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A B S T R A C T   

Background: Acquiring motor skills is fundamental for children’s development since it is linked to cognitive 
development. However, access to early detection of motor development delays is limited. 
Aim: This review explores the use and potential of motion-based technology (MBT) as a complement to support 
and increase access to motor screening in developing children. 
Methods: Six databases were searched following the PRISMA guidelines to search, select, and assess relevant 
works where MBT recognised the execution of children’s motor skills. 
Results: 164 studies were analysed to understand the type of MBT used, the motor skills detected, the purpose of 
using MBT and the age group targeted. 
Conclusions: There is a gap in the literature aiming to integrate MBT in motor skills development screening and 
assessment processes. Depth sensors are the prevailing technology offering the largest detection range for chil
dren from age 2. Nonetheless, the motor skills detected by MBT represent about half of the motor skills usually 
observed to screen and assess motor development. Overall, research in this field is underexplored. The use of 
multimodal approaches, combining various motion-based sensors, may support professionals in the health 
domain and increase access to early detection programmes.   

Introduction 

Throughout life, humans learn to use their muscles to perform motor 
skills. During childhood, typically developing (TD) children usually 
acquire the same skills at similar ages. Acquiring motor skills during 
childhood is fundamental for children’s development because it is 
associated with their cognitive and learning development. Some 
cognitive skills originate in the prontal cortex and the cerebellum, which 
are also activated with the execution of motor skills [44,85]. Further
more, cerebellum dysfunction is usually associated with (neuro)devel
opmental disorders such as autism [47,124], speech disorders such as 
dyslexia [180] or learning disorders such as Developmental Coordina
tion Disorder (DCD) [144]. 

Theore, detecting potential delays in motor development is para
mount. Currently, initial concerns regarding developmental delays are 
commonly raised by parents observing problems with daily activities or 
teachers noticing challenges with motor activities at school [117]. The 
American Academy of Paediatrics [141] recommends an early detection 
programme for developmental delays leading to early interventions 

positively impacting children’s development [18] that could also redi
rect developmental trajectories and focus attention on tasks and 
sensory-motor performance [34,50,126]. In addition, it would support 
social and emotional development within the family circle [139], which 
can reduce the risk of health-related psychosocial complications [122]. 
However, inaction on early detection leads to delayed interventions, 
poor communication with the family [193] and performance at school 
[147], and risk of poor outcomes in the life course [143,187]. 

Despite the benefits of early detection, only an insignificant per
centage of the population avails of it [119] due to its associated costs. 
Early detection programmes require engagement with trained pro
fessionals over several sessions and rely on access to limited specialist 
centres or adequately staffed services [42,57]. Therapists’ time and 
specific materials and activities make children’s monitoring expensive 
[155]. Additionally, cultural background, language barrier, low income, 
insurance issues, and lack of information hinder access to these services 
[187]. 

This scoping review adopts a multidisciplinary approach to search 
for technological complements that may support and increase access to 

* Corresponding author at: School of Computer Science & Statistics, Trinity College Dublin, Ireland. 
E-mail address: benoit.bossavit@uma.es (B. Bossavit).  

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

https://doi.org/10.1016/j.cmpb.2023.107715 
Received 20 May 2022; Received in revised form 6 July 2023; Accepted 7 July 2023   

mailto:benoit.bossavit@uma.es
www.sciencedirect.com/science/journal/01692607
https://www.elsevier.com/locate/cmpb
https://doi.org/10.1016/j.cmpb.2023.107715
https://doi.org/10.1016/j.cmpb.2023.107715
https://doi.org/10.1016/j.cmpb.2023.107715
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2023.107715&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computer Methods and Programs in Biomedicine 240 (2023) 107715

2

early detection of motor developmental delay by screening motor skills’ 
execution from an early stage. The field of Human-Computer Interaction 
(HCI) has made much progress with sensors able to capture and detect 
human movements through intuitive interaction with digital applica
tions based on body motion. The combination of sensors and algorithms 
that can recognise human movement patterns is called Motion-Based 
Technology (MBT). Previous Systematic Literature Reviews (SLR) have 
explored MBT as a tool to increase physical activity [128,130,142,152] 
and support children’s therapy [67,87,125,149]. However, it remains 
unclear which, for what purpose, and how MBT may be relevant to 
screen motor skills in developing children to identify potential motor 
developmental delays. To this end, this review examines the literature 
through the lens of four research questions:  

- RQ1: What type of MBT is being used to detect children’s motor 
skills?  

- RQ2: What motor skills are being detected with MBT?  
- RQ3: For what purpose is MBT being used?  
- RQ4: What motor development phases are being targeted by MBT? 

These four RQs will inform the discussion regarding the relevance 
and potential of MBT to support and increase access to motor skills 
screening in developing children at an early stage. 

Methods 

Search strategy 

Up to December 2020, with no domain and no year restrictions, a 
search was conducted on the following databases: Scopus, SpringerLink, 
ACM Digital Library, IEEE Xplore, PubMed, and Web of Science. Details of 
the search strings are shown in Table I. 

Eligibility criteria 

To be included in this review, the publications had to: (1) involve 
participants under 18 years of age, (2) use MBT to detect movements or 
gestures, (3) conduct an evaluation study (studies focused on design 
guidelines only were excluded), (4) be written in English and (5) have 
the full-text available online or in the university’s library. 

Search results 

This scoping review was conducted following the PRISMA statement, 
and its flow diagram is illustrated in Fig. 1. Besides the database search, 
the studies erenced in previous relevant SLRs were integrated individ
ually into our list of works to review. Duplicated documents were 
removed, and the preliminary selection of works was obtained by 
reading the titles and the abstracts. Full papers were selected, observing 
the eligibility criteria. Finally, 164 full texts were analysed and classified 
using the following categories: 1. erence; 2. year; 3. purpose (screening, 
assessment, intervention); 4. name of system; 5. device (depth sensor, 
IMU, etc.); 6. motor skill (fine or gross); 7. the number of participants; 8. 
participants’ age; 9. type of participants (typically developing, autism, 
cerebral palsy, etc.); 10. number of sessions; 11. duration of the sessions; 

12. design method (non-experimental, quasi-experimental, experi
mental); 13. instrument (survey, standard framework, etc.); 14. main 
outcomes. Due to the number of erences, the main characteristics of the 
selected studies are accessible in Appendix A. 

Results 

RQ1: Type of MBT used to detect children’s motor skills 

MBT avails of sensors to capture motion data. The analysis of the 
studies in this review identified several types of sensors used to study 
children’s motion. They were classified into the following 6 clusters:  

- Inertial Measurement Unit (IMU): accelerometers and gyroscopes that 
detect the angular variation and acceleration in movement. For 
instance, the Nintendo Wiimote. 

- Depth sensor: depth cameras that map the scene and provide 3D po
sitions of humans’ joints. For example, the Microsoft Kinect and the 
Leap Motion.  

- Marker-based: sensors placed on the human body, which are tracked 
by a set of high-resolution cameras to provide accurate 3D positions 
of the human’s joints. Such as the Vicon system.  

- Camera: video cameras that record the coloured scene and provide 
2D information about the human body. For instance, the Playstation 
Eye.  

- Pressure mat: mats with force-plate cells that measure pressure and 
force. Their accuracy depends on the density of the cells. For 
example, the Wii Balanceboard and Dance Dance Revolution mat. 

- Others: touchscreens; goniometers and bending sensors, which cap
ture angles’ data and are usually embedded in clothing such as 
gloves; dynamometers, such as mechanical arms that retrieve haptic 
information such as force, torque and power; and robots, amongst 
others. 

Fig. 2 illustrates the use of these MBTs over the last few years. As 
shown in the timeline (Fig. 2), research intensifies with the release of 
commercial sensors. The first works examining the potential of IMUs and 
Pressure mats, which sustained the research community’s interest for 
almost a decade, emerged with the release of the Nintendo Wii and Wii 

Table I 
Search strings.  

Scope String 

Technology (“Motion-based” OR “gesture-based) AND 
Motor skills ("motor skill" OR "locomotor" OR "balance" OR "stability" OR 

"stationary" OR "manipulati*") AND 
Population ("child*" OR "adolescent" OR "teen*" AND NOT “adult”) 
MesH terms for 

PubMed 
("Exercise"[Mesh] OR "Child Development"[Mesh] OR 
"Motor Skills"[Mesh])  

Fig. 1. PRISMA flow diagram.  
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Fig. 2. Distribution of studies over time according to motion sensor used.  

Table II 
developmental motor skills developed during the rudimentary and fundamental phases identified in PDMS-2 [59], M-ABC2 [86], TGMD-2 [188] and BOT-2 [25].  

Type Dev. Phase Motor skill Device Nb      

CG PS 

Gross Motor Skills Stationary Rudimentary Hold / turn head      
Rudimentary Sit Other (cushion)  1   
Rudimentary Stand up DS  1   
Rudimentary Kneel      
Rudimentary Squat DS 6 1   
Fundamental Imitate movement DS 3 3   
Fundamental Stand on tiptoe      
Fundamental Stand one leg PM 16    
Fundamental Touching opposite foot      
Fundamental Sit-up / Push-ups     

Locomotor Rudimentary Wiggle / Squirm      
Rudimentary Roll over      
Rudimentary Crawl / scoot / cruise      
Rudimentary Step / walk DS / IMU 33 3   
Fundamental Walk on tiptoe      
Fundamental Climb/Walk up/down steps      
Fundamental Walk line heel-toe      
Fundamental Run DS / IMU / Camera 33 3   
Fundamental Jump forward DS / Camera  3   
Fundamental Jump up / hurdles DS / trampoline 19 5   
Fundamental Jump down      
Fundamental Walk sideways DS / PM / Camera 20    
Fundamental Walk tiptoe      
Fundamental Jump sideways DS  1   
Fundamental Pedal Other (Bike)  2   
Fundamental Hop DS / Camera  3   
Fundamental Skip Camera  1   
Fundamental Gallop DS / Camera  2   
Fundamental Roll forward     

Manipulative Rudimentary Push / pull Other (Robot)  1   
Rudi / Fund Kick a ball Camera  1   
Fundamental Dress / Undress      
Fundamental Throw an object Camera  1   
Fundamental Catch an object Camera  1   
Fundamental Clap hands with rhythm    

Fine motor skills Manipulative Rudimentary Grasp fingers DS / Others  3   
Rudimentary Touch face / mouth DS  1   
Rudimentary Hold toys Other (FutureCube)  1   
Rudimentary Turn page      
Rudimentary Drink from cup      
Rudimentary Eat with spoon      
Rudi / Fund Pour      
Rudi / Fund Hold pencil      
Rudi / Fund Build tower Other (FutureCube)  1   
Rudi / Fund Turn doorknob / screw lids      
Rudi / Fund String small items      
Rudi / Fund Draw a trail DS / Camera / Other  3   
Rudi / Fund Placing coins / pegs DS / Camera  4   
Fundamental Thread a lace DS / Camera  1   
Fundamental Build bridge/pyramid      
Fundamental Touch body parts DS  2   
Fundamental Cut      
Fundamental Copy figures      
Fundamental Draw DS  2   
Fundamental Write    

Dev: Development; DS: Depth sensor; PM: Pressure mat; NB: Number of studies; CG: Commercial games; PS: Personalised solutions. 
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Balanceboard (2008). Two years later, with the release of the Microsoft 
Kinect (2011), the number of publications reporting the use of Depth 
sensors experienced a solid increase, and they became the most popular 
MBT to study children’s motion. Microsoft’s decision to release access to 
the Kinect sensor meta-data: the 3D position of the users’ skeleton, 
significantly contributed to the adoption of this technology in the field 
because it eased the development of personalised software and opened 
novel research opportunities to develop customised digital tools. 

RQ2: Motor skills detected by MBT 

This section analyses the motor skills detected by MBT in the 164 
studies analysed. To understand the relevant skills in motor develop
ment, we identified the skills used to assess motor functioning in chil
dren (Table II) [25,59,86,188]. 

Most of the studies, 75 out of 164, made use of the following 8 
commercial motion games: Kinect Adventure [51,89,115,138,163,204], 
Wii-fit [5,8,19,53,55,76,84,100,135,158,159,166,173,175,184,186], 
Eyepet [89], Eyeplay [9,98,108,120,129,140,168,182], Wii sport [2,38, 
45,49,64,66,77,78,80,107,118,133,151,153,156,167,170,174,192,196, 
197,199], Kinect sport [12,28,29,48,66,75,96,116,162,181,190], Dance 
Dance Revolution [2,11,37,54,58,65,78,108,121,123,148,172,173,189] 
and Kinems [104,105,161]. 

These commercial games detected 7 gross motor skills identified as 
developmental motor skills (Table II). Of these, 4 were stationary skills: 
standing up (Kinect adventure, Kinect sport, Kinems); squatting (Kinect 
adventure); imitating movement (Kinems) and standing on one leg (Wii-fit); 
and 3 were locomotor skills: running (Kinect adventure, Kinect sport, 
Wii-fit); jumping up (Kinect adventures, Kinect sport, Kinems), and 
walking sideways (Kinect adventures, Dance Dance Revolution). How
ever, it is fundamental to highlight that commercial games are not aimed 
at analysing the performance or correct execution of motor skills by 
developing children. The detection is approximate since the aim of these 
games is to entertain a broad audience of all ages. The above-mentioned 
commercial games were used to detect other motor skills such as change 
of body position (Kinect adventure, Kinect sport, Kinems, EyePlay), arm 
movement (Kinect adventure, Kinect sport, Kinems, Wii-fit, Wii-sport, 
EyePet) and hand rotation (EyePet). However, the assessment frame
works do not define these three skills sets as developmental motor skills, 
and the studies involving them are not relevant to motor development 
screening. 

Using personalised solutions accounted for 72 studies, of which 28 
detected developmental motor skills. There were 7 studies focused on 
stationary skills which recognised users’ sway movement while sitting 
[191] and standing [16], squatting [127], and imitating a posture [13,70, 
154,194]. Another 7 studies looked at locomotor skills: jogging [22,102, 
183], jumping (forward/up/sideways) [22,102,110,127,183], pedalling 
with an indoor bike [1,82], hopping [22,102,183], skipping [183], and 
galloping [102,183]. There were 2 studies focused on gross manipulative 
skills: push or pull [56] and kick, catch, strike, and throw objects [183]. 
Another 12 studies detected fine developmental motor skills: pinching 
and grasping fingers [20,165,203], placing their hand on the face [99], 
holding a toy [134], building a tower [134], drawing a trail [3,111,203], 
placing pegs [26,27,111,185], threading lace [111], touching specific parts 
of the body [23,24] and drawing [7,32]. The remaining 44 studies focused 
on detecting skills which are not considered developmental motor skills, 
such as Arm movement [4,6,14,15,33,35,39,41,68,74,81,88,90,91,92, 
106,109,131,137,138,145,146,160,164,171,179,195], body position 
[39,40,41,43,71,79,90,91,137,164,169,195] and hand rotation [30,52, 
69,83,94,95,103,112,136,150,157,202]. 

The last 17 studies used marker-based technology to analyse body 
kinematics while children were walking [10,31,36,46,62,63,72,93,97, 
113,132,198], performing dual tasks [73], stationary exercises [200,201] 
or using hand tools [60,101]. These studies detected the range of motion, 
rotation and angular velocity of body joints but were not aimed at rec
ognising specific motor skills. 

RQ3: Purpose for the use of MBT 

A typical process to evaluate motor development, and identify po
tential delays, encompasses 3 phases: Screening; Assessment; and Inter
vention [17]. To keep the analogy with this process, we categorised the 
studies according to the purpose for using MBT:  

- Screening: detects the capacity for execution of specific motor skills 
- Assessment: supports professionals in diagnosing potential develop

mental delays/conditions  
- Intervention: either treats or trains users through the execution of 

specific skills. This category encompassed 3 subcategories according 
to the objective of the intervention: 
■ Fitness: motivates and supports participants to do physical activ

ity. Participants in these studies were not necessarily assessed for 
impairments or underlying conditions. Two further sub-groups 
were identified in the Fitness cluster:  
○ Well-being: incorporates studies aimed at improving fitness 

levels and energy expenditure.  
○ Physical Education: includes studies aimed at integrating MBT in 

school PE lessons.  
■ Therapy: supports therapies for children diagnosed as non- 

typically developing. This cluster is divided into two further 
sub-groups according to the aim of the therapy:  
○ Physical: encompasses studies aimed at working on specific 

motor skills  
○ Cognitive: includes studies aimed at working on cognitive skills  

■ Training: teaches, trains, or improves specific skills. This cluster is 
divided into two further sub-groups according to the training’s 
objective:  
○ Physical: incorporates studies focusing on motor skills 

Cognitive: includes studies focusing on cognitive skills 
A fourth category is added, which is called HCI, where the purpose of 

the studies is to provide guidelines for the use or development of MBT. 

HCI 
Out of 164 studies, 3 evaluated the interaction of MBT to provide 

guidelines for the HCI community [13,136,164]. 1 study developed a 
protocol to recognise jumps and sidesteps while children play the Kinect 
Adventure game [163]. 

Screening 
Of 164 studies, 23 fell into the screening category, amongst which 19 

aimed to cluster motor differences. There were 14 studies which 
measured the differences in body kinematics between TD children and 
children with cerebral palsy [31,46,62,63,93,132], overweight [72,200, 
201], down syndrome [36,113], scoliosis [198], hearing loss [10] or 
Williams syndrome [97]. Another 3 studies aimed to cluster kinematics 
differences of TD children manipulating different objects [60,101] or 
performing dual tasks [73]. Additionally, 2 studies observed the quality 
of movement patterns between TD and children with DCD [75,178]. 

The remaining 4 studies aimed at screening the execution of specific 
motor skills such as grasping and building tower skills with TD children 
aged 7-9 years [134]; stereotypical gestures (hand in the face, hand 
flapping, hand behind back, body rocking, fingers flapping) in children 
with ASD aged between 5 and 10 years [99]; jumping, hopping and jogging 
with TD children aged 8 to 12 years [21]; run, gallop, jump forward, slide, 
hop, skip, kick, catch, strike, throw up/down and dribble with TD children 
aged 4-6 years [183]. 

Assessment 
Out of the 164 studies, 3 aimed to support the assessment of motor or 

cognitive functioning in children by contrasting the results with 
assessment frameworks. Of these, 1 study assessed fine motor skills 
(placing pegs, threading lace and drawing trails tasks) [111] with children 
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with and without DCD between 7 and 10 years using the assessment tool 
MABC-2 [86]. Another study assessed locomotor skills (jogging, jumping, 
hopping and galloping) [102] with TD children aged 3 to 8 years using the 
assessment tool TGMD-2 [188]. The last study assessed learning 
disability [35] of children aged 7 to 11 years using a personalised so
lution interacting with arm movements. 

Intervention 
The Intervention category was by far the largest, with 134 studies 

representing about 82% of the studies included in this review. Therapy 
was the most prolific by subcategories, with 68 studies, followed by 
Fitness with 43, and Training with 23. 

Further analysis highlights that within the Therapy cluster, MBT is 
predominantly used to support physical therapy with 53 studies [3,4,5,8, 
9,15,16,19,20,27,28,29,33,38,40,51,52,53,55,68,77,84,88,92,96,98, 
100,103,104,115,116,135,146,154,158,159,160,165,166,167,168, 
170,174,175,179,181,184,185,186,191,199,203,204]. In contrast, 
there were only 15 studies in the cognitive therapy category [7,12,30,32, 
41,69,70,81,138,157,161,169,171,194,202]. In terms of the Fitness 
cluster, 29 studies fell in the well-being group [1,37,54,56,76,78,79,80, 
82,89,107,108,110,118,120,121,123,127,129,131,140,148,151,153, 
162,182,189,196,197], and 14 studies in the physical education [2,11,45, 
48,49,58,64,65,66,133,156,172,192,195]. Finally, the Training cluster 
consisted of 5 studies in the physical skills training group [26,43,71,173, 
190] and 18 in the cognitive one [6,14,23,24,39,74,83,90,91,94,95,105, 
106,109,112,137,145,150]. 

RQ4: Motor development phases targeted by MBT 

Motor development is defined by the lexive (in-utero to 1 year), 
Rudimentary (1 to 2 years), Fundamental (2 to 7 years) and Specialised 
(7+ years) developmental phases [61]. While during the lexive (in-utero 
– 1 year) phase, children perform involuntary movements, which turn 
into voluntary movements in the Rudimentary (1-2 years) phase, it is in 
the Fundamental (2-7 years) phase when they develop basic motor skills. 
Once acquired, they become building blocks for children to develop 
more complex movement patterns during the Specialised (7+ years) 
phase when children learn to combine basic motor skills for more 
complex purposes and enter a lifelong utilisation stage [61]. The 
development of motor skills is progressive and improves with age [176]. 
Although fine and gross motor skills develop independently [176], once 
these are acquired, they become building blocks for children to develop 
more complex movement patterns and are beneficial for their health 
[114]. 

2 studies fell within the Rudimentary movement phase. The first aimed 
to understand the differences between toddlers using a hammer with 
and without a handle [60]. The second study examined how toddlers 
(between 1- and 3 years old) manipulate objects according to their age 
[101]. Both studies aimed at screening motor skills. 

There were 19 studies involving children who fell under the Funda
mental movement phase. Out of these, 6 studies [9,66,161,167,190,204] 
used commercial games which are not explicitly aimed at analysing the 
performance or correct execution of motor skills by developing children. 
Another 11 studies [4,41,74,83,90,91,92,94,106,112,160] detected 
skills not defined as motor development skills. Theore, only 2 studies 
focused on developmental motor skills: placing a virtual coloured ball in 
its corresponding box [26] and the execution of gross motor skills (run, 
gallop, jump forward, slide, hop, skip, kick, catch, strike, throw up/down and 
dribble) [183]. 

The remaining 143 studies involved children over 7 years old (Spe
cialised movement phase). However, amongst those studies, 48 also 
involved participants from the Fundamental movement phases with 20 
studies that used commercial games [5,19,28,38,45,51,53,55,65,77, 
100,105,115,116,168,170,174,175,184,186], 2 studies provided 
guidelines for the HCI field [13,164] and 19 used personalised solutions 
for Intervention purposes [3,7,15,16,39,40,43,52,56,70,71,88,110,131, 

138,145,154,185,194]. From the remaining studies, 6 studies fell in the 
Screening purpose [31,62,73,113,132] and 1 in the Assessing locomotor 
skills [102]. 

Discussion 

To understand the potential of MBT to screen motor skills in devel
oping children, it was essential to understand the type of technology 
used to detect children’s motor skills (RQ1), the motor skills being 
detected by MBT (RQ2), the purpose for using MBT (RQ3) and which 
motor development phase MBT was targeting (RQ4). 

In terms of the type of technology, excluding the Others category, 
which includes technology designed to recognise one specific skill [1,20, 
56,82,92,103,110,134,136,203], Depth sensors provided the best range 
detection of motor skills, followed by pressure mats as second best and 
IMU as third. Cameras were limited to detecting upper limbs’ movements 
which are not part of developmental motor skills. In addition to 
detecting upper limbs’ movements, IMUs were also used to recognise 
locomotor skills such as stepping or running. Pressure mats detected sta
tionary skills such as standing on one leg, swaying movement while 
standing, or lateral steps. Depth sensors provide the broadest detection 
range encompassing stationary skills: standing, standing on one leg, 
imitating posture; locomotor skills: stepping, running, jumping; and fine 
motor skills: touching body parts, following a trail, placing an object. Mar
ker-based technology is expensive but provides a very accurate measure 
of body detection. However, its use was limited to observing kinematics 
with body joints’ range of motion, rotation, and angular velocity. 

Mapping all the studies against their purpose and the MBT used 
(Fig. 3), depth sensors also stand out as the only technology implemented 
across all purpose categories articulated in this review: screening, 
assessment, intervention and HCI. For the Screening purpose of motor 
development skills (Table II), depth sensors were used to recognise jumps 
forward/high/sideways, hop and jog [22]. Although the dominant tech
nology used for Screening purposes was marker-based, it was limited to 
observing body kinematics to cluster differences between children with 
and without disability. The remaining technology used for Screening 
purposes to detect motor development skills were the smart toy Futur
eCube: to hold a cube and build a tower skill [134]; and a camera to 
recognise run, gallop, jump forward, slide, hop, skip, kick, catch, strike, 
throw up/down and dribble [183]. In terms of Assessment, one study 
combined the depth sensor Leap Motion with an eye-tracking camera to 
support the assessment of the fine motor skills of placing pegs, threading 
lace and drawing trails [111], and one study used the depth sensor Kinect 
to classify the execution of the locomotor skills jumps for
ward/high/sideways, hop, gallop and jog [102]. 

To understand whether MBT is suited for a young audience, we 

Fig. 3. Distribution of studies according to technologies & application purpose.  
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analysed the studies considering the MBT used and the participants’ age. 
We selected all the studies where the subjects fell under the Rudimentary 
(1-2 years) and Fundamental (2 -7 years) movement phases (Fig. 4). The 
results show that all motion-based technologies were evaluated with 
children aged 4 years and older. Since the American Academy of Pae
diatrics [141] recommends an early detection programme for develop
mental delays from month 9 (lexive movement phase) to years 4-5 
(Fundamental movement phase), we will focus on the use of MBT for 
children aged 4 and under. 

For the studies where the youngest participants were 4 years old, 7 
studies used commercial games [9,16,66,116,138,170,174], 6 studies 
detected skills not defined as motor development [39,40,41,71,92,106] 
and 2 studies used marker-based technology to observe body kinematics 
[73,132]. The remaining 2 studies with children aged 4 years old 
detected the drawing trail with the depth sensor Leap motion [3] and the 
run, gallop, jump forward, slide, hop, skip, kick, catch, strike, throw up/down 
and dribble motor skills with a camera (183). 

At age 3, 2 studies used commercial games [28,167], and 3 studies 
detected skills that are not considered motor development [4,83,145]. 
The depth sensor Microsoft Kinect was used in one study to assess the 
jumps forward/high/sideways, hop, gallop and jog locomotor skills [102]. 

Only 2 studies evaluated MBT with children aged 2 years old. Of 
these, 1 study used the depth sensor Microsoft Kinect to provide guide
lines for the HCI community but did not detect motor development skills 
[164]. The other study used marker-based technology to observe the 
body kinematics of children avoiding obstacles while walking [31]. 

Finally, at age 1, 2 studies used marker-based technology to analyse 
the arms kinematics of toddlers manipulating objects [60,101]. 

Overall, depth sensors seem to be the prevailing technology in the 
range of detection, the field of application and the age range of partic
ipants starting at age 2. Thus, depth sensors could be considered the 
technology with the most potential for detecting and screening motor 
skills in developing children. However, no single technology detected all 
the skills defined as developing motor skills. To this end, research on the 
design of multimodal technologies which combine different types of 
sensors may offset the shortcomings of a single technology approach. 
For instance, depth sensors hardly detect bodies while lying on the 
ground, which hinders the detection of specific developmental skills 
such as sit-ups or push-ups. On the other hand, low-cost pressure mats 
would not know about the body posture while detecting pressure. 
Theore, combining both sensors would facilitate the detection of such 
skills. Another example would be combining IMU with depth sensors to 
improve head rotation and manipulative skills such as throwing/ 
catching objects or even fine motor skills such as writing. 

Although the literature supports the idea that MBT can be used to 
recognise developmental motor skills, integrating the complete set of 
motor skills into a digital screener could be tedious and complex due to 
the variety of skills. Also, it would require combining different sensors 
and considering the different ages targeted to adapt the visual in
structions to the respective cognitive stages [177]. Professionals use 
different frameworks for screening, ranging from very extensive [59] to 
succinct ones [86,188]. The latter proposes a shorter list of 2-4 skills per 
group (stationary, locomotor, manipulative gross and fine) and could be 
a good starting point for a digital screener. To this end, a recent study 
developed a framework that detects and analyses developmental loco
motor skills in children aged 4-6 with a depth sensor in real-time [22]. 

This paper reviews a large number of studies (164) using MBT in 
order to understand their use and their potential for early detection of 
motor delay. Although this review is limited to scoping the literature and 
does not include an assessment or risk of bias of the included articles, it 
identifies a new research direction with MBT. 

Conclusions 

This scoping review highlights the lack of technological input, which 
could increase access to early detection and intervention of 

developmental delays to support the screening and assessment of motor 
skills in developing children. In this regard, the use of MBT in the 
literature was examined to understand its potential and encourage the 
HCI community to contribute. Many studies (134 out of 164) focused on 
Interventions (Fitness, Therapy and Training) that used MBT. Most studies 
(143 out of 164) evaluated children in the Specialised development phase 
when basic motor skills have already been acquired. Out of the 164 
studies, only 26 (about 16%) focused on screening or assessing motor 
skills in developing children (under the age of 7 years). This clearly il
lustrates that this domain remains underexplored. 

Current MBT, particularly depth sensors, has shown great potential 
in detecting relevant motor skills in the context of motor development. 
Although several motor skills were being recognised by MBT, the range 
of skills detected represents only about half of those identified as 
developmental motor skills (Table II). This suggests that future research 
should design and implement multimodal approaches combining 
different MBTs to increase the range and quality of detection. Work 
investigating the incorporation of technology in the screening and 
assessment of motor skills development could support professionals and 
increase access to early detection programmes, assessment, diagnosis, 
and interventions when/if needed. 
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