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Abstract
Mobile robots usually need to minimize energy when they are traversing uneven terrains. To reach a location of interest, one
strategy consists of making the robot follow the path that demands the least possible amount of energy. Yet, its calculation is
not trivial with irregular surfaces. Gravity makes the energy consumption of a robot change according to its heading. Such
a variation is subject to the terramechanic characteristics of the surface. This paper introduces a cost function that addresses
this variation when traversing slopes. This function presents direction-dependency (anisotropic) and returns the cost for all
directions (continuous).. Moreover, it is compatible with the Ordered Upwind Method, which allows finding globally optimal
paths in a deterministic way. Besides, the segments of these paths are not restricted to the shape of a grid. Finally, this paper also
introduces the description and discussion of a simulation experiment. It served to analyse what kinds of terrainmotivate the use
of anisotropy. The Ordered Upwind Method was executed on a virtual crater with different terrain parameter configurations,
using both isotropic (direction-non-dependent) and anisotropic cost functions. The results evince how in certain situations
the use of an anisotropic cost function instead of an isotropic one produces a path that reduces the accumulated cost by up to
20%.

Keywords Mobile Robots · Path planning · Anisotropic · Rough surfaces · Guidance

1 Introduction

Mobile robots demand more and more autonomy. They are
necessary for increasingly complex tasks with limited or
even nonexistent human supervision. Examples of these tasks
in unstructured irregular terrains include searching for vic-
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tims in emergency response scenarios [1], harvesting and/or
fumigating in precision agriculture [2] or even planetary
exploration [3] among others. A commonly used strategy
to make mobile robots autonomously navigate is the use
of path planning algorithms. These algorithms serve to cal-
culate a path that connects the robot location to any other
reachable destination [4].Moreover, minimizing energy con-
sumption as much as possible is desirable to make the robot
perform a larger number of tasks. Thus, the path provided
to the robot should be the one requiring the least amount of
energy. In other words, the path planning algorithm should
be optimal. Yet, this is not trivial as the idea of optimality dif-
fers between the different existing path planning approaches.
We mention here three categories that are used for outdoors
navigation in static environments: Sampling-based meth-
ods, Graph Search methods and Partial Derivative Equation
(PDE) Solving methods [4]. These methods either create a
graph that models the environment or use a pre-existing one.
This graph is processed to retrieve the path from it.

Sampling-based methods model and process the graph
at the same time. They iteratively create samples over a
region until the initial and the goal locations are connected.
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This is the case for the Rapidly-exploring Random Tree
(RRT), which starts from one location and creates samples
(branches) resembling the growth of a tree [5]. It is asymptot-
ically optimal: after connecting with the goal location, more
samples can be created before retrieving the path. This serves
to incrementally find better solutions as time runs. Neverthe-
less, this entails a high demand for memory resources, since
usually large numbers of iterations and samples are needed
to come relatively close to the global optimal solution [6].

Other approaches process a graph with pre-existing con-
nected samples, named nodes. Graph Search methods calcu-
late a path that is made up of these nodes. The most basic
of them is Dijkstra [7]. Heuristic methods like A* evolved
fromDijkstra to speed up computation [8]. Their main draw-
back is that the shape of the path is restricted to connecting
neighbouring graph nodes. Any-angle algorithms reduce this
restriction by introducing the possibility of making the path
bemade up of non-neighbouring graph nodes. One of them is
Field-D*, an algorithm implemented on the NASA rovers for
the Mars Exploration Rovers (MER) and Mars Science Lab-
oratory (MSL) missions [9,10]. However, the final solution
is not globally optimal [11]. Algorithms like Theta* are still
not globally optimal but provide better results in distance-
minimizing path planning [12].

There is another group of path planning algorithms able
to generate smooth paths in a globally optimal way: the Par-
tial Derivative Equation (PDE) solving methods. They use
also a pre-existing graph, but, unlike Graph Search methods,
they do not compute any parent-child relationships between
nodes. This removes the necessity to restrict the path to pass
through intermediate nodes or edges. Instead, PDE Solving
algorithms assign a characteristic direction to each node. This
direction corresponds to the optimal heading of any path that
crosses the node in question. This direction comes from solv-
ing the PDE in the respective node [13]. In this way, the
path comes via interpolation with these characteristic direc-
tions.The equationusedmodels anoptimization formula, and
its form determines which solver methods are suitable. For
example, theFastMarchingMethod (FMM)models the prop-
agation of awave over the graph [14]. The rate of propagation
varies with cost values defined over each node, which can be
non-uniform [15]. Nevertheless, as will be seen later, some
forms of cost require the consideration of the vehicle heading.
This means the cost may change with direction, i.e. it may
be anisotropic. FMMproduces sub-optimal results when this
cost is anisotropic [13]. Another PDE Solving method, the
Ordered Upwind Method (OUM), addresses this anisotropy
in exchange for increasing the computational load [16]. It
can hence find the optimal path considering the variations of
cost according to the heading of the robot.

A path is optimal given the locomotion capabilities
and the terrain. Therefore, the planner must address the
terrain-vehicle interaction. The traverse of uneven surfaces

is inherently anisotropic: the direction of the robot affects
its energy consumption. For instance, a robot does not invest
the same energy ascending and descending the same slope.
Several works in the past proposed the use of Graph Search
planners along with anisotropic power consumption models
based on friction and gravity [17–21]. It is worth mention-
ing that while not ensuring finding the globally optimal path,
these Graph Search approaches allow the use of heavy dis-
continuities such as forbidding ascending certain inclinations
or substituting them by discontinuous zig-zag manoeuvres
[20]. Other work uses nonlinear programming techniques to
optimize energywhile considering dynamic constraints, con-
necting grid nodes with feasible non-holonomic trajectories
[22]. It still relies on Graph Search based methods for global
planning, but this has also proven useful for local motion
planning, and trajectory tracking. There is recent research
oriented toward finding paths for the optimal ascension of
slopes using Sampling-basedmethods like RRT* [23], where
the difference in the slip between going straightly or diag-
onally through them is considered [24]. Another approach
proposes the use of Sampling-based methods like SBMPO
to find energy-minimizing paths considering any rise in ele-
vation [25].

This paper presents a novel continuous and differentiable
anisotropic cost model compatible with the OUM. This cost
model serves to make the planner find energy-minimizing
paths by addressing the energy consumption of a robot on
inclined terrains. The structure of this paper comes in the
following form. Section 2 presents the optimization problem
that formulates the anisotropic path planner. It also presents
its application on irregular terrains, focusing on the algo-
rithm functioning and the cost function requirements. Later
on, Sect. 3 fully describes the proposed anisotropic cost func-
tion. It starts with the mathematical background and later
explains how this function addresses gravity, friction and slip.
Next, Sect. 4 presents the results of a simulation experiment,
which serves to validate its potential. Last, Sect. 5 provides
our conclusions regarding the usage of an anisotropic cost
function along with the OUM for navigating through scenar-
ios containing slopes.Moreover, this section provides as well
an overview of possible related future work.

2 Optimal anisotropic path planning

An anisotropic PDE serves as the cornerstone to formulate
and solve the optimal path planning problem. Its solution
leads to finding the optimal path on an irregular surface for
a mobile robot. The region � ⊂ R

2 encloses the region of
interest for the problem, depicted as a rectangle in Fig. 1.
The target of the path planner is to find the optimal path
connecting the goal x̃g ∈ � and the origin x̃o ∈ �. This path
is a continuous curve that can be parametrized by the path
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Fig. 1 Different paths � = �(x̃o, x̃g, ·) connecting x̃o and x̃g can be
defined upon different tangent directions �u(�(x̃o, x̃g, s)), where s is
the path length. The role of the anisotropic path planner is to find the
optimal path among them

length s. In this way, the function �(x̃o, x̃g, s) returns the
position at such a curve given a value of s, while �(x̃o, x̃g, ·)
refers to the whole path. This path is the optimal one between
x̃o and x̃g by complying with Eq. (1) and has sg as its total
length. The function Q(�(x̃o, x̃g, s), �u(�(x̃o, x̃g, s))) is the
cost function. This function returns the value of cost given
a location (in this case, �(x̃o, x̃g, s)) and a direction (in this
case, �u(�(x̃o, x̃g, s)), which is explained later). T (x̃o, x̃g) is
the amount of cost accumulated along the optimal path. This
amount is referred to as the total cost. It is the objective
function that the planner has to minimize when searching for
the optimal path.

T (x̃o, x̃g) = min
�(x̃o,x̃g,·)∈�

{∫ sg

0
Q(�(x̃o, x̃g, s),

�u(�(x̃o, x̃g, s)))ds

} (1)

The formulation of the total cost is based on the Dynamic
Programming Principle (DPP). Under this principle, the total
cost between two points such as the origin x̃o and the goal x̃g
is the minimum possible. This makes path planning methods
working with DPP globally optimal. The DPP is expressed
in Eq. (2) and explained as follows. For any point x̃i j ∈ �,
the total cost from x̃o to that point, T (x̃o, x̃i j ), and from that
point to x̃g, T (x̃i j , x̃g), is equal to the total cost between x̃o
and x̃g, only if this point x̃i j is placed at the optimal path
connecting them, �(x̃o, x̃g, ·).

T (x̃o, xi j ) + T (xi j , x̃g) = T (x̃o, x̃g),

∀xi j ∈ �(x̃o, x̃g, s) ∈ �
(2)

With regards the direction �u(x̃i j ), it is the direction tangent
to the optimal path that passes through x̃i j . This is expressed
in (3). This direction is also called the characteristic direction
of a location x̃i j ∈ �. In this way, given how the anisotropic
cost function is defined, all the optimal paths passing through
the location in question will have this same characteristic

direction on it.

�u(x̃i j ) = d�(x̃o, x̃g, s)

ds

∣∣∣
x̃i j

(3)

To solve (1), it is reformulated as the Hamilton-Jacobi-
Bellman (HJB) equation, following the reasoning of previous
works [13,16,26]. This equation, shown in (4), establishes the
correspondence between the anisotropic cost Q(x̃i j , �ψ) and
the spatial gradient of the total cost∇T . Here, the anisotropic
cost function is defined not only according to the location of
any grid x̃i j but also to the heading function �ψ . The latter
function is the direction of the robot in the XY-plane, i.e. its
heading, returned as a 2D unit vector. The direction �ψ that
complies with (4) in a grid node x̃i j corresponds hence to the
characteristic direction �u(x̃i j ) passing through it. Moreover,
following the DPP in (2) and the definition of the character-
istic direction in (3), the total cost in (1) is expressed from
x̃o to x̃i j as well as from x̃i j to x̃g.

min
�ψ

{∇T · �ψ + Q(x̃i j , �ψ)} = 0, ∀x̃i j ∈ �̃

∇T = ∇T (x̃o, x̃i j ) = ∇T (x̃i j , x̃g) (4)

The Ordered Upwind Method (OUM) uses (4) to find
the optimal path on a regular grid. According to the work
of Sethian and Vladimirsky [13], this algorithm has a com-
putational complexity that depends on the anisotropy ϒ of
the cost function: O(ϒnnodes log(nnodes)). Here, nnodes is the
number of nodes of the grid. This anisotropy ϒ comes as
the ratio between the highest and the lowest values of cost
depending on the heading. However, for the case presented
in this paper, the anisotropy varies from node to node, i.e.
the anisotropy here is ϒ(x̃i j ). Therefore, the computational
complexity is expected to be variable as well, bounded by
the maximum existing anisotropy in the grid �̃. According
to Equation (5), this anisotropy ϒ(x̃i j ) of a node x̃i j comes
as the ratio between the highest possible cost at its location
and the lowest according to the heading direction �ψ .

ϒ(x̃i j ) = max �ψ {Q(x̃i j , �ψ)}
min �ψ {Q(x̃i j , �ψ)} (5)

There is an improved version of the OUM, named the bi-
directional OUM. It generates the same solution in a faster
way thanOUMby reducing the number of visited nodes [26].
Bi-OUM calculates both T (x̃o, x̃i j ) and T (x̃i j , x̃g) using two
propagating waves in two parallel loops: Goal wave, which
starts from x̃g, and Origin wave, which starts from x̃o. This
exploits the DPP presented in Eq. (2). Figure2 shows this
functioningwith a regular grid. Each parallel loop is coloured
with a different colour, either purple (Goal wave) or orange
(Origin wave). As can be checked in this figure, is not neces-
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Fig. 2 Schematic of the functioning of bi-OUM. Two expanding waves start from the goal and the origin nodes (x̃g and x̃o) respectively. The loop
controlling each wave is coloured in purple and orange. The red arrows indicate the characteristic direction �u(x̃i j ) that passes through each node
x̃i j

sary that the two waves propagate until reaching the starting
position of the other wave. When both waves reach an inter-
mediate linking node x̃l the bi-OUM process stops. This is
because, as highlighted in Eq. (2), this node complies with
the DPP and there is only a single path passing through it: the
optimal path. This path is calculated by following the char-
acteristic direction that is also calculated in both waves, one
from x̃l to x̃o and another from x̃l to x̃g. In this way, bi-OUM
achieves the same optimal solution as the OUM but invests
less time than the latter. This is because the bi-directional
version visits fewer nodes than the original [26].

To use theHJB equation in (4) for calculating the total cost
and the characteristic direction of any node, the bi-OUM
employs a semi-Lagrangian discretization. It was already
used by Sethian and Vladimirsky [13] when they introduced
the OUM. This discretization produces Eqs. (6) and (7) as a
result. They serve to calculate, in an iterativeway, the value of
total cost. TheOrigin wave uses Eq. (6) while theGoal wave
uses Eq. (7). In both expressions the update process depends
on two other nodes, x̃i ′ j ′ and x̃i ′′ j ′′ , whose corresponding val-
ues of total cost are already calculated. The main difference
between (6) and (7) is that the total cost from thegoal nodehas
to consider that the anisotropic cost function multiplies the
input value of characteristic direction by−1. This is because
the propagating wave advances in the contrary direction to
the heading of the robot. The iterations end when the value of
ε ∈ [0, 1] is found after converging. Equation (8), also com-
ing from the semi-lagrangian discretization, expresses how
the characteristic direction is calculated, based on the value
of ε found.

T (x̃o, x̃i j ) = min
ε∈[0,1]

{
Q(x̃i j , �u(x̃i j ))|ε x̃i ′ j ′

+ (1 − ε)x̃i ′′ j ′′ − x̃i j | + εT (x̃o, x̃i ′ j ′)

+ (1 − ε)T (x̃o, x̃i ′′ j ′′)
} (6)

Fig. 3 Update process of a Considered node x̃i j . Its values of total cost
and characteristic direction are computed taking into account Accepted-
Front nodes within the distance ξ(x̃i j ) expressed in Eq. (9), also called
Near-AcceptedFront nodes

T (x̃i j , x̃g) = min
ε∈[0,1]

{
Q(x̃i j ,−�u(x̃i j ))|ε x̃i ′ j ′

+ (1 − ε)x̃i ′′ j ′′ − x̃i j | + εT (x̃i ′ j ′ , x̃g)

+ (1 − ε)T (x̃i ′′ j ′′ , x̃g)
} (7)

�u(x̃i j ) = ε x̃i ′ j ′ + (1 − ε)x̃i ′′ j ′′ − x̃i j
|| ε x̃i ′ j ′ + (1 − ε)x̃i ′′ j ′′ − x̃i j || (8)

Each node has two state functions: Soi j and Sgi j . Each of
these functions indicates the state of the node x̃i j according
to theOrigin wave or theGoal wave respectively. Soi j and Sgi j
present each one state out of the four presented in Table 1,
whichwill be further explained later. Thenodes x̃i ′ j ′ and x̃i ′′ j ′′
that affect the explained update processes of the total cost and
the characteristic direction must present an AcceptedFront
state.Besides, theymust be located close enough to x̃i j ,with a
proximity distance lower than ξ(x̃i j ). This distance threshold
is defined in Eq. (9). It comes in function of the anisotropy
ϒ(x̃i j ) that is present at such node, already expressed in (5).
ξ(x̃i j ) is also proportional to the grid resolution �. Figure 3
shows how this distance works.

ξ(x̃i j ) = �ϒ(x̃i j ) (9)
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The process followed by bi-OUM to visit the grid nodes,
represented in Fig. 2, is also presented as pseudo-code in
Algorithm 1. First of all, both Soi j and Sgi j are initialized
to Far for every node. Thereafter, each loop sets the total
cost of the respective starting node to zero, a null value to
the characteristic direction (since initial and final desired
orientations are not defined) and the Accepted state to the
respective state function. Next, each process updates the
neighbours of the corresponding starting node thanks to the
updateNeighbours() function. Two functions are iteratively
executed by the Goal wave and the Origin wave. On the one
hand, updateNeighbours() performs three actions. First, it
checks whether an AcceptedFront node no longer has Far or
Considered neighbours and changes its state to AcceptedIn-
ner. Second, it converts those Far nodes that are neighbours to
a target node x̃t into Considered. This target node is initially
the starting node from which the wave expands. Third, the
total cost of the Considered neighbours to the target node is
updated using either Eqs. (6) or (7), as well as the character-
istic direction using Eq. (8). Thereafter, the following target
node is chosen using the getNextNode() function. This func-
tion takes the existing Considered node with the lowest value
of total cost, x̃t , and changes its state into AcceptedFront.

Algorithm 1 The bi-OUM.

Input: x̃0, x̃g, �̃
Output: �̃

1: T (x̃i j , x̃g), �u(x̃i j ) ← ∞, NaN ∀x̃i j ∈ �̃

2: Sgi j ← Far ∀x̃i j ∈ �̃

3: T (x̃g, x̃g), �u(x̃g) ← 0, NaN
4: Sgg ← AcceptedFront
5: T (x̃o, x̃i j ), �u(x̃i j ) ← ∞, NaN ∀x̃i j ∈ �̃

6: Soi j ← Far ∀x̃i j ∈ �̃

7: T (x̃o, x̃o), �u(x̃o) ← 0, NaN
8: Soo ← AcceptedFront
9: x̃tg ← x̃g
10: x̃to ← x̃o
11: while ¬checkFinCondition() do 
 Both waves
12: updateNeighbours(x̃tg) 
 Goal wave
13: updateNeighbours(x̃t0) 
 Origin wave
14: x̃tg ← get Next Node(T (·, x̃g)) 
 Goal wave
15: x̃t0 ← get Next Node(T (x̃o, ·)) 
 Origin wave
16: end while
17: return get Path(Sg, S0)

Finally, the checkFinCondition() function evaluates x̃t to
check if its state is AcceptedInner or AcceptedFront for both
loops. If so, the waves stop and x̃t becomes x̃l, indicated
in Fig. 2 as a blue dot. Later on, the getPath() function
returns the optimal path from two portions: one from x̃l
to x̃o and another from x̃l to x̃o. Each waypoint is calcu-
lated as indicated in (10), where the step distance is dstep,
and the characteristic direction for each waypoint is interpo-
lated from the values calculated on the nodes. The final path

�̃ =
{
�̃o, �̃1, �̃2...�̃g

}
is obtained by joining both portions

(see Fig. 2).

�̃k−1 = �̃k − dstep�u(�̃k) , i f Origin wave

�̃k+1 = �̃k + dstep�u(�̃k) , i f Goal wave
(10)

3 Anisotropic cost function for inclined
surfaces

This sectionpresents the steps followed tomake an anisotropic
cost function Q(x̃i j , �ψ) be based on slope parameters and
compatible with the (bi-)OUM.

3.1 Slope-based anisotropy

Figure4 shows the slope model used to represent the inter-
action between the robot and inclined terrain. In the absence
of any kinematic configuration capable to reconfigure itself
[27], the pose of the robot body will change according to the
shape of the terrain surface. This change will be determined
by the contact points between the robot and the surface. Nev-
ertheless, to avoid making the formulation more complex, a
simplification is made: the robot-terrain interaction is mod-
elled after a single contact point. This simplification assumes
the robot body is always parallel to an imaginary inclined
plane. The normal vector of this plane, named �νi j in Fig. 4,
will be hence coincident with the Z-axis of the robot local
reference frame. This imaginary plane is inclined at a certain
angle from the horizontal XY plane (the plane perpendicular
to the gravity vector). The value of this angle corresponds
to the slope gradient αi j and is equal to the angle between
the normal vector �νi j and the global Z-axis as showcased
in Fig. 4. The direction the slope faces, i.e. the direction in
which the steepest descent occurs, is the aspect or �γi j . It can
be obtained from projecting the normal vector of the slope,
�νi j , onto the 2D XY plane and normalizing it.

To make the anisotropic cost function Q(x̃i j , �ψ) com-
patible with the (bi-)OUM, it is necessary to understand its
requirements. First of all, this function must always return
a positive and non-zero value. Complying with this condi-
tion avoids producing undesirable local minimum points that
compromise the optimality of the resulting path, making it
sub-optimal [13]. Next, the solution that bi-OUM produces
is viscous, meaning it not only exists but is also unique and
stable. This is thanks to the fact that the computed solution
omits any discontinuity present in the real solution of the total
cost [16]. However, the computed solution is guaranteed to
be unique if, and only if, it is ensured that the inverse of the
cost function, 1/Q(x̃i j , �ψ), is fully differentiable and convex
[13,16]. For this reason, as shown in Fig. 5 the inverse of the
real cost of the robot, 1/Q̃(x̃i j , �ψ), is approximated with a
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Table 1 Possible states of grid
nodes in the calculation of the
values of total cost and
characteristic direction

State Visited Total cost and characteristic direction All neighbours are accepted

Far No Irrelevant No

Considered Yes Tentative No

AcceptedFront Yes Definitive No

AcceptedInner Yes Definitive Yes

Fig. 4 Graphical representation
of the slope model used to build
up the anisotropic cost function.
This model encompasses
multiple variables such as the
slope gradient α, the aspect �γi j ,
the normal vector �νi j , the
heading direction �ψi j and the
relative angle β( �ψ, �γi j ). All of
them are marked in this
conceptual depiction. a 3D
Perspective view of slope
model. b Lateral and top views
of the slope model

closed conic curve. This curve is 1/Q(x̃i j , �ψ), which is for-
mulated as a displaced ellipse due to its simplicity. Equation
(11) expresses the polar form of this ellipse, whose radius
is 1/Q(x̃i j , �ψ). This form uses β( �ψ, �γi j ), which represents
the angle between the robot heading �ψ and the aspect �γi j . In
this way, when �ψ coincides with �γi j then β( �ψ, �γi j ) returns a
value of zero. Figure5 depicts how the radius of this ellipse,
which corresponds to the inverse of the cost 1/Q(x̃i j , �ψ),
varies with β( �ψ, �γi j ).

0 =
[cosβ sinβ ]T

[−Ca
i jC

d
i j 0

0 −Cl
i j
2

] [
cosβ
sinβ

]

Q(x̃i j , �ψ)2
+

+

[
Ca
i j − Cd

i j 0
] [

cosβ
sinβ

]

Q(x̃i j , �ψ)
+ 1 , β = β( �ψ, �γi j )

(11)

The shape of the ellipse varies with the slope gradient
αi j through three functions: the ascent cost Ca

i j , the lateral

cost Cl
i j and the descent cost Cd

i j . Each of them correspond

to what the real cost Q̃(x̃i j , �ψ) returns at certain values of
β( �ψ, �γi j ): ±π (12), ±π/2 (13) and 0 (14).

Ca
i j = Q̃(x̃i j , �ψ | β( �ψ, �γi j ) = ±π) (12)

Cl
i j = Q̃

(
x̃i j , �ψ | β( �ψ, �γi j ) = ±π

2

)
(13)

Cd
i j = Q̃(x̃i j , �ψ | β( �ψ, �γi j ) = 0) (14)

Fig. 5 Elliptical inverse of the anisotropic cost function Q(x̃i j , �ψ). It
serves to approximate the inverse of the real cost of the robot, Q̃(x̃i j , �ψ),
while complying with the requirements of the OUM (convex, contin-
uous, closed). The robot has a heading direction �ψ that has an angle
β( �ψ, �γi j ) with respect to the aspect �γi j

The terms cosβ and sinβ can be substituted by the expres-
sions in (15), given the fact that the ellipse in Fig. 5 is
symmetrical in the axis where �γi j is located. With these
expressions in mind, the terms in (11) can be rearranged to
leave this equation in the explicit form shown in (16).

| cosβ | = �ψ · �γi j , | sinβ | = || �ψ × �γi j || (15)

Q(x̃i j , �ψ) =
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√√√√
(
Ca
i j + Cd

i j

2

)2 ( �ψ · �γi j
)2 +

(
Cl
i j || �ψ × �γi j ||

)2

−Ca
i j − Cd

i j

2
�ψ · �γi j (16)

3.2 Energyminimizing cost function

The next step is to re-define Q(x̃i j , �ψ) by means of the robot
energy consumption according to its dynamics. Equation (17)
serves to model this consumption when climbing any slope.
It is based on a model created in previous work to repre-
sent the current consumption of a robot with n wheels and
wheel radius r [28]. Here we assume that the same voltage is
supplied to all motors, so the current consumption is propor-
tional to the power. The motor torque constant is referred to
as Km , which serves to translate the torque into the current.

I (ρi j , σi j , αi j ) = nKmr
mg(ρi j cosαi j − sinαi j )

cosαi j (1 − σi j )
(17)

The terms that appear in the fraction are explained as fol-
lows. The numerator is the Drawbar Pull Resistance Force.
It represents the resulting force that drags the robot. It comes
as a function of the specific resistance coefficient ρi j , the
mass of the robot m and the gravity acceleration g. Rowe
and Ross [17] use a similar expression to model the same.
The coefficient ρi j estimates the ratio between the normal
force, generated by the terrain surface, and the drawbar pull,
produced by making the wheels roll.

Two terms are in the denominator. First, cosαi j arises to
account for the fact that we are solving a two-dimensional
path planning problem. In other words, the 2.5D elevation
map is projected onto the 2D plane and the aforementioned
robot speed v takes different values in the 2Dprojectionwhen
climbing or descending through a slope, i.e. changing its Z-
coordinate. This can be understood better by checking on
Fig. 4a, where the blue circle on the slope takes the form of
an ellipse in its projection onto the XY -plane. Second, the
slip ratio σi j is the difference between 1 and the ratio between
vi j and the estimated speed that is commanded to the wheels.
In other words, σi j takes a value of zero when vi j and the
commanded speed are the same. Its value gets close to one
as the commanded speed increases.

The functions Ca
i j (x̃i j ), C

l
i j (x̃i j ) and Cd

i j (x̃i j ) are defined

using (17) to make the anisotropic cost function Q(x̃i j , �ψ)

consider the path planning criterion of electric charge min-
imization. They are expressed in Eqs. (18), (19) and (20),
respectively. All of them consider the robot speed vi j .

Ca
i j = I (ρi j , σi j , αi j )

vi j
(18)

Fig. 6 Use of Bezier curve function Rb(x̃i j ) to comply with the non-
zero positive cost specification in a smooth way. ρi j = 0.3, α� = 15◦
and αzero

i j = arctanρi j

Cl
i j = I (ρi j , σi j , 0)

vi j
(19)

Cd
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

nKmr
mgRb(x̃i j )

vi j (1 − σi j )
,

αi j ∈ (αzero
i j − α�, αzero

i j + α�)∣∣∣∣∣
I (ρi j , σi j ,−αi j )

vi j

∣∣∣∣∣ ,

otherwise

(20)

The function Cl(x̃i j ), expressed in (19), takes a value of
zero for the αi j input. This is because, whenever the robot
goes in a direction perpendicular to the aspect γi j , the value
of elevation does not change, i.e. the robot does not ascend
or descend. On the other hand, a special treatment is given
to Cd(x̃i j ), expressed in (20). The effect of gravity pulls the
robot and reduces its energy consumption when it descends.
Here, it is assumed the vehicle cannot recharge itself, so the
energetic cost should always be present in the form of a pos-
itive value. Besides, it may be also desirable to prevent the
robot from braking when descending through slopes, so the
loss of energy in the form of heat is avoided [17]. When the
robot descends, having a value of−αi j as input that acknowl-
edges this robot pose, the current function from (17) could
return zero or even negative values. This is incompatible
with the OUM and bi-OUM requirements. Therefore, this
situation is dealt with by using the Bezier function Rb(x̃i j )
that is present in (20). This function acknowledges the angle
of slope gradient in which the robot would start gaining
energy, αzero

i j . From this slope gradient, the robot starts brak-
ing to keep its velocity, avoiding any acceleration. Rb(x̃i j )
preserves continuity and smoothness while making the cost
Cd(x̃i j ) return always positive values that increase with the
slope gradient αi j . This is showcased in Fig. 6.

Given the expression in (17), the angle αzero
i j would be

equal to arctanρi j . The absolute value is used to define
Cd(x̃i j ) in (20) so this function increases the cost with val-
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Fig. 7 Selection of region from
the DEM of a crater. The
elevation used is half of the
original. Preparation of the map
used for the simulation tests
with the anisotropic planner. It
is based on the shape of a real
crater on the Martian surface.
The resolution of the DEM is
1m

ues of slope gradient higher than αzero
i j + α�. The use of an

absolute value was used by Rowe and Ross [17] to penal-
ize paths that required the robot to brake and not accelerate.
Here, α� is a custom configurable angle margin. Rb(x̃i j )
marks three points using this margin: at αzero

i j − α�, at αzero
i j

and at αzero
i j + α�. A Bezier curve is the basis of Rb(x̃i j )

to not only preserve continuity but also smoothness while
penalizing braking.

4 Experiments

This section presents an evaluation of the anisotropic cost
function Q(x̃i j , �ψ), presented in Sect. 3 for path planning
purposes. In planetary explorationmissions, roversmaydrive
not only on horizontal surfaces but also on inclined ones.
For instance, the Spirit rover was commanded over weeks
to climb the Husband summit on Mars and later descend it
[29]. For this reason, we prepared and carried out a numer-
ical simulation using the model of a martian unstructured
environment containing a crater. This paper focuses on exe-
cuting only the bi-OUM algorithm to produce a series of
paths in the mentioned scenario. This is because a past com-
parative study already demonstrates how bi-OUM generates
better solutions and even in a faster way than others compat-
ible with anisotropic cost functions, like OUM, RRT* and
Genetic Algorithms [26].

The purpose of this experiment is twofold. First, it is
of interest to analyse how the terrain affects the perfor-
mance of the anisotropic cost function to find energy-
minimizing paths. Second, to figure out how significant
is the use of an anisotropic function in contrast with an
isotropic function. The latter is usable by the Fast Marching
Method (FMM), another PDE Solving method introduced in
Sect. 1 that employs much lower computational complexity:
O(nnodes log(nnodes)) [30]. All the code used to produce the

paths of all the tests is written using the Python language and
is available online.1

The simulation test was carried out using the Digital Ele-
vation Model (DEM) of a crater. This DEM is based on the
shape of a real crater located close to where the Spirit rover
landedonMars. Thedatawas obtained from theHighResolu-
tion Imaging Science Experiment (HiRISE)2 repository and
was adapted to make it present slopes up to 20 degrees. The
main reason to do this is that the original presents pronounced
slopes that would be non-traversable, and the key point in
this simulation test is to have a large variety of traversable
inclined surfaces. Figure7 shows the 80 × 80m portion of
elevation data that was extracted from the original DEM. Fig-
ure8 presents the elevation data describing the shape of this
crater together with some contour lines to ease the visualiza-
tion. The slope gradient (maximum inclination) is shown in
Fig. 9 for all the points on the map.

First of all, we analyse how the specific resistance ρi j and
the slip ratioσi j influence the energy consumption estimation
provided by the anisotropic cost function. It is worth men-
tioning that, in a similar way to isotropic cost functions, the
constant parameters that multiply the whole function, acting
as gains, do not affect the location of the waypoints of the
resulting path. These parameters only modify proportionally
the values of total cost assigned to the nodes. Since the value
returned by the specific resistance ρi j can be a real number
higher than 0 and lower than 1, the simulation test is per-
formed using a discrete set of constant values of ρi j : 0.15,
0.3, 0.45, 0.6, 0.75 and 0.9. In other words, the planner is exe-
cuted several times, using one out of the six different values
of ρi j each time for all nodes x̃i j ∈ �̃.

With regards to the slip ratio σi j , it is defined after two
models constructed from experimental data and introduced
by Sutoh et al. [31]. These models were constructed from

1 https://github.com/spaceuma/CAMIS_python.
2 http://www.uahirise.org/dtm/dtm.php?ID=ESP_023957_1755
Accessed on 6th December 2021.
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Fig. 8 Elevation map

Fig. 9 Slope gradient map

Fig. 10 Slip ratio function of the two models (Wheel and Track) found
in the literature [31], used in the numerical simulation tests

two locomotion subsystems: one using wheels and the other
using tracks. These two mechanisms were simulated on an
inclined sandbox,making themworkwith lunar regolith sim-
ulant [32]. Figure10 depicts the two functions of slip ratio
σi j that depend on the slope gradient αi j . Moreover, they are
expressed in Equation (21). With the increase of this slope
gradient, both slip ratio functions return higher values for
bothmodels, but at different rates. The slip ratio of theWheel
model increases faster than that of the Track model.

σi j =
{
0.07e0.1αi j if Wheel Model

0.04e0.07αi j if Track Model
(21)

In this way, there are six constant values to define the
specific resistance ρi j and two functions that depend on αi j

to define the slip ratio σi j . Moreover, it is here created an
isotropic cost function that takes the highest value of cost
from the anisotropic cost function as shown in (22).

C(x̃i j ) ≡ max
�ψ

{Q(x̃i j , �ψ)} (22)

For a better understanding of how the anisotropic and
isotropic cost functions are defined in this simulation test,
Fig. 11 is provided. It contains 4 subfigures with 3 plots each.
The left plot depicts the anisotropic cost function using a
3d representation. This representation resembles a vertical
cylinder: the base axes serve to construct a polar plot while
there is also a vertical axis pointing upwards (the slope gra-
dient αi j ). The middle plot depicts the inverse of this cost
function using a 2d polar plot. In this case, the information
about the slope gradient αi j is only represented by the use of
different colours, as the vertical axis from the previous plot
is projected. This view is similar to the one shown in Fig. 5.
The right plot serves to represent the directional cost func-
tionsCa

i j (x̃i j ),C
l
i j (x̃i j ) andC

d
i j (x̃i j ) as well as the anisotropy

ϒ(x̃i j ) (in red).
Figure11a, b corresponds to the case where ρ = 0.15 and

the slip ratio model is theWheel one. The difference between
them is that the first one uses the anisotropic cost function
while the second uses an isotropic one. As can be checked,
the cost of the isotropic is equal for all directions of the robot,
while in the anisotropic case there are differences according
to this direction. For values of αi j close to 20 degrees, the
inverse of the anisotropic cost takes the shape of an elon-
gated ellipse, while the isotropic cost remains as a circle. In
the isotropic case, this circle becomes smaller as the slope
gradient increases, while in the anisotropic case this inverse
shrinks in the ascent-descent directions, where the relative
angle β( �ψ, �γi j ) between the heading �ψ and the aspect �γi j )
directions is either 0 or 180 degrees. The last two subfigures
show the anisotropic cost function with ρi j = 0.3 and each
of them uses a different slip model. Figure11c shows the
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Fig. 11 Values of cost returned by each anisotropic cost function. Left
3d plot of the values returned by the cost function, where two horizontal
axes correspond to the ascent-descent and lateral directions, while the

vertical axis is the slope gradient.Middle Polar plot of the inverse to the
cost function as in Fig. 5, given several values of slope gradient. Right
directional cost functions and anisotropy. The latter uses the red axes
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Fig. 12 3d view of the scene
with the resulting paths. Results
from the first test using
anisotropic and isotropic cost
functions. The resulting paths
connecting two locations, x̃o to
x̃g, are depicted. The origin is
located at (10 10)m while the
goal is at (55 50)m. Note that
the 3d view is rotated to provide
a better perspective of the
obtained paths. The grid �̃ used
is a hexagonal regular one, with
a resolution � of 0.5m

use of the Wheel model, while Fig. 11d shows the use of the
Track model. As can be checked, the cost in the first one is
higher in the ascent and descent functions (see right images)
due to the higher values of slip ratio (see Fig. 10), while the
lateral cost remains the same. This also creates a different
anisotropy for values of slope gradient close to 20. The dif-
ference in anisotropy is more significant by comparing the
first and third subfigures, Fig. 11a, c, where an increase in ρi j
entails higher anisotropy.

With the defined anisotropic and isotropic cost functions
based on different configurations of terramechanic functions,
a series of paths are planned. Figure12 depicts these paths
connecting two locations of interest: the origin x̃o = xo and
the goal x̃g = xg. As can be seen, those paths created with
low values of ρi j , between 0.15 and 0.3, go through differ-
ent places than the rest. The isotropic cost functions with low
ρi j get further from the slopes and surround the crater, taking
more distance to reach the goal. The paths with low ρi j and
generated using an anisotropic cost function traverse later-
ally the slopes, keeping the same elevation. This is because
although the ascent and descent costs are high, the lateral cost
is still lower (see Fig. 11a). To do a deeper insight into how
the total cost function is calculated, Figs. 13 and 14 depict the
solution calculated by two configurations: one anisotropic
and one isotropic. In Fig. 13 the anisotropy makes the wave
propagation from the origin enter the crater. This is because
the planner acknowledges that the descent cost is cheaper
than the lateral and ascent costs as also seen in the third row
of Fig. 11. On the contrary, the isotropic cost from (22) pre-

Fig. 13 Total cost calculated using anisotropic cost with ρi j = 0.3 and
the Wheel slip model

vents the wave from propagating towards the crater slopes, as
it does not address the differences in cost according to direc-
tion. For this reason, in the anisotropic case (with ρi j = 0.3
and using the Wheel model) the path traverses the crater,
while the isotropic planner finds another path that circum-
vents the crater by sticking to horizontal surfaces as much as
possible. Therefore, the consideration or not of the anisotropy
entails different results. Figures 15 and 16 serve to highlight
the implications of these differences.
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Fig. 14 Total cost calculated using isotropic cost with ρi j = 0.3 and
the Wheel slip model

Fig. 15 Increase in the number of visits to nodes when planning using
anisotropic cost instead of isotropic cost. Each visit is an update of total
cost and characteristic direction values using Eqs. (6), (7) and (8)

Figure 15 indicates the increase in the number of node
updates when using anisotropic cost in contrast with using
isotropic cost. This metric gives an idea about the extra
computational load when calculating the solution using
anisotropy. As can be denoted, the use of anisotropic cost
functions entails a higher of visits to the nodes. This fact goes
in line with the computational complexities of anisotropic
planners like OUM and isotropic planners like FMM. As a
reminder, the computational complexity of OUM is propor-
tional to the overall anisotropy [13]. Figure 15 indicates that
for lowvalues of specific resistanceρi j the number of updates
is around 20 times higher than in the isotropic case. This is
because the anisotropy increases when the specific resistance
is lower, especially when it gets close to zero. This can be
checked by comparing the anisotropy plot of Fig. 11a (ρi j =
0.15) and Fig. 11c (ρi j = 0.3).

Although the increase in computational load is significant,
the reduction in total cost producedby considering anisotropy
still needs to be measured. Figure16 shows this reduction

Fig. 16 A measure of how significant is to consider the directional
dependency of the cost according to the specific resistance ρi j and to
each slip ratio model. This is calculated according to Eq. (23) given the
resulting anisotropic and isotropic total cost values

for all values of specific resistance and both slip models,
calculated using the expression shown in (23).

Reduction[%] = Taniso(x̃o, x̃g) − Tiso(x̃o, x̃g)

Tiso(x̃o, x̃g)

× 100

(23)

The total cost of paths created using anisotropic cost is
Taniso(x̃o, x̃g), while Tiso(x̃o, x̃g) is the total cost of paths cre-
ated with isotropic cost. As can be checked in Fig. 16, for
ρi j = 0.15 the reduction is close to −13% for the Wheel
model and −15% for the Track model. For values of specific
resistance ρi j between 0.15 and 0.45, there is some signif-
icant difference between the models. The reduction in the
Track model decreases rapidly until being around −2.5%.
On the contrary, the Wheel Model at ρi j = 0.3 experiences
a reduction of around −20.0%.

The exposed data evinces that the use of isotropic cost
functions introduces undesired extra total cost in all cases.
However, this extra total cost is only significant for ρi j <

0.45 with the Wheel model and for ρi j < 0.3 with the Track
model. For this reason, the use of anisotropy in the cost func-
tion to address uneven surfaces is only recommended in those
circumstances, especiallywhenusing a slipmodelwith a high
slip ratio such as the Wheel model. The user should evalu-
ate whether the reduction in total cost compensates for the
increase in the number of node updates, also quite high for
lower values of specific resistance as shown in Fig. 15. For
example, for the case in which this planning is carried out
offline, the trade-off in question may not be a problem. Yet,
the high computational load may be intractable for online
planning in the onboard computer of a robotic vehicle.
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5 Conclusion

In this paper, we have presented a cost function model aimed
at performing anisotropic path planning on terrains con-
taining slopes. By defining this model as the inverse polar
function of a displaced ellipse, we make it compatible with
the use of anisotropic PDE path planners like the bi-OUM.
This cost function considers the energy consumption of the
robot according to its heading when it experiences inclina-
tion. To better understand the use of the cost function, we
present in this paper the results from a simulation test. These
results have demonstrated in which situations the anisotropy
may be beneficial for making a robot optimally traverse sce-
narios with slopes. In particular, two slip models were used,
in which one of them, the Wheel model, was affected by
the inclination more than the other, the Track model. The
terrain was considered by not only its shape, through the
use of the slope gradient, but also by the use of the specific
resistance parameter. Since PDE planners like FMM can use
isotropic functions with low computational complexity, they
were used to contrast anisotropic ones. The results indicate
that the higher the effect of the slip and the lower the value
of specific resistance motivate the use of an anisotropic cost
function instead of an isotropic one. The benefit of opting for
anisotropic cost functions is more prominent in the Wheel
model, given a value of specific resistance lower than 0.45.

Finally, we foresee the continuation of this work by study-
ing the use of other PDE path planning methods such as the
Fast Sweeping Method (FSM), compatible with anisotropic
cost functions [33] and with turning constraints [34]. An
improvement to the proposed anisotropic cost functionwould
be the preservation of the stability, as addressed in other
work [26], as well as the consideration of non-traversable
areas [35]. Another would be the consideration of differ-
ent functions for the slip ascending and descending as in
other approaches [36]. Finally, initial and goal orientations
could be addressed by adapting previous approaches done
with FMM [37].
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