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A B S T R A C T

The propagation of electromagnetic solitons in a graphene superlattice device is governed by a modified
sine-Gordon equation, referred to as the graphene superlattice equation. Kink-antikink collisions suggest the
existence of a quasi-breather solution. Here, a numerical search for static quasi-breathers is undertaken by
using a new initial condition obtained by a regular perturbation of the null solution. Our results show that the
frequency of the initial condition has a minimum critical value for the appearance of a robust quasi-breather
able to survive during more than one thousand periods. The amplitude and energy of the quasi-breather
solution decrease, but its frequency increases, as time grows. The robustness of the new quasi-breather supports
its experimental search in real graphene superlattice devices.
1. Introduction

The graphene superlattice (GSL) equation [1] governs the propa-
gation of electromagnetic waves in the planar graphene superlattice
proposed by Ratnikov [2]. A comprehensive derivation of the GSL
equation, a modified sine-Gordon (sG) equation, is reviewed in Ref. [3].
Ratnikov’s superlattice can be fabricated by depositing a graphene
sheet on a substrate with alternating layers of two materials, one that
introduces a gap into the electronic structure of the graphene and
another one that does not [4]; although there are alternative fabrication
techniques [5,6].

The GSL equation has topological solitons (kinks and antikinks)
which are not true solitons since it is non-integrable [7]. Hence, this
equation does not have multi-soliton solutions, like breathers, as have
integrable equations [8]. The interactions between kinks and antikinks
of the Klein–Gordon equation with different nonlinearities have been
widely studied in the literature [9–17]. For the GSL equation, these au-
thors have recently studied the inelastic collision of kinks and antikinks
with the same but opposite speed by using numerical methods [18].
Both solitons escape to infinity when their common initial speed is
either larger than a critical value or inside some resonance windows
within a fractal structure; otherwise, they form breather-like states that
slowly decay by radiating energy. These breather-like states also re-
ferred to as quasi-breathers [19–21], pulsons [22], or oscillons [23,24],
are long-lived localized solutions that slowly lose energy; the longevity
of these solutions during thousands of oscillatory periods makes them
appealing for real applications.
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The numerical search for quasi-breather solutions in Klein–Gordon
equations, like the GSL equation, requires the use of a good approxi-
mation to the exact solution as initial condition. For small amplitude
quasi-breathers, the GSL equation can be approximated by a nonlinear
Schrödinger equation with an exact breather solution, which is the
preferred initial condition for the numerical search [25]; although
there are alternative approaches to obtain an approximation breather
solution [26]. For large amplitude quasi-breathers, an asymptotic ex-
pansion of the solution based on the breather of the sG equation as
an ansatz is the most widely used initial condition [27,28]; usually,
this asymptotic approximation corresponds to the maximum amplitude
of the oscillatory profile of the quasi-breather at the initial time. The
main drawback of the latter approach is that the asymptotic expansion
is singular, requiring a multiple-scale perturbation analysis.

In this paper, an alternative initial condition for the numerical
search of the quasi-breather is introduced, specifically, an asymptotic
approximation to the null amplitude of its oscillatory profile. The
main advantage of this approach is that the corresponding asymptotic
expansion is regular, resulting in an accurate initial condition easy to
obtain without using a multiple-scale perturbation analysis. Another
novelty of this paper is that the GSL equation is a modification of the
sG equation with a nonlinearity that shares more features with it than
other Klein–Gordon equations, like the double-sine Gordon equation
or the 𝜙4 model. In particular, the nonlinearities of the GSL and sG
equations share the same period, having only one maximum and one
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minimum inside each period, reaching both extremes with the same
absolute amplitude. These properties suggest that a good quasi-breather
solution similar to the breather of the sG equation is expected for the
GSL equation.

The main goal of this paper is the numerical search for a breather-
like, oscillating mode in the graphene superlattice equation. Its contents
are as follows. In Section 2, we present the graphene superlattice equa-
tion. In Section 2.1, we introduce and analyse the numerical scheme
used to solve the equation. The initial condition used for the search
of the quasi-breather is presented in Section 2.2. Our main results
are presented in Section 3, including a characterization of the quasi-
breathers of the GSL equation. In Section 3.1, the different solutions
obtained as the frequency of the initial condition increases are charac-
terized. In Section 3.2, the evolution in time of the parameters of the
quasi-breather solutions is presented. And in Section 3.3 the long-time
stability of the quasi-breather is analysed. Finally, in Section 4, some
conclusions and future research lines are drawn.

2. Graphene superlattice equation

Nonlinear electromagnetic waves can propagate in a planar
graphene superlattice subjected to irradiation with a frequency much
larger than the plasma frequency. Their propagation along the
graphene superlattice axis is governed by a nonlinear d’Alembert
equation for the amplitude of the transversal component of the vector
potential of the electromagnetic wave field, 𝛼, solving the nonlinear

lein–Gordon equation given by [1,3]

𝜕2𝛼
𝜕𝑡2

− 𝑐2 𝜕2𝛼
𝜕𝑥2

+
𝜔2
𝑝𝑙 𝑏

2 sin 𝛼
√

1 + 𝑏2 (1 − cos 𝛼)
= 0, (1)

here 𝑏 is a geometrical parameter associated to the superlattice, and
𝑝𝑙 is the plasma frequency.

With the change of variables 𝑡′ = 𝜔𝑝𝑙 𝑏 𝑡, 𝑥′ = 𝜔𝑝𝑙 𝑏 𝑥∕𝑐, and 𝑢 = 𝛼,
q. (1) results in the graphene superlattice equation, given by

𝜕2𝑢
𝜕𝑡2

− 𝜕2𝑢
𝜕𝑥2

+
𝑑𝐺(𝑢)
𝑑𝑢

= 0, (2)

with
𝑑𝐺(𝑢)
𝑑𝑢

= sin 𝑢
√

1 + 𝑏2 (1 − cos 𝑢)
,

here the primes have been dropped and

(𝑢) =
2 (1 − cos 𝑢)

1 +
√

1 + 𝑏2 (1 − cos 𝑢)
. (3)

Note that for 𝑏 = 0, i.e., 𝐺(𝑢) = 1 − cos 𝑢, the sG equation is obtained.
A solitary wave solution of Eq. (2) with speed 𝑣 is found by Lorentz
boosting a stationary solution 𝑢(𝑥), i.e., 𝑢(𝑥, 𝑡) = 𝑢((𝑥 − 𝑣 𝑡)∕

√

1 − 𝑣2),
hat solves
𝑑2𝑢
𝑑𝑥2

=
𝑑𝐺(𝑢)
𝑑𝑢

, 1
2

( 𝑑𝑢
𝑑𝑥

)2
= 𝐺(𝑢). (4)

The solution of Eq. (4) can be obtained in implicit form, by using elliptic
integrals. The resulting expression is cumbersome, so, in practice, its
numerical evaluation is preferred. Note that the breather solution of
the sG equation is obtained by the method of separation of variables;
however, the GSL equation is not separable, hence it does not have true
breather solutions.

2.1. Numerical scheme

The GSL equation (2) is a modified sine-Gordon equation. It can
be solved by using a numerical scheme for the sG equation, like the
Padé methods developed by the authors in Refs. [29,30]. Let us take
2

a method inspired in the energy conservation scheme by Guo Ben-Yu
et al. [31] using the same second-order stencil in time and the Strauss–
Vázquez [32] treatment for the nonlinear term, but with a fourth-order
central difference formula in space; this method is given by

𝑈𝑛+1
𝑚 − 2𝑈𝑛

𝑚 + 𝑈𝑛−1
𝑚

𝛥𝑡2
−(E)

(𝑈𝑛+1
𝑚 + 𝑈𝑛−1

𝑚 )
2

+𝐻(𝑈𝑛+1
𝑚 ) = 0, (5)

ith

(E) = −E−2 + 16E−1 − 30 + 16E1 − E2

12𝛥𝑥2
,

and

𝐻(𝑈𝑛+1
𝑚 ) ≡

𝐺(𝑈𝑛+1
𝑚 ) − 𝐺(𝑈𝑛−1

𝑚 )

𝑈𝑛+1
𝑚 − 𝑈𝑛−1

𝑚

,

where 𝑈𝑛
𝑚 ≈ 𝑢(𝑥𝑚, 𝑡𝑛) = 𝑢𝑛𝑚, 𝑥𝑚 = 𝑚𝛥𝑥, for 𝑚 ∈ Z, 𝛥𝑥 is the grid

size, 𝑡𝑛 = 𝑛 𝛥𝑡, for 𝑛 ∈ N, 𝛥𝑡 is the time step, (E) 𝑢𝑛𝑚 is a fourth-
order discretization of the spatial derivative, and E is the shift operator
defined as E𝑈𝑛

𝑚 = 𝑈𝑛
𝑚+1. We use periodic boundary conditions in the

finite interval 𝑥 ∈ (−𝐿,𝐿], with 𝑥𝑚 = −𝐿 + 𝑚𝛥𝑥, 𝑚 = 1, 2,… ,𝑀 , and
𝛥𝑥 = 2𝐿∕𝑀 (note that 𝑢(𝑥0, 𝑡) ≡ 𝑢(𝑥𝑀 , 𝑡)), and a finite time interval
𝑡 ∈ [0, 𝑇 ], with 𝑡𝑛 = 𝑛 𝛥𝑡, 𝑛 = 0, 1,… , 𝑁 , and 𝛥𝑡 = 𝑇 ∕𝑁 .

Method (5) applied to the sG equation has been studied in detail by
these authors in Ref. [30]. For completeness of the presentation, let us
summarize its main properties for the GSL equation. First, the existence,
uniqueness, and regularity of the solutions of the initial–boundary
value problem for the nonlinear Klein–Gordon equation with bounded
nonlinearity is known from the literature [33]: for a regular enough
initial condition, the classical solution achieves the same regularity,
and there is no problem with the consistency in both space and time
for the numerical method. Hence, the initial-value problem of the
GSL equation is well-posed and the Lax–Richtmyer theorem applies:
if the numerical method is consistent and (linearly) stable it will be
convergent.

The consistency of Method (5) can be studied by determining its
local truncation error. It can be easily calculated by the substitution
of 𝑈𝑛

𝑚 in Method (5) with the exact solution 𝑢(𝑥𝑚, 𝑡𝑛) of Eq. (2) and
expanding the result in a power series; the result is

Eq. (2) + 𝛥𝑥4

90
𝑢𝑥𝑥𝑥𝑥𝑥𝑥 +

𝛥𝑡2

12
𝑢𝑥𝑥𝑥𝑥 −

𝛥𝑡2

2
𝑢𝑥𝑥𝑡𝑡

+ 𝛥𝑡2

6
𝐺𝑢𝑢𝑢(𝑢) 𝑢2𝑡 +

𝛥𝑡2

2
𝐺𝑢𝑢(𝑢) 𝑢𝑡𝑡 + h.o.t.

where h.o.t. means higher-order terms, and

𝐺𝑢𝑢(𝑢) =
4
(

1 + 𝑏2
)

cos(𝑢) − 𝑏2 (3 + cos(2 𝑢))

4
(

1 + 𝑏2 (1 − cos(𝑢))
)3∕2

,

𝐺𝑢𝑢𝑢(𝑢) =
sin(𝑢)

(

4 (𝑏4 + 𝑏2) cos(𝑢) − 𝑏4 (cos(2𝑢) + 3) − 16 𝑏2 − 8
)

8
(

1 + (𝑏2(1 − cos(𝑢))
)5∕2

.

Note that |𝐺𝑢(𝑢)| ≤ 1, |𝐺𝑢𝑢(𝑢)| ≤ 1, and |𝐺𝑢𝑢𝑢(𝑢)| ≤ 1, for 𝑏 ≥ 0, so
he local truncation error is bounded for a regular enough solution of
he GSL equation. Hence, Method (5) is consistent with second-order
n time and fourth-order in space.

The linear stability of Method (5) can be easily studied using the
on Neumann analysis. The computational error 𝑍𝑛

𝑚 = 𝑈𝑛
𝑚 − 𝑈𝑛∗

𝑚 ,
ith respect to a reference solution 𝑈𝑛∗

𝑚 can be Fourier expanded as
𝑛
𝑚 = 𝑒i𝑚𝛽 𝛥𝑥 𝜉𝑛, where i =

√

−1, 𝛽 is the spatial frequency, and 𝜉
is the amplification factor. The condition for stability is that |𝜉| ≤ 1.
By introducing 𝑍𝑛

𝑚 into the linearization of Method (5) and cancelling
ommon factors, the resulting equation for 𝜉 is given by

𝑝(𝜉) = 𝐴𝜉2 − 2𝐵 𝜉 + 𝐴 = 0, (6)

with

𝐴 = 1 + 8
3
𝑟2 sin2(𝜔) − 1

6
𝑟2 sin2(2𝜔), 𝐵 = 1,

where 𝑟 = 𝛥𝑡∕𝛥𝑥, and 𝜔 = 𝛽 𝛥𝑥∕2. The two roots 𝜉1 and 𝜉2 of the
stability polynomial 𝑝(𝜉) have modulus smaller than or equal to unity
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Fig. 1. Three-dimensional mesh plot of the numerical solution of the GSL equation with 𝑏 = 1 for the initial condition (14) with 𝜔 = 0.4 (top left plot), 0.6 (top right plot), 0.8
(bottom left plot), and 1.0 (bottom right plot), by using 𝛥𝑡 = 𝛥𝑥 = 0.01, 𝑥 ∈ [−50, 50), and 𝑡 ∈ [0, 100].
Fig. 2. The centre 𝑢(0, 𝑡) of the numerical solutions of the GSL equation with 𝑏 = 1 shown in Fig. 1.
for every 𝜉 if and only if |𝐵| ≤ 𝐴, i.e., −𝐴 ≤ 𝐵 ≤ 𝐴. In our case 𝐴 > 1,
then Method (5) is linearly, unconditionally stable.

Method (5) is implicit, hence a nonlinear equation should be solved
for the calculation of 𝑈𝑛+1 from 𝑈𝑛 , and 𝑈𝑛−1. We use Newton’s
3

𝑚 𝑚 𝑚
iterative method given by

𝑈 (𝑘+1)
𝑚 − 2𝑈𝑛

𝑚 + 𝑈𝑛−1
𝑚 − 𝛥𝑡2 (E)

(𝑈 (𝑘+1)
𝑚 + 𝑈𝑛−1

𝑚 )
2

+ 𝛥𝑡2
(

𝐻(𝑈 (𝑘)
𝑚 ) +𝐻𝑢(𝑈 (𝑘)

𝑚 ) (𝑈 (𝑘+1)
𝑚 − 𝑈 (𝑘)

𝑚 )
)

= 0, (7)
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Fig. 3. Phase diagrams (𝑢(0, 𝑡) vs. 𝑢𝑡(0, 𝑡)) for the numerical solutions of the GSL equation with 𝑏 = 1 shown in Fig. 2.
with

𝐻𝑢(𝑈 (𝑘)
𝑚 ) ≡

𝐺𝑢(𝑈
(𝑘)
𝑚 ) (𝑈 (𝑘)

𝑚 − 𝑈𝑛−1
𝑚 ) − (𝐺(𝑈 (𝑘)

𝑚 ) − 𝐺(𝑈𝑛−1
𝑚 ))

(

𝑈 (𝑘)
𝑚 − 𝑈𝑛−1

𝑚

)2
. (8)

In each interaction of the Newton’s method the linear problem

(𝑘) 𝑈 (𝑘+1)
𝑚 = (𝑘),

where the matrix (𝑘) is given by

(𝑘) =  − 𝛥𝑡2

2
 + 𝛥𝑡2 𝐻𝑢(𝑈 (𝑘)

𝑚 ), (9)

with  the identity matrix and  the matrix associated to the finite
difference operator (𝐸), and the vector (𝑘) is

(𝑘) = 2𝑈𝑛
𝑚 − 𝑈𝑛−1

𝑚 + 𝛥𝑡2

2
𝑈𝑛−1

𝑚 − 𝛥𝑡2
(

𝐻(𝑈 (𝑘)
𝑚 ) −𝐻𝑢(𝑈 (𝑘)

𝑚 )𝑈 (𝑘)
𝑚

)

. (10)

Our stopping criterium for Newton’s iteration convergence is based
on the relative error using the infinity norm, i.e., ‖𝑈 (𝑘+1)

𝑚 − 𝑈 (𝑘)
𝑚 ‖∞ ≤

Tolrel ‖𝑈
(𝑘+1)
𝑚 ‖∞, with ‖𝑈 (𝑘)

𝑚 ‖∞ = max𝑚 |𝑈 (𝑘)
𝑚 |, and Tolrel = 10−14.

The pseudocode of our implementation of Method (5) is presented
in Algorithm 1. This pseudocode calculates the numerical solution 𝑈𝑛

𝑚
in matrix form. Let us note that the initial condition 𝑢𝑏(𝑥, 𝑡) in this
pseudocode corresponds to the pseudo-breather to be presented in the
next section, cf. Eq. (14).

Let us emphasize that Method (5) is highly accurate and has excel-
lent energy conservation properties, even for 𝛥𝑡 = 𝛥𝑥, as shown by these
authors for the sG equation in Ref. [30]. Our extensive simulations
show that these properties hold for the GSL equation as well.
4

Algorithm 1 Pseudocode of the implementation of Method (5)

𝑈0
𝑚 ← 0

𝑈−1
𝑚 ← 𝑢𝑏(𝑥𝑚,−𝛥𝑡) ⊳ Initial condition

𝑛 ← 0
while 𝑛 < 𝑡max∕𝛥𝑡 do ⊳ Main loop

𝑈 (𝑘)
𝑚 ← 0

𝑈 (𝑘+1)
𝑚 ← 𝑈𝑛

𝑚
while ‖𝑈 (𝑘+1)

𝑚 − 𝑈 (𝑘)
𝑚 ‖∞ > Tolrel ‖𝑈

(𝑘+1)
𝑚 ‖∞ do ⊳ Newton’s loop

𝑈 (𝑘)
𝑚 ← 𝑈 (𝑘+1)

𝑚
Calculate matrix (𝑘) and vector (𝑘)

𝑈 (𝑘+1)
𝑚 ← Solution of linear system (𝑘) 𝑈 (𝑘+1)

𝑚 = (𝑘)

end while
𝑈𝑛+1
𝑚 ← 𝑈 (𝑘+1)

𝑚
𝑛 ← 𝑛 + 1

end while

2.2. Initial condition for searching the quasi-breather

The initial conditions for our numerical method are
𝑈−1
𝑚 = 𝑢(𝑥𝑚,−𝛥𝑡), and 𝑈0

𝑚 = 𝑢(𝑥𝑚, 0). The sine-Gordon breather can be
written as

𝑢br(𝑥, 𝑡) = 4 tan−1(sech(𝑞 𝑥) sin(𝜔𝑞 𝑡)∕𝜔), 𝑞 = 1∕
√

1 + 𝜔2. (11)

Here on, the parameter 𝜔 is referred to as frequency, although the
breather frequency 𝜔br(𝜔) = 𝜔∕

√

1 + 𝜔2. Eq. (11) has the advantage
that 𝑢br(𝑥, 0) = 0, so 𝑈0

𝑚 = 𝑢br(𝑥𝑚, 0) = 0 is an exact initial condition
for the GSL equation. Moreover, since 𝑢 (𝑥, 𝑡) = 4 𝑞 sech(𝑞 𝑥) 𝑡 + O

(

𝑡3
)

,
br
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−

Fig. 4. Plots of the quasi-breather amplitude maxima 𝑢max(𝑡𝑖) (cyan points) and its fitting (red line) by Eq. (16) with 𝑡𝑖 ≤ 𝑇max (see Table 1) for 𝜔 = 0.7 (top left), 0.8 (top right),
0.9 (bottom left plot), and 1 (bottom right), with 𝑏 = 1, 𝛥𝑡 = 𝛥𝑥 = 0.01, 𝑥 ∈ [−50, 50), and 𝑡 ∈ [0, 25000]. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
c

3

e
d
i
t
S

3

e
b
e
t
e
b
m
i
0
(

an asymptotic expansion in time can be used to obtain an accurate
approximation 𝑈−1

𝑚 = 𝑢(𝑥𝑚,−𝛥𝑡) for the GSL equation. The introduction
of the ansatz

𝑢𝑏(𝑥, 𝑡) = 4 𝑞 sech(𝑞 𝑥) 𝑡 + 𝑢3(𝑥) 𝑡3 + 𝑢5(𝑥) 𝑡5 + 𝑢7(𝑥) 𝑡7 + O
(

𝑡9
)

, (12)

into the GSL equation yields

(4 sech(𝑞 𝑥) (𝑞 − 𝑞3 + 2 𝑞3 sech2(𝑞 𝑥)) + 6 𝑢3(𝑥)) 𝑡 = O
(

𝑡3
)

, (13)

where 𝑢3(𝑥) can be trivially solved. The repetition of this procedure to
higher orders in time yields the regular asymptotic expansion

𝑢𝑏(𝑥, 𝑡) = 4 𝑡 𝑞 sech(𝑞 𝑥) − 2 𝑡3
3

𝑞 sech(𝑞 𝑥)
(

1 − 𝑞2 + 2 𝑞2 sech2(𝑞 𝑥)
)

+ 𝑡5

30
(

𝑞 (1 − 𝑞2)2 sech(𝑞 𝑥) + 4 𝑞3 (5 + 6 𝑏2 − 5 𝑞2) sech3(𝑞 𝑥)

+ 24 𝑞5 sech5(𝑞 𝑥)
)

𝑡7

1260

(

𝑞 (1 − 𝑞2)3 sech(𝑞 𝑥) + 2 𝑞3
(

𝑏2 (132 − 228 𝑞2)

+ 91 (1 − 𝑞2)2
)

sech3(𝑞 𝑥) + 24 𝑞5
(

8 𝑏2 (14 + 15 𝑏2)

− 35 (1 − 𝑞2)
)

sech5(𝑞 𝑥) + 720 𝑞7 sech7(𝑞 𝑥)
)

+O
(

𝑡9
)

, (14)

which can be used for the initial condition 𝑈−1
𝑚 = 𝑢𝑏(𝑥𝑚,−𝛥𝑡). Note that

for 𝛥𝑡 ≤ 0.01, 𝑞 < 1, and 𝑏 ≤ 1, the O
(

𝑡9
)

term in Eq. (14) is smaller than
the epsilon of the machine (2.2 × 10−16); however, for 𝑏 ≫ 1 high-order
terms in Eq. (14) are required in order to obtain an accurate initial
condition.

The energy associated to the solution Eq. (14) can be analytically
calculated as

𝐸(𝑡) = ∫

∞
(

(𝑢𝑏,𝑡)2 +
(𝑢𝑏,𝑥)2 + 𝐺(𝑢𝑏)

)

𝑑𝑥
5

−∞ 2 2
= 𝐸(0) = ∫

∞

−∞
8 𝑞2 sech2(𝑞𝑥) 𝑑𝑥 = 16

√

1 + 𝜔2
. (15)

Note that this energy is independent of the parameter 𝑏, hence it
oincides with that of the sine-Gordon breather, given by Eq. (11).

. Presentation of results

Let us summarize the main results for the behaviour of the GSL
quation, obtained after a large set of simulations. In Section 3.1, the
ifferent solutions obtained as the frequency of the initial condition
ncreases are characterized. In Section 3.2, the evolution in time of
he parameters of the quasi-breather solutions is presented. And in
ection 3.3 the long-time stability of the quasi-breather is analysed.

.1. Kink-antikink, pseudo-breather, and quasi-breather solutions

The numerical solution of the sine-Gordon equation, i.e., the GSL
quation with 𝑏 = 0, with the initial condition (14) results in the exact
reather solution for every value of the frequency 𝜔 (or 𝑚). However,
xtensive numerical simulations for the GSL equation with 𝑏 > 0 show
hat there is a critical minimum frequency 𝜔cr such that the solution
volves into a kink-antikink solution for 𝜔 < 𝜔cr and into a quasi-
reather for 𝜔 > 𝜔cr. This result is illustrated in the three-dimensional
esh plots in Fig. 1, where the GSL equation with 𝑏 = 1 is solved with

nitial condition (14) for 𝜔 = 0.4 (top left plot), 0.6 (top right plot),
.8 (bottom left plot), and 1.0 (bottom right plot). The top left plot
𝜔 = 0.4, 𝑞 = 5∕

√

29) shows the generation of a kink and antikink that
separate completely and escape to infinity. The top right plot (𝜔 = 0.6,
𝑞 = 5∕

√

34) shows the generation of a periodic solution that resembles
a quasi-breather, but with noticeable variations in the profile of its
amplitude in every oscillation period; here on, it is referred to as a
pseudo-breather. Both, the bottom left plot (𝜔 = 0.8, 𝑞 = 5∕

√

41) and
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Fig. 5. Plots of the quasi-breather frequencies 𝜔qbr(𝑡𝑖) (cyan points) and its fitting (red line) by Eq. (17) for 𝑡𝑖≤𝑇max (see Table 1) for 𝜔 = 0.7 (top left), 0.8 (top right), 0.9 (bottom
left plot), and 1 (bottom right), with 𝑏 = 1, 𝛥𝑡 = 𝛥𝑥 = 0.01, 𝑥 ∈ [−50, 50), and 𝑡 ∈ [0, 25000]. (For interpretation of the references to colour in this figure legend, the reader is
eferred to the web version of this article.)
Fig. 6. The left plot shows the critical frequency 𝜔cr as function of 𝑏 estimated from numerical calculations and its fitting by Eq. (18). The right plot shows the first quasi-breather
requency 𝜔qbr(𝑡1) for 𝑏 = 0.2, 0.4, 0.6, 0.8, and 1 as a function of 𝜔, and the breather frequency 𝜔br(𝜔) for the sG equation (continuous line). All the simulations use 𝛥𝑡 = 𝛥𝑥 = 0.01,
∈ [−50, 50), and 𝑡 ∈ [0, 100].
a

he bottom right plot (𝜔 = 1.0, 𝑞 = 1∕
√

2) show quasi-breather solutions
with nearly constant amplitude and frequency; as the parameter 𝜔
increases, the frequency of the quasi-breather also increases. The four
plots in Fig. 1 show solutions emitting small-amplitude radiation with a
small amplitude that slowly increases as time passes since the radiation
reenters the domain due to the periodic boundary conditions.

Fig. 2 shows plots of 𝑢(0, 𝑡) for the solutions shown in Fig. 1 in order
to illustrate the profile of the corresponding kink-antikink, pseudo-
breather, and quasi-breather solutions. The top left plot (𝜔 = 0.4) shows
that the amplitude in the centre of the kink-antikink solution increases
from 0 to 2𝜋, with a small ripple whose amplitude decreases in time.
6

The top right plot (𝜔 = 0.6) shows the central profile of the pseudo-
breather, whose profile in every period changes appreciably both in
amplitude and frequency. The bottom left plot (𝜔 = 0.8, 𝑞 = 5∕

√

41)
nd the bottom right plot (𝜔 = 1.0, 𝑞 = 1∕

√

2) show the central
profile of quasi-breather solutions with nearly constant amplitude and
frequency. A careful analysis of the quasi-breather profiles concludes
that the amplitude (frequency) decreases (increases) in a small amount
as time passes due to the slow emission of radiation (not noticeable in
these plots).

Fig. 3 shows phase plots, i.e., 𝑢(0, 𝑡) vs 𝑢𝑡(0, 𝑡), for the solutions
shown in Fig. 2 in order to highlight the quality of the profiles of the
quasi-breathers and the effect of the radiation. The phase portrait of the
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Fig. 7. Plots of the energy of the quasi-breather 𝐸qbr(𝑡) (blue points) and the total energy 𝐸(𝑡) (red line) for 𝜔 = 0.7 (top left), 0.8 (top right), 0.9 (bottom left plot), and 1 (bottom
right), with 𝑏 = 1, 𝛥𝑡 = 𝛥𝑥 = 0.01, 𝑥 ∈ [−50, 50), and 𝑡 ∈ [0, 25000]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
Table 1
The parameters of Eq. (16) for the local maxima of the quasi-breather shown in the
plots of Fig. 4; 𝛼 and 𝛾 are fitted from data in 𝑡 ∈ [0, 𝑇max], with fixed values for
𝑇max and 𝑡1; the values of 𝛼 and 𝛾 are shown with the corresponding 95% confidence
intervals and the coefficient of determination 𝑅2.
𝜔 𝑡1 𝑢max(𝑡1) 𝑇max 𝛼 𝛾 𝑅2

0.7 3.94 4.5640 15 000 0.0030 ± 0.0004 0.72 ± 0.02 0.82
0.8 3.47 4.2775 14 000 0.0089 ± 0.0013 0.60 ± 0.02 0.77
0.9 3.19 4.0146 21 000 0.0018 ± 0.0002 0.73 ± 0.01 0.86
1.0 2.98 3.7694 20 000 0.0009 ± 0.0001 0.77 ± 0.01 0.85

quasi-breather is an open oscillatory profile resembling the limit cycle
of the breather of the sine-Gordon equation. The top left plot (𝜔 = 0.4)
shows that the solution starts approaching the expected phase portrait
for a quasi-breather, but deviates as 𝑢𝑡(0, 𝑡) approaches zero, making
a transition with two loops into a spiral sink around 𝑢(0, 𝑡) = 2𝜋 and
𝑢𝑡(0, 𝑡) = 0, as clearly shown in the zoomed plot inserted. The top right
plot (𝜔 = 0.6) shows the phase portrait of a periodic solution with an
irregular profile different from the one expected for a quasi-breather.
Both, the bottom left plot (𝜔 = 0.8, 𝑞 = 5∕

√

41) and the bottom right
plot (𝜔 = 1.0, 𝑞 = 1∕

√

2) show the central profile of quasi-breather
solutions with nearly constant amplitude and frequency.

3.2. Properties of the quasi-breather solution

The maximum amplitude 𝑢max(𝑡𝑖), 𝑖 = 1, 2,…, of the oscillatory
profile 𝑢(0, 𝑡) of the quasi-breather decreases as time marches due to
the emission of radiation, until the quasi-breather loses its identity
decaying into small-amplitude radiation at a time 𝑡 = 𝑇max. Fig. 4 shows
𝑢max(𝑡𝑖) of the quasi-breather of the GSL equation with 𝑏 = 1 for 𝜔 = 0.7,
0.8, 0.9, and 1, from a long-time numerical integration until 𝑡 = 25000.
This figure shows a sharp transition between a decaying quasi-breather
and a small-amplitude radiation solution at time 𝑡 ≈ 𝑇max. The values
of 𝑢 (𝑡 ), 𝑖 = 1, 2,… , 𝑁 , with 𝑡 ≤ 𝑇 have been fitted by the
7

max 𝑖 𝑁 max
Table 2
The parameters of Eq. (17) for the frequency of the quasi-breather shown in the plots
of Fig. 5. The parameters �̃� and �̃� are fitted from data in 𝑡 ∈ [0, 𝑇max], with 𝑡1 and 𝑇max
as fixed parameters; being the values of 𝑇max the same shown in Table 1. The values of
�̃� and �̃� are shown with the corresponding 95% confidence intervals and the coefficient
of determination 𝑅2.
𝜔 𝑡1 𝜔qbr(𝑡1) 𝜔br(𝜔) �̃� �̃� 𝑅2

0.7 3.94 0.3709 0.5735 0.066 ± 0.015 0.335 ± 0.025 0.35
0.8 3.47 0.4309 0.6247 0.099 ± 0.013 0.258 ± 0.015 0.47
0.9 3.19 0.4782 0.6689 0.041 ± 0.006 0.319 ± 0.016 0.47
1.0 2.98 0.5167 0.7071 0.015 ± 0.002 0.402 ± 0.016 0.61

expression

𝑢max(𝑡) =
𝑢max(𝑡1)

1 + 𝛼(𝑡 − 𝑡1)𝛾
, (16)

where the first data point (𝑡1, 𝑢max(𝑡1)) has been fixed in order to enforce
that Eq. (16) exactly passes for such a point. Table 1 shows the values
of the fixed parameters 𝑡1, 𝑢max(𝑡1), and 𝑇max, and the fitted parameters
𝛼 and 𝛾 with 95% confidence intervals for 𝜔 = 0.7, 0.8, 0.9, and 1;
the coefficient of determination 𝑅2 is shown in the table, being larger
than 0.77 in the four cases. Fig. 4 and Table 1 show that 𝑡1 and 𝑢max(𝑡1)
decrease as 𝜔 grows; the behaviour of 𝑇max is irregular, although the
general trend is to increase as 𝜔 does. Table 1 shows that the fitted
coefficient 𝛼 decreases and 𝛾 increases as 𝜔 grows, except for 𝜔 = 0.8.

The quasi-breather frequency 𝜔qbr(𝑡𝑖) = 2𝜋∕(𝑡𝑖+1 − 𝑡𝑖) has been
calculated from the local maxima (𝑡𝑖, 𝑢max(𝑡𝑖)) of the oscillatory profile
𝑢(0, 𝑡); note that, after the decay of the quasi-breather, 𝑡 > 𝑇max, this
frequency corresponds to that of the small-amplitude radiation, so it
oscillates widely. Fig. 5 shows 𝜔qbr(𝑡𝑖) of the GSL equation with 𝑏 = 1
for 𝜔 = 0.7, 0.8, 0.9, and 1, from a long-time numerical integration until
𝑡 = 25000. This figure shows that 𝜔qbr(𝑡𝑖) increases as time marches,
with 𝑡 < 𝑇max. The values of 𝜔qbr(𝑡𝑖), 𝑖 = 1, 2,… , 𝑁 , with 𝑡𝑁≤𝑇max have
been fitted by the expression

𝜔 (𝑡) = 𝜔 (𝑡 ) (1 + �̃� (𝑡 − 𝑡 )�̃� , (17)
qbr qbr 1 1
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Fig. 8. Contour plots of the quasi-breather solution 𝑢(0, 𝑡) in the plane (𝜔, 𝑡) with 𝜔 ∈ [0, 1] in steps of 𝛥𝜔 = 10−3, for 𝑏 = 0, 0.2, 0.4, 0.6, 0.8, and 1, with 𝛥𝑡 = 𝛥𝑥 = 0.01,
𝑥 ∈ [−50, 50), and 𝑡 ∈ [0, 100].
where the first data point (𝑡1, 𝜔qbr(𝑡1)) has been fixed in order to enforce
that Eq. (17) exactly passes for such a point. Table 2 shows the values
of the fixed parameters 𝑡1 and 𝜔qbr(𝑡1), and the fitted parameters �̃�
and �̃� with 95% confidence intervals for 𝜔 = 0.7, 0.8, 0.9, and 1; the
coefficient of determination 𝑅2 for this fitting is smaller than 0.61 for
𝜔 < 1 due to the presence of values of 𝜔qbr > 2 for 𝑡 approaching 𝑇max.
Fig. 5 and Table 2 show that 𝜔qbr(𝑡1) increases as 𝜔 does, starting with
𝜔qbr(𝑡1) < 𝜔∕

√

1 + 𝜔2, the frequency of the breather of the sG equation,
but reaching a time after which 𝜔qbr(𝑡𝑖) > 𝜔∕

√

1 + 𝜔2. Table 2 shows
that the fitted coefficient �̃� decreases as 𝜔 grows, except for 𝜔 = 0.8,
and �̃� increases as 𝜔 grows, except for 𝜔 = 0.7.

Fig. 6 (left plot) shows the critical frequency 𝜔cr as function of 𝑏,
showing that it is monotonically increasing. The data points can be
fitted by an exponential function

𝜔cr(𝑏) = �̃� (1 − exp(−𝛽 𝑏)), (18)

resulting in

�̃� = 1.19+0.09−0.08, 𝛽 = 0.52+0.05−0.04, (19)

both with 95% confidence intervals and a coefficient of determination
𝑅2 = 0.9999. Fig. 6 (right plot) shows the breather frequency 𝜔br(𝜔) for
the sG equation 𝑏 = 0 (continuous line), and the first quasi-breather
frequency 𝜔qbr(𝑡1) for 𝑏 = 0.2, 0.4, 0.6, 0.8, and 1 as a function of 𝜔;
this plot shows the first quasi-breather frequency 𝜔qbr(𝑡1) as a function
of 𝜔 for 𝑏 = 0, 0.2,… , 1. The values of 𝜔qbr(𝑡1) increase as 𝜔 does
and decrease as 𝑏 increases, but always are smaller than the frequency
8

𝜔br(𝜔) of the sG breather. Fig. 6 (right plot) shows that 𝜔qbr(𝑡1)(𝜔)
approaches 𝜔br(𝜔), as expected since the quasi-breather of the GSL
equation can be interpreted as a perturbation of the breather of the sG
equation, at least for small 𝑏. For this reason 𝜔qbr(𝑡1)(𝜔) is an increasing
function of 𝜔 as 𝜔br(𝜔) does.

The energy of the (stationary) quasi-breather can be estimated by
using

𝐸qbr(𝑡) = ∫

2𝜋

−2𝜋

(

(𝑢𝑡)2

2
+

(𝑢𝑥)2

2
+ 𝐺(𝑢)

)

𝑑𝑥 ≤ 𝐸(𝑡), (20)

where 𝐸qbr(0)≈𝐸(0), since the initial condition 𝑢𝑏(𝑥, 0) exponentially
decays in space. Fig. 7 shows 𝐸qbr(𝑡) (blue points) and 𝐸(𝑡) (red line) for
𝜔 = 0.7 (top left), 0.8 (top right), 0.9 (bottom left plot), and 1 (bottom
right), with 𝑏 = 1. Since our numerical method has good energy-
conservation properties, the energy is nearly constant; in fact, there is a
small increase in 𝐸(𝑡) as time marches, but since |𝐸(25000)∕𝐸(0) − 1| <
7.5 × 10−5 for all 𝜔, it is not noticeable in the plots. Fig. 7 shows that
𝐸qbr(𝑡) decreases as the quasi-breather radiates for 𝑡 < 𝑇max; after a
sharp decrease, it finally decays into small-amplitude radiation.

3.3. Critical frequency for the quasi-breather solution

Fig. 8 shows contour plots of the solution 𝑢(0, 𝑡) in the plane (𝜔, 𝑡),
with 𝜔 ∈ [0, 1] in steps of 𝛥𝜔 = 10−3, for the numerical solution of
Eq. (2) with 𝑏 = 0, 0.2, 0.4, 0.6, 0.8, and 1. The top left plot for 𝑏 = 0
shows the analytical breather solution, Eq. (11), of the sG equation; it
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Fig. 9. Zoom of the contour plots of the quasi-breather solution 𝑢(0, 𝑡) in the plane (𝜔, 𝑡) with 𝛥𝜔 = 10−4 for 𝑏 = 0.6 in 𝜔 ∈ [0.3, 0.5], for 𝑏 = 0.8 in 𝜔 ∈ [0.39, 0.55], and 𝑏 = 1 in
𝜔 ∈ [0.47, 0.6], using 𝛥𝑡 = 𝛥𝑥 = 0.01, 𝑥 ∈ [−50, 50), and 𝑡 ∈ [0, 100].
Table 3
Critical frequencies 𝜔cr and 𝜔cr,br for 𝑏 = 0, 0.2,… , 1, determined from the simulations
plotted in Figs. 8 and 9.
𝑏 0 0.2 0.4 0.6 0.8 1.0

𝜔cr 0 0.118 0.224 0.321 0.408 0.486
𝜔cr,br 0 0.118 0.40 0.46 0.53 0.59

clearly shows that the frequency of the breather increases as 𝜔 does,
as expected from 𝜔br(𝜔) = 𝜔∕

√

1 + 𝜔2. The other five plots for 𝑏 > 0 in
Fig. 8 clearly show the existence of two critical frequencies, 𝜔cr, such
that the solution evolves into a kink-antikink solution for 𝜔 < 𝜔cr and
𝜔cr,br, such that the solution is a quasi-breather for 𝜔 > 𝜔cr,br, but an
irregular solution for 𝜔cr < 𝜔 < 𝜔cr,br, as illustrated for 𝑏 = 1 in the
three-dimensional mesh plots in Fig. 1; the values of 𝜔cr and 𝜔cr,br for
𝑏 = 0, 0.2,… , 1, are shown in Table 3. The top right plot for 𝑏 = 0.2
shows that the contour plot of the numerical quasi-breather for 𝜔 > 𝜔cr
is very similar to that of the breather for 𝜔 > 0 (top left plot); however,
the slope of the contours for 𝜔 >∼𝜔cr for 𝑏 = 0.2 is larger than for 𝜔 >∼ 0
for 𝑏 = 0. The middle left plot for 𝑏 = 0.4 shows a new feature in the
contour plot with respect to that for 𝑏 = 0.2 (top right plot), a change
of the contours’ slope around 𝜔cr,br; such a feature is also shown in the
middle right plot (𝑏 = 0.6). The bottom left plot for 𝑏 = 0.8 and the
bottom right plot for 𝑏 = 1 show, for 𝜔cr < 𝜔 < 𝜔cr,br, an irregular
behaviour in both amplitude and frequency of the oscillatory solution,
including several slope changes in the contour plots, here on referred
to as a pseudo-breather.

In order to highlight the features of the pseudo-breather for 𝜔cr <
𝜔 < 𝜔cr,br, Fig. 9 shows contour plots of the solution 𝑢(0, 𝑡) for 𝑏 = 0.6,
0.8, and 1 with smaller resolution in frequency, 𝛥𝜔 = 10−4, than that
used in Fig. 8, cf. 𝛥𝜔 = 10−3. The top plot for 𝑏 = 0.6 shows that the
contours of the solution present irregular fluctuations for 𝜔cr < 𝜔 <
0.36, and two changes in the slope of the contours near 𝜔 = 0.37 and
9

0.46; there are no slope changes for 𝜔 > 𝜔cr,br. The middle plot for
𝑏 = 0.8 shows highly irregular oscillations for 𝜔cr < 𝜔 < 0.43; there
are several slope changes in the interval 0.43 < 𝜔 < 𝜔cr,br, where a
pseudo-breather is observed. Finally, the bottom plot for 𝑏 = 1 also
shows highly irregular oscillations for 𝜔cr < 𝜔 < 0.53 and several slope
changes in the interval 0.53 < 𝜔 < 𝜔cr,br. Our numerical experiments
show that the pseudo-breather is a short-lived oscillatory solution, in
contrast to the long-lived quasi-breather.

4. Conclusions

A numerical search for the stationary quasi-breather solution of the
graphene superlattice equation has been undertaken. A fourth-order
in space, second-order in time, energy-conserving, finite difference
method has been used. This method is applicable to other nonlinear
Klein–Gordon equations and, even, with proper changes, to nonlinear
wave equations with fractional time derivatives [34,35].

We have used a new initial condition for the quasi-breather search,
instead of the standard initial condition for the same task that uses
a singular perturbation of the breather solution of the sine-Gordon
equation with its maximum amplitude at the starting time. We have
used a null initial condition whose derivative in time is calculated by
means of a regular asymptotic expansion with the breather of the sine-
Gordon as an ansatz. An advantage of such an initial condition is that it
is very accurate for a small enough time step, so the initial emission of
radiation during the quasi-breather development is reduced. Another
advantage is that the total energy of the solution can be calculated
exactly.

The numerical results show that the initial condition evolves into
three possible solutions depending on its frequency 𝜔, a kink-antikink
solution for 𝜔 < 𝜔cr, a pseudo-breather for 𝜔cr < 𝜔 < 𝜔cr,br,
and a quasi-breather solution for 𝜔 > 𝜔cr,br. The pseudo-breather
is an irregular oscillatory solution, unlike the regular oscillations of
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the quasi-breather. This is the first report on the existence of two
critical frequencies 𝜔cr and 𝜔cr,br for the breather-like solutions of a
modification of the sine-Gordon equation.

Long-time simulations show that the quasi-breather for 𝜔 > 𝜔cr,br
survives for more than one thousand periods (the number depends on
𝑏 and the frequency 𝜔 in the initial condition), although its amplitude
and energy decrease, and its frequency increases. In order to evaluate
the robustness of the quasi-breather solution, we have introduced a new
contour plot inspired by the corresponding plot used to study the fractal
structure of the kink-antikink collisions. This new plot highlights the
existence of the two critical frequencies and allows an easy comparison
of the quasi-breather solution as a function of any free parameter in the
modification of the sine-Gordon equation (in our case the geometrical
parameter 𝑏 of the graphene superlattice equation).

The study of moving quasi-breathers, their mutual collisions, and
their collisions with kinks and antikinks in the graphene superlat-
tice equation is a future research line; from the practical point of
view, they could have a significant role in the bandgap engineer-
ing in graphene [36]. The relation between the quasi-breathers and
the breather-like solutions observed in the fusion of a kink-antikink
pair also deserves a detailed study. Moreover, our results support the
experimental search for the quasi-breather solution in real graphene
superlattice devices; for this task, it is necessary to study the most
suitable profiles for the input signal to be injected into the device in
order to sustain a quasi-breather during a large number of periods.
Finally, the quasi-breathers of the integro-differential equation intro-
duced by Kryuchkov, Kukhar’, and Zav’yalov [37] for the modelling of
terahertz electromagnetic waves in the graphene superlattice also is an
interesting line for further research.
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