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ABSTRACT
In the context of pseudo-Boolean optimization, surrogate functions

based on the Walsh-Hadamard transform have been recently pro-

posed with great success. It has been shown that lower-order com-

ponents of the Walsh-Hadamard transform have usually a larger

influence on the value of the objective function. Thus, creating a sur-

rogate model using the lower-order components of the transform

can provide a good approximation to the objective function. The

Walsh-Hadamard transform in pseudo-Boolean optimization is a

particularization in the binary representation of a Fourier transform

over a finite group, precisely defined in the framework of group rep-

resentation theory. Using this more general definition, it is possible

to define a Fourier transform for the functions over permutations.

We propose in this paper the use of surrogate functions based on

the Fourier transforms over the permutation space. We check how

similar the proposed surrogate models are to the original objective

function and we also apply regression to learn a surrogate model

based on the Fourier transform. The experimental setting includes

two permutation problems for which the exact Fourier transform is

unknown based on the problem parameters: the Asteroid Routing

Problem and the Single Machine Total Weighted Tardiness.
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1 INTRODUCTION
A surrogate function is an easy-to-compute function that replaces a
costly evaluation process. In the context of optimization, they are
used as a proxy of the real objective function to optimize when it is

not possible to compute it or it is too costly [2, 14, 21]. One example

of application could be the optimization of some parameters of a

nuclear power plant. For security reasons, it is not possible to eval-

uate the parameters proposed by a search method in a real nuclear

power plant and, thus, simulators are used to evaluate the proposed

parameters. The simulators themselves require tens of minutes to

test each configuration [5]. In these cases, surrogate functions could

be created based on a supervised machine learning model that is

trained based on the runs of the simulator. Such a general approach

has been extensively used in the scientific literature, and a number

of related techniques and methodologies are being continuously

developed and enhanced. In the scope of continuous optimization

problems, surrogates are relatively well understood and the related

literature from the statistical and machine learning field is too vast

to summarize in the scope of this paper. The reader is referred to

some recent surveys on the subject [2, 14, 21]. In this paper, we tar-

get combinatorial domains, and more specifically permutation-like

problems.

In this context, although a lot of advances have been made, there

is still a huge gap to fill with the existing work for continuous

domains. In fact, combinatorial search spaces are fundamentally dif-

ferent, as it is even not clear how to model and to infer the underly-

ing discrete landscapes. In particular, designing discrete surrogates

has been identified in [21] as among of the five major challenges

that require further in-depth investigations from the community.

One can however find a number of investigations on the subject,

ranging from naive approaches ignoring the discrete structure of

the search space, to more domain-specific modeling techniques.

In particular, algorithms like CEGO [26] use surrogate functions

to speedup the search and/or use a low number of evaluations of

the real objective function. The models used by these algorithms

require the existence of a distance defined over solutions in the

search space. When the search space is the set of permutations of a

given size 𝑛, denoted with 𝑆𝑛 , some examples of distances used in

the literature are swap and interchange among others (see [25] for

a list of distances).

A different approach to build a surrogate model is based on

the Fourier transform over finite groups. For pseudo-Boolean opti-

mization problems, the so-called Walsh basis [24] were shown to

constitute a well-suited theoretical tool to derive custom surrogates

for arbitrary functions [6, 17, 22, 23]. Discrete Walsh functions form

an orthogonal set of functions inferring a Fourier transform to rep-

resent any blackbox pseudo-Boolean function in an additive linear

form, which can then be approximated by using some standard

linear regression techniques. This general working principle can

interestingly be leveraged for other combinatorial domains, given

we can represent the considered optimization problem in some

form that can be decomposed using a dedicated Fourier transform.
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One interest in using a Fourier transform instead of a distance-
based model, is that distances do not reflect precisely the landscape 
structure of the fitness function. In fact, having all the components 
of the Fourier transform is equivalent to having the original func-
tion. Previous studies have shown that the lower order components 
of the Fourier transform have usually a larger influence in the value 
of the objective function. Thus, creating a surrogate model for the 
lower order components can provide a good approximation of the 
objective function.

In this paper, we propose the use of surrogate models based on 
the Fourier transform of the permutation space. Some features of the 
Fourier transform for some permutation problems are known. This 
is the case of Quadratic Assignment Problem (QAP) [15], Traveling 
Salesperson Problem [19] and the Linear Ordering Problem [7]. In 
the latter problem, it has been proven that the first order component 
of the Fourier transform can be solved in polynomial time [7]. 
However, given an expensive permutation problem, it is difficult (or 
impossible) to know features of its Fourier transform. Our proposal 
is to learn the coefficients of the Fourier transform using regression 
and based on samples of the problem. A similar idea was proposed 
in the past by Irurozki et al. [13] to learn probability distributions.

The rest of the paper is organized as follows. Section 2 presents 
the background required to understand our proposal. Section 3 
presents the surrogate models based on the Fourier transform. In 
Section 4, we describe the research questions we want to answer 
and the experiments performed to do it. Finally, Section 5 concludes 
the paper.

2 BACKGROUND
Our proposal is based on the Fourier transform in the permutation 
space [12]. Thus, in this section we do a short introduction to 
this Fourier transform and the more general concept of Fourier 
transform over finite groups.

2.1 Group representation
A group is a pair (𝐺, ·), where 𝐺 is a set of (group) elements and
· : 𝐺 ×𝐺 → 𝐺 is a binary operator defined over the elements of the

group with the following properties:

• Associative: 𝑔1 · (𝑔2 · 𝑔3) = (𝑔1 · 𝑔2) · 𝑔3
• Neutral element: there is an element 𝑒 ∈ 𝐺 such that 𝑒 · 𝑔 =

𝑔 · 𝑒 = 𝑔 for all 𝑔 ∈ 𝐺 .

• Inverse: for each 𝑔 ∈ 𝐺 there is another element 𝑔−1 such
that 𝑔 · 𝑔−1 = 𝑔−1 · 𝑔 = 𝑒 .

The definition of group is the most general one and quite ab-

stract. Fortunately, there is a mathematical tool that allows us to

represent group elements in a concrete way using matrices: group
representation theory. In the following, we will use 𝐺 to denote a

group, omitting the binary operation for the sake of clarity.

A representation of a group 𝐺 is a mapping 𝜌 : 𝐺 → 𝐺𝐿(𝑉 )
between the elements of the group 𝐺 and the automorphisms of

a vector space 𝑉 such that 𝜌 (𝑔1 · 𝑔2) = 𝜌 (𝑔1)𝜌 (𝑔2). An automor-
phism is an invertible linear map from a vector space 𝑉 to itself.

Without loss of generality, we will assume in the following𝑉 = C𝑛 ,
where the vectors are 𝑛-tuples of complex numbers and the au-

tomorphisms are non-singular squared complex matrices of size

𝑛×𝑛, that is, matrices with a nonzero determinant. In short, a group

representation translates the group elements into matrices and the

group operation into matrix multiplication. This way we can use

the mathematical tools of linear algebra to solve statements related

to the group.

Not all group representations are equally important. We say

that two representations, 𝜌1 and 𝜌2 are equivalent if there exists a
matrix 𝑃 ∈ C𝑛×𝑛 such that 𝜌1 (𝑔) = 𝑃𝜌2 (𝑔)𝑃−1 for all 𝑔 ∈ 𝐺 . Two

equivalent representations provide the same information about

the group and, thus, we will work only with a set of inequivalent
representations. We say that one representation 𝜌 is reducible if we
can write 𝜌 (𝑔) as a block-diagonal matrix of the form:

𝜌 (𝑔) =
(
𝜌1 (𝑔) 0

0 𝜌2 (𝑔)

)
, (1)

for all 𝑔 ∈ 𝐺 . Reducible representations do not provide more infor-

mation than their component representations and, thus, we prefer

irreducible representations. When the group is finite there is also a

finite set of inequivalent irreducible representations, called irreps,
and the cardinality of this set is exactly the number of conjugacy

classes of the group [9].

2.2 Fourier transform over finite groups
Let 𝑓 : 𝐺 → C be a complex-valued function defined on group

𝐺 and 𝜌 a representation of 𝐺 . The Fourier transform of 𝑓 at 𝜌 is

defined as:

ˆ𝑓 (𝜌) =
∑︁
𝑔∈𝐺

𝑓 (𝑔)𝜌 (𝑔) . (2)

Observe that
ˆ𝑓 (𝜌) is, in general, a matrix because 𝜌 (𝑔) is a matrix.

The Fourier transform of a function 𝑓 at a particular representa-

tion does not provide all the information to reconstruct 𝑓 1, but

the Fourier transform at a set of irreps does. The inverse Fourier

transform is defined as:

𝑓 (𝑔) = 1

|𝐺 |
∑︁

𝜌∈irreps
𝑑𝜌Tr

(
ˆ𝑓 (𝜌)𝜌 (𝑔)−1

)
, (3)

where 𝑑𝜌 is the dimension of the vector space associated to rep-

resentation 𝜌 , Tr is the trace of a matrix, and 𝜌 (𝑔)−1 denotes the
inverse of 𝜌 (𝑔).

2.3 Fourier transform in permutation space
Permutations form a group with the composition operation, called

the symmetric group and denoted with 𝑆𝑛 , where 𝑛 is the number

of elements in the permutation. Given a permutation 𝜎 ∈ 𝑆𝑛 we

denote with 𝜎 (𝑖) the 𝑖-th element of 𝜎 . If 𝜎, 𝜋 ∈ 𝑆𝑛 we define the

composition operation as:

(𝜎 ◦ 𝜋) (𝑖) = 𝜎 (𝜋 (𝑖)) . (4)

For example, let 𝜎 = (1, 4, 2, 3) and 𝜋 = (3, 1, 4, 2) be two permuta-

tions of 𝑆4. Then, 𝜎 ◦ 𝜋 = (2, 1, 3, 4).
The application of representation theory to the symmetric group

has some special simplifications. In particular, the number of irreps

of the symmetric group 𝑆𝑛 is the number of partitions of 𝑛, that
is, the number of ways in which 𝑛 can be written as a sum of

positive integers. Furthermore, there is a relationship between these

partitions and the irreps and we can label each irrep with a partition.

1
Unless the group𝐺 has only one element.
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We will use the notation _ ⊢ 𝑛 to express that _ is a partition

of number 𝑛. Particular partitions will be expressed as a tuple of

positive integers in nonincreasing order (_1, _2, . . . , _𝑘 ) with _𝑖 ≥
_𝑖+1. For example, (4), (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1) are the five
partitions of number 4. We will denote with 𝜌_ the irrep associated

to partition _. Thus, the five irreps for 𝑆4 will be denoted with 𝜌 (4) ,
𝜌 (3,1) , 𝜌 (2,2) , 𝜌 (2,1,1) , 𝜌 (1,1,1,1) .

There is a visual way of representing partitions that will be

useful for some computations: Young diagrams. A Young diagram

has as many rows as elements in the partitions and row 𝑖 has as

many columns as the value _𝑖 . See Figure 1 for an example. We will

denote with 𝐶_ the set of cells of the Young diagram for _.

Figure 1: Young diagram for partition _ = (5, 4, 3, 1, 1) in the
symmetric group 𝑆14.

With the introduced notation, we can particularize the formulas

of the direct and inverse Fourier transforms to the symmetric group

as follows:

ˆ𝑓 (𝜌_) =
∑︁
𝜎∈𝑆𝑛

𝑓 (𝜎)𝜌_ (𝜎) (5)

𝑓 (𝜎) = 1

𝑛!

∑︁
_⊢𝑛

𝑑_Tr

(
ˆ𝑓 (𝜌_)𝜌_ (𝜎)−1

)
(6)

The dimension of an irrep 𝜌_ is given by the hook rule:

𝑑_ =
𝑛!∏

(𝑟,𝑐 ) ∈𝐶_
𝑙 (𝑟, 𝑐) , (7)

where 𝑙 (𝑟, 𝑐), called the hook length, is the sum of the elements

found at the right and below the cell (𝑟, 𝑐) in the Young diagram,

including cell (𝑟, 𝑐) (see Figure 1).
The order of Walsh functions in the pseudo-Boolean domain

relates to the ruggedness of a fitness landscape [20]. In the case of

the symmetric group we can also establish a relationship between

the partition of an irrep and its effect in the fitness landscape. We

say that an irrep is of order 𝑘 if 𝑛 − 𝑘 is the highest positive integer

in the partition. For example, 𝜌 (𝑛) is the 0-th order irrep of the

symmetric group 𝑆𝑛 . The 0-th order irrep is always a scalar value

and its Fourier transform represents the sum of the values of 𝑓 for

all the permutations. The first order irrep is 𝜌 (𝑛−1,1) and is related

to first order marginals when the function 𝑓 represents a probability

distribution. If 𝑛 ≥ 4 we find two second order irreps, 𝜌 (𝑛−2,2) and
𝜌 (𝑛−2,1,1) , one related to unsorted second order marginals and the

second one related to sorted second order marginals. The interested

reader can find more details on the interpretation of the Fourier

transforms at higher order irreps in the work of Huang et al. [12].

The number of irreps of order 𝑘 is the number of partitions of 𝑘

for large enough 𝑛. For example, there are five order-4 irreps and

seven order-5 irreps
2
.

There are some permutation optimization problems that have

been analyzed from the point of view of the Fourier transform. In

particular, the Linear Assignment Problem (LAP) has only nonzero

Fourier transforms at representations of order zero and one [7]. The

Quadratic Assignment Problem (QAP) has nonzero Fourier trans-

form at irreps of order two or less [15]. The Traveling Salesperson

Problem (TSP) is a particular case of QAP that has a zero Fourier

transform at 𝜌 (𝑛−1,1) and nonzero in at least one of 𝜌 (𝑛−2,2) or
𝜌 (𝑛−2,1,1) .

2.4 Young orthogonal representation
We need to define a family of irreps before we apply the direct and

inverse Fourier transform. There is an infinite number of possi-

bilities here but there are some for which the math can be simpli-

fied. One of these is the Young Orthogonal Representation (YOR).

First, YOR produces always real-valued matrices, which simplifies

things when we are working with real-valued permutation prob-

lems, as it happens in the context of combinatorial optimization.

The second interesting property of YOR is that it always produce

orthogonal matrices. This means that computing the inverse of

matrix only requires transposing the elements of the matrix, that is

𝜌 (𝑔)−1 = 𝜌 (𝑔)𝑇 . This latter property allows us to simplify Eq. (6)

for the inverse of the Fourier transform to:

𝑓 (𝜎) = 1

𝑛!

∑︁
_⊢𝑛

𝑑_Tr

(
ˆ𝑓 (𝜌_)𝜌_ (𝜎)𝑇

)
, (8)

where 𝜌_ (𝜎)−1 has been replaced by 𝜌_ (𝜎)𝑇 .

3 FOURIER-BASED SURROGATE MODELS
In this section we present the main idea in this paper: use the

Fourier transform on the permutation space to define a surrogate

model for a permutation problem. In order to do that, we have to

develop Eq. (8) in a way that is useful to present the idea. For this,

we will write the trace explicitly. Let’s do that first for two arbitrary

squared matrices 𝐴 and 𝐵 of size 𝑛:

Tr (𝐴𝐵) =
𝑛∑︁
𝑖=1

(𝐴𝐵)𝑖𝑖 =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐴𝑖, 𝑗𝐵 𝑗,𝑖 . (9)

We can apply this expression to Eq. (8) taking into account that

(𝐵𝑇 ) 𝑗𝑖 = 𝐵𝑖 𝑗 . The result is:

𝑓 (𝜎) = 1

𝑛!

∑︁
_⊢𝑛

𝑑_

𝑑_∑︁
𝑖, 𝑗=1

ˆ𝑓 (𝜌_)𝑖, 𝑗𝜌_,𝑖, 𝑗 (𝜎) (10)

where the permutation functions 𝜌_,𝑖, 𝑗 are orthogonal among each

other (this is a result of representation theory) [9]. All the values

in Eq. (10) are scalar values (there are no matrices or vectors). The

functions 𝜌_,𝑖, 𝑗 are given by the Young orthogonal representation

and they do not depend on the particular permutation problem. The

only terms that depend on the problem are the constants
ˆ𝑓 (𝜌_)𝑖, 𝑗 .

2
See the number series at https://oeis.org/A000041
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We propose to empirically find the values 𝑓 ˆ(𝜌_)𝑖, 𝑗 using linear 
regression for a given permutation problem 𝑓 with a set of irreps 
associated to partitions _ ∈ Λ, and use (10) as a surrogate model 
for 𝑓 , that is:

𝑓 (𝜎) ≈ 1

𝑛!

∑︁
_∈Λ

𝑑_

𝑑_∑︁
𝑖, 𝑗=1

ˆ𝑓 (𝜌_)𝑖, 𝑗𝜌_,𝑖, 𝑗 (𝜎) (11)

Let𝜎𝑙 for 1 ≤ 𝑙 ≤ 𝑚 be a set of permutation samples for whichwe

have the values of 𝑓 . We need to solve the following minimization

problem:

min

𝑚∑︁
𝑙=1

������𝑓 (𝜎𝑙 ) − 1

𝑛!

∑︁
_∈Λ

𝑑_

𝑑_∑︁
𝑖, 𝑗=1

ˆ𝑓 (𝜌_)𝑖, 𝑗𝜌_,𝑖, 𝑗 (𝜎𝑙 )

������
2

(12)

where the unknowns are the Fourier coefficients
ˆ𝑓 (𝜌_)𝑖, 𝑗 .

One last issue we should consider is the number of unknowns

in the surrogate model. This is the number of degrees of freedom

that the model will have to adapt to the real function. The number

depends on the family Λ of irreps that will be used in Eq. (11). The

number of unknowns
ˆ𝑓 (𝜌_)𝑖, 𝑗 associated to an irrep _ is 𝑑2

_
. We can

compute 𝑑_ using the hook rule (7). The number 𝑑_ increases with

the order, 𝑘 , of the irrep up to 𝑘 = 𝑛/2, and decreases after that. In

particular, 𝑑 (𝑛) = 1, 𝑑 (𝑛−1,1) = 𝑛 − 1, 𝑑 (𝑛−2,2) = (𝑛 − 1) (𝑛 − 3)/2
and 𝑑 (𝑛−2,1,1) = (𝑛 − 1) (𝑛 − 2)/2. In general, 𝑑_ ∈ 𝑂 (𝑛𝑘 ) if 𝑘 ≤ 𝑛/2
as the next proposition proves.

Proposition 3.1. The dimension 𝑑_ of the vector space associated
to an irrep _ = (𝑛 − 𝑘, . . .) of the symmetric group 𝑆𝑛 with 𝑘 ≤ 𝑛/2 a
constant is 𝑂 (𝑛𝑘 ).

Proof. We can prove the proposition by applying the hook

rule (7) to compute 𝑑_ . Let’s denote with 𝑙 (𝑟, 𝑐) ≥ 1 the hook

length of cell in row 𝑟 and column 𝑐 of the Young diagram for _.

First, observe that since _1 = 𝑛 − 𝑘 we have

∑
𝑖≥2 _𝑖 = 𝑘 and, as a

consequence, all the hook lengths for the cells in rows greater than

1 will be upper bounded by 𝑘 , which is a constant independent of

𝑛 if 𝑘 < 𝑛/2. Thus, we can focus on the hook lengths of the cells

in the first row, which are the only ones depending on 𝑛. We can

easily find that 𝑙 (1, 𝑐) ≥ 𝑛 − 𝑘 − 𝑐 + 1, because 𝑛 − 𝑘 − 𝑐 + 1 is the

number of elements at the right of cell (1, 𝑐) including the cell. That
is, 𝑙 (1, 1) ≥ 𝑛 − 𝑘 , 𝑙 (1, 2) ≥ 𝑛 − 𝑘 − 1, etc. Now, applying hook rule

and using the lower bounds for 𝑙 (𝑟, 𝑐) we have:

𝑑_ =
𝑛!∏

(𝑟,𝑐 ) ∈𝐶_
𝑙 (𝑟, 𝑐) ≤ 𝑛!∏𝑛−𝑘

𝑐=1 𝑙 (1, 𝑐)
=

𝑛!∏𝑛−𝑘
𝑐=1 (𝑛 − 𝑘 − 𝑐 + 1)

=
𝑛!

(𝑛 − 𝑘)! ≤ 𝑛𝑘

□

Proposition 3.1 implies that the number of degrees of freedom

(unknowns) provided by an irrep of order 𝑘 is 𝑂 (𝑛2𝑘 ), since 𝑑_ ∈
𝑂 (𝑛𝑘 ) and there are 𝑑2

_
unknown coefficients

ˆ𝑓 (𝜌_)𝑖, 𝑗 . The sum of

𝑑2
_
for all _ ⊢ 𝑛 is 𝑛!, the size of the search space, which is also the

total number of unknowns in Eq. (10). This motivates the use of

only some irreps for the surrogate model.

Previous experience with Fourier-based surrogate models in the

binary space [23] suggests that in many interesting optimization

problems the lower order terms of the Fourier decomposition have

a higher impact in the function evaluation. Thus, it seems a natural

choice to add first the lower order terms of the Fourier transforms to

the surrogate model and keep adding higher order terms to increase

the quality of the approximation.

If we use the irreps up to order 𝑘 in the Fourier expansions of 𝑓 ,

we have 𝑂 (𝑛2𝑘 ) unknowns in Eq. (11). The number of unknowns

in the surrogate model, 𝑂 (𝑛2𝑘 ), is also the minimum number of

samples we need from the problem to solve the regression problem

expressed in Eq. (12) without ambiguity. Kondor [15] and Elorza

et al. [8] proved that in some permutation problems, like QAP, the

nonzero matrices
ˆ𝑓 (𝜌_) have rank 1 or 2. This fact could be used

to reduce the number of considered unknowns.

4 EXPERIMENTAL SECTION
In this experimental section we want to check how good is our

proposed surrogate model for permutation problems for which we

do not know the Fourier transform. In particular, we want to answer

the following two research questions:

• RQ1: What is the importance of the Fourier transform at

different orders in the value of the permutation function? In

order to answer this question we compute the exact Fourier

transform of a set of instances of two problems at all the

irreps and build surrogate models based on the exact Fourier

transform with higher orders omitted.

• RQ2: How much different is the learned surrogate model

compared to the original function? In practice, we do not

know the exact Fourier decomposition of an optimization

problem (except for some particular cases), and we have to

learn it from samples of the function. In order to answer

this question, we use small instances of the same two prob-

lems used in RQ1 and we will learn a surrogate model like

in Eq. (11). We will compare the model with the original

function to see the differences in different aspects (detailed

below).

This experimental section is organized as follows. We introduce

the permutation problems and instances used in Subsection 4.1.

Then, we describe themetrics used to compare the surrogate models

with the original function in Subsection 4.2, followed by a descrip-

tion of the experimental setting (Subsection 4.3). The main results

are split in three separate subsections. First, Subsection 4.4 analyzes

the Fourier transforms of the instances of the problems. Then, re-

search questions RQ1 and RQ2 are addressed in Subsections 4.5

and 4.6, respectively.

4.1 Problems and instances
For the purpose of our analysis, we use two problems for which

we do not know the Fourier transform: the Single Machine Total

Weighted Tardiness Problem (SMTWTP) and the Asteroid Routing

Problem (ARP). In this section we describe both problems and the

instances used for the experiments. The instances, together with

the code for the experiments are available in the replication package

accompanying this paper
3
.

3
Available at https://doi.org/10.5281/zenodo.7850763

https://doi.org/10.5281/zenodo.7850763
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4.1.1 Single machine total weighted tardiness. The Single Machine

Total Weighted Tardiness Problem (SMTWTP) is a well-known

strongly NP-hard problem [16]. It is defined by a set of 𝑛 jobs.

Each job has to be processed without interruption on a single ma-

chine that can only process one single job at a time. Each job has

a processing time 𝑝 𝑗 , a due date 𝑑 𝑗 and an associated weight 𝑤 𝑗

(reflecting the importance of the job). The tardiness of a job 𝑗 is

defined as 𝑇𝑗 = max{0,𝐶 𝑗 − 𝑑 𝑗 }, where 𝐶 𝑗 is the completion time

of job 𝑗 in the current sequence of jobs. The goal is then to find a

job sequence 𝜎 minimizing the sum of weighted tardiness defined

by

∑𝑛
𝑖=1𝑤𝜎 (𝑖 ) ·𝑇𝜎 (𝑖 ) . A number of works have considered it as a

benchmark to study the properties of a number of optimization

methods, e.g., [1, 4, 10, 11] to cite a few. As such, we follow the

common procedure to generate SMTWTP benchmark instances [3].

More precisely, the processing times 𝑝 𝑗 and the weights 𝑤 𝑗 are

drawn uniformly at random respectively in the integer intervals

[1, 100] and [1, 10]. The due dates are drawn uniformly at random

within the interval [𝑃 · (1 − TF − RDD/2), 𝑃 · (1 − TF + RDD/2)],
where 𝑃 =

∑𝑛
𝑗=1 𝑝 𝑗 and RDD and TF are two parameters control-

ling respectively the relative range of due dates and the average

tardiness factor TF. Overall, we consider 750 instances.

4.1.2 Asteroid routing problem. The Asteroid Routing Problemwas

defined by López-Ibáñez et al. [18] as a benchmark for black-box

optimization in the context of permutation problems. The problem

consists in finding a route for a spacecraft launched from Earth

to visit a given set of 𝑛 asteroids 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} with the

goal of minimizing the sum of velocity changes required by the

route (related to fuel consumption) and the total time required to

visit all of them. Although there are two objectives in the problem,

the authors combine both of them in one single objective using a

weighted sum.

A solution to the problem is a pair (𝜋, ®𝑡), where 𝜋 ∈ 𝑆𝑛 is a per-

mutation representing the order in which the asteroids are visited

and ®𝑡 ∈ R2𝑛≥0 is a vector of 2𝑛 real numbers representing parking

and transit times to reach each asteroid.

The problem is solved as a bilevel optimization problem, where

the visit order of the asteroids is in the higher level and the tran-

sit and parking times is in the lower level. For the lower level, a

Sequential Least Squares Programming (SLSQP) is used in [18] to

determine ®𝑡 when the visit order of asteroids 𝜋 is known (given by

the higher level). Thus, the higher level problem is a permutation

problem where the optimal visit order of the asteroids 𝜋 must be

determined. One evaluation of a permutation (visit order) requires

solving an optimization problem with SLSQP where for each evalu-

ation of the complete solution, that is (𝜋, ®𝑡), it is required to solve

several Lambert problems and move a set of 𝑛 asteroids plus the

Earth in a simulated environment. This makes the objective func-

tion computationally costly and a good candidate for replacing it

with surrogate models.

López-Ibáñez et al. [18] prepared an instance generator for the

problem that randomly selects 𝑛 asteroids from the 83 453 asteroids

provided by the GTOC11 competition to create an instance of the

ARP. We used this generator to generate 60 instances of sizes 𝑛 = 5

to 𝑛 = 10 (ten instances for each value of 𝑛), small enough to

compute the metrics we use in the study.

4.2 Metrics used for checking similarity
In order to answer research questions RQ1 and RQ2 we need to

compare the differences between the original function and the built

surrogate model. We use two metrics for this.

The first one is the Normalized Mean Absolute Error (NMAE) for

the original function and the surrogate model in all the solutions

of the search space, which is defined as:

NMAE =

1

𝑛!

∑
𝜎∈𝑆𝑛 |𝑓 (𝜎) − 𝑠 (𝜎) |
𝑓max − 𝑓min

, (13)

where 𝑓 the original function, 𝑠 is the surrogate model, 𝑓max =

max𝜎∈𝑆𝑛 𝑓 (𝜎) and 𝑓min = min𝜎∈𝑆𝑛 𝑓 (𝜎).
The second metric is the Normalized number of Preserved Global

Optima (NPGO), which is the number of global optima of 𝑓 that are

also global optima in 𝑠 , normalized by the total number of global

optima of 𝑓 that is,

NPGO =
|GO(𝑓 ) ∩ GO(𝑠) |

|GO(𝑓 ) | . (14)

4.3 Experimental setting
For the experiments we used 750 instances of SMTWTP and 60

instances of ARP. For the SMTWP, we follow the specialized litera-

ture as described previously in Section 4.1.1. The values for 𝑛 (size

of the permutation) vary between 𝑛 = 5 and 𝑛 = 10, and the two

parameters RDD and TF are set in the range: 0.2, 0.4, 0.6, 0.8 and 1.0.

For each combination of 𝑛, RDD and TF five instances with different

random seeds were generated. This is a total of 125 instances for

each value of 𝑛.

In the case of ARP, we used the generator provided in [18]. The

values of 𝑛 vary from 𝑛 = 5 to 𝑛 = 10. For each value of 𝑛 we

generated 10 random instances with ten different seeds. The seeds

used are 7, 11, 13, 17, 19, 23, 29, 31, 42 and 73.

We used the Snob2
4
library for python to compute the Fourier

transforms and the scikit-learn package
5
for learning the surrogate

models. The experiments were run in the Picasso supercomputing

facility of the University of Malaga with 126 SD530 servers with

Intel Xeon Gold 6230R (26 cores each) at 2.10GHz, 200 GB of RAM

and an InfiniBand HDR100 network.

4.4 Fourier coefficients
Before answering the research questions we wonder how does the

Fourier transform of the SMTWTP and ARP instances looks like. In

particular, we would like to know how large the matrix coefficients

in the irreps are and how sparse the matrices are. Figure 2 shows

the average absolute values of the matrix coefficients of the Fourier

transforms at different irreps (left) and the proportion of nonzero

matrix coefficients (right). Only the results for instances with 𝑛 = 5

(top), 7 (center), and 9 (bottom) are reported. The results aggregate

matrix coefficients by irrep and instances (with the same 𝑛).

We can observe a clear difference between the instances of both

problems. ARP has a higher proportion of nonzero coefficients

and their absolute values are also higher. This is an indication

that the objective function of ARP is more noisy, something that

was already mentioned in the original paper where the problem

4
Available at https://github.com/risi-kondor/Snob2

5
Available at https://scikit-learn.org/stable/

https://github.com/risi-kondor/Snob2
https://scikit-learn.org/stable/
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Figure 2: Left: average absolute value of thematrix coefficient
for different irreps (𝑦-axis is in log-scale). Right: proportion
of nonzero coefficients. The 𝑥-axis shows the irreps in in-
creasing order.

was proposed [18]. In contrast, the proportion of nonzero coeffi-

cients of SMTWTP decreases as we increase the order of the irreps.

The absolute values for these coefficients also decrease with the

higher order irreps. This suggests that SMTWTP will probably be

well-approximated by low-order irreps. We will check this in the

following subsections.

4.5 Answering RQ1: truncated surrogate model
In this section we conduct some experiments to answer RQ1: what
is the importance of the Fourier transform at different orders in the

value of the permutation function? With the help of the Fourier

transforms at the different irreps, computed in Subsection 4.4, we

build a new function in which some of the coefficients are set to zero:

the coefficients of irreps of higher order. We call these functions

truncated surrogate model because they have the same coefficients

as the original objective function for the irreps of the low orders

and zero for the irreps of higher orders. That is, we “truncate” the

Fourier transform at higher orders.

Technically, we start with the original Fourier transform at all

irreps and, step by step, we set to zero the coefficients of irreps of

order 𝑝 in decreasing order, starting with 𝑝 = 𝑛−1 and ending with

𝑝 = 1. At each step, we compute the inverse Fourier transform, and

this is used as the truncated surrogate model that we evaluate.

Figure 3 shows the NMAE of the truncated surrogate model at

different orders and for 𝑛 = 5 to 9 for both, SMTWTP and ARP. We

can observe in this figure a clearly different result for SMTWTP

and ARP. While the truncated model of SMTWTP jumps to very

low values of NMAE at some order between 3 and 5 for all 𝑛, ARP

requires high order irreps to have a low value for NMAE. This

means that SMTWTP can be very well approximated with irreps

of low order. In many cases, order 2 is enough to get an NMAE

of 10
−3
. In contrast, ARP needs high order irreps to have a good

approximation of the objective function. This supports, once again,

the idea that ARP is a more noisy problem, hard to solve.

Since our aim is to use the surrogate models as a proxy of the

original optimization function, we wonder if the global optima are

preserved when we truncate the high order irreps. Figure 4 shows

NPGO for SMTWTP and ARP. We observe that adding irreps of

order 2 or 3 is usually enough to recover some global optima. Thus,

the truncated surrogate model could be used to find solutions to the

original optimization problems, with a faster evaluation function.

On a technical side, we observe that adding enough irreps we

can find 100% of the global optima in the case of ARP, as it should

be, since we recover the original objective function at the end. This

does not happen with SMTWTP, where only between 40% and 75%

of the global optima are the same in the truncated and original

objective function when all irreps are added. The explanation of

this surprising phenomenon has to do with the floating point errors

in the process of computing the direct and inverse Fourier trans-

form. Unfortunately, these errors are difficult to avoid using the

Young Orthogonal Representation, where some matrix elements

are irrational numbers and we cannot use any exact fractional

implementation for the mathematical operations.

In summary, we conclude that low order irreps are enough in

some problems, like SMTWTP, to represent the original objective

function. Other problems, like ARP require also high order irreps

to reach a low value for NMAE.

4.6 Answering RQ2: learned surrogate model
In this section we explore the performance of the learned surrogate

model. We use Lasso as technique to solve the linear regression

problem of Eq. (12) because it was more stable than others in some

preliminary experiments. In particular, we use the Lasso implemen-

tation of scikit-learn with regularization parameter 𝛼 = 0.000001

and the default values for the other parameters.

For each instance we learned surrogate models with different

orders. For 𝑛 = 5 to 7 we used surrogate models with irreps having

maximum order 𝑝 = 0 to 4. For 𝑛 = 8 to 10 the models had irreps

with maximum order 𝑝 = 0 to 2 (for higher orders Lasso had

problems to do the regression due to memory limits). The surrogate

models were trained with a varying number of random samples

(permutations and their associated fitness value) to check how the

models converge as the number of samples increases. The number

of samples used varies for different values for 𝑛. In all the cases,

the maximum number of samples we use is enough to learn all

the matrix coefficients associated to all the irreps in the model. In
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Figure 3: Boxplots of the normalized MAE for the truncated surrogate model. The 𝑌 axes is in log scale. The plots correspond to
sizes 𝑛 = 5, 6, 7, 8, 9, from left to right.

Figure 4: Boxplots of the normalized PGO for the truncated surrogate model. The 𝑌 axes represents percentage. The plots
correspond to sizes 𝑛 = 5, 6, 7, 8, 9 from left to right

particular, the ranges of number of samples used for training are

shown in Table 1. For each instance, maximum order and number

of samples, we repeated the learning process ten times using ten

different random seeds, in order to sample the solutions in the

search space in a different order and, thus, reduce any bias due

to the samples used. In each run we build the surrogate model

by applying the inverse Fourier transform and computed all the

metrics described in Subsection 4.2.

Figure 5: NMAE values for the learned and truncated surro-
gate models using different maximum orders of the irreps
for ARP (top) and SMTWTP (bottom). In different columns
are the different problem sizes 𝑛 = 5, 6, 7 (from left to right).

Figure 5 shows the boxplots of the NMAE obtained by the learned

surrogate model for ARP (top row) and SMTWTP (bottom row) for

problem sizes 𝑛 = 5, 6, 7. We add the truncated model for an easy

Table 1: Parameters of the learned surrogate models for dif-
ferent problem size: maximum order of the irreps considered
in the regression and number of training samples. We also
show the number of total regressions performed per instance.

Maximum order # of training samples Number of

n Min. Max. Step Min. Max. Step regressions

5 0 4 1 1 120 1 6000

6 0 4 1 6 720 6 6000

7 0 4 1 50 5000 50 5000

8 0 2 1 18 1800 18 3000

9 0 2 1 32 3200 32 3000

10 0 2 1 52 3640 52 2100

comparison. The 𝑋 axis displays the maximum order used in each

model. For example, maximum order 3 means that all the irreps

up to order 3 are included in the surrogate model. We aggregate

the results for all the instances of each problem (10 for each 𝑛 in

the case of ARP and 125 in the case of SMTWTP). The models

shown are the ones trained with the largest value for the number

of samples (see column 6 in Table 1).

We clearly see how the learned model produces an NMAE which

is similar to the truncated model for orders 1 and 2. We should

highlight here that the learned coefficients do not have to be similar

to the correct ones (of the truncated model). In spite of that, both

models get approximately the same NMAE. There is a larger vari-

ation in the NMAE of the learned model for SMTWTP, probably

due to the different behaviour in the different kind of instances. In

SMTWTP, we observe that using irreps up to order 2 for all 𝑛 is

enough to obtain an NMAE of 10
−3
. In the case of ARP, however,

we need higher order irreps to reduce the NMAE when 𝑛 increases.
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Figure 6: NMAE convergence as a function of sample size for ARP (top) and SMTWTP (bottom). The different lines represent
learned surrogate models with irreps up to different order. The sizes of the problems are 𝑛 = 5, 6, 7 (from left to right)

Finally, we analyzed the convergence behaviour of the learned

model as a function of the number of samples used for the training.

The results for ARP and SMTWTP and problem sizes 𝑛 = 5, 6, 7 are

in Figure 6. When the number of samples approaches the number

of unknowns, the NMAE stabilizes. We observe some “peaks” in

NMAE around this value for ARP. For example, the number of

samples required to learn a surrogate model with irreps 𝜌 (𝑛) and
𝜌 (𝑛−1,1) (order 1) is (𝑛 − 1)2 + 1. This expression is 17 for 𝑛 = 5 and

26 for 𝑛 = 6, and we observe the peaks around these values for the

curve corresponding to order 1 in ARP. We defer to future work an

explanation for this phenomenon. More importantly, we can see

that surrogates of higher orders do not systematically provide better

NMAE, independently of the sample size. In fact, using small sample

size with the SMTWTP problem, low order learned surrogates

have better NMAE. Only when the sample size increases higher

order are found to be more accurate. This can be attributed to the

difficulty in learning complex models, having many parameters,

when the available training data is restricted. This is important

in practice, since it suggests that low order surrogates might be

interesting to consider andmore specific learning techniques should

be considered to improve model accuracy.

In summary, we conclude that there are problems, like SMTWTP,

for which a learned surrogate model with low orders can provide a

good approximation of the objective function. In other problems,

like ARP, higher orders are needed as 𝑛 increases. It is not practical

to increase the order 𝑝 with 𝑛, because the coefficients to learn

increase exponentially with 𝑝 (if 𝑝 << 𝑛).

5 CONCLUSIONS
We have presented in this paper a new approach to build surrogate

models for permutation problems based on the Fourier transform in

the space of permutations. We applied our proposal to two permuta-

tion problems: ARP and SMTWTP.We first analyzed the importance

of the terms of different orders in the objective function and, then,

learned a surrogate model using random samples of the problems.

The results show that SMTWTP can be very well approximated

using surrogate models including up to order 2 coefficients, while

ARP needs higher order terms to be approximated.

This work represents the first stone in the use of Fourier-based

surrogate models for permutation problems. Future work can focus

on adding other metrics for the comparison between the original an

surrogate function, like the difference in the ranking of the solutions

in the search space. It should also be interesting to analyze how

this approach can be used in practice to design algorithms able to

optimize computationally costly functions with the help of Fourier-

based surrogate models. It is important to limit the order of the

irreps used in the model, because the number of coefficients to learn

depends exponentially on the order. But there could be other ways

to reduce the number of unknowns, like learning a few coefficients

of each order setting the rest to zero to be able to reach higher order

irreps without increasing the cost of the regression. Another idea

would be to map the permutation space into a higher dimension

permutation space, and use the low orders of that permutation

space to learn the original function (as support vector machines do

with real vectors).
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