ci(=¢. 1) € O (¥,) +n) (B.3)

Regarding, the space complexity, both the offline and online monitors of Listing 5
almost use the same memory: the space of the not monitor C;(M-) plus the space
needed to calculate the nested formula 1.

Cs(=y,) € OCs (Y, m) + Cs(M-)) (B.4)

Similarly, in order to evaluate ¥r; V ¥, the monitor (Listings 6 and 7 depict the
online/offline monitors) waits for the monitors of ¥; and v, to return the result. Thus,
the time and space complexities are calculated similarly to those of the — operator.
Thus,

Ci(¥1 vV Y2,) € O(max(Ci (Y1,), C; (Y2, 7)) + 1) (B.5)
Cs(W1 vV ¥, m) € O(max(Cs (Y1,), Cs (Y2, 7)) + Cs(My)) (B.6)

where max is the maximum function.

Complexities of Eventually and Always operators

The monitors of Oy, 419 of Listings 8 and 9 mainly differ in that the online monitor
has to wait for events p and ¢ to occur in the data trace, which may affect the time
complexity. In contrast, the offline monitor can directly access these events in constant
time since they are stored in the memory.

Once a sub-trace 7 [i, j] satisfying the interval of events [p, g]i.e. 7 [i, j] IF [p, q]
(Definition 3) is found, both monitors behave similarly. They check whether the corre-
sponding timestamps are inside the trace to detect if 7 [7, j] is not really a sub-trace
of m. If the sub-trace is correct, they send the timestamps to the ¥ monitor and wait
for the result. They iterate by all the sub-traces of the type m[i, j] until they receive a
positive answer from the iy monitor or no more sub-traces are found.

@ Springer

Automated Software Engineering (2023) 30:3 Page 43 of 47 3

According to this description, to calculate Cs (Opp 1%, m) and C; (Opp, g1V,), we
have to consider all the sub-traces of set S(7, [p, ¢]) given in Definition 4. To simplify
the following discussion, we denote S(, [p, ¢]) = U?:l {&}, with £k > 0 such that,
foralll <l <k, & IF [p, g]. In addition, we assume that the sub-traces & are ordered
wrt the timestamps of their initial and ending states. Thus,

Cs(Oppg1¥r.) € O(Z Cs(W, &) + Cs(Moy,) (B.7)

since the worst case occurs when all the sub-traces have to be analyzed to produce
a result. As in the previous operators, it is necessary to include the memory cost
associated to the monitor template instance. With respect to the time complexity, in
the worst case, the offline/online monitors traverse the whole trace m searching for
events p and g to occur. In addition, when a sub-trace determined by p and g has been
found, they have to wait until the monitor of the nested formula finishes its evaluation.
Thus,

C OV,) € O(Z,Cr (Y, &) +n) (B.8)

Now consider the eLTL formula Oy 419 . As discussed in Appendix A, the online
and offline monitors make use of the corresponding implementations of &y g1¥r
monitors with minor changes (see Listing 3). Thus, the worst case time and space
complexities of the always operator are similar to those of eventually, i.e.,

C(Opp.q¥r. m) € OSL Ci (. &) +n) (B.9)
Cs@ppg1¥r, 1) € OZL Cs(W, &) + Cs(Mgy,) (B.10)

Complexities of until operator

Assume that the eLTL formula U4 41V is evaluated on the data trace 7. The
until monitor, shown in Listing 10, searches for a sub-trace where 1, holds (such as
the eventually monitor template does) and, then, if the sub-trace is found, it checks
whether v is satisfied in the prefix sub-trace. As in the previous section, we use the
notation S(w, [p, q]) = Ule{é‘l}, with £ > 0 to represent the sub-traces of & that
satisfy [p, ¢] following Definition 4. Thus,

Co (1 Uip.g1¥a,) € O (P2, &) + Cr (Y1,) + 1) (B.11)
Cs(Uilhip.q1¥2, 1) € O(Z1_,Cs(W2, &) + Cs (Y1,) + Cs(Muy,) (B.12)

In consequence, the main difference with Eqs.B.7 and B.8 is the additional costs
Cs(Y1,) and C; (v,) to evaluate v on ;. Observe that these expressions are in
fact upper bounds of the actual complexity, since 11 is usually evaluated on a sub-trace
of .

Complexities of eLTL formulae
We can now prove Propositions 2 and 3 enunciated in Sect. 5.

Proposition 2 Given an eLTL formula r with m nested eLTL operators and a data trace
7 of length n, then if g4 is the asymptotically worst time complexity of the interval

@ Springer

3 Page44of47 Automated Software Engineering (2023) 30:3

Sformulae nested in and it satisfies the ITC assumption, we have that C;({r, w) €
O(gp(n) +m *n).

Proof We proceed by induction on the formula structure.

1. If = ¢ € @, ie., ¥ is an interval formula, the result C; (¢, w) € O(gy(n)) is
trivially satisfied since m = 0.

2. Assume ¥ = —y". By induction hypothesis C; (', 7) € O(gg(n) + (m — 1) xn).
Finally, using Eq. B.3, we obtain C; (¢, m) € O(gg(n) + m * n).

3. Assume ¢ = | V ¢». By induction, we have that C; (¢,) € (’)(gé) (n)+m;*n),
m; being the number of eLTL operators nested in v; fori = 1, 2. By Eq.B.5,
Ci(y, m) € O(max(gy(n) +mi *n, g5(n) +ma xm) S Olgp(n) + (my +
my 4+ 1) xn) = O(gs(n) +m * n), g4 (n) being the asymptotically worst function
between g é, (n) and gé (n). Observe that the number m of eLTL operators nested in
w ism; +mo+ 1.

4. Assume ¥ = Oy ¥’ By Eq.B.8, Ci(y,) € O(Elec,(w’, &) + n) where
& (with 1 < I < k) are the sub-traces of m that satisfy interval [p, g]. Let us
denote with n; the length of each sub-trace & (1 <[< k). Then, by the induction
hypothesis, we have that C; (¥, w) € (’)(Ele(gé (n)) + @ — 1) xn;) +n), gfp (ny)
being the asymptotic space complexity of calculating v’ over sub-trace & for all
1<l <k
Let us denote with gg(n) the function with the worst complexity between
{gflp, ,g(';}. Now, using the ITC assumption, since Elkzlnl < n, we have
that ZF g4(n)) < gg(n). Thus, C,(Y,) € O(gg(n) + (m — 1) xn +n) =
O(gp(n) + m * n).

5. Assume ¥ = Ojfp,q1¥’. The proof is similar to that of <p, 4 since in the worst
case this operator has to analyze all the sub-traces satisfying [p, ¢].

6. Assume ¥ = Y1Upp q1¥2. Using Eq.B.11 and following the same arguments
utilized for Gy 419, we obtain that C,(y,) € O(gg(n) + m % n), g4(n) being
the maximum of set {gé(n), ,gf;(n), g(’p(n)}. Each gfp(n) is the asymptotic
complexity of evaluating ¥, on each sub-trace of 7 satisfying [p, ¢], and g;) (n)
is the asymptotic complexity for evaluating vr; on .

]

We have to deal with space complexity in a different proposition taking into account
the space cost of storing the instances of monitors, since they affect real storage handled
by SPIN, as shown in Table 1 of Sect. 6 shows. In the following proposition, given a eLTL
formula ¥, C () denotes the worst spacial complexity of monitors implementing the
eLTL operators nested in .

Proposition 3 Given an eLTL formula r with m nested eLTL operators and a data trace
7 of length n, then if gy is the asymptotically worst space complexity of the interval
Sformulae nested in and it satisfies the ITC assumption, Cs(y, w) € O(ggy(n) +m *

Cs ().

Proof The proof is similar to that of Proposition 2, considering that the space Cy ()
is greater than Cs(M,,) for each eLTL operator op nested in . O

@ Springer

Automated Software Engineering (2023) 30:3 Page 45 of 47 3

The two following propositions deal with the case when the asymptotically worst
time complexity of the interval formulae nested in the formula i to be analyzed does
not satisfy the ITC assumption. In this case, the inductive case for temporal eLTL
operators $pp 41, O[p,q] and U 4) cannot reduce expression (’)(Z‘lk:l(gfp(nl) + (m —
1) *n;) + n) into O(gy (n) + m * n) and the complexity increases polynomially with
the number of nested temporal operators.

Proposition4 Given an eLTL formula v, with m eLTL nested operators, and a data
trace 7w of length n, then if g is the asymptotically worst time complexity of the interval
Sformulae nested in v, we have that C; (Y, w) € O(n"™ % g¢(n) + m * n).>

Proof Similarly to Propositions 2 and 3, we proceed by induction on the formula struc-
ture. The only different cases are those of the temporal eLTL operators $pp 41, Ofp.g]
and Z/{[p.q1*

1. Assume ¢ = Opp 1%’ By Eq.B.8, C;(y,) € (’)(Elk:lC,(w’, &) + n) where
& (with 1 < I < k) are the sub-traces of & that satisfy interval [p, g]. Let us
denote with n; the length of each sub-trace & (1 <! < k). Then, by the induction
hypothesis, we have that C; (¥/,) € O(Z‘lk:] (n;”_l *g(lp(m) +(m—1)*n;)) +n),
gé) (n;) being the asymptotic time complexity of calculating ¥' over sub-trace &;
foralll <[<k.

Let us denote with g4 (n) the asymptotically worst function between {g (}) cee, gé‘)}.

We have that ZF_ n" " % go(n)) < Z5_ n"~" % gy(n) < n*n"'g4(n). Thus,

Ci(y, m) € O™ * gg(n) + m *n).
2. The cases for Ojp, 4] and U[p, 41 are proved similarly.

]

Proposition 5 Given an eLTL formula v, with m eLTL nested operators, and a data
trace 7 of length n, then if g4 is the worst space complexity of the interval formulae
nested in ¥, and Cs(yr) is the worst spacial complexity of the monitors implementing
the eLTL operators of Cs(Yr,) € O(n™ * gy (n) +m + Cs(¥)).

Proof The proof is similar to that of Proposition 4. O

References

Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832-843 (1983)

Alur, R., Henzinger, T.: Real-time logics: complexity and expressiveness. Inf. Comput. 104(1), 35-77
(1993). https://doi.org/10.1006/inco.1993.1025

Awad, A., Tommasini, R., Kamel M.and Della Valle, E., S., S.: D2IA: stream analytics on user-defined event
intervals. In: Advanced Information Systems Engineering. CAiSE 2019, LNCS, vol. 11483 (2019).
https://doi.org/10.1007/978-3-030-21290-2_22

Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verification. In: B. Steffen, G.
Levi (eds.) 5th Int. Conf. on Verification, Model Checking, and Abstract Interpretation, VMCAI 2004,
LNCS, vol. 2937, pp. 44-57. Springer (2004). https://doi.org/10.1007/978-3-540-24622-0_5

5 Observe that the non satisfaction of the ITC assumption only affects the non Boolean operators nested in
¥, however we have decided not to make this distinction to simplify this and the following Propositions.

@ Springer

https://doi.org/10.1006/inco.1993.1025
https://doi.org/10.1007/978-3-030-21290-2_22
https://doi.org/10.1007/978-3-540-24622-0_5

3 Page460f47 Automated Software Engineering (2023) 30:3

Barringer, H., Groce, A., Havelund, K., Smith, M.H.: Formal analysis of log files. J. Aerosp. Comput. Inf.
Commun. 7(11), 365-390 (2010). https://doi.org/10.2514/1.49356

Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitoring: from eagle to ruler.
J. Log. Comput. 20(3), 675-706 (2010). https://doi.org/10.1093/logcom/exn076

Basin, D.A., Klaedtke, F., Miiller, S., Zalinescu, E.: Monitoring metric first-order temporal properties. J.
ACM 62(2), 15:1-15:45 (2015). https://doi.org/10.1145/2699444

Botia, J.A., Villa, A., Palma, J.: Ambient assisted living system for in-home monitoring of healthy inde-
pendent elders. Expert Syst. Appl. 39(9), 8136-8148 (2012)

Cameron, F., Fainekos, G., Maahs, D., Sankaranarayanan, S.: Towards a verified artificial pancreas: chal-
lenges and solutions for runtime verification, LNCS, vol. 9333, pp. 3-17. Springer Verlag, Cham
(2015)

Chaochen, Z., Hansen, M.R.: Duration calculus—a formal approach to real-time systems. Monographs in
Theoretical Computer Science. An EATCS Series. Springer (2004)

Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.: Tessla: Temporal stream-
based specification language. In: T. Massoni, M.R. Mousavi (eds.) 21st Brazilian Symposium on
Formal Methods: Foundations and Applications, SBMF 2018, LNCS, vol. 11254, pp. 144-162.
Springer (2018). https://doi.org/10.1007/978-3-030-03044-5_10

Diaz Zayas, A., Caso, G., Alay, O., Merino, P., Brunstrom, A., Tsolkas, D., Koumaras, H.: A modular
experimentation methodology for 5G deployments: the SGENESIS approach. Sensors (2020). https://
doi.org/10.3390/520226652

Donzé, A., Ferrere, T., Maler, O.: Efficient robust monitoring for STL. In: N. Sharygina, H. Veith (eds.)
25th International Conference on Computer Aided Verification (CAV 2013), LNCS, vol. 8044, pp.
264-279. Springer (2013). https://doi.org/10.1007/978-3-642-39799-8_19

D’Souza, D., Matteplackel, R.M.: A compositional hierarchical monitoring automaton construction for
LTL. In: A. Roychoudhury, M. D’Souza (eds.) 9th International Colloquium on Theoretical Aspects
of Computing (ICTAC 2012), LNCS, vol. 7521, pp. 16-29. Springer (2012)

Espada, A.R., Gallardo, M.M., Salmerén, A., Panizo, L., Merino, P.: A formal approach to automatically
analyze extra-functional properties in mobile applications. Softw. Test. Verif. Reliab. 29(4-5), 1699
(2019)

Espinosa, C.V., Martin-Martin, E., Riesco, A., Rodriguez-Hortala, J.: FlinkCheck:property-based testing
for apache flink. IEEE Access 7, 150369-150382 (2019)

Faymonville, P., Finkbeiner, B., Schledjewski, M., Schwenger, M., Stenger, M., Tentrup, L., Torfah, H.:
StreamLAB: Stream-based monitoring of cyber-physical systems. In: I. Dillig, S. Tasiran (eds.) 31st
International Conference on Computer Aided Verification CAV 2019, LNCS, vol. 11561, pp. 421-431.
Springer (2019). https://doi.org/10.1007/978-3-030-25540-4_24

Gallardo, M.M., Panizo, L.: Extending model checkers for hybrid system verification: the case study of
SPIN. Softw. Test. Verif. Reliab. 24(6), 438-471 (2014). https://doi.org/10.1002/stvr.1505

Gallardo, M.M., Panizo, L.: Trace analysis using an event-driven interval temporal logic. In: M. Gabbrielli
(ed.) 29th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR
2019), LNCS, vol. 12042, pp. 177-192. Springer (2019). https://doi.org/10.1007/978-3-030-45260-
5_11

Gorostiaga, F., Sdnchez, C.: Nested monitors: Monitors as expressions to build monitors. In: L. Feng,
D. Fisman (eds.) 21st Int. Conference on Runtime Verification, RV 2021, LNCS, vol. 12974, pp.
164-183. Springer (2021). https://doi.org/10.1007/978-3-030-88494-9_9

Hallé, S.: When RV meets CEP. In: Y. Falcone, C. Sanchez (eds.) 16th International Conference on Runtime
Verification, RV 2016, LNCS, vol. 10012, pp. 68-91. Springer (2016). https://doi.org/10.1007/978-
3-319-46982-9_6

Havelund, K., Peled, D.: First-order timed runtime verification using BDDs. In: D.V. Hung, O. Sokolsky
(eds.) 18th International Symposium on Automated Technology for Verification and Analysis (ATVA
2020), LNCS, vol. 12302, pp. 3—24. Springer (2020). https://doi.org/10.1007/978-3-030-59152-6_1

Havelund, K., Peled, D., Ulus, D.: First-order temporal logic monitoring with BDDs. Formal Methods Syst.
Des. 56(1), 1-21 (2020). https://doi.org/10.1007/s10703-018-00327-4

Havelund, K., Pressburger, T.: Model checking java programs using java pathfinder. STTT 2(4), 366-381
(2000)

Holzmann, G.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279-295 (1997)

Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley Professional,
Boston (2003)

@ Springer

https://doi.org/10.2514/1.49356
https://doi.org/10.1093/logcom/exn076
https://doi.org/10.1145/2699444
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.3390/s20226652
https://doi.org/10.3390/s20226652
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1002/stvr.1505
https://doi.org/10.1007/978-3-030-45260-5_11
https://doi.org/10.1007/978-3-030-45260-5_11
https://doi.org/10.1007/978-3-030-88494-9_9
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1007/978-3-030-59152-6_1
https://doi.org/10.1007/s10703-018-00327-4

Automated Software Engineering (2023) 30:3 Page 47 of 47 3

Kauffman, S., Havelund, K., Joshi, R.: nfer—a notation and system for inferring event stream abstractions. In:
International Conference on Runtime Verification (RV’16), LNCS, vol. 10012, pp. 235-250. Springer
(2016)

Kauffman, S., Havelund, K., Joshi, R., Fischmeister, S.: Inferring event stream abstractions. Formal Methods
Syst. Des. 53, 54-82 (2018)

Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor. Comput. Sci. 331(2-3),
397-428 (2005). https://doi.org/10.1016/j.tcs.2004.09.023

Maler, O., Ni¢kovié, D.: Monitoring properties of analog and mixed-signal circuits. STTT 15(3), 247-268
(2013)

Panizo, L., Diaz-Zayas, A., Garcia, B.: Model-based testing of apps in real network scenarios. Int. J. Softw.
Tools Technol. Transf. 22(2), 105-114 (2020). https://doi.org/10.1007/s10009-019-00518-2

Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In: J. Misra, T. Nipkow,
E. Sekerinski (eds.) 14th International Symposium on Formal Methods (FM 2006), LNCS, vol. 4085,
pp. 573-586. Springer (2006). https://doi.org/10.1007/11813040_38

Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs for system health
management of real-time systems. In: E. Abrahdm, K. Havelund (eds.) 20th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems(TACAS 2014), LNCS, vol.
8413, pp. 357-372. Springer (2014). https://doi.org/10.1007/978-3-642-54862-8_24

Rosu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Autom. Softw. Eng. 12(2),
151-197 (2005). https://doi.org/10.1007/s10515-005-6205-y

Sanchez, C., Schneider, G., Ahrendt, W., Bartocci, E., Bianculli, D., Colombo, C., Falcone, Y., Francalanza,
A., Krstic, S., Lourengo, J.M., Nickovic, D., Pace, G.J., Rufino, J., Signoles, J., Traytel, D., Weiss,
A.: Correction to: a survey of challenges for runtime verification from advanced application domains
(beyond software). Formal Methods Syst. Des. 55(1), 72 (2019). https://doi.org/10.1007/s10703-019-
00343-y

Volanschi, N., Serpette, B.P.: AllenRV: An extensible monitor for multiple complex specifications with
high reactivity. In: B. Finkbeiner, L. Mariani (eds.) 19th International Conference on Runtime Veri-
fication, RV 2019, LNCS, vol. 11757, pp. 393—401. Springer (2019). https://doi.org/10.1007/978-3-
030-32079-9_24

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1016/j.tcs.2004.09.023
https://doi.org/10.1007/s10009-019-00518-2
https://doi.org/10.1007/11813040_38
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.1007/s10703-019-00343-y
https://doi.org/10.1007/s10703-019-00343-y
https://doi.org/10.1007/978-3-030-32079-9_24
https://doi.org/10.1007/978-3-030-32079-9_24

	STAn: analysis of data traces using an event-driven interval temporal logic
	Abstract
	1 Introduction
	2 Event-driven systems and the eLTL logic
	2.1 Syntax and semantics of eLTL
	2.2 Examples

	3 Background of Promela and Spin
	4 Implementation
	4.1 Tree based implementation
	4.2 Offline implementation in Promela
	4.3 Online implementation in Promela

	5 Complexity results
	5.1 Space and time complexities of interval formulae
	5.2 Complexities of eLTL formulae

	6 Use case
	6.1 Analysis of video event traces
	6.2 Analysis of traffic captures

	7 Related work
	7.1 Specification languages for interval properties
	7.2 Monitoring algorithms for interval properties
	7.3 Stream runtime verification

	8 Conclusions
	Appendix A Offline and online monitors of eLTL operators
	Appendix B Complexity
	References

