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Frequency response of Batchelor vortex
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2Departamento de Ingenieŕıa Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Spain

We carried out a frequency response analysis of Batchelor vortex model in two different spatial config-
urations: punctual and annular jet. The theoretical base flow corresponds to the experimental setting
of a wing model with airfoil NACA0012 for a chord-based Reynolds number Rec=40000 and angle
of attack of α=9◦. We found that Batchelor model presents a gain in the annular jet configuration
higher than the punctual jet for a pair of parameters k and ωf . The results of this research work will
be used to propose future candidates of active control.

1 Introduction

Aircraft generate wingtip vortices due to the finite
length of their wingspans and the pressure difference
between both sides of the wing model (Spalart, 2003).
The generation of lift is associated with the presence
of vortices. One of the best and widely extended the-
oretical descriptions of these trailing vortices corre-
sponds to Batchelor’s model (Batchelor, 1964) and
its simplification called q-vortex. The stability of the
q-vortex was studied by the pioneering work of Mayer
and Powell (1992), among other studies that have
been carried out up to the present day. These vor-
tices are very stable in the range of Reynolds numbers
(Re) and vortex intensity (q) corresponding to real
aircraft and can, therefore, remain for a long time on
airport runways (Jacquin and Pantano, 2002). This
long-term presence on airport runways diminishes the
number of take-off and landing operations.

2 Numerical methodology and
results

The base flow has been obtained by adjusting Batche-
lor’s model from 3D-2C PIV data. The experimental
data has been divided into three areas: near (NF ),
intermediate (IF ) and far-field (FF ) since it provides
a better understanding in terms of vorticity decay
(Gutierrez-Castillo et al., 2022).

We carried out the frequency response or
the three-dimensional stability of the q-vortex,
[U(r, θ), P (r, θ)]

T
, using two-dimensional simulations

of the linear equations forced by a given out-of-plane
(axial) wavenumber (Blanco-Rodŕıguez et al., 2016).
We will solve the equations in a rectangular periodic
domain of size Lx and Ly and periodic boundary con-

ditions. The cartesian base flow [U(x, y), P (x, y)]
T

has infinitesimal three-dimensional perturbations for
the velocity u(x, y, z) = (ux, uy, w) and pressure
p(x, y, z) governed by the forced incompressible lin-
earised Navier-Stokes (LNS), which can be written
as

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇U +U · ∇u) = −∇p+

1

Re
∆u+ f , (2)

where f denotes a volumetric forcing function. We
used forcing jets that act only in the streamwise di-
rection (f = Fz(x, y, t) ez) varying harmonically in
time with a frequency ωf as

f(x, y, t) = Wf (x, y)
(
eiωf t + c.c.

)
ez. (3)

The spatial structure of the forcing has a general
mathematical expression given by

Wf (x, y) = η e−β d2(x,y), (4)

where η is the maximum value of the forcing and β
is a parameter that controls the jet spreading. Two
different spatial configurations are proposed in this
work: an annular jet (AJ) centered in the vortex axis
which is applied at r = af ,

d2(x, y) = (r − af )
2, af = 2, (5)

and an off-axis (θf ) single-point injection (SPI) which
is located at a distance af of the vortex center

d2(x, y) = (x− xc)
2 + (y − yc)

2, θf = π/3, af = 2,
(6)

where (xc, yc) is the vortex center.
Finally, we analyse the variation of the gain at large

times, G∞, for a constant k and ωf . We define G∞
as the value where G(t) defined as

G(t; k, ω) =

∫
D (uu∗ + v v∗ + ww∗) dx dy∫

D W 2
f dx dy

. (7)
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reaches a steady value at t → 120.
In the Lamb-Oseen vortex, if we excite with a func-

tion at low frequencies and low wavenumbers, reso-
nance modes are expected (Blanco-Rodŕıguez et al.,
2016) for both configurations (AJ and SPI). However,
this is not the case when we consider the presence of
the axial component in the q-vortex. In other words,
for this type of vortices, we must excite the pertur-
bations at a higher frequency (ωf = 1) and, conse-
quently, we do obtain significant gains for small axial
wavenumber values as shown in figure 1 where G∞ ≈
300. Furthermore, the system selects the mode m =
0, as one should expect from an axisymmetric exci-
tation of the annular jet.

Figure 1: AJ configuration. Time evolution of the
energy gain of Batchelor’s experimental vortex in two
areas (q = 4, Re = 300, NF ) and (q = 2.25, Re =
600, FF ) for the same wavenumber log10 k = −1 and
log10 ωf = 0.

As in the annular case, we observe significant gains
for the point excitation case for high frequencies and
small axial wavenumber. Figure 2 also shows the
combined effect of the Reynolds number and the vor-
tex strength on the most unstable mode (m = 0 for
the near field and m= 1 for the far field). Logically,
smaller q values produce smaller energy gains.

3 Conclusions

In this work, we develop a stability analysis based
on the frequency response of Batchelor vortex. We
obtained the numerical base flow from experimental
data. The Reynolds number based on the vortex core
increases from 300 to 600, and the parameter q de-
creases from 4 to 2.25 as the vortex evolves spatially
downstream. We observe two main changes concern-
ing Lamb-Oseen vortex, i.e. by including the effect
of axial velocity in the theoretical model. Firstly, the
gains of Batchelor vortex are small for the same val-
ues of k and ωf compared to the existing Lamb-Oseen
vortex results. Secondly, and for a pair of values of
k and ωf , the annular configuration produces higher

Figure 2: SPI configuration. Time evolution of the
energy gain of Batchelor’s experimental vortex in two
areas (q = 4, Re = 300, NF ) and (q = 2.25, Re =
600, FF ) for the same wavenumber log10 k = −1 and
log10 ωf = 0.

gains in the q-vortex compared to those obtained in
Lamb Oseen vortex case.
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