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Abstract. Video streams from panoramic cameras represent a power-
ful tool for automated surveillance systems, but näıve implementations
typically require very intensive computational loads for applying deep
learning models for automated detection and tracking of objects of in-
terest, since these models require relatively high resolution to reliably
perform object detection. In this paper, we report a host of improve-
ments to our previous state-of-the-art software system to reliably detect
and track objects in video streams from panoramic cameras, resulting in
an increase in the processing framerate in a Jetson TX2 board, with re-
spect to our previous results. Depending on the number of processes and
the load profile, we observe up to a five-fold increase in the framerate.

Keywords: deep learning, embedded systems, object detection, multi-
processing

1 Introduction

Computer vision has been one of the most revolutionary technologies with a very
promising field of study for researchers, and strong foundations supporting the
industrial activity of many of the most successful and consolidated companies.

In this work, we describe an improved deep learning-based automatic video
surveillance system for panoramic cameras, specifically optimized to be deployed
on a Jetson TX2 board. A survey related to vision-based human action recog-
nition can be found in [16], where authors address different challenges when
building these kinds of systems. A large number of related works have been pub-
lished in the literature, such as a real-time video surveillance system for detection
and tracking of people in outdoor environments [9], or systems equipped with
person identification modules based on effective features representation [7].There
are times when people are not the only target of a video surveillance system. In
fact, sometimes it is important that video surveillance systems are ready to alert
from the presence of a certain object in the scene that is under vigilance, and
for this a background modeling algorithm [12]is needed, such as a deep learning-
based background subtraction model for flexible foreground segmentation [18].

Deep learning is a machine learning technique that excels in accuracy and
performance, especially in the field of computer vision. An overview of various
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applications of convolutional neural networks (CNNs) for solving inverse prob-
lems in image processing, such as deconvolution, denoising, medical image recon-
struction, and superresolution, is presented in [14]. Deep convolutional networks
have been proposed to be used in the construction of crack detection systems on
asphalt pavement surfaces [2], or in post-disaster inspection [13].

Choosing an appropriate camera is critical in designing any video surveillance
system, as this device will be tasked with providing the image input of the
cited system. Pan-tilt-zoom (PTZ) cameras are powerful, yet affordable devices.
Their versatility and motion capabilities have made them widely accepted in the
design of video surveillance systems [15], and in the development of methods
for salient motion detection in non-stationary videos [6], or even in specially
designed background subtraction algorithms [17].

Computer vision, and more specifically deep learning-based video surveillance
systems, typically have high computational requirements that in many cases can
only be met by expensive, high-power-consuming devices, severely limiting their
autonomy and versatility. Thus, there is a need for low-power automatic video
surveillance systems with acceptable performance. Along this line, some works
have been developed in the last years, such as the design of a system, which
can be deployed into unmanned aerial vehicles (UAV), for detecting moving
objects [1], a system composed by a Raspberry-Pi board and a RaspiCam camera
for tracking [8], or a deep learning-based automatic video surveillance system
based on a Raspberry-Pi microcomputer for panoramic cameras [3].

The system developed in this work is based on a previously published deep-
learning system [4], and relies on a novel multiprocess-based potential detection
generator that performs up to 5 times faster than its predecessor.

The rest of the paper is organized as follows. Section 2 presents the math-
ematical model of the proposal. Section 3 describes the system architecture.
Experimental results are provided in section 4. Finally, some conclusions and
further lines are presented in section 5.

2 Methodology

In this section, our proposed method aimed to detect anomalous objects is pre-
sented. We consider environments where anomalous objects are present. This
implies that these objects belong to classes that are rarely found in the scene.
Provided that an anomalous object is detected, the system must prompt an
alarm.

Our strategy is based on the analysis of the object detections that have
occurred in the recent past. Those detections are stored in a set and are called
active detections. This set contains the objects associated with the most recent
detections from the video camera. Let us note a detection as (πi, x1, x2, x3),
which is a real-valued vector with the following four components:

– πi is the a priori object probability.
– (x1, x2) are the vertical and horizontal coordinates of the object, relative to

a panoramic coordinate system that is intrinsic to the surveillance camera.
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– x3 is the pixel count corresponding to the bounding box associated with the
detected object.

Furthermore, let us note α the forgetting rate. This rate controls the update
of the a priori probability parameter πi. Whenever a detection is no longer
visible, the associated element of the detection set is marked as inactive.

Let us note x = (x1, x2, x3) for simplicity. This allows expressing the domain
of possible values for x as follows:

V = [1, Nrows]× [1, Ncols]× [Smin, Smax] ⊂ R3 (1)

where Nrows ×Ncols is the image size of the incoming video frame expressed in
pixels. Consequently, the lower and upper limits for the size of a bounding box
are given by Smin and Smax, respectively.

Given the above considerations, probabilistic modeling is chosen to manage
the objects present in the scene. In particular, the probable locations of the
objects are modeled as follows:

p (y) = qUV (y) + (1− q)
1

M

M∑
i=1

πiK (y,xi, σ) (2)

where UV (y) stands for the uniform probability distribution on V, K (y,µ, σ)
denotes a suitable multivariate probability distribution which has a mean vector
µ and a constant spread parameter σ, M is the count of active detections,
q ∈ (0, 1) is the mixing parameter to combine the two probabilistic mixture
components, and σ is the spread parameter associated with the multivariate
distribution.

Three distinct multivariate probability distributions have been chosen to be
integrated into the above-described probabilistic mixture model, namely: Gaus-
sian, Student-t, and triangular. Their definitions are provided in Table 1. Please
note that ∥·∥ stands for the Euclidean norm of a vector. On the other hand, ν
denotes the degrees of freedom parameter for the Student-t distribution. Also,
it is worth noting that both the Gaussian and Student-t distributions contain a
spread parameter σ which is the standard deviation.

The multivariate mixture component of our probabilistic mixture is aimed to
model the possible object occurrences close to the most recently detected objects.
On the other hand, the uniform mixture component of the probabilistic mixture
models object occurrences that might arise in other regions of the incoming
video frames. The above-presented algorithm to detect anomalous objects can
be summarized as follows:

1. Initialize the current detection set A to the empty set.
2. Obtain the current video frame from the hardware.
3. Apply the forgetting rate α to recompute the a priori probabilities πi for

all the elements of the active detection set. If an object is no longer visible
because it has gone out of V, then it is erased because it is now inactive.

4. Draw M samples at random according to the multivariate distribution (2).
Identify the bounding box associated with each sample. Then modify its size
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(4)

KTriangular (y,µ, σ) =

3∏
j=1

kTriangular,j (yj,µj , σ) (5)

kTriangular,j (yj , µj , σ) =



0 for yj < µj − σ
yj−µj+σ

σ2 for µj − σ ≤ yj < µj

1
σ

for yj = µj
µj+σ−yj

σ2 for µj < yj ≤ µj + σ

0 for yj > µj + σ

(6)

Table 1. Considered multivariate probability distributions.

to match the window size required by the image classification deep neural
network. Then the window associated with the bounding box is fed to the
deep network. In case the network informs of detection, the corresponding
sample is inserted into A. Also, the sample is marked with the reliability of
the detection, which is taken as an estimation of the probability that the
detection is correct.

5. Go to step 2.

3 System architecture

Automatic object detection and classification in digital video streams is a very
common task nowadays. However, it is also a very complex procedure that re-
quires the use of deep learning techniques in order to be enough robust and accu-
rate. Any system involving the use of deep learning techniques usually requires
high amounts of computing power. This is more remarkable when processing
video streams coming from panoramic 360◦ cameras as they handle even larger
frames. On a regular basis, the building of a deep learning-based object detec-
tion system requires the use of expensive and high-power demanding hardware
that, at the same time, requires a series of external components that difficult its
integration into autonomous devices.

One solution for building deep learning-based object detection systems for
autonomous devices is to deploy them into embedded systems as they are small,
low power consuming and they barely require external components to work. But,
in the case of embedded systems-based video stream processing, computational
resources are especially valuable as they tend to be scarce. Thus, it is desirable to
utilize system architectures that optimize computation processes so they can be
performed by low-profile pieces of hardware whose computing power is reduced,
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Fig. 1. Diagram of the software architecture

in order to achieve a low power consumption and a higher level of autonomy and
versatility.

As mentioned in section 1, this work pursues the development of a stand-
alone object detection and classification system for 360◦ camera video streams
with low power consumption and reduced size. Consequently, the architecture
of the system will be divided into two well-differentiated parts, namely the soft-
ware architecture, and the hardware architecture. Both of them will be precisely
detailed below.

3.1 Software architecture

The software architecture developed in this work is committed to the objective
of optimizing the system’s operation in order to be deployed in a low-power-
consuming hardware device without experiencing a strong loss in performance.
With this target in mind, the architecture consists of three different modules
that operate concurrently in a producer-consumer configuration (Figure 1).

The first module is a video stream acquisition process that is in charge of
receiving the frames from any 360◦ video source, namely a panoramic camera.
Frames are supplied to the second module which implements the potential de-
tection generator this system relies on. Contrary to what systems such as Faster-
RCNN do, the potential detection generator takes advantage of the information
learnt from past frames by selecting a certain number of areas in the current
frame where a Convolutional Neural Network (CNN) is going to check if there is
an identified object or not. The position and size of these areas will be selected
by using one of the three multivariate homoscedastic probability distributions
presented in section 2, over the position and size of the objects the system has
already found in the video stream.

The third module is the one presenting the highest novelty in this work
and is the inference module. The cited module is in charge of performing the
identification of the objects appearing in the portions of the frame supplied by
the potential detection generator. It consists of an array of several inference
parallel processes each one of them performing the inference task which will
determine whether there is an identified object in that area according to the
accuracy obtained. Every parallel process will add the result of the inference, i.e.,
the position and category of the identified object, to a common list of confirmed
detections. This list of confirmed detections is going to be updated by the main
process according to the algorithm proposed in Section 2.
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Fig. 2. Schematic of the system’s workflow.

3.2 Hardware architecture

Multiprocess-based implementations of Deep learning-based detection systems
require larger amounts of memory than monoprocess implementations. The rea-
son is that, since data structure sharing between different processes is quite
limited, sometimes is necessary to store some data structures in the memory
of every process involved. Hence, it was critical to choose a piece of hardware
that not only was small and low power consuming but also has enough memory
and computing capabilities. Therefore, the device selected to support the system
developed in this work was the Jetson TX2 board. This device is a consolidated
system for deep learning tasks and it has a 256-core NVIDIA Pascal GPU, 8GB
of RAM/VRAM memory and a power consumption of 7.5 watts.

4 Experimental results

In order to test the object detection and classification system for panoramic video
streams developed in this work, a complete tests series has been developed by
implementing the software architecture described in section 3.1, and deploying
it in the hardware platform described in 3.2. This implementation consists of a
program designed in Python language that analyses, frame by frame, a 360◦ video
simulating the video stream provided by a 360◦ camera. In the opinion of the
authors of this work, this method is more convenient for testing the performance
of the system since it avoids the intrinsic issues produced by the interaction
with the camera, resulting in more reproducible experiments and more accurate
measurements. The video used is a 360◦ video supplied by Stanford University’s
Virtual Human Interaction Lab [11]. The system workflow is shown in figure 2.

According to this, in the first place, a frame from the 360◦ video indicated
above is fed to the system. Next, this frame is processed by the potential detec-
tion generation engine whose operation was described in section 3.1. This module
will generate a set of potential detections that in practice, is a set of areas or
windows from the current frame whose position and size will be calculated by
using one of the three probability distributions explained in section 2. The pro-
gram will feed the potential detections to the inference module, where a set of n
parallel processes will use a CNN to determine whether there are any objects of
the category set recognized by the CNN in the areas enclosed by the potential
detections. If one process determines that a certain window contains any object,
this one will be added to the list of confirmed detections and incorporated into
the knowledge base of the system.

As this system is an improvement over the one published in [4], the experi-
ments section in this work is mostly oriented to illustrate the increase achieved
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Fig. 3. Number of detections performed by the system in 612 frames setting up the
potential detection generator with the three multivariate distributions (see Section 2).

in the system speed by introducing parallel computing in the inference module.
So, the experiments consisted of feeding the 612 frames of the 360◦ video cited
above to the system and checking how many of the objects which are actually
present in the frames it can detect and how fast it can do it. This experiment
has been repeated for all three multivariate probability distributions presented
in section 2, for a number of potential detections that goes from 1 to 30 and for
different amounts of parallel inference processes that goes from 1 to 4. The rea-
son for using up to 4 parallel inference processes is that this was the maximum
number of processes the Jetson TX2 was capable of managing without running
out of memory.

The video from [11] which has been used to perform the tests, was manually
tagged localizing all the appearances of objects from four categories of the Pascal
VOC 2012 dataset. These categories are “person”, “dog”, “car” and “motorcy-
cle”. The program can check whether the position of a detection generated by
the system really contains the object identified in this detection. This way the
system can count the number of positive detections of objects in each frame. The
Convolutional Neural Network used in the inference process is the MobileNet [10]
implementation from the Pytorch framework properly trained with the widely
used Pascal VOC 2012 dataset. The reason for using the MobileNet in our in-
ference module is its balance between accuracy, inference speed, and memory
consumption.

In order to ensure the reproducibility of the experiments it is also impor-
tant to indicate the values of the different parameters affecting the multivariate
probability distributions in which relies the potential detection generator. These
values are σ = 0.3 and α = 0.1 for all three distributions. In the case of q, it is
q = 0.4 for the Gaussian mixture, q = 0.2 for the Student-t mixture, and q = 0.7
for the Triangular mixture. It is important to remark that the parameter values
are selected after a supercomputer-driven process of optimization by using as a
validation dataset two different videos from the [5] dataset.

Regarding to the results from the experiments, figure 3 shows how the number
of detections increases as the number of potential detections grows up. This
is expected, since the higher the number of potential detections generated by
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Fig. 4. Performance of the system in fps for all three multivariate probability distri-
butions, from 1 to 4 parallel processes and the no multiprocess version of the system.

the system for each frame, the higher the number of regions of the image the
system looks for possible objects simultaneously. It can also be observed that the
number of correct detections performed by the system does not follow a smooth
progression. Instead, multiple oscillations can be observed in the plot. The reason
for this is that the probability distributions used for the system to know which
region of the frame to observe in a certain frame have an important random
component that will affect the initialization of the system, and consequently, its
performance through the following frames. The last appreciation that can be
extracted from this plot is that at first glance, the potential detection engine
powered by the Gaussian distribution seems to perform slightly better than the
other two, having the highest number of accumulated correct detections in one
pass when using 20 potential detections.

As has been already anticipated in the paragraphs above, the experimental
section is mostly dedicated to analyze the performance of this system when
the inference module is implemented using a multiprocess parallel concurrent
architecture. Consequently, for this section, it has been developed a series of
experiments involving the evaluation of the system speed in frames per second
when implementing the inference module with one, two, three, and four parallel
processes on a Jetson-TX2 board for a number of potential detections spanning
from 1 to 30 and for all three probability distributions described in Section 2. In
order to illustrate the advantages of using multiprocessing, the tests have also
been performed using the single process implementation described in [4]. Results
of this series of experiments are shown in Figure 4.

The most important appreciation from Figure 4 is the speed increase in fps
when using multiprocessing for almost every amount of potential detections.
More precisely, the system speed increases from 1 to 5 fps depending on the
number of parallel inference processes and the number of potential detections
(windows) considered. This represents a system that in the best case can be up
to 5 times faster than the non-multiprocessing version. It is remarkable that, for
example, for one potential detection, the speed in fps is higher even when just
one process in the inference module has been used. The reason for this is that
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even using only one process in the inference module, this process works concur-
rently with the potential detection generator module in a producer-consumer
architecture which makes image processing more efficient. The other important
observation it can be obtained from these plots is that a high amount of parallel
processes is not always equivalent to higher fps. This only happens when the
number of potential detections is high enough to take advantage of the parallel
processing architecture. When the number of potential detections is not high
enough, the cost of managing multiple processes overrides the benefit of multi-
processing implementation of the inference module. So, it can be concluded that
the multiprocessing architecture is more suitable for this system as the num-
ber of potential detections increases. It is also apparent from Figure 4 that the
probability distribution used in the implementation does not seem to introduce
a significant variation in the speed performance of the multiprocess implemen-
tation. This is also an expected behavior as the potential detection generator is
placed in a monoprocess module.

5 Conclusion

In this paper, a novel anomalous object detection system embedded in a Jetson
TX2 board is proposed. In our system, video streams taken from panoramic
surveillance cameras feed a potential detection generator module based on a
probability mixture model to detect anomalous objects. Then, these detected
objects are classified in the inference module using a MobileNet model. The
novelty of this proposal with respect to previous state-of-the-art works is the
introduction of a multiprocess parallel concurrent architecture in the inference
module to increase the processing framerate in a Jetson TX2 board.

Experimental results show that parallel processing increases the speed of the
system from 1 to 5 fps depending on the number of parallel inference processes
and the number of potential detections considered. In general, the higher the
number of potential detections, the higher the number of parallel processes that
can be used to increase the speed of the system. Finally, we can observe that the
speed performance is not influenced by the probability distribution used in the
potential detection generator.

Future work involves the improvement of the system’s accuracy with the
implementation of a new potential detection generator, based on a more specific
probability distribution, and the using of NVIDIA’s TensorRT technology in
order to improve the system’s speed performance.
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