
Hybridization of Evolutionary Operators
with Elitist Iterated Racing for the Simula-

tion Optimization of Traffic Lights Programs

Christian Cintrano cintrano@lcc.uma.es
ITIS Software, University of Malaga, Bulevar Louis Pasteur 35, 29010 Malaga, Spain.

Javier Ferrer ferrer@lcc.uma.es
ITIS Software, University of Malaga, Bulevar Louis Pasteur 35, 29010 Malaga, Spain.

Manuel López-Ibáñez manuel.lopez-ibanez@uma.es
ITIS Software, University of Malaga, Bulevar Louis Pasteur 35, 29010 Malaga, Spain.

Enrique Alba eat@lcc.uma.es
ITIS Software, University of Malaga, Bulevar Louis Pasteur 35, 29010 Malaga, Spain.

Abstract
In the traffic light scheduling problem the evaluation of candidate solutions requires
the simulation of a process under various (traffic) scenarios. Thus, good solutions
should not only achieve good objective function values, but they must be robust (low
variance) across all different scenarios. Previous work has shown that combining
IRACE with evolutionary operators is effective for this task due to the power of evo-
lutionary operators in numerical optimization. In this paper, we further explore the
hybridization of evolutionary operators and the elitist iterated racing of IRACE for
the simulation-optimization of traffic light programs. We review previous works from
the literature to find the evolutionary operators performing the best when facing this
problem to propose new hybrid algorithms. We evaluate our approach over a realistic
case study derived from the traffic network of Málaga (Spain) with 275 traffic lights
that should be scheduled optimally. The experimental analysis reveals that the hybrid
algorithm comprising IRACE plus differential evolution offers statistically better re-
sults than the other algorithms when the budget of simulations is low. In contrast,
IRACE performs better than the hybrids for high simulations budget, although the
optimization time is much longer.

Keywords
Hybrid algorithms, Evolutionary algorithms, Simulation optimization, Uncertainty,
Traffic light planning

1 Introduction

The increase in traffic flow has become a severe problem in most cities of the world,
leading to traffic jams, accidents and air pollution. Modern cities regulate traffic promi-
nently using traffic lights. The larger the metropolitan area, the higher the number of
traffic lights needed to regulate the traffic flow. Optimal management of traffic mini-
mizes journey times, reduce fuel consumption and harmful emissions. In some cities,
legal and technical limitations preclude real-time traffic light control and mandate an
optimal planning of traffic light programs (TLPs) given the particular traffic flows of
that city (Teklu et al., 2007; Sánchez et al., 2008; Teo et al., 2010; Sánchez-Medina et al.,

©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

C. Cintrano et al.

2010; Garcı́a-Nieto et al., 2012; Putha et al., 2012; Garcı́a-Nieto et al., 2013; Stolfi and
Alba, 2014, 2015; Bravo et al., 2016; Ferrer et al., 2016; Péres et al., 2018; Ferrer et al.,
2019; Cintrano et al., 2021).

Simulation-optimization is a common approach for finding optimized TLPs that
consists in simulating each candidate TLP under a number of scenarios generated from
real traffic data. These traffic scenarios represent uncertainty about the real-time tra-
ffic conditions, and good solutions should not only achieve good fitness value but also
show reliability, i.e., low variance across scenarios. Given the computational effort of
such simulations, there is a trade-off between the number of scenarios used to estimate
the fitness of each candidate solution and the total number of candidate solutions eval-
uated. Higher number of scenarios lead to more reliable solutions, while evaluating
higher number of solutions may allow finding even better ones.

Previous work (Ferrer et al., 2019) has shown that IRACE (López-Ibáñez et al.,
2016) is able to find high-quality and low-variance TLPs by dynamically adjusting the
number of simulations performed per solution. The elitist iterated racing algorithm
implemented by IRACE has been traditionally used for the configuration of algo-
rithmic parameters in optimization and machine learning, where each configuration
must be evaluated on a number of training problem instances or datasets and the al-
gorithm themselves are often stochastic. In IRACE, new solutions are generated from
a probabilistic distribution, thus resembling a univariate estimation of distribution al-
gorithm (Krejca, 2019). This solution generation approach works well for the fitness
landscapes typically found in algorithm configuration (Pushak and Hoos, 2018), which
consist of a mix of categorical and numerical parameters with dependencies and con-
straints among them. However, it is expected that other approaches perform better
for other problem types, specially for problem landscapes consisting only of numerical
decision variables, as in the case of the optimization of traffic lights programs.

Following this intuition, Cintrano et al. (2021) carried out an initial comparison
between IRACE, a genetic algorithm, using uniform crossover (Syswerda, 1989) and
integer polynomial mutation (Deb and Agrawal, 1999), a differential evolution (DE) al-
gorithm, using the “DE/best/1/bin” strategy (Price et al., 2005), and variants (hybrids)
of IRACE replacing its solution generation approach with the evolutionary operators
used by the GA and the DE under comparison. Experimental results indicated that,
although the original IRACE outperforms the GA and DE algorithms, both hybrids of
IRACE+GA and IRACE+DE outperformed IRACE.

In this paper, we further explore the hybridization of evolutionary operators
from evolutionary algorithms (EAs) and the elitist iterated racing of IRACE for the
simulation-optimization of traffic light programs. First, we review previous works
from the literature to find the evolutionary operators performing the best when fac-
ing the optimization of traffic light programs. Most previous works used an integer
vector as solution encoding (Bravo et al., 2016; Ferrer et al., 2016, 2019; Garcı́a-Nieto
et al., 2012, 2013; Péres et al., 2018; Teo et al., 2010). A few other works used binary
Gray code encoding for solution representation (Putha et al., 2012; Sánchez et al., 2008;
Sánchez-Medina et al., 2010; Teklu et al., 2007). The solution representation restricts the
evolutionary operators that can be used for searching the optimal solution, and these
in turn determine how the search is carried out. As a result of our review, we con-
sider in this paper hybrids of IRACE with the following operators: Integer Uniform
Crossover (Bravo et al., 2016; Ferrer et al., 2016, 2019), Binary Uniform Crossover (Teklu
et al., 2007; Putha et al., 2012), Simulated Binary Crossover (SBX) (Péres et al., 2018), Bi-
nary Two-points Crossover (Sánchez et al., 2008; Sánchez-Medina et al., 2010), Integer

2 Evolutionary Computation Volume x, Number x

Hybridization of Evolutionary Operators with Elitist Iterated Racing for Optimaze the TLSP

Polynomial Mutation (Bravo et al., 2016; Ferrer et al., 2016, 2019; Péres et al., 2018),
Binary Uniform Mutation (bit-flip) (Sánchez et al., 2008; Sánchez-Medina et al., 2010;
Teklu et al., 2007; Putha et al., 2012), and Differential Mutation (Ferrer et al., 2016;
Garcı́a-Nieto et al., 2012, 2013). These hybrids of IRACE and evolutionary operators
differ conceptually from previous approaches hybridizing EAs and racing (Heidrich-
Meisner and Igel, 2009), which perform an independent race to carry out the evaluation
and environmental selection step at each generation of the EA. The hybrids of IRACE
studied here replace the solution generation mechanism of IRACE with evolutionary
operators, but keep other IRACE components, such as the elitist iterated racing (López-
Ibáñez et al., 2016), which is not a sequence of independent races.

Our work is motivated by the real-world optimisation of traffic light programs in
the city of Malaga, Spain, hence, we use as a case study, a traffic network and 60 traffic
flow scenarios derived from real data. Unfortunately, such data is rarely made pub-
licly available, with Ferrer et al. (2019) being a notable exception, and we did not find,
among all the works reviewed, any other dataset that could be used for our analysis.

In summary, the main contributions of this work are:

• We study hybrid algorithms that combine evolutionary operators, extracted from
the relevant literature, with elitist iterated racing.

• We offer an in-depth analysis of 5 hybrid algorithms with 6 different evolutionary
operators and two solution encodings (integer and binary Gray code).

• We optimize the traffic light plan of a real city (Malaga in Spain) using detailed
micro-simulations.

• We identify hybrid algorithms that obtain high-quality and reliable solutions, i.e.,
low-fitness solutions with also low fitness variance across scenarios.

The rest of this article is organized as follows: Section 2 presents a description of
the Traffic Light Scheduling Problem. Section 3 describes the main contribution of this
work, the hybridization between IRACE and EAs. Section 4 outlines the main aspects
of our experimentation. We discuss the results obtained in Section 5. Finally, Section 6
presents conclusions and future work.

2 Problem Description

Traffic lights regulate traffic flow in the intersections between two o more roads and
between roads and pedestrian crossings. In most cases, traffic lights are coordinated
in phases: green, yellow and red. Within the same intersection, when a traffic light is
in green, some others must be in red, and all traffic lights must change color simulta-
neously following a sequence of colors that repeats over time. The sequence of phases
constitutes the program of an intersection. Although the colors of a program are pre-
defined, we can influence the flow of traffic and pedestrians by adjusting the duration
of each color phase and the start of program, relative to other intersections (Wei et al.,
2019). The collection of programs, their phase durations and start times for all intersec-
tions constitute a traffic light program (TLP) of a city.

The large number of valid TLPs that may be possible in large cities require auto-
matic tools to generate an optimal TLP, which motivates the Traffic Light Scheduling
Problem (TLSP) (Little, 1966; Sánchez et al., 2008; Garcı́a-Nieto et al., 2013; Sánchez-
Medina et al., 2010). The main objective in this problem is to find a optimized TLP for
all the traffic lights located in the intersections of an urban area with the aim of reducing
journey time, emissions, and fuel consumption.

Evolutionary Computation Volume x, Number x 3

C. Cintrano et al.

2.1 The Traffic Light Scheduling Problem (TLSP)

Let us define the TLSP as follows. Let P = {To1, I1, . . . , T on, In} be a candidate TLP,
where each pair Toi, Ii represent an intersection i, respectively, its offset time and its
set of predefined valid phases Ii = {ϕi1, . . . , ϕimi

}, where mi = |Ii| and each ϕij ∈ N+

represents the duration (in seconds) of phase j in intersection Ii, that is, the duration of
each valid phase of light colors.

By default, the program of all intersections start at the same time. However, we
also optimize an offset time at each intersection (Toi ∈ [Tomin, T omax]) that represents a
shift in seconds of the starting time of the program at the start of the simulation. If the
offset value of an intersection is negative, then the program start time is shifted back
that number of seconds and the program actually starts on a phase before the first one;
whereas if the offset is positive, the program begins as if that number of seconds has
already passed, i.e., skipping those seconds from the duration of the first phase and,
maybe, of later phases. Offset times enable the emergence of green waves, series of co-
ordinated traffic lights that produce a continuous traffic flow over several intersections
in one main direction.

The objective is to find a TLP P ′ that minimizes a fitness function f : Γ → R such
that:

P ′ = arg min
P∈Γ

{f(P)} (1)

where Γ is the space of all possible TLPs.
The definition of the fitness function must account for several performance metrics

that characterize good TLPs and may be calculated from the information regarding the
flow of vehicles provided by a traffic simulator. In the simulator, vehicles travel from
a starting position to a destination position, then the travel time (tv) of a vehicle v is
the number of simulation steps (1 second per simulation step) in which its speed was
above 0.1 m/s, while its waiting time (wv) is the number of simulation steps in which
its speed was below 0.1 m/s. In addition, a long phase duration may lead to a collapse
of the intersection, i.e., traffic stops flowing in some direction. TLPs should prioritize
those phases with more green lights on the directions with a high number of vehicles
circulating by maximizing the following ratio measure:

GR(P) =

n∑
i=1

|Ii|∑
j=1

ϕij ·
Gij

Rij
(2)

where Gij is the number of traffic lights in green, and Rij is the number of traffic lights
in red in phase j of intersection i and ϕij is the duration of the phase. The minimum
value of Rij is 1 in order to avoid a division by 0.

Taking the above criteria into account, we define the following fitness function that
should be minimized:

f(P) =

V rem(P) · tsim +
V (P)∑
v=1

tv(P) + wv(P)

V (P)2 +GR(P)
(3)

where the presence of vehicles with incomplete journeys V rem(P) penalizes the fitness
of a solution P proportionally to the simulation time tsim. The number of vehicles that
arrive at their destinations is squared (V (P)2) to prioritize this criterion over the rest.
This fitness function has been successfully used several studies (Garcı́a-Nieto et al.,
2012, 2013; Ferrer et al., 2019; Cintrano et al., 2021).

4 Evolutionary Computation Volume x, Number x

Hybridization of Evolutionary Operators with Elitist Iterated Racing for Optimaze the TLSP

2.2 Repair Procedure

Real-world instances of the TLSP often present additional constraints. Phases contain-
ing any yellow signals are called fixed phases because they have a predetermined dura-
tion and the set of such phases will be denoted by Y . These fixed phases correspond to
pedestrian crosses. Non-fixed phases have a minimum duration of ϕmin.

Moreover, the total program time (Tpi) within each intersection Ii, which is com-
puted as the sum of its phase durations:

Tpi =

|Ii|∑
ϕij∈Ii,j=1

ϕij (4)

is constrained within [Tpmin, Tpmax].
To ensure that candidate solutions are valid, we apply a repair procedure (Ferrer

et al., 2019) that is used by all the algorithms before simulating a solution. The value
of each phase duration ϕij is already constrained within a range that is larger than the
minimum phase duration ϕmin. However, we need to ensure that the total program
time Tpi is within [Tpmin, Tpmax]. Here we can distinguish two different cases.

In the first case, if the total program time for intersection Ii is smaller than Tpmin,
then we replace each non-fixed phase (those that do not contain a yellow signal, i.e.,
ϕij /∈ Y) with

ϕij =

⌈
ϕij ·

Tpmin − TpYi
Tpi − TpYi

⌉
(5)

where TpYi =
∑

ϕij∈Ii∩Y ϕij is the sum of the fixed phase durations within intersection
Ii.

In the second case, if the total program time is larger than Tpmax, then we replace
each non-fixed phase (ϕij /∈ Y) with

ϕij = ϕmin +

⌊
(ϕij − ϕmin) · Tpmax − TpYi − ϕmin · |Ii \ Y |

Tpi − TpYi − ϕmin · |Ii \ Y |

⌋
(6)

where |Ii \ Y | is the number of non-fixed phases within intersection Ii and TpYi is the
total duration of the fixed phases within intersection Ii.

3 Hybridization of IRACE and Evolutionary Algorithms

There are many definitions of hybrid algorithms, yet the general idea is to combine
components or concepts from different techniques to exploit desirable characteristics of
those components to tackle problems with particular features (Blum and Raidl, 2016).
In this work, we combine the elitist iterated racing strategy from IRACE with evolu-
tionary operators to obtain an algorithm that performs well on numerical optimization
problems where the fitness of each solution is uncertain and must be evaluated using
multiple simulations. The elitist iterated racing strategy of IRACE decides how many
simulations should be performed per solution, how solutions are compared, and which
solutions should be discarded at each iteration. The evolutionary operators are respon-
sible for generating new solutions from the surviving population of solutions. Next,
we will briefly explain the base algorithm, IRACE, and the different characteristics of
the hybrid algorithms.

3.1 IRACE

IRACE (López-Ibáñez et al., 2016) is a well-known tool for automatic (hyper-)parame-
ter configuration of optimization and machine learning algorithms. However, IRACE

Evolutionary Computation Volume x, Number x 5

C. Cintrano et al.

can be seen as an optimization method for mixed-integer black-box problems under
uncertainty, and, hence, it may be used to tackle simulation-optimization problems,
such as the TLSP (Ferrer et al., 2019).

Algorithm 1 briefly presents IRACE applied to the TLSP. Initially, a set of solu-
tions Θ1 are sampled uniformly at random. Then a race is performed to identify the
best (elite) solutions among the initial set. These elite solutions are used to update
a sampling model from which new solutions are generated, in a similar fashion as in
univariate estimation of distribution algorithms. New and elite solutions together form
a new population that is raced again. This process is iterated until a maximum budget
of simulations is exhausted.

Algorithm 1 Pseudocode of IRACE
Input: Network data and training traffic scenarios.
Output: Best solution (TLP) found.

1: t← 1
2: Θt ← SampleUniformRandomPopulation
3: Θelite ← Race(Θt)
4: while evals < totalEvals do
5: t← t+ 1
6: M← Update(Θelite)
7: Θnew ← Sample(M)
8: Θt ← Θnew ∪Θelite

9: Θelite ← Race(Θt)
10: end while
11: Output: best solution from Θelite

A key component of IRACE is the racing procedure. Within a race, each solution
is simulated at least T first times on a sequence of different traffic scenarios. In elitist
iterated racing, the sequence of scenarios changes between races as follows. The first
scenario of the sequence has not been used in previous races, then the sequence of sce-
narios from the previous race is randomly shuffled and, finally, if additional scenarios
are needed for this race, they are randomly taken from the set of scenarios not used
yet. If an elitist solution is evaluated on a scenario seen in a previous race, its fitness is
recovered from a cache memory and no simulation is required. After all solutions are
evaluated on T first scenarios, an elimination step removes the worst performing solu-
tions from the race. In the TLSP, we identify the current best solution of a race according
to its mean performance on the traffic scenarios seen so far within this particular race.
Then, we use the pairwise paired Student’s t-test to eliminate from the race those so-
lutions that perform significantly worse than the current best one. The use of the t-test
implies the optimization of the mean value, however, the test is only used as a heuris-
tic that guides the elimination of solutions equivalent to the calculation of confidence
intervals around the estimated mean (Birattari et al., 2002). Its use does not justify any
claims of statistical significance, which require a proper statistical analysis of the ob-
tained results. In elitist racing, an elite solution cannot be eliminated from the race
until the contender has been evaluated in as many scenarios as the elite solution has
been evaluated in this and previous races, thus preventing that a lucky new solution
evaluated in few scenarios so far eliminates a robust elite evaluated in many scenar-
ios in the previous race. After the elimination step, the race continues by evaluating
every surviving solution in one additional scenario and carrying out a new elimina-

6 Evolutionary Computation Volume x, Number x

Hybridization of Evolutionary Operators with Elitist Iterated Racing for Optimaze the TLSP

tion step. The race stops once a minimum number of solutions (minSurv) remains alive
in the race, the budget assigned to the race is exhausted, or multiple elimination tests
fail to eliminate any solution. If more solutions than minSurv are alive at the end of the
race, they are sorted according to decreasing mean value and the first minSurv solutions
constitute the new elite solutions.

The main benefit of the racing strategy is that poor solutions are discarded quickly
to avoid wasting simulations, while good solutions are simulated on many scenarios to
provide a good estimate of their expected fitness. Moreover, the elimination test takes
into account not only the mean value over multiple simulations but also the variance
and the number of simulations performed so far.

3.2 Hybrid Algorithms

Once we have described how IRACE works, let us describe the hybrid IRACE al-
gorithms. In line 7 of Algorithm 1, the function Sample(M) generates a new set of
candidate solutions to the problem. In our hybrid algorithms, we replace the sampling
step with the mating selection and variation steps of an Evolutionary Algorithm, i.e.,
selection of parents, generation of new individuals from them (crossover), and modi-
fication of those new individuals (mutation). Apart from this modification, the other
steps in IRACE, in particular, the racing procedure described above, remain intact.

We now describe the evolutionary mating selection and variation steps used in
the hybrid IRACE. The set of elite solutions Θelite contains the best solutions found by
IRACE after the race performed at each iteration (line 9). In our hybrid algorithm, the
parents used by the evolutionary operators are randomly selected from Θelite. How-
ever, the size of Θelite varies at each iteration of IRACE, and may be insufficient for
the number of parents required by the evolutionary operators, e.g., it is possible that a
single solution survives after a race. We handle this situation by generating additional
parents by random uniform sampling (as in line 2). This mechanism also introduces
more diversity to the set of parent solutions. The number of selected parents depends
on the evolutionary operators used. For example, a uniform crossover needs two par-
ents, while the differential evolution mutation needs four.

Once the required number of parents are selected, the crossover operator is applied
with a certain probability to generate a new solution. One solution is generated per
operator application. If no crossover operator is applied, we simply select the first
parent as the new solution for subsequent mutation. The mutation operator is then
applied to the new solution with a probability of mutation that determines the strength
of the mutation, ensuring that at least one mutation per solution occurs. The resulting
solution is added to the set of new solutions Θnew.

3.3 Solution Encoding

In this work, each candidate solution to the TLSP is encoded as a vector of integers,
where values represent either the offset of each intersection (Toi) or the duration of a
phase (ϕij). The repair mechanism described in Section 2.2 is applied to enforce the
total cycle time constraints (Eq. 4). Figure 1 shows an example of the solution represen-
tation.

Intersection 1 . . . Intersection n
To1 ϕ11 . . . ϕ1j . . . Ton ϕn1 . . . ϕnj

25 20 . . . 35 . . . 15 60 . . . 30

Figure 1: Example of integer solution representation in the TLPS.

Evolutionary Computation Volume x, Number x 7

C. Cintrano et al.

Instead of the integer representation above, some of the evolutionary operators
used in the TLSP literature require a binary representation. A solution in integer rep-
resentation can be converted to binary representation as follows. First, we shift the
integer value of each variable so that its lowest possible value corresponds to zero,
that is, phase duration variables ϕij ∈ [ϕmin, Tpmax] ⊂ N+ are shifted to the range
[0, Tpmax − ϕmin] and offset decision variables Toi ∈ [Tomin, T omax] are shifted to
[0, T omax − Tomin]. Finally, the number of bits needed for each decision variable is
computed as:

Nbits(x) = dlog2(1 + xmax − xmin)e (7)

where xmax = Tpmax and xmin = ϕmin when x is a variable that represents a phase du-
ration ϕij , whereas xmax = Tomax and xmin = Tomin when x is a variable that represents
an offset Toi. This ensures that we use the minimum number of bits required for the
representation of solutions.

Figure 2 shows the binary representation of the solution shown in Fig. 1 when
Tomin = −30 and Tomax = 30, i.e., the binary values are shifted to the range [0, 60].

Intersection 1 . . . Intersection n
To1 ϕ11 . . . ϕ1j . . . Ton ϕn1 . . . ϕnj

110111 0010100 . . . 0100011 . . . 101101 0111100 . . . 0011110

Figure 2: Equivalent binary representation of the solution shown in Fig. 1.

Before (after) applying an evolutionary operator that requires binary representa-
tion we encode (decode) the integer solution to (from) binary. After decoding from
binary, decision variables are clipped to their range and the repair procedure is applied.

Additionally, a few works on the TLSP considered a binary Gray code encod-
ing (Sanchez et al., 2005), which is an ordering of the binary numeral system such
that two successive integer values differ in only one bit. Therefore, our experiments
consider three representations in total: integer, binary and Gray code encodings.

3.4 Evolutionary Operators Used by Hybrid Algorithms

Our main purpose is to assess whether the use of evolutionary operators within IRACE
may produce better solutions for the TLSP than the general-purpose sampling proce-
dure of IRACE. For this reason, we have reviewed previous works solving the TLSP
with the aim of finding appropriate evolutionary operators to hybridize with IRACE.
In total, we have found ten papers applying evolutionary algorithms to the TLSP. Of
those, six works have considered an integer representation, four works have considered
a binary representation and three have considered a gray code one. Table 1 summarises
the evolutionary operators used in the literature for solving the TLSP. Although these
evolutionary operators are well-known, we briefly describe them in the following for
completeness:

Uniform Crossover (Syswerda, 1989) recombines two parent solutions by selecting a
decision variable from either parent according to a probability (typically 0.5). With
a binary representation Spears and De Jong (1991), the selection is made per bit.

Two Points Crossover (Holland, 1975)randomly picks two variables (or two bits in
binary representation). These variables are called the crossover points. The new
solution takes the values of the variables between the crossover points from the

8 Evolutionary Computation Volume x, Number x

Hybridization of Evolutionary Operators with Elitist Iterated Racing for Optimaze the TLSP

Table 1: Evolutionary operators used for solving TLSP

Operators Binary / Gray code Integer

Uniform Crossover Teklu et al. (2007); Putha
et al. (2012)

Bravo et al. (2016);
Ferrer et al. (2016);
Ferrer et al. (2019)

Two-points Crossover Sánchez et al. (2008);
Sánchez-Medina et al.
(2010)

Simulated Binary Crossover
(SBX)

Péres et al. (2018)

Uniform Mutation Sánchez et al. (2008);
Sánchez-Medina et al.
(2010); Teklu et al. (2007);
Putha et al. (2012)

Polynomial Mutation Bravo et al. (2016); Ferrer
et al. (2016, 2019); Péres
et al. (2018)

Differential Mutation Ferrer et al. (2016);
Garcı́a-Nieto et al. (2012,
2013)

second parent and the values of the other variables from the first parent. (In our
hybrid algorithm, all crossover operators generate a single solution).

Simulated Binary Crossover (Deb and Agrawal, 1995) SBX uses two parents and ap-
ply the blending operator variable by variable to create a child solution. The op-
erator involves a parameter, called the distribution index (ηi), which is kept fixed
to a non-negative value throughout a simulation run. If a large value of ηi is cho-
sen, the resulting offspring solutions are close to the parent solutions. On the other
hand, for a small value of ηi, solutions away from parents are likely to be created.

Uniform Mutation (Bit-flip) (Garnier et al., 1999) visits every binary decision variable
of a solution and flips its value with a given probability (typically small). This
operator is not applied when using integer representation.

Polynomial Mutation (Deb and Agrawal, 1999) In this operator, a polynomial proba-
bility distribution is used to perturb a solution in a solution’s vicinity. The prob-
ability distribution in both left and right of a variable value is adjusted so that no
value outside a specified range is created by the mutation operator. The effect of
this operator is to perturb the current decision variable values (parent) to a neigh-
bouring variable values (child).

Differential Mutation consists of the construction of a new solution from an original
one, using other three parents which must be distinct from each other. Solutions
are moved around in the search-space by using simple mathematical formulae to
combine the positions of existing solutions from the population. There are a num-
ber of well-known mutation schemes or strategies in differential evolution, in this

Evolutionary Computation Volume x, Number x 9

C. Cintrano et al.

work we use “DE/best/1” (Price et al., 2005). Although traditionally called a mu-
tation, it is actually a combination of crossover and mutation.

With the aim of evaluating the best hybrid algorithms for the TLSP, we have de-
signed five hybrid variants by combining the evolutionary operators found in the TLSP
literature:

IRACE+DE uses differential mutation (“DE/best/1/bin”).

IRACE+GA uses uniform crossover and integer polynomial mutation.

IRACE+SBX uses SBX and integer polynomial mutation.

IRACE+UNIFORM uses binary uniform crossover and binary uniform mutation.

IRACE+2PC uses binary two-points crossover and binary uniform mutation.

4 Experimental Setup

We describe here the experimental protocol followed in this work. First, we describe the
real-world case study of TLSP that is the main motivation of our research. After that, we
provide details about the experiments carried out. We will analyze these experiments
in the next section.

4.1 Real World Case Study

We consider a realistic scenario derived from the traffic network of Malaga (Stolfi and
Alba, 2015), which encompasses an area of about 3 km2 with 58 intersections controlled
by 275 traffic lights (Fig. 3). Our network model was created from real data about traffic
rules, traffic element locations, road directions, streets, intersections, etc.

Figure 3: Locations of traffic lights considered in the case of study. The colors show
large (red), medium (yellow) and small (green) differences between two different
solutions.

We consider 60 different traffic scenarios, which contain the routes and speeds of
the vehicles circulating, with an average of 4,827 vehicles (or different vehicle routes)
per scenario. These traffic scenarios were generated by applying the Flow Generator
Algorithm (FGA) (Stolfi and Alba, 2015) to data extracted from sensors placed at sev-
eral streets measuring traffic density at various time intervals. This network and the
corresponding traffic scenarios have been used in several previous studies (Stolfi and
Alba, 2015; Ferrer et al., 2019; Cintrano et al., 2021) and the data is publicly available1.

1Datasets: doi:10.5281/zenodo.6542005

10 Evolutionary Computation Volume x, Number x

doi:10.5281/zenodo.6542005

Hybridization of Evolutionary Operators with Elitist Iterated Racing for Optimaze the TLSP

In order to evaluate the reliability of a candidate solution, we split the generated
traffic scenarios into two equal sets of 30 scenarios each. One (training) set is exclu-
sively used for optimization, that is, for identifying optimal TLSP solutions. The other
(testing) set of scenarios is used for comparing the final solutions found after the opti-
mization.

For the constraints of the TLSP, we use the values recommended by the City Coun-
cil of Malaga (Spain). In particular, the pedestrian crosses (Y) last for a fixed time of
4 × number of lanes seconds; non-fixed phases have a minimum duration of ϕmin = 15
seconds; the total program time (Tpi) within each intersection Ii is constrained within
[Tpmin, Tpmax] = [60, 120] seconds; and, lastly, offset values are constrained within the
time interval Toi ∈ [Tomin, T omax] = [−30, 30] seconds.

4.2 Simulator: SUMO

The quality of a candidate solution (traffic light program) is evaluated through the Sim-
ulator of Urban Mobility (SUMO) version 0.22 (Behrisch et al., 2011; Krajzewicz et al.,
2012), which is a microscopic road traffic simulator that provides detailed information
about vehicles like velocity, fuel consumption, emissions, journey time, waiting time,
etc. SUMO is widely used in the TSLP (Tsai et al., 2021; Mahto and Malik, 2021). Since
we already introduce variability by means of the different traffic scenarios, we fix the
random seed used by SUMO to zero in all simulations. This means that, given a traffic
scenario and a candidate solution, the simulation is deterministic. The study of realistic
scenarios according to real patterns of mobility of the target city is possible due to the
fine-grained realistic micro-simulations provided by SUMO.

4.3 Algorithms

In our experiments, we compare IRACE with the five hybrid variants described
above, namely, IRACE+GA, IRACE+DE, IRACE+SBX, IRACE+UNIFORM and
IRACE+2PC. Ferrer et al. (2019) already compared non-hybrid IRACE with conven-
tional DE, GA and particle swarm optimization, and concluded that IRACE obtains
statistically better results than those conventional algorithms for the TLSP. Similarly,
Cintrano et al. (2021) already compared IRACE, IRACE+GA and IRACE+DE with
classic DE and GA and concluded that the IRACE variants outperform the classic DE
and GA. Therefore, we focus here in the comparison of IRACE and the hybrid algo-
rithms.

A previous analysis of IRACE for the TLSP (Ferrer et al., 2019) concluded that
the variable population size of IRACE was not well-suited for this problem and fixed
the population size to 10 individuals. The value of minSurv is set automatically by
IRACE (López-Ibáñez et al., 2016) and in our experiments was between 3 and 4.More-
over, the minimum number of traffic scenarios simulated per candidate solution before
the first elimination test was set to T first = 2 instead of the default T first = 5 since many
solutions perform very poorly and can be eliminated with just two simulations. Finally,
we enable the deterministic option that tells IRACE that the only source of uncertainty
are the different scenarios and not the simulations themselves.

The hybrid algorithms use the same parameter settings as IRACE except for prob-
ability of crossover and mutation. The parameters of each operator are presented in
Table 2. IRACE and the hybrids are implemented in R.2. We used IRACE version 3.4
as the baseline.3

2The source code is available at https://github.com/NEO-Research-Group/irace-ea
3Available at https://cran.r-project.org/package=irace

Evolutionary Computation Volume x, Number x 11

https://github.com/NEO-Research-Group/irace-ea
https://cran.r-project.org/package=irace

C. Cintrano et al.

Table 2: Parameters used for each evolutionary operator

Algorithm Operator Probability Operator param.

IRACE+DE “DE/best/1/bin” 0.5 0.5

IRACE+GA Uniform crossover 0.5 0.5
Integer polynomial mutation 0.1 20

IRACE+SBX SBX 0.5 0.5
Integer polynomial mutation 0.1 20

IRACE+UNIFORM Binary uniform crossover 0.5 0.5
Binary uniform mutation 1/30 20

IRACE+2PC Binary two-points crossover 0.5 0.5
Binary uniform mutation 1/30 20

4.4 Experimental Details

As mentioned above, we generated 60 traffic scenarios from real sensor data and we
split these scenarios into two sets of size 30. One set (training set) is used when run-
ning the algorithms to find TLSP solutions, while the other set (testing set) is used for
evaluating the fitness and reliability of these solutions and comparing the various al-
gorithms analyzed in this paper.

We expect that some operators show a faster convergence while others encourage
exploration of new solutions. Therefore, we conduct experiments with short and long
runs of the algorithms, i.e., stopping each run of an algorithm after executing either
1 000 or 10 000 calls to the SUMO simulator. Given that each solution is simulated on
a variable number of different scenarios, which is dynamically determined by IRACE,
the actual number of solutions evaluated per run is often much lower.

During optimization, each call to SUMO simulates traffic until a predefined time
horizon (1 hour plus 10 minutes of warm-up, in our case) in order to simulate the peak
period in our real-world case study.

The algorithms presented in this paper are stochastic, so we perform 30 indepen-
dent runs with different random seeds for a fair comparison between them. Each run is
given the same 30 training scenarios but which scenarios are actually simulated and in
which order is randomized by each run of IRACE. After the runs, we applied the non-
parametric Wilcoxon test with a confidence level of 95% (p-value < 0.05) with Holms’s
p-value correction to check if the observed differences are statistically significant.

All experiments were run on a cluster of 16 machines with Intel Core2 Quad pro-
cessors Q9400 at 2.66 GHz and 4 GB memory and 3 machines equipped with three Intel
Xeon CPU (E5-2670 v3) at 2.30 GHz and 64 GB memory. The cluster was managed by
HTCondor 8.2.7, which allowed us to perform parallel independent executions to re-
duce the overall experimentation time.

5 Results

To give an in-depth view of the performance of our hybrid algorithms we will analyze
them in several sets of scenarios (training and testing). With this, we want to present the
competitiveness of our proposal and give a solution to the TLSP. As indicated above,
we have performed two types of experiments, changing the maximum number of calls

12 Evolutionary Computation Volume x, Number x

Hybridization of Evolutionary Operators with Elitist Iterated Racing for Optimaze the TLSP

to the simulator. In doing so, we want to test not only the quality of the solutions, but
also how the different algorithms converge under different number of evaluations.

5.1 Training Set

First, we want to analyse how the algorithms behave in the training phase, i.e., during
their execution. Figure 4 shows the average fitness of the best solutions found so far
up to a maximum of 1 000 evaluations. We can see that IRACE+DE is ahead of the
others algorithms after a few evaluations. The second one is IRACE+SBX. It seems
that these two crossover strategies are quite powerful for this problem. On the other
hand, IRACE and IRACE+GA have a very similar behaviour. The algorithms using
gray code encoding lag behind those using integer encoding. This difference increases
as we increase the number of evaluations to 10 000 (see Figure 5). Adding a larger
budget shows that IRACE+GA lags behind the other integer encoding algorithms, as
was already apparent in the experiments for 1 000.

●
●

●

●
●

● ● ●
● ●

● ● ●
● ● ●

● ● ● ● ●
● ● ●

● ● ● ●
● ● ● ● ●

● ● ● ●
● ●

● ●
● ● ● ● ● ● ●

● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
0.4

0.5

0.6

0 250 500 750 1000

Evaluations

M
e
a
n
 f
it
n
e
s
s

● IRACE

IRACE+DE

IRACE+GA

IRACE+SBX

IRACE+UNIFORM

IRACE+2PC

Figure 4: Mean fitness of the best solutions found so far within each run, as estimated
by each algorithm at each moment of its execution on traffic scenarios from the training
set and a budget of 1 000.

An interesting detail is that, from about 4 000 evaluations onwards, IRACE seems
to be in the lead. IRACE’s way of improving the population seems to require a larger
number of evaluations compared to IRACE+DE. The number of simulations we can
perform seems to be the limiting factor in choosing one algorithm or the other. How-
ever, these are only training results. The convergence of the algorithm for this set does
not imply that it is the best for working with new data sets. To do so, we are going to
analyse the results obtained by the best solutions found on the test set.

5.2 Testing Set

The above reported statistics were obtained after evaluating the solutions on the same
scenarios used during optimization, but the training scenarios will never arise exactly
in the real-world. We evaluate again the solutions on the 30 testing scenarios to prop-
erly assess their quality in unseen scenarios. Figure 6 shows the fitness obtained af-
ter the re-evaluation of the solutions on the testing scenarios for the algorithm with a
budget of 1 000 simulations for each independent run. As already denoted in the train-
ing, IRACE+UNIFORM, and IRACE+2PC obtain worse solutions than the other algo-

Evolutionary Computation Volume x, Number x 13

C. Cintrano et al.

●

●

●
● ● ●

●
● ●

● ●
● ● ●

● ●
● ● ● ●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

0.2

0.3

0.4

0.5

0.6

0 2500 5000 7500 10000

Evaluations

M
e
a
n
 f
it
n
e
s
s

● IRACE

IRACE+DE

IRACE+GA

IRACE+SBX

IRACE+UNIFORM

IRACE+2PC

Figure 5: Mean fitness of the best solutions found so far within each run, as estimated
by each algorithm at each moment of its execution on traffic scenarios from the training
set and a budget of 10 000.

rithms. However, they do not seem to have such differences as we saw in the previous
section. On the other hand, we can observe that IRACE+DE and IRACE+SBX have
some runs in which they got very robust solutions (small boxplots) and with lower fit-
ness than the rest of the algorithms. These are two very desirable characteristics when
working with real-world problems. It is not only interesting to have good solutions
(small fitness values) for a specific scenario, but maintaining this quality in different
scenarios or situations is also relevant.

On the other hand, if we perform this same study but in the case of 10 000 simu-
lations budget, as we can see in Figure 7, the results seem to change quite a lot. While
IRACE+DE still seems to have some very promising results, for some independent
runs, the solutions found are worse (both in quality and robustness) than even some of
those found by the Gray code algorithms. In general, IRACE seems to be more consis-
tent in quality and robustness than the other algorithms. IRACE+DE has a fairly high
variability between its runs, while IRACE+GA and IRACE+SBX have a more even
mix of better and worse quality iterations between them.

After analysing the results graphically, we will compare the results numerically.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

IRACE IRACE+DE IRACE+GA IRACE+SBX IRACE+UNIFORM IRACE+2PC

F
it
n
e
s
s

Figure 6: Fitness of the solutions obtained by the algorithms with a budget of 1 000
simulations. Each boxplot shows the distribution of fitness values of one solution on
the 30 traffic scenarios in the test set.

14 Evolutionary Computation Volume x, Number x

Hybridization of Evolutionary Operators with Elitist Iterated Racing for Optimaze the TLSP

Table 3: Wilcoxon Test p-value of the testing set with Holm correction.
Budget of 1 000 simulations

IRACE IRACE+DE IRACE+GA IRACE+SBX IRACE+UNIFORM

IRACE+DE < 2e−16 — — — —
IRACE+GA 0.48 < 2e−16 — — —
IRACE+SBX 4.5e−7 2.7e−11 2.3e−8 — —
IRACE+UNIFORM < 2e−16 < 2e−16 < 2e−16 < 2e−16 —
IRACE+2PC < 2e−16 < 2e−16 < 2e−16 < 2e−16 < 2e−16

Budget of 10 000 simulations

IRACE IRACE+DE IRACE+GA IRACE+SBX IRACE+UNIFORM

IRACE+DE 4.5e−11 — — — —
IRACE+GA < 2e−16 < 2e−16 — — —
IRACE+SBX < 2e−16 < 2e−16 < 2e−16 — —
IRACE+UNIFORM < 2e−16 < 2e−16 < 2e−16 < 2e−16 —
IRACE+2PC < 2e−16 < 2e−16 < 2e−16 < 2e−16 < 2e−16

First, we check whether there are significant differences between the different algo-
rithms or not. To do so, we perform a non-parametric Wilcoxon rank-sum test between
the algorithms to analyse whether such differences exist. In general, we always ob-
tain p-values< 0.05, so we can conclude that there are significant differences (see Ta-
ble 3). The only case where we do not have such differences is between IRACE and
IRACE+GA for 1 000 evaluations.

Once the statistical tests have been carried out, we can focus on Table 4 where we
are presented with some statistics to compare the general behaviour of the algorithms
in our two case studies. On the one hand, as we have already mentioned, IRACE+DE
seems to be the best option when we have a limited number of possible evaluations.
We would like to highlight that for 1 000 evaluations, IRACE+SBX is in second place in
both mean and median. The power of its crossover operator offers good results without
giving up good robustness (it is the second with the lowest standard deviation). On the
other hand, in the case of 10 000 simulations, IRACE seems to be the best option. It
is the algorithm that obtains the best results, except in the case of the median, where
IRACE+DE is the best. IRACE is also the best in terms of robustness. In all cases,
algorithms with binary operators come last, not performing well for the TLSP.

0.1

0.2

0.3

0.4

0.5

0.6

IRACE IRACE+DE IRACE+GA IRACE+SBX IRACE+UNIFORM IRACE+2PC

F
it
n
e
s
s

Figure 7: Fitness of the solutions obtained by the algorithms with a budget of 10 000
simulations. Each boxplot shows the distribution of fitness values of one solution on
the 30 traffic scenarios in the test set.

Evolutionary Computation Volume x, Number x 15

C. Cintrano et al.

Table 4: Statistics of each algorithm from the best solutions obtained in the testing
phase. We mark in bold the lower value of each metric.

1 000 10 000
Algorithm Mean±Conf.Int. Median STD Dev Mean±Conf.Int. Median STD Dev

IRACE 0.403 ± 0.0044 0.3907 0.0669 0.1810 ± 0.0015 0.1751 0.0235
IRACE+DE 0.359 ± 0.0049 0.3582 0.0747 0.1970 ± 0.0051 0.1657 0.0776
IRACE+GA 0.408 ± 0.0050 0.3937 0.0763 0.2370 ± 0.0032 0.2289 0.0491
IRACE+SBX 0.384 ± 0.0046 0.3782 0.0700 0.2070 ± 0.0027 0.2042 0.0408
IRACE+UNIFORM 0.472 ± 0.0052 0.4610 0.0802 0.4060 ± 0.0053 0.3960 0.0811
IRACE+2PC 0.531 ± 0.0063 0.5231 0.0969 0.4730 ± 0.0056 0.4601 0.0855

5.3 Impact in Real World

We have previously analysed the results from an algorithmic point of view, focusing on
fitness values. However, we are solving a real problem in the real world. It is relevant
to compare the solutions as a domain expert would. For this reason, it is necessary
to use the quality metrics that are commonly used in this type of problem. Therefore
in this section, we study the main traffic and environmental indicators which give the
domain’s expert more information about the real quality of the solutions.

In a real-world problem, it is desirable to analyze the impact that a representative
solution of the different algorithms would have in a real environment. We choose one
solution from each algorithm, as a typical traffic light plan as follows:

1. we calculate the mean of the fitness obtained in the 30 scenarios of the testing set
by each of the 30 solutions of each algorithm,

2. we order upwards these mean fitness for each algorithm,
3. we select, as the representative, the solution whose fitness value is at the 16th po-

sition, that is, immediately following the median solution. We cannot select the
median because there are an even number of solutions (30).

We simulate again each of the representative solutions in the testing scenarios but
we do not stop the simulation this time, e.g., we allow all the vehicles to reach their des-
tination. This means that the fitness values are not penalized, hence, they are smaller
than those reported in the previous boxplots. With these new simulations, we obtain
26 different traffic and environmental measures of the 30 testing scenarios.

Figure 8 (for solutions obtained in the 1 000 evaluations experimentation) and 9
(for the 10 000 evaluations experimentation) show some of the most important mea-
sures for each algorithm. An interesting outcome of this experiment is that, contrary
to the previous experiments, the fitness values (without penalty) are lower in the so-
lutions obtained in the 1 000 evaluations experiment. This is a very interesting result,
as the number of calls to a simulator is a limiting factor when implementing these al-
gorithms in a end-user solution. Moreover, in general, the solutions obtained at 10 000
obtain metrics with higher variance. In general, IRACE+2PC obtains the highest vari-
ability, except in the minimum values where IRACE+UNIFORM is the winner. These
results confirm once again that these algorithms do not offer any improvement over
the others. Looking at the different metrics, we see that, in the maximum values of
CO, CO2, Fuel, HC, NOx, PMx, Travel times, and Waiting times; IRACE seems to have
the best results. However, IRACE has lower robustness than the challenge algorithms,
especially in the case of solutions obtained after 10 000 evaluations. On the other hand,
in the mean case, IRACE+DE is the winner over the others, with lower mean and vari-
ability. As for the best minimum values, these are distributed between IRACE+SBX

16 Evolutionary Computation Volume x, Number x

Hybridization of Evolutionary Operators with Elitist Iterated Racing for Optimaze the TLSP

(in the 1 000 evaluations experiment) and IRACE+GA (in the 10 000 evaluations exper-
iment). Finally, we are analyzing the worst-case scenarios of the algorithms. There are
several scenarios in which IRACE+DE has worse values than IRACE, even though
it has better values in most of the scenarios. IRACE+2PC has the highest variability
and worst results in 1 000 assessments. In 10 000 evaluations, IRACE+DE presents the
best results even in the worst cases. While in minimum values of the different metrics,
IRACE+GA is the best. IRACE+2PC and IRACE+UNIFORM obtain the worst results.
Analyzing the worst cases is necessary when working on real-world problems. Hav-
ing solutions that can cause trouble under some circumstances is not feasible when we
apply these solutions in an actual city.

With all this, we can conclude that IRACE and IRACE+DE were the best algo-
rithms according to the previous experimentation and they are still competitive in this
last one. However, when we check the impact they could have in the real world, the
best results are not always obtained by them. However, in average and worst cases,
they are the ones that offer the best metrics. It might be interesting for a domain expert
to implement solutions obtained by IRACE+SBX or IRACE+GA according to how
common a particular scenario is.

Min HC (g) Min NOx (g) Min PMx (g) Min TravelTime (s)

Mean TravelTime (s) Mean WaitingTime (s) Min CO (g) Min CO2 (g) Min Fuel (ml)

Mean CO2 (g) Mean Fuel (ml) Mean HC (g) Mean NOx (g) Mean PMx (g)

Max NOx (g) Max PMx (g) Max TravelTime (s) Max WaitingTime (s) Mean CO (g)

Fitness (non−penalized) Max CO (g) Max CO2 (g) Max Fuel (ml) Max HC (g)

500

1000

1500

2000

2500

3000

3500

4000

22.5

25.0

27.5

30.0

35

40

45

400

600

800

1000

1000

2000

3000

4000

600

700

800

900

80000

90000

100000

110000

120000

70

80

90

1000000

1500000

2000000

2500000

1000

2000

3000

4000

5000

120

160

200

100

150

200

250

5

6

7

5000

10000

15000

20000

25000

40

60

80

100

125

150

175

200

225

200

400

600

130

150

170

190

2e−05

3e−05

4e−05

5e−05

1000

2000

3000

350000

400000

450000

500000

550000

400

600

800

1000

18

20

22

24

26

V
al

ue

Algorithm
IRACE

IRACE+DE

IRACE+GA

IRACE+SBX

IRACE+2PC

IRACE+UNIFORM

Figure 8: Traffic measures per vehicle. Mean values (and standard deviation) over 30
test traffic scenarios of the median solutions for the algorithms and 1 000 evaluations.

Evolutionary Computation Volume x, Number x 17

C. Cintrano et al.

Min HC (g) Min NOx (g) Min PMx (g) Min TravelTime (s)

Mean TravelTime (s) Mean WaitingTime (s) Min CO (g) Min CO2 (g) Min Fuel (ml)

Mean CO2 (g) Mean Fuel (ml) Mean HC (g) Mean NOx (g) Mean PMx (g)

Max NOx (g) Max PMx (g) Max TravelTime (s) Max WaitingTime (s) Mean CO (g)

Fitness (non−penalized) Max CO (g) Max CO2 (g) Max Fuel (ml) Max HC (g)

400

600

800

1000

2100

2400

2700

3000

3300

24

25

26

27

28

30

35

40

45

400

600

800

1000

2000

3000

4000

650

700

750

800

80000

90000

100000

110000

120000

60

70

80

90

1000000

1500000

2000000

1000

2000

3000

4000

5000

120

140

160

180

100

150

200

250

5

6

7

5000

10000

15000

20000

50

60

70

80

90

150

160

170

180

190

200

300

400

500

140

160

180

200

3e−05

4e−05

5e−05

1500

2000

2500

3000

375000

400000

425000

450000

475000

500000

500

600

700

800

16

18

20

22

24

26

V
al

ue

Algorithm
IRACE

IRACE+DE

IRACE+GA

IRACE+SBX

IRACE+2PC

IRACE+UNIFORM

Figure 9: Traffic measures per vehicle. Mean values (and standard deviation) over 30
test traffic scenarios of the median solutions for the algorithms and 10 000 evaluations.

6 Conclusions

In this article, we have extended the idea proposed in Cintrano et al. (2021) by test-
ing new operators used in the state-of-the-art TLSP. We have analysed the main pub-
lications about TLSP and extracted the evolutionary operators used. With them, we
have created hybrids between IRACE and evolutionary algorithms: IRACE+DE,
IRACE+GA, IRACE+SBX, IRACE+2PC, and IRACE+UNIFORM. We also studied
the behaviour of operators that use different types of encoding for the solution: nu-
merical and binary. After testing the algorithms in the real scenario of Malaga, Spain,
and varying the maximum number of calls to the simulator, we have found that
IRACE+DE returns the best results both in convergence and quality of the solution
when the number of iterations is more limited. On the other hand, IRACE performed
better for longer run times. However, if we study the solutions from a real-world point
of view, we have found that by using other operators, such as DE or SBX, we can im-
prove some important metrics such as pollutant gas emissions more than IRACE even
as we increase the number of simulations the algorithm can perform.

As future work, we would like to evaluate other real-world problems and analyse
these algorithms’ performance. Besides, we want to continue adding more operators
to these hybrid versions of IRACE, allowing more configuration for user needs.

18 Evolutionary Computation Volume x, Number x

Hybridization of Evolutionary Operators with Elitist Iterated Racing for Optimaze the TLSP

Acknowledgements.
This research was partially funded by the University of Málaga, Andalucı́a Tech and the project TAILOR Grant #952215,

H2020-ICT-2019-3. C. Cintrano is supported by a FPI grant (BES-2015-074805) from Spanish MINECO. M. López-Ibáñez is a

“Beatriz Galindo” Senior Distinguished Researcher (BEAGAL 18/00053) funded by the Ministry of Science and Innovation

of the Spanish Government. J. Ferrer is supported by a postdoc grant (DOC/00488) funded by the Andalusian Ministry of

Economic Transformation, Industry, Knowledge and Universities.

References
Behrisch, M., Bieker, L., Erdmann, J., and Krajzewicz, D. (2011). SUMO - Simulation of Urban

MObility: An overview. In SIMUL 2011, The Third International Conference on Advances in System
Simulation, pages 63–68, Barcelona, Spain. ThinkMind.

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm for configur-
ing metaheuristics. In Langdon, W. B. et al., editors, Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2002, pages 11–18. Morgan Kaufmann Publishers, San Fran-
cisco, CA.

Blum, C. and Raidl, G. R. (2016). Hybrid Metaheuristics—Powerful Tools for Optimization. Artificial
Intelligence: Foundations, Theory, and Algorithms. Springer, Berlin, Germany.

Bravo, Y., Ferrer, J., Luque, G. J., and Alba, E. (2016). Smart mobility by optimizing the traffic
lights: A new tool for traffic control centers. In Alba, E., Chicano, F., and Luque, G. J., editors,
Smart Cities (Smart-CT 2016), LNCS, pages 147–156. Springer, Cham, Switzerland.

Cintrano, C., Ferrer, J., López-Ibáñez, M., and Alba, E. (2021). Hybridization of racing methods
with evolutionary operators for simulation optimization of traffic lights programs. In Zarges,
C. and Verel, S., editors, Proceedings of EvoCOP 2021 – 21th European Conference on Evolution-
ary Computation in Combinatorial Optimization, volume 12692 of LNCS, pages 17–33. Springer,
Cham, Switzerland.

Deb, K. and Agrawal, R. B. (1995). Simulated binary crossover for continuous search spaces.
Complex Systems, 9(2):115–148.

Deb, K. and Agrawal, S. (1999). A niched-penalty approach for constraint handling in genetic
algorithms. In Dobnikar, A., Steele, N. C., Pearson, D. W., and Albrecht, R. F., editors, Artificial
Neural Nets and Genetic Algorithms (ICANNGA-99), pages 235–243. Springer Verlag.

Ferrer, J., Garcı́a-Nieto, J., Alba, E., and Chicano, F. (2016). Intelligent testing of traffic light
programs: Validation in smart mobility scenarios. Mathematical Problems in Engineering, 2016:1–
19.

Ferrer, J., López-Ibáñez, M., and Alba, E. (2019). Reliable simulation-optimization of traffic lights
in a real-world city. Applied Soft Computing, 78:697–711.

Garcı́a-Nieto, J., Alba, E., and Olivera, A. C. (2012). Swarm intelligence for traffic light schedul-
ing: Application to real urban areas. Engineering Applications of Artificial Intelligence, 25(2):274–
283.

Garcı́a-Nieto, J., Olivera, A. C., and Alba, E. (2013). Optimal cycle program of traffic lights with
particle swarm optimization. IEEE Transactions on Evolutionary Computation, 17(6):823–839.

Garnier, J., Kallel, L., and Schoenauer, M. (1999). Rigorous hitting times for binary mutations.
Evolutionary Computation, 7(2):173–203.

Heidrich-Meisner, V. and Igel, C. (2009). Hoeffding and Bernstein races for selecting policies in
evolutionary direct policy search. In Danyluk, A. P., Bottou, L., and Littman, M. L., editors,
Proceedings of the 26th International Conference on Machine Learning, ICML 2009, pages 401–408,
New York, NY. ACM Press.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press.

Evolutionary Computation Volume x, Number x 19

C. Cintrano et al.

Krajzewicz, D., Erdmann, J., Behrisch, M., and Bieker, L. (2012). Recent development and appli-
cations of SUMO - Simulation of Urban MObility. International Journal On Advances in Systems
and Measurements, 5(3-4):128–138.

Krejca, M. S. (2019). Theoretical analyses of univariate estimation-of-distribution algorithms. doctor-
althesis, Universität Potsdam.

Little, J. D. (1966). The synchronization of traffic signals by mixed-integer linear programming.
Operations Research, 14(4):568–594.

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., and Birattari, M. (2016). The
irace package: Iterated racing for automatic algorithm configuration. Operations Research Per-
spectives, 3:43–58.

Mahto, T. and Malik, H. (2021). Traffic signal control to optimize run time for energy saving: a
smart city paradigm. In Metaheuristic and Evolutionary Computation: Algorithms and Applications,
pages 491–497. Springer.

Péres, M., Ruiz, G., Nesmachnow, S., and Olivera, A. C. (2018). Multiobjective evolutionary
optimization of traffic flow and pollution in Montevideo, Uruguay. Applied Soft Computing,
70:472–485.

Price, K., Storn, R. M., and Lampinen, J. A. (2005). Differential Evolution: A Practical Approach to
Global Optimization. Springer, New York, NY.

Pushak, Y. and Hoos, H. H. (2018). Algorithm configuration landscapes: More benign than ex-
pected? In Auger, A., Fonseca, C. M., Lourenço, N., Machado, P., Paquete, L., and Whitley, D.,
editors, Parallel Problem Solving from Nature - PPSN XV, volume 11101 of LNCS, pages 271–283.
Springer, Cham, Switzerland.

Putha, R., Quadrifoglio, L., and Zechman, E. (2012). Comparing ant colony optimization and
genetic algorithm approaches for solving traffic signal coordination under oversaturation con-
ditions. Computer-Aided Civil and Infrastructure Engineering, 27(1):14–28.

Sanchez, J., Galan, M., and Rubio, E. (2005). Bit level versus gene level crossover in a traffic
modeling environment. In International Conference on Computational Intelligence for Modelling,
Control and Automation and International Conference on Intelligent Agents, Web Technologies and
Internet Commerce (CIMCA-IAWTIC’06), volume 1, pages 1190–1195.

Sánchez, J., Galán, M., and Rubio, E. (2008). Applying a traffic lights evolutionary optimization
technique to a real case: “Las Ramblas” area in Santa Cruz de Tenerife. IEEE Transactions on
Evolutionary Computation, 12(1):25–40.

Sánchez-Medina, J. J., Galán-Moreno, M. J., and Rubio-Royo, E. (2010). Traffic signal optimization
in “La Almozara” district in Saragossa under congestion conditions, using genetic algorithms,
traffic microsimulation, and cluster computing. IEEE Transactions on Intelligent Transportation
Systems, 11(1):132–141.

Spears, V. M. and De Jong, K. A. (1991). On the virtues of parameterized uniform crossover. In
Belew, R. K. and Booker, L. B., editors, Proceedings of the 4th International Conference on Genetic
Algorithms, pages 230–236. Morgan Kaufmann Publishers, San Mateo, CA.

Stolfi, D. H. and Alba, E. (2014). Red swarm: Reducing travel times in smart cities by using
bio-inspired algorithms. Applied Soft Computing, 24:181–195.

Stolfi, D. H. and Alba, E. (2015). An evolutionary algorithm to generate real urban traffic flows.
In Puerta, J. M., Gámez, J. A., Dorronsoro, B., Barrenechea, E., Troncoso, A., Baruque, B., and
Galar, M., editors, Advances in Artificial Intelligence, CAEPIA 2015, volume 9422 of LNCS, pages
332–343. Springer, Heidelberg.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Schaffer, J. D., editor, Proc. of
the Third Int. Conf. on Genetic Algorithms, pages 2–9. Morgan Kaufmann Publishers, San Mateo,
CA.

20 Evolutionary Computation Volume x, Number x

Hybridization of Evolutionary Operators with Elitist Iterated Racing for Optimaze the TLSP

Teklu, F., Sumalee, A., and Watling, D. (2007). A genetic algorithm approach for optimizing
traffic control signals considering routing. Computer-Aided Civil and Infrastructure Engineering,
22(1):31–43.

Teo, K. T. K., Kow, W. Y., and Chin, Y. K. (2010). Optimization of traffic flow within an urban
traffic light intersection with genetic algorithm. In Proceedings - 2nd International Conference on
Computational Intelligence, Modelling and Simulation, CIMSim 2010, pages 172–177. IEEE, IEEE
Press.

Tsai, C.-W., Teng, T.-C., Liao, J.-T., and Chiang, M.-C. (2021). An effective hybrid-heuristic algo-
rithm for urban traffic light scheduling. Neural Computing and Applications, 33(24):17535–17549.

Wei, H., Zheng, G., Gayah, V., and Li, Z. (2019). A survey on traffic signal control methods. arXiv
preprint arXiv:1904.08117.

Evolutionary Computation Volume x, Number x 21

	Introduction
	Problem Description
	The Traffic Light Scheduling Problem (TLSP)
	Repair Procedure

	Hybridization of IRACE and Evolutionary Algorithms
	IRACE
	Hybrid Algorithms
	Solution Encoding
	Evolutionary Operators Used by Hybrid Algorithms

	Experimental Setup
	Real World Case Study
	Simulator: SUMO
	Algorithms
	Experimental Details

	Results
	Training Set
	Testing Set
	Impact in Real World

	Conclusions

