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ABSTRACT

In the context of pseudo-Boolean optimization, surrogate functions
based on the Walsh-Hadamard transform have been recently pro-
posed with great success. It has been shown that lower-order com-
ponents of the Walsh-Hadamard transform have usually a larger
influence on the value of the objective function. Thus, creating a sur-
rogate model using the lower-order components of the transform
can provide a good approximation to the objective function. The
Walsh-Hadamard transform in pseudo-Boolean optimization is a
particularization in the binary representation of a Fourier transform
over a finite group, precisely defined in the framework of group rep-
resentation theory. Using this more general definition, it is possible
to define a Fourier transform for the functions over permutations.
We propose in this paper the use of surrogate functions based on
the Fourier transforms over the permutation space. We check how
similar the proposed surrogate models are to the original objective
function and we also apply regression to learn a surrogate model
based on the Fourier transform. The experimental setting includes
two permutation problems for which the exact Fourier transform is
unknown based on the problem parameters: the Asteroid Routing
Problem and the Single Machine Total Weighted Tardiness.
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1 INTRODUCTION

A surrogate function is an easy-to-compute function that replaces a
costly evaluation process. In the context of optimization, they are
used as a proxy of the real objective function to optimize when it is
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not possible to compute it or it is too costly [2, 14, 21]. One example
of application could be the optimization of some parameters of a
nuclear power plant. For security reasons, it is not possible to eval-
uate the parameters proposed by a search method in a real nuclear
power plant and, thus, simulators are used to evaluate the proposed
parameters. The simulators themselves require tens of minutes to
test each configuration [5]. In these cases, surrogate functions could
be created based on a supervised machine learning model that is
trained based on the runs of the simulator. Such a general approach
has been extensively used in the scientific literature, and a number
of related techniques and methodologies are being continuously
developed and enhanced. In the scope of continuous optimization
problems, surrogates are relatively well understood and the related
literature from the statistical and machine learning field is too vast
to summarize in the scope of this paper. The reader is referred to
some recent surveys on the subject [2, 14, 21]. In this paper, we tar-
get combinatorial domains, and more specifically permutation-like
problems.

In this context, although a lot of advances have been made, there
is still a huge gap to fill with the existing work for continuous
domains. In fact, combinatorial search spaces are fundamentally dif-
ferent, as it is even not clear how to model and to infer the underly-
ing discrete landscapes. In particular, designing discrete surrogates
has been identified in [21] as among of the five major challenges
that require further in-depth investigations from the community.
One can however find a number of investigations on the subject,
ranging from naive approaches ignoring the discrete structure of
the search space, to more domain-specific modeling techniques.
In particular, algorithms like CEGO [26] use surrogate functions
to speedup the search and/or use a low number of evaluations of
the real objective function. The models used by these algorithms
require the existence of a distance defined over solutions in the
search space. When the search space is the set of permutations of a
given size n, denoted with S, some examples of distances used in
the literature are swap and interchange among others (see [25] for
a list of distances).

A different approach to build a surrogate model is based on
the Fourier transform over finite groups. For pseudo-Boolean opti-
mization problems, the so-called Walsh basis [24] were shown to
constitute a well-suited theoretical tool to derive custom surrogates
for arbitrary functions [6, 17, 22, 23]. Discrete Walsh functions form
an orthogonal set of functions inferring a Fourier transform to rep-
resent any blackbox pseudo-Boolean function in an additive linear
form, which can then be approximated by using some standard
linear regression techniques. This general working principle can
interestingly be leveraged for other combinatorial domains, given
we can represent the considered optimization problem in some
form that can be decomposed using a dedicated Fourier transform.
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One interest in using a Fourier transform instead of a distance-
based model, is that distances do not reflect precisely the landscape
structure of the fitness function. In fact, having all the components
of the Fourier transform is equivalent to having the original func-
tion. Previous studies have shown that the lower order components
of the Fourier transform have usually a larger influence in the value
of the objective function. Thus, creating a surrogate model for the
lower order components can provide a good approximation of the
objective function.

In this paper, we propose the use of surrogate models based on
the Fourier transform of the permutation space. Some features of the
Fourier transform for some permutation problems are known. This
is the case of Quadratic Assignment Problem (QAP) [15], Traveling
Salesperson Problem [19] and the Linear Ordering Problem [7]. In
the latter problem, it has been proven that the first order component
of the Fourier transform can be solved in polynomial time [7].
However, given an expensive permutation problem, it is difficult (or
impossible) to know features of its Fourier transform. Our proposal
is to learn the coefficients of the Fourier transform using regression
and based on samples of the problem. A similar idea was proposed
in the past by Irurozki et al. [13] to learn probability distributions.

The rest of the paper is organized as follows. Section 2 presents
the background required to understand our proposal. Section 3
presents the surrogate models based on the Fourier transform. In
Section 4, we describe the research questions we want to answer
and the experiments performed to do it. Finally, Section 5 concludes
the paper.

2 BACKGROUND

Our proposal is based on the Fourier transform in the permutation
space [12]. Thus, in this section we do a short introduction to
this Fourier transform and the more general concept of Fourier
transform over finite groups.

2.1 Group representation

A group is a pair (G, -), where G is a set of (group) elements and
-: GXG — G is a binary operator defined over the elements of the
group with the following properties:

o Associative: g1 - (g2 - 93) = (91 - 92) - 93

o Neutral element: there is an element e € G such thate - g =
g-e=gforallgeG.

e Inverse: for each g € G there is another element g~! such
thatg-g l=g71-g=e.

The definition of group is the most general one and quite ab-
stract. Fortunately, there is a mathematical tool that allows us to
represent group elements in a concrete way using matrices: group
representation theory. In the following, we will use G to denote a
group, omitting the binary operation for the sake of clarity.

A representation of a group G is a mapping p : G — GL(V)
between the elements of the group G and the automorphisms of
a vector space V such that p(g1 - g2) = p(91)p(g2). An automor-
phism is an invertible linear map from a vector space V to itself.
Without loss of generality, we will assume in the following V = C",
where the vectors are n-tuples of complex numbers and the au-
tomorphisms are non-singular squared complex matrices of size
nXn, that is, matrices with a nonzero determinant. In short, a group
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representation translates the group elements into matrices and the
group operation into matrix multiplication. This way we can use
the mathematical tools of linear algebra to solve statements related
to the group.

Not all group representations are equally important. We say
that two representations, p; and p; are equivalent if there exists a
matrix P € C™" such that p;(g) = Pp2(g)P~! for all g € G. Two
equivalent representations provide the same information about
the group and, thus, we will work only with a set of inequivalent
representations. We say that one representation p is reducible if we
can write p(g) as a block-diagonal matrix of the form:

[ p,@ ]| O
-2 ) v

for all g € G. Reducible representations do not provide more infor-
mation than their component representations and, thus, we prefer
irreducible representations. When the group is finite there is also a
finite set of inequivalent irreducible representations, called irreps,
and the cardinality of this set is exactly the number of conjugacy
classes of the group [9].

2.2 Fourier transform over finite groups

Let f : G — C be a complex-valued function defined on group
G and p a representation of G. The Fourier transform of f at p is
defined as:

Fp) =" F9)p(g). ()

geG

Observe that f (p) is, in general, a matrix because p(g) is a matrix.
The Fourier transform of a function f at a particular representa-
tion does not provide all the information to reconstruct f!, but
the Fourier transform at a set of irreps does. The inverse Fourier
transform is defined as:

f@== > 4T (fpne)™), ©

|G| 4
pEirreps

where d,, is the dimension of the vector space associated to rep-
resentation p, Tr is the trace of a matrix, and p(g)~! denotes the
inverse of p(g).

2.3 Fourier transform in permutation space

Permutations form a group with the composition operation, called
the symmetric group and denoted with S;, where n is the number
of elements in the permutation. Given a permutation o € S, we
denote with o (i) the i-th element of 0. If o, 7 € S, we define the
composition operation as:

(o 0m)(i) = a(x(i)). ©)
For example, let 0 = (1,4,2,3) and & = (3, 1,4, 2) be two permuta-
tions of S4. Then, 0 o 7 = (2, 1,3,4).

The application of representation theory to the symmetric group
has some special simplifications. In particular, the number of irreps
of the symmetric group Sy, is the number of partitions of n, that
is, the number of ways in which n can be written as a sum of
positive integers. Furthermore, there is a relationship between these
partitions and the irreps and we can label each irrep with a partition.

!Unless the group G has only one element.
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We will use the notation A + n to express that A is a partition
of number n. Particular partitions will be expressed as a tuple of
positive integers in nonincreasing order (A1, Az, ..., Ax) with A; >
Ai+1. For example, (4), (3,1),(2,2),(2,1,1) and (1, 1, 1, 1) are the five
partitions of number 4. We will denote with p) the irrep associated
to partition A. Thus, the five irreps for S4 will be denoted with p4),
P(3,1): P(2,2)> P(2,1,1)> P(1,1,1,1)-

There is a visual way of representing partitions that will be
useful for some computations: Young diagrams. A Young diagram
has as many rows as elements in the partitions and row i has as
many columns as the value 4;. See Figure 1 for an example. We will
denote with C) the set of cells of the Young diagram for A.

1(2,2) = 4

Figure 1: Young diagram for partition A = (5,4,3,1,1) in the
symmetric group Si4.

With the introduced notation, we can particularize the formulas
of the direct and inverse Fourier transforms to the symmetric group
as follows:

flp) = ). f(o)pa(o) 5)
o€S,
fo) = L (Fonpa(e)™?) ©)

The dimension of an irrep p) is given by the hook rule:
n!
N H(r,C)ECA l(r3 C) ’

where [(r,c), called the hook length, is the sum of the elements
found at the right and below the cell (7, ¢) in the Young diagram,
including cell (7, c) (see Figure 1).

The order of Walsh functions in the pseudo-Boolean domain
relates to the ruggedness of a fitness landscape [20]. In the case of
the symmetric group we can also establish a relationship between
the partition of an irrep and its effect in the fitness landscape. We
say that an irrep is of order k if n — k is the highest positive integer
in the partition. For example, p(y) is the 0-th order irrep of the
symmetric group Sy,. The 0-th order irrep is always a scalar value
and its Fourier transform represents the sum of the values of f for
all the permutations. The first order irrep is p(,_1,1) and is related
to first order marginals when the function f represents a probability
distribution. If n > 4 we find two second order irreps, p(,_2) and
P(n-2,1,1) one related to unsorted second order marginals and the
second one related to sorted second order marginals. The interested
reader can find more details on the interpretation of the Fourier

d; (7)

transforms at higher order irreps in the work of Huang et al. [12].
The number of irreps of order k is the number of partitions of k
for large enough n. For example, there are five order-4 irreps and
seven order-5 irreps?.

There are some permutation optimization problems that have
been analyzed from the point of view of the Fourier transform. In
particular, the Linear Assignment Problem (LAP) has only nonzero
Fourier transforms at representations of order zero and one [7]. The
Quadratic Assignment Problem (QAP) has nonzero Fourier trans-
form at irreps of order two or less [15]. The Traveling Salesperson
Problem (TSP) is a particular case of QAP that has a zero Fourier
transform at p(,_y,1) and nonzero in at least one of p(,_y3) or

P(n-2,1,1)-

2.4 Young orthogonal representation

We need to define a family of irreps before we apply the direct and
inverse Fourier transform. There is an infinite number of possi-
bilities here but there are some for which the math can be simpli-
fied. One of these is the Young Orthogonal Representation (YOR).
First, YOR produces always real-valued matrices, which simplifies
things when we are working with real-valued permutation prob-
lems, as it happens in the context of combinatorial optimization.
The second interesting property of YOR is that it always produce
orthogonal matrices. This means that computing the inverse of
matrix only requires transposing the elements of the matrix, that is
p(9)~! = p(g)T. This latter property allows us to simplify Eq. (6)
for the inverse of the Fourier transform to:

f(@) = = 3 T (fppa(@)T) ®

" Arn

where p; (0) ™! has been replaced by p,(o)7.

3 FOURIER-BASED SURROGATE MODELS

In this section we present the main idea in this paper: use the
Fourier transform on the permutation space to define a surrogate
model for a permutation problem. In order to do that, we have to
develop Eq. (8) in a way that is useful to present the idea. For this,
we will write the trace explicitly. Let’s do that first for two arbitrary
squared matrices A and B of size n:

Tr(AB) = ) (AB); = ) )" AijBji. ©)
i=1

i=1 j=1

We can apply this expression to Eq. (8) taking into account that
(BT)ji = Bjj. The result is:

d)
@) == 3 d D foiieais©) (10)
Arn ij=1
where the permutation functions p, ; ; are orthogonal among each
other (this is a result of representation theory) [9]. All the values
in Eq. (10) are scalar values (there are no matrices or vectors). The
functions p; ; ; are given by the Young orthogonal representation
and they do not depend on the particular permutation problem. The
only terms that depend on the problem are the constants f (PA)i,j-

2See the number series at https://oeis.org/A000041
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We propose to empirically find the values fA(p 2 )i,j using linear
regression for a given permutation problem f with a set of irreps

associated to partitions A € A, and use (10) as a surrogate model
for f, that is:

d,
f@ == 3y > fpaispais(o) (1)

“deA  ij=1

Let oy for 1 < I < mbe aset of permutation samples for which we
have the values of f. We need to solve the following minimization
problem:

m d) 2
min ) |f(on) = = S di Y. flonerislon|  (12)
=1

T leA  ij=1

where the unknowns are the Fourier coefficients f (pA)ij-

One last issue we should consider is the number of unknowns
in the surrogate model. This is the number of degrees of freedom
that the model will have to adapt to the real function. The number
depends on the family A of irreps that will be used in Eq. (11). The
number of unknowns f (p2)i,j associated to an irrep A is di. We can
compute d) using the hook rule (7). The number d) increases with
the order, k, of the irrep up to k = n/2, and decreases after that. In
particular, d(p) = 1, d(p_11) = n—1,d(n_g2) = (n—1)(n-3)/2
andd(p_51,1) = (n—1)(n—2)/2.In general, d) € O(nk) ifk < n/2
as the next proposition proves.

PRrOPOSITION 3.1. The dimension d)_ of the vector space associated
toanirrep A = (n—k,...) of the symmetric group S, withk < n/2 a
constant is O(nk).

Proor. We can prove the proposition by applying the hook
rule (7) to compute d). Let’s denote with I(r,c) > 1 the hook
length of cell in row r and column ¢ of the Young diagram for A.
First, observe that since A; = n — k we have }};5,A; =k and, as a
consequence, all the hook lengths for the cells in rows greater than
1 will be upper bounded by k, which is a constant independent of
nif k < n/2. Thus, we can focus on the hook lengths of the cells
in the first row, which are the only ones depending on n. We can
easily find that [(1,¢) > n—k — ¢+ 1, because n — k — ¢ + 1 is the
number of elements at the right of cell (1, ¢) including the cell. That
is, [(1,1) = n—k, 1(1,2) > n— k — 1, etc. Now, applying hook rule
and using the lower bounds for I(r, ¢) we have:

n! n! n!
= < =
Hireyeci o) = [k i,e) T (n-k-c+1)
n! k
TSI

d;

]

Proposition 3.1 implies that the number of degrees of freedom
(unknowns) provided by an irrep of order k is O(n¥), since d; €
O(nk) and there are d/z1 unknown coefficients f(p/l)i,j. The sum of
al/z1 for all A + n is n!, the size of the search space, which is also the
total number of unknowns in Eq. (10). This motivates the use of
only some irreps for the surrogate model.

Previous experience with Fourier-based surrogate models in the
binary space [23] suggests that in many interesting optimization
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problems the lower order terms of the Fourier decomposition have
a higher impact in the function evaluation. Thus, it seems a natural
choice to add first the lower order terms of the Fourier transforms to
the surrogate model and keep adding higher order terms to increase
the quality of the approximation.

If we use the irreps up to order k in the Fourier expansions of f,
we have O(n?F) unknowns in Eq. (11). The number of unknowns
in the surrogate model, O(nZk ), is also the minimum number of
samples we need from the problem to solve the regression problem
expressed in Eq. (12) without ambiguity. Kondor [15] and Elorza
et al. [8] proved that in some permutation problems, like QAP, the
nonzero matrices f (py) have rank 1 or 2. This fact could be used
to reduce the number of considered unknowns.

4 EXPERIMENTAL SECTION

In this experimental section we want to check how good is our
proposed surrogate model for permutation problems for which we
do not know the Fourier transform. In particular, we want to answer
the following two research questions:

e RQ1: What is the importance of the Fourier transform at
different orders in the value of the permutation function? In
order to answer this question we compute the exact Fourier
transform of a set of instances of two problems at all the
irreps and build surrogate models based on the exact Fourier
transform with higher orders omitted.

e RQ2: How much different is the learned surrogate model
compared to the original function? In practice, we do not
know the exact Fourier decomposition of an optimization
problem (except for some particular cases), and we have to
learn it from samples of the function. In order to answer
this question, we use small instances of the same two prob-
lems used in RQ1 and we will learn a surrogate model like
in Eq. (11). We will compare the model with the original
function to see the differences in different aspects (detailed
below).

This experimental section is organized as follows. We introduce
the permutation problems and instances used in Subsection 4.1.
Then, we describe the metrics used to compare the surrogate models
with the original function in Subsection 4.2, followed by a descrip-
tion of the experimental setting (Subsection 4.3). The main results
are split in three separate subsections. First, Subsection 4.4 analyzes
the Fourier transforms of the instances of the problems. Then, re-
search questions RQ1 and RQ2 are addressed in Subsections 4.5
and 4.6, respectively.

4.1 Problems and instances

For the purpose of our analysis, we use two problems for which
we do not know the Fourier transform: the Single Machine Total
Weighted Tardiness Problem (SMTWTP) and the Asteroid Routing
Problem (ARP). In this section we describe both problems and the
instances used for the experiments. The instances, together with
the code for the experiments are available in the replication package
accompanying this paper>.

3 Available at https://doi.org/10.5281/zenodo.7850763
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4.1.1  Single machine total weighted tardiness. The Single Machine
Total Weighted Tardiness Problem (SMTWTP) is a well-known
strongly NP-hard problem [16]. It is defined by a set of n jobs.
Each job has to be processed without interruption on a single ma-
chine that can only process one single job at a time. Each job has
a processing time pj, a due date d; and an associated weight w;
(reflecting the importance of the job). The tardiness of a job j is
defined as Tj = max{0,C; — d;}, where C; is the completion time
of job j in the current sequence of jobs. The goal is then to find a
job sequence ¢ minimizing the sum of weighted tardiness defined
by X1L1 We(i) * Ts(i)- A number of works have considered it as a
benchmark to study the properties of a number of optimization
methods, e.g., [1, 4, 10, 11] to cite a few. As such, we follow the
common procedure to generate SMTWTP benchmark instances [3].
More precisely, the processing times p; and the weights w; are
drawn uniformly at random respectively in the integer intervals
[1,100] and [1, 10]. The due dates are drawn uniformly at random
within the interval [P - (1 — TF — RDD/2),P - (1 — TF + RDD/2)],
where P = Z;’zl pj and RDD and TF are two parameters control-
ling respectively the relative range of due dates and the average
tardiness factor TF. Overall, we consider 750 instances.

4.1.2  Asteroid routing problem. The Asteroid Routing Problem was
defined by Lopez-Ibariez et al. [18] as a benchmark for black-box
optimization in the context of permutation problems. The problem
consists in finding a route for a spacecraft launched from Earth
to visit a given set of n asteroids A = {ay,ay,...,a,} with the
goal of minimizing the sum of velocity changes required by the
route (related to fuel consumption) and the total time required to
visit all of them. Although there are two objectives in the problem,
the authors combine both of them in one single objective using a
weighted sum.

A solution to the problem is a pair (7, ), where 7 € S, is a per-
mutation representing the order in which the asteroids are visited
andf € Ri’a is a vector of 2n real numbers representing parking
and transit times to reach each asteroid.

The problem is solved as a bilevel optimization problem, where
the visit order of the asteroids is in the higher level and the tran-
sit and parking times is in the lower level. For the lower level, a
Sequential Least Squares Programming (SLSQP) is used in [18] to
determine 7 when the visit order of asteroids 7 is known (given by
the higher level). Thus, the higher level problem is a permutation
problem where the optimal visit order of the asteroids 7 must be
determined. One evaluation of a permutation (visit order) requires
solving an optimization problem with SLSQP where for each evalu-
ation of the complete solution, that is (7, 7), it is required to solve
several Lambert problems and move a set of n asteroids plus the
Earth in a simulated environment. This makes the objective func-
tion computationally costly and a good candidate for replacing it
with surrogate models.

Lépez-Ibariez et al. [18] prepared an instance generator for the
problem that randomly selects n asteroids from the 83 453 asteroids
provided by the GTOC11 competition to create an instance of the
ARP. We used this generator to generate 60 instances of sizes n = 5
to n = 10 (ten instances for each value of n), small enough to
compute the metrics we use in the study.

4.2 Metrics used for checking similarity

In order to answer research questions RQ1 and RQ2 we need to
compare the differences between the original function and the built
surrogate model. We use two metrics for this.

The first one is the Normalized Mean Absolute Error (NMAE) for
the original function and the surrogate model in all the solutions
of the search space, which is defined as:

1 Soes, |f(0) = s(0)]

fmax - fmin ’
where f the original function, s is the surrogate model, fnax =
maxges, f(0) and fimin = minges, f(0).

The second metric is the Normalized number of Preserved Global
Optima (NPGO), which is the number of global optima of f that are
also global optima in s, normalized by the total number of global
optima of f that is,

NMAE =

(13)

IGO(f) N GO(s)l
IGO(f)I

4.3 Experimental setting

For the experiments we used 750 instances of SMTWTP and 60
instances of ARP. For the SMTWP, we follow the specialized litera-
ture as described previously in Section 4.1.1. The values for n (size
of the permutation) vary between n = 5 and n = 10, and the two
parameters RDD and TF are set in the range: 0.2, 0.4, 0.6, 0.8 and 1.0.
For each combination of n, RDD and TF five instances with different
random seeds were generated. This is a total of 125 instances for
each value of n.

In the case of ARP, we used the generator provided in [18]. The
values of n vary from n = 5 to n = 10. For each value of n we
generated 10 random instances with ten different seeds. The seeds
used are 7, 11, 13, 17, 19, 23, 29, 31, 42 and 73.

We used the Snob2* library for python to compute the Fourier
transforms and the scikit-learn package® for learning the surrogate
models. The experiments were run in the Picasso supercomputing
facility of the University of Malaga with 126 SD530 servers with
Intel Xeon Gold 6230R (26 cores each) at 2.10GHz, 200 GB of RAM
and an InfiniBand HDR100 network.

NPGO = (14)

4.4 Fourier coefficients

Before answering the research questions we wonder how does the
Fourier transform of the SMTWTP and ARP instances looks like. In
particular, we would like to know how large the matrix coefficients
in the irreps are and how sparse the matrices are. Figure 2 shows
the average absolute values of the matrix coefficients of the Fourier
transforms at different irreps (left) and the proportion of nonzero
matrix coefficients (right). Only the results for instances with n = 5
(top), 7 (center), and 9 (bottom) are reported. The results aggregate
matrix coefficients by irrep and instances (with the same n).

We can observe a clear difference between the instances of both
problems. ARP has a higher proportion of nonzero coefficients
and their absolute values are also higher. This is an indication
that the objective function of ARP is more noisy, something that
was already mentioned in the original paper where the problem

4 Available at https://github.com/risi-kondor/Snob2
5 Available at https://scikit-learn.org/stable/
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Figure 2: Left: average absolute value of the matrix coefficient
for different irreps (y-axis is in log-scale). Right: proportion
of nonzero coeflicients. The x-axis shows the irreps in in-
creasing order.

was proposed [18]. In contrast, the proportion of nonzero coeffi-
cients of SMTWTP decreases as we increase the order of the irreps.
The absolute values for these coefficients also decrease with the
higher order irreps. This suggests that SMTWTP will probably be
well-approximated by low-order irreps. We will check this in the
following subsections.

4.5 Answering RQ1: truncated surrogate model

In this section we conduct some experiments to answer RQ1: what
is the importance of the Fourier transform at different orders in the
value of the permutation function? With the help of the Fourier
transforms at the different irreps, computed in Subsection 4.4, we
build a new function in which some of the coefficients are set to zero:
the coeflicients of irreps of higher order. We call these functions
truncated surrogate model because they have the same coefficients
as the original objective function for the irreps of the low orders
and zero for the irreps of higher orders. That is, we “truncate” the
Fourier transform at higher orders.

Technically, we start with the original Fourier transform at all
irreps and, step by step, we set to zero the coefficients of irreps of
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order p in decreasing order, starting with p = n —1 and ending with
p = 1. At each step, we compute the inverse Fourier transform, and
this is used as the truncated surrogate model that we evaluate.

Figure 3 shows the NMAE of the truncated surrogate model at
different orders and for n = 5 to 9 for both, SMTWTP and ARP. We
can observe in this figure a clearly different result for SMTWTP
and ARP. While the truncated model of SMTWTP jumps to very
low values of NMAE at some order between 3 and 5 for all n, ARP
requires high order irreps to have a low value for NMAE. This
means that SMTWTP can be very well approximated with irreps
of low order. In many cases, order 2 is enough to get an NMAE
of 1073, In contrast, ARP needs high order irreps to have a good
approximation of the objective function. This supports, once again,
the idea that ARP is a more noisy problem, hard to solve.

Since our aim is to use the surrogate models as a proxy of the
original optimization function, we wonder if the global optima are
preserved when we truncate the high order irreps. Figure 4 shows
NPGO for SMTWTP and ARP. We observe that adding irreps of
order 2 or 3 is usually enough to recover some global optima. Thus,
the truncated surrogate model could be used to find solutions to the
original optimization problems, with a faster evaluation function.

On a technical side, we observe that adding enough irreps we
can find 100% of the global optima in the case of ARP, as it should
be, since we recover the original objective function at the end. This
does not happen with SMTWTP, where only between 40% and 75%
of the global optima are the same in the truncated and original
objective function when all irreps are added. The explanation of
this surprising phenomenon has to do with the floating point errors
in the process of computing the direct and inverse Fourier trans-
form. Unfortunately, these errors are difficult to avoid using the
Young Orthogonal Representation, where some matrix elements
are irrational numbers and we cannot use any exact fractional
implementation for the mathematical operations.

In summary, we conclude that low order irreps are enough in
some problems, like SMTWTP, to represent the original objective
function. Other problems, like ARP require also high order irreps
to reach a low value for NMAE.

4.6 Answering RQ2: learned surrogate model

In this section we explore the performance of the learned surrogate
model. We use Lasso as technique to solve the linear regression
problem of Eq. (12) because it was more stable than others in some
preliminary experiments. In particular, we use the Lasso implemen-
tation of scikit-learn with regularization parameter a = 0.000001
and the default values for the other parameters.

For each instance we learned surrogate models with different
orders. For n = 5 to 7 we used surrogate models with irreps having
maximum order p = 0 to 4. For n = 8 to 10 the models had irreps
with maximum order p = 0 to 2 (for higher orders Lasso had
problems to do the regression due to memory limits). The surrogate
models were trained with a varying number of random samples
(permutations and their associated fitness value) to check how the
models converge as the number of samples increases. The number
of samples used varies for different values for n. In all the cases,
the maximum number of samples we use is enough to learn all
the matrix coefficients associated to all the irreps in the model. In
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Figure 3: Boxplots of the normalized MAE for the truncated surrogate model. The Y axes is in log scale. The plots correspond to

sizes n =5,6,7,8,9, from left to right.
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Figure 4: Boxplots of the normalized PGO for the truncated surrogate model. The Y axes represents percentage. The plots

correspond to sizes n = 5,6,7,8,9 from left to right

particular, the ranges of number of samples used for training are
shown in Table 1. For each instance, maximum order and number
of samples, we repeated the learning process ten times using ten
different random seeds, in order to sample the solutions in the
search space in a different order and, thus, reduce any bias due
to the samples used. In each run we build the surrogate model
by applying the inverse Fourier transform and computed all the
metrics described in Subsection 4.2.
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Figure 5: NMAE values for the learned and truncated surro-
gate models using different maximum orders of the irreps
for ARP (top) and SMTWTP (bottom). In different columns
are the different problem sizes n = 5, 6, 7 (from left to right).

Figure 5 shows the boxplots of the NMAE obtained by the learned
surrogate model for ARP (top row) and SMTWTP (bottom row) for
problem sizes n = 5,6, 7. We add the truncated model for an easy

Table 1: Parameters of the learned surrogate models for dif-
ferent problem size: maximum order of the irreps considered
in the regression and number of training samples. We also
show the number of total regressions performed per instance.

Maximum order | # of training samples | Number of

n | Min. Max. Step | Min. Max. Step | regressions
5 0 4 1 1 120 1 6000
6 0 4 1 6 720 6 6000
7 0 4 1 50 5000 50 5000
8 0 2 1 18 1800 18 3000
9 0 2 1 32 3200 32 3000
10 0 2 1 52 3640 52 2100

comparison. The X axis displays the maximum order used in each
model. For example, maximum order 3 means that all the irreps
up to order 3 are included in the surrogate model. We aggregate
the results for all the instances of each problem (10 for each n in
the case of ARP and 125 in the case of SMTWTP). The models
shown are the ones trained with the largest value for the number
of samples (see column 6 in Table 1).

We clearly see how the learned model produces an NMAE which
is similar to the truncated model for orders 1 and 2. We should
highlight here that the learned coefficients do not have to be similar
to the correct ones (of the truncated model). In spite of that, both
models get approximately the same NMAE. There is a larger vari-
ation in the NMAE of the learned model for SMTWTP, probably
due to the different behaviour in the different kind of instances. In
SMTWTP, we observe that using irreps up to order 2 for all n is
enough to obtain an NMAE of 1073, In the case of ARP, however,
we need higher order irreps to reduce the NMAE when n increases.
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learned surrogate models with irreps up to different order. The sizes of the problems are n = 5, 6,7 (from left to right)

Finally, we analyzed the convergence behaviour of the learned
model as a function of the number of samples used for the training.
The results for ARP and SMTWTP and problem sizes n = 5, 6,7 are
in Figure 6. When the number of samples approaches the number
of unknowns, the NMAE stabilizes. We observe some “peaks” in
NMAE around this value for ARP. For example, the number of
samples required to learn a surrogate model with irreps p(,,) and
P(n-1,1) (order 1) is (n - 1)2 + 1. This expression is 17 for n = 5 and
26 for n = 6, and we observe the peaks around these values for the
curve corresponding to order 1 in ARP. We defer to future work an
explanation for this phenomenon. More importantly, we can see
that surrogates of higher orders do not systematically provide better
NMAE, independently of the sample size. In fact, using small sample
size with the SMTWTP problem, low order learned surrogates
have better NMAE. Only when the sample size increases higher
order are found to be more accurate. This can be attributed to the
difficulty in learning complex models, having many parameters,
when the available training data is restricted. This is important
in practice, since it suggests that low order surrogates might be
interesting to consider and more specific learning techniques should
be considered to improve model accuracy.

In summary, we conclude that there are problems, like SMTWTP,
for which a learned surrogate model with low orders can provide a
good approximation of the objective function. In other problems,
like ARP, higher orders are needed as n increases. It is not practical
to increase the order p with n, because the coefficients to learn
increase exponentially with p (if p << n).

5 CONCLUSIONS

We have presented in this paper a new approach to build surrogate
models for permutation problems based on the Fourier transform in
the space of permutations. We applied our proposal to two permuta-
tion problems: ARP and SMTWTP. We first analyzed the importance

of the terms of different orders in the objective function and, then,
learned a surrogate model using random samples of the problems.
The results show that SMTWTP can be very well approximated
using surrogate models including up to order 2 coefficients, while
ARP needs higher order terms to be approximated.

This work represents the first stone in the use of Fourier-based
surrogate models for permutation problems. Future work can focus
on adding other metrics for the comparison between the original an
surrogate function, like the difference in the ranking of the solutions
in the search space. It should also be interesting to analyze how
this approach can be used in practice to design algorithms able to
optimize computationally costly functions with the help of Fourier-
based surrogate models. It is important to limit the order of the
irreps used in the model, because the number of coefficients to learn
depends exponentially on the order. But there could be other ways
to reduce the number of unknowns, like learning a few coefficients
of each order setting the rest to zero to be able to reach higher order
irreps without increasing the cost of the regression. Another idea
would be to map the permutation space into a higher dimension
permutation space, and use the low orders of that permutation
space to learn the original function (as support vector machines do
with real vectors).
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