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Abstract. This paper studies a retail inventory system for a perishable product, based on a practical 
setting in Dutch retail. The product has a fixed shelf life of three days upon delivery at the store and 
product demand has a weekly pattern, which is stationary over the weeks, but varies over the days of 
the week. Items of varying age occur in stock. However, in retail practice, the age-distribution is often 
unknown, which complicates order decisions. Depending on the type of product or the size of the 
supermarket, replenishment cycle lengths may vary. We study a situation where a store is replenished 
either three or four times a week on pre-specified days. The research aim is to find practical and efficient 
order policies that can deal with the lack of information about the age distribution of items in stock, 
considering mixed LIFO and FIFO withdrawal. Reducing potential waste goes along with cost 
minimization, while the retailer aims at meeting a cycle service level requirement. We present four new 
heuristics that do not require knowledge of the inventory age-distribution. A heuristic, based on a 
constant order quantity  for each order moment, often generates least waste and lowest costs. However, 
this requires a few minutes of computation time. A new base stock policy appears second best. 
 
Keywords: inventory · perishable product · order policy · retail · service level 
 
1  Introduction 
Supermarket managers often face a trade-off between risking to lose both revenue and goodwill, by not 
having products available when demand arises, and discarding surplus products due to outdating (Gruen 
et al. 2002). Food waste is primarily a result of retailer and consumer behavior (Parfitt et al., 2010). It 
occurs either through markdowns when products approach their end of shelf life or appear less 
appealing, or through disposal when products are no longer usable, sellable, or edible. In Europe the 
total food loss and waste is 31% of the initial production from which 6.1% occurs in the food processing, 
packaging and distribution (HLPE, 2014). Lebersorger and Schneider (2014) report a food loss rate of 
fruit and vegetables of 4.19% in an Austrian food retail company from September 2011 to August 2012. 
For dairy products the food loss rate was 1.14%, and for bread and pastry 2.84%.  
 
Generally, the demand is influenced by product availability and freshness (Sebatjane and Adetunji, 
2021). Availability of fresher items significantly affects consumer choice on where to shop (Wyman, 
2013). So, retailers rather build up more stock than risk a stock-out (Thyberg and Tonjes, 2016). This is 
not without risk since waste represents a loss of business and a risk for already small margins (Cicatiello 
et al., 2017). Reducing the annual food waste will result in benefits for companies, consumers and the 
environment in terms of money, volume, energy and sustainability. Retailers are therefore very keen to 
implement strategies to reduce food waste. To illustrate this, members of the Consumer Goods Forum 
promised in 2015 to halve the food they waste by 2025 (Forum, 2015). This motivates research into 
order policies that may help to both prevent food waste and reduce costs for retailers. We study a 
competitive strategy of retailers that focuses on availability of fresh produce for fixed prices, without 
discounting, applying strict service level requirements. Here, waste prevention is the main objective, 
though waste reduction and cost minimization are equivalent. This differs from studies that focus on 
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discounting and dynamic pricing  (Herbon, 2017; Buisman et al., 2019; Fan et al., 2020), or adapting 
the shelf life depending on the order policy (Ketzenberg et al., 2018). These practices aim at waste 
reduction, rather than prevention.  
 
The Dutch retailer case studied in this paper enhances a highly perishable product inventory system with 
a fixed shelf life of three days on delivery at the store, noticeable by its best-before or use-by date. The 
days of the week the supermarket is replenished, are determined by warehouse capacity. Sternbeck and 
Kuhn, (2014) and Holzapfel et al. (2016) showed that pre-specified reorder schedules have major 
advantages with respect to warehouse and transportation costs and scheduling workforce. Such reorder 
schedules imply that the retailer has items of different ages in stock and replenishment cycles may vary 
in length. In many practical retail situations, checkout systems only register the number of items sold, 
but not the product age. Consequently, the retailer is facing an order decision without knowledge of the 
age-distribution of the remaining items in stock. The observed total number of items in stock may be 
different from the inventory status according to the checkout system, due to damaged items and the 
occurrence of more waste than expected based on supply and demand data of the supermarket. This 
situation is also described by Pantsar (2019).  Technically, there are options to obtain knowledge on the 
age distribution e.g. to use RIFD tags, or use barcodes for the due date of an item.  
 
In retail, food waste is related to food inventory management practices, as well as to purchasing behavior 
of customers (Cicatiello et al., 2017). The outdating quantity is affected by the inventory withdrawal 
sequence. Retailers will stimulate FIFO depletion of inventory because of lower costs (Cohen and 
Prastacos, 1981). Nonetheless, consumers typically prefer fresher items, so they at least partly adopt 
LIFO depletion (Nahmias, 1982). Although a large part of literature only considers one of the extremes, 
a mixed FIFO-LIFO policy is more realistic in food retail (Janssen et al., 2016). The total item shortage 
is not influenced by the sequence of withdrawal. However, the number of items that expire is 
significantly affected (Cohen and Prastacos, 1981). LIFO generally leads to higher costs due to more 
outdating. In order to minimize waste, supermarkets prefer and stimulate customers to pick the oldest 
items first (FIFO, First In First Out), by putting those items in front on the shelf. However, practitioners 
in Dutch retail estimate that about 40% of the customers searches for the freshest items and picks 
according to LIFO (Last In First Out). 
 
Customers may behave differently when confronted with an empty shelf. It is often assumed that 
customer demand is partially or completely backordered when items are not in stock (Bijvank and Vis, 
2012; Gupta et al., 2020), but only about 15% of customers that face an out-of-stock will buy the product 
later at the same store (Gruen et al., 2002). Moreover, once a stock-out occurs, information about actual 
demand is lost and there may be a decline in goodwill, which is difficult to quantify (Bijvank and Vis, 
2012). Rather than attempting to quantify all effects in monetary terms, an alternative approach is to 
assess the performance of an inventory system by means of a service level measurement (Minner and 
Transchel, 2010). Service level targets have become increasingly important in times where product 
availability influences retail competition. A cycle service level is most suitable for an inventory system 
with periodic review and lost sales once an out-of-stock situation occurs (Cachon and Terwiesch, 2013).   
 
The question is how to generate order policies and corresponding parameter values for this retail 
situation in a limited computation time. The situation is characterized by pre-specified reorder schedules, 
varying replenishment cycle length and a service level requirement, when the age-distribution of the 
inventory is unknown to the decision maker. Demand has a weekly (seasonal) pattern, which is 
stationary over the weeks. Moreover, we focus on a shelf life of three days upon delivery, a lead time of 
one day and mixed LIFO-FIFO depletion.  
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This paper is organized as follows. Section 2 embeds our question in literature. Section 3 describes the 
retail situation, a stochastic dynamic model of the situation and approaches to determine order policy 
parameter values. Section 4 shows the results of numerical experiments based on practical data for the 
approaches. A discussion of findings and conclusions can be found in Sections 5 and 6.  
 
2.  Literature 
Along this line the issue of finding a suitable order policy for highly perishable products is addressed, 
to incentivise food waste prevention (Thyberg and Tonjes, 2016). Early studies were mainly based on 
dynamic programming. Because of the complexity of finding exact optimal policies with this method, 
(Nahmias, 1975) already identified the need to develop heuristics. The most well-known and commonly 
used types of policies are base-stock policies (BSP) and constant order policies (COP), where every 
order is of the same fixed size. A base-stock policy entails ordering up to a specified inventory level, 
and is therefore responsive to fluctuations in demand. This is especially beneficial in case of stochastic 
demand (Cachon and Terwiesch, 2013). For perishable products, the structure of an optimal 
replenishment policy is complex as the simple BSP is not optimal. Whereas COPs lead to smoother 
order quantities, they entail the risk of building up too much stock. BSPs on the other hand, may not 
order enough when many items are about to expire at the same time (Haijema and Minner, 2016). Minner 
and Transchel (2010) showed that under stationary demand, short shelf live and LIFO withdrawal, COPs 
actually perform reasonably well. Nevertheless, the authors also indicated that if demand is non-
stationary, hybrid versions of order policies may be required. As of today, there is no common 
understanding on which policy to use under what circumstances (Haijema and Minner, 2016). 
 
Research has shown that considering age-information about the products in stock enhances the accuracy 
of replenishment decisions (Tekin et al., 2001; Haijema et al., 2007). Incorporation of this type of 
information can be obtained in several ways. First of all, some models divide the inventory into ’old’ 
and ’new’ parts, and base order decisions on the relative levels. Balugani et al. (2019) investigated a 
periodic inventory system for products with a fixed shelf life and intermittent demand. Their study 
distinguishes items that will versus items that will not expire during the review period. A fill rate service 
level constraint and a FIFO issuing policy are considered. Chen et al. (2021) propose an inventory 
strategy with a single adjustment plan for an expedited order or a return plan for products, such as blood 
platelets, with a FIFO issuing policy. Secondly, BSPs with weighted stock levels (BSP − WS) lead to 
larger order quantities when more products are about to expire. However, it has to be noted that BSP − 
WS is actually a special case of the division between old and newer inventory. Additionally, some 
models modify the order quantity with estimates of waste (BSP − EW) (Pauls-Worm et al., 2014; 
Haijema and Minner, 2019). A somewhat different approach was adopted by (Tekin et al., 2001). In the 
proposed policy, an order is placed when the inventory level drops to a reorder level, or when a specific 
amount of time elapsed, whichever occurs first. This time element represents the product-age threshold 
(Tekin et al., 2001). Gutierrez-Alcoba et al. (2017) introduced two heuristics to determine the optimal 
order quantity for perishable products with a fixed shelf life and non-stationary demand. In their 
approach, the expected value of the inventory for different product ages is computed, while considering 
penalty cost in case of out-of-stock.  
 
Broekmeulen and Van Donselaar (2009) proposed an EWA Expected Withdrawal of Aging heuristic for 
both complete FIFO as well as complete LIFO withdrawal in which they consider the full age-
distribution to be known to the decision maker. They assume non-stationary demand during the week 
which is stationary over the weeks. An (R, s, n, Q) policy, with fixed review period R, reorder point s, 
batch-size Q and order multiplier n, is corrected for the estimated amount of waste. Moreover, a constant 
safety stock was implemented, which may be undesirable in case of non-stationary demand. In turn, 
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Duan and Liao (2013) explicitly included a fill rate constraint, and assumed less information about 
inventory ages. They proposed a policy based on an old inventory ratio (OIR), relative to the total 
inventory on hand. First, the order quantity is determined according to a classical BSP. Subsequently, 
the ratio of old items compared to overall stock is determined. If this amount exceeds a specified 
threshold, an additional replenishment is triggered. This is supposed to be a relatively easy policy to 
implement by practitioners, with better results than the EWA heuristic. However, optimization of an 
extra parameter, the threshold value, is required.  
 
Kiil et al. (2018) intend to incorporate shelf life information in “a setting closer to the reality of today’s 
grocery retailers”, with pre-specified reorder schedules rather than fixed review periods. The result is a 
refined version of the EWA heuristic: EWAss. The safety stock assumption in the original EWA is 
modified adding expected waste quantities resulting in larger stock. With EWAss, the safety stock either 
equals the expected waste, or the safety stock required for demand uncertainty, instead of both. Kiil et 
al. (2018) assess a cycle service level, and they assume a mixed FIFO/LIFO withdrawal, with 90% FIFO. 
Both EWA and EWAss assume the age-distribution information is registered by grocery stores. With 
this assumption, Hendrix et al. (2023) show that if orders can be placed on a daily base, the optimal 
order quantity can be derived. This results in sufficient product-availability and less waste than using a 
heuristic like EWA and EWAss. 
 
Concluding, there is a challenge in deriving easily applicable order policies in practise for perishable 
products in case of pre-specified reorder schedules combined with an unknown age-distribution of the 
items in stock. This study focuses on a situation with non-stationary demand and mixed LIFO-FIFO 
withdrawal. 
 
3.  Modelling the retail situation 
To be able to model the stochastic dynamics for this problem, it is necessary to first identify the 
underlying characteristics of the practical situation. These characteristics are discussed in Section 3.1 
and the model in Section 3.2. The order schedule is given by pre-specified days of the week, which 
results in a limited number of possible replenishment schedules that is discussed in Section 3.3. The 
approaches to determine order policies are presented in Section 3.4. 
 
3.1  Retail situation description 
In this study, a period t in the model is a day at the store, from opening until closing time. In the retail 
practice of perishable products, mostly the order quantity Qt of today is delivered the next day, so the 
lead time is 1 day. We aim to develop and evaluate order policies that do not need age-information of 
the items in stock. In the model, the sequence of events is as follows:  

1. Store opening  
2. Delivery of quantity Qt−1 if Qt−1 > 0 
3. Ordering of quantity Qt if reordering is allowed according to the schedule 

4. Demand during the day from a mixed FIFO and LIFO withdrawal, aging of remaining items in 
stock and disposal of wasted items, at store closure 

At the moment of the order decision, the previous order has arrived, so there is no outstanding order. 
The order quantity is based on the on-hand inventory and the expected demand during the replenishment 
cycle. At the end of day t, the inventory level Ibt is realized for items of all ages b. So, items that are 
delivered on day t in quantity Qt−1, have age b = 1 at the end of day t. Items with an age reaching the 
shelf life b = M, are waste and removed from the shelf at the end of the day. In case of waste, the 
purchasing cost is lost. The time horizon T is 7 days, where t = 1 is Monday. The inventory at the end 
of Sunday (T = 7) transfers to Monday morning.  
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The demand is independently Poisson distributed with expectation µt for day t where we consider values 
obtained from a practical case. When demand is higher than the inventory level, sales are lost and the 
inventory level will be zero. Moreover, we consider a mixed LIFO-FIFO withdrawal, where the number 
of customers buying LIFO is binomially distributed. Section 3.2 presents the stochastic evaluation model 
for this problem.  
 

Table 1. Used symbols 
Indices  
t:  Day of the week, t = 1,..,7, T = 7 
b: Age of the item in stock, b = 1,..,M, M = 3 
r: Replenishment cycle length  
L: Lead time, L = 1 
Data  
c: Purchasing cost per item 
µt: Expected demand day t 
dt: Random demand day t, Poisson distributed 
Frt( ): Cumulative distribution function of demand dt+1+..+dt+r 
α: Service level requirement as probability 
λ: Probability a client selects according to LIFO 
ŜL+r,t :  Basic order-up-to level  
𝑄𝑄�𝑟𝑟𝑟𝑟.: Basic order quantity, 𝑄𝑄�𝑟𝑟𝑟𝑟 = 𝐹𝐹𝑟𝑟𝑟𝑟−1(𝛼𝛼)  
Variables  
Qt: Quantity ordered on day t 
Ibt: Number of items in stock of age b at the end of day t 
S: Order-up-to level   
Sal: Order-up-to level S after lead time  

 
3.2  Stochastic evaluation model 
In the discussion about the model with the stakeholders, we realized that in fact traditional concepts 
from inventory control like inventory holding cost, reorder cost and even the salvage value of the waste 
were not relevant for this practical situation. This means that in this situation, minimization of cost and 
minimization of waste coincide. The general reorder decision problem can be formulated as a stochastic 
optimization model that minimizes purchasing cost. 
 
Min {𝐸𝐸(𝑇𝑇𝑇𝑇) = ∑ 𝐸𝐸(𝑐𝑐𝑄𝑄𝑟𝑟)𝑇𝑇

𝑟𝑟=1 }      (1) 
 
Let (x)+ = max{x, 0}. The inventory balance for the total inventory of all ages is given by:  
 
∑ 𝐼𝐼𝑏𝑏𝑟𝑟 =𝑀𝑀
𝑏𝑏=1 �∑ 𝐼𝐼𝑏𝑏,𝑟𝑟−1 + 𝑄𝑄𝑟𝑟−1 − 𝑑𝑑𝑟𝑟𝑀𝑀−1

𝑏𝑏=1 �+    𝑡𝑡 = 1, . . ,𝑇𝑇      (2) 
 
where t – 1 = 0 corresponds to T = 7 in our case. Period t starts with the inventory levels at the end of 
period t − 1 of ages b = 1,.., M – 1, since items of age M are waste. The starting inventory is increased 
by the delivery Qt–1 minus the demand in period t, giving the end inventory.  
The service level requirement is modelled as 
 
𝑃𝑃�𝑑𝑑𝑟𝑟 ≤ ∑ 𝐼𝐼𝑏𝑏,𝑟𝑟−1 + 𝑄𝑄𝑟𝑟−1𝑀𝑀−1

𝑏𝑏=1 � ≥ 𝛼𝛼    𝑡𝑡 = 1, . . ,𝑇𝑇      (3) 
 
The probability that demand is met from available inventory should be at least α. This type of service 
level is known as α-service level or cycle service level (CSL). We apply a minimal service level 
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constraint as studied by Chen and Krass (2001), where for every day, on average, the service level has 
to be met. A long-run average service level constraint is easier to meet, but can cause under-achievement 
of the service level on a specific day. This is undesirable in a retail situation. 
Equations (4) and (5) model the inventory levels in case of only LIFO withdrawal, where demand is 
fulfilled first by the freshest items before the older items.  
 
𝐼𝐼1𝑟𝑟 = (𝑄𝑄𝑟𝑟−1 − 𝑑𝑑𝑟𝑟)+      𝑡𝑡 = 1, . . ,𝑇𝑇     (4) 

𝐼𝐼𝑏𝑏𝑟𝑟 = �𝐼𝐼𝑏𝑏−1,𝑟𝑟−1 − �𝑑𝑑𝑟𝑟 − 𝑄𝑄𝑟𝑟−1 − ∑ 𝐼𝐼𝑗𝑗,𝑟𝑟−1
𝑏𝑏−2
𝑗𝑗=1 �

+�
+

   𝑡𝑡 = 1, . . ,𝑇𝑇; 𝑏𝑏 = 2, . . ,𝑀𝑀    (5) 
 
The distribution of demand into LIFO and FIFO follows a binomial distribution, with 0 ≤ λ ≤ 1 the 
fraction of customers that choose the items according to LIFO. This means that the dynamics of 
Equations (4) and (5) is first followed for (binomially drawn) λ% of the customers and then for (1-λ)% 
of the customers it follows the FIFO dynamics of equations (6) and (7), where demand is fulfilled first 
by the oldest items before the fresher items.  
 

𝐼𝐼𝑏𝑏𝑟𝑟 = �𝐼𝐼𝑏𝑏−1,𝑟𝑟−1 − �𝑑𝑑𝑟𝑟 − ∑ 𝐼𝐼𝑗𝑗, 𝑟𝑟−1
𝑀𝑀−1
𝑗𝑗=𝑏𝑏 �+�

+
   𝑡𝑡 = 1, . . ,𝑇𝑇; 𝑏𝑏 = 2, . . ,𝑀𝑀      (6) 

 
describe the levels of waste and the older items in stock, whereas 
 
𝐼𝐼1𝑟𝑟 = 𝑄𝑄𝑟𝑟−1 − �𝑑𝑑𝑟𝑟 − ∑ 𝐼𝐼𝑏𝑏,𝑟𝑟−1

𝑀𝑀−1
𝑏𝑏=1 �+    𝑡𝑡 = 1, . . ,𝑇𝑇     (7) 

 
give the freshest items in stock. Finally, the model keeps track of nonnegativity and the balance at the 
end of the week, where the final order will be the first delivery on Monday the next week. 
 
𝑄𝑄0 = 𝑄𝑄𝑇𝑇             (8) 
𝑄𝑄𝑟𝑟 ≥ 0        𝑡𝑡 = 1, . . ,𝑇𝑇     (9) 
𝐼𝐼𝑏𝑏𝑟𝑟 ≥ 0        𝑡𝑡 = 1, . . ,𝑇𝑇; 𝑏𝑏 = 1, . . ,𝑀𝑀  (10) 
 
The last order quantity QT of the time horizon equals the first delivery Q0 of the time horizon (9). The 
inventory levels of items of all ages are nonnegative (10), this implies that if demand exceeds available 
inventory, excess demand is lost and inventory levels are zero.  
 
3.3 Replenishment schedules 
In the retail situation under study, ordering takes place on predetermined days of the week according to 
an order schedule. The use of a base-stock policy is popular, because it is easy to apply in practice and 
has more flexibility in the order quantity than a constant order policy. In a base-stock policy (BSP), an 
order-up-to level S determines the order quantity Q. We call such a policy a YS policy. Let Yt = 1 when 
there is an order on day t and Yt = 0 when no order takes place. Given the order schedule Y, values for 
day dependent order-up-to levels St should be found for each day t of the week. The order quantity in 
terms of an order-up-to policy is determined by 
 
𝑄𝑄𝑟𝑟 = �𝑆𝑆𝑟𝑟 − 𝑄𝑄𝑟𝑟−1 − ∑ 𝐼𝐼𝑏𝑏,𝑟𝑟−1

𝑀𝑀−1
𝑏𝑏=1 �+,        (11) 

 
depending on the amount of stock that is still acceptable for use. Given a target α-service level, the value 
St for which the in-stock probability is α for Poisson distributed demand is a value 𝑆𝑆 ∈ {0,1,2,3, . . . }, 
such that  



7 
 

 

𝑃𝑃(𝑑𝑑 ≤ 𝑆𝑆) = 𝑒𝑒−𝜇𝜇 ∑ 𝜇𝜇𝑖𝑖

𝑖𝑖!
𝑆𝑆
𝑖𝑖=0 ≥ 𝛼𝛼.         (12) 

 
Standard textbooks like (Chopra and Meindl, 2016) describe the derivation of the order-up-to level in a 
periodic review system taking demand during lead time L and the replenishment cycle r ≤ M into 
account. The Poisson distribution allows us to calculate order-up-to levels for all possible replenishment 
cycle lengths r and lead time L by summing expected demand over the days. We call these order-up-to 
levels the basic order-up-to levels ŜL+r,t  for ordering for r periods in period t as described in (Hendrix et 
al., 2015). The values for S can easily be derived using an Excel or Matlab search routine.  
 
Two issues make this analysis less appropriate for the case we study. First, the described concept to 
include the lead time demand in the order-up-to level is based on a backlogging situation, which is not 
reflecting a retail stock-out situation. When at the start or during period t a stock-out occurs, the order 
quantity Qt will be higher than necessary. Secondly, in a perishable inventory situation, waste may occur 
during the replenishment cycle. In case of lost sales during the lead time, one can determine the order 
quantity based on the following reasoning. Let Frt(.) be the cumulative distribution function of demand 
dt+1+..,+dt+r during the replenishment cycle of length r, then  
 
𝑄𝑄�𝑟𝑟𝑟𝑟 = 𝐹𝐹𝑟𝑟𝑟𝑟−1(𝛼𝛼)           (13) 
 
gives the amount that should at least be in stock at the beginning of the next day. In an out-of-stock 
situation in period t, this quantity is exactly the amount to be ordered. Figure 1 shows the time frame of 
the used symbols. 

 
Fig 1. Time frame of used symbols and possible age-distribution for a replenishment cycle of r = 3 periods 

considering L = 1 
 

Consider a starting inventory ∑ 𝐼𝐼𝑏𝑏,𝑟𝑟−1
𝑀𝑀−1
𝑏𝑏=1 + 𝑄𝑄𝑟𝑟−1 = 0, minimizing the order quantity fulfilling the 

chance constraint (3) (i.e., Qt ≥ 𝑄𝑄�𝑟𝑟𝑟𝑟.) implies that the optimal order quantity is Qt = 𝑄𝑄�𝑟𝑟𝑟𝑟. 
In case waste occurs during the replenishment cycle, basic order-up-to level Ŝr+1,t  is too low, so we 
should correct the order quantity for the expected waste. The challenge is how to determine this amount. 
The delivery schedule and consequently order timing is determined by the warehouse, based on the 
weekly demand pattern and lead time. Stakeholder information shows that if the supermarket is not daily 
replenished, delivery takes place on Monday and/or Tuesday, Thursday and/or Friday, and Saturday. 

Qt or

t t+1 t+2

r

t+3

ŜL+r,t

L

St

I2,t−1

 

St+3

I3,t+2

I3,t+1

I2,t+1I1t

I2t
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I1,t−1
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The 9 resulting suitable order schedules are listed in Table 2; five schedules with four order moments 
and four schedules with three order moments. Order policies for daily ordering are discussed in (Hendrix 
et al.,2023). 
 

Table 2. Pre-specified order schedules from practice 
Schedule Reorder days 
mwfs Monday – Wednesday – Friday – Sunday 
mtfs Monday – Thursday – Friday – Sunday 
wtfs Wednesday – Thursday – Friday – Sunday 
mwtf Monday – Wednesday – Thursday – Friday 
ttfs Tuesday - Thursday – Friday – Sunday 
wfs Wednesday - Friday – Sunday 
mwf Monday – Wednesday – Friday 
mtf Monday – Thursday – Friday 
Tfs Tuesday – Friday. – Sunday 

 
Finding good order policies for non-daily ordering with pre-specified order schedules requires an 
approach that considers the varying replenishment cycle length. 
 
3.4  Approaches to determine order policy parameter values 
The aim of this investigation is to develop and investigate order policies that are suitable for use in 
practice with pre-specified order schedules, without requiring information on the age-distribution of the 
inventory. Four approaches are described. The approaches vary in accuracy, calculation time and 
practical applicability. We compare the approaches numerically in Section 4. 
 
YQSEW (Expected Waste) approach: For this approach based on SEW in (Hendrix et al 2023), the 
basic order-up-to level Ŝr+1,t  is used. The actual order quantity Qt is calculated using Eq. (11) corrected 
by an expected waste estimate considering a mixed expected LIFO − FIFO demand and the inventory 
dynamics. For pre-specified reorder moments, the previous replenishment cycle might be of length r = 
M, such that the starting inventory in stock equals zero for sure. The appropriate order quantity is given 
by Eq. (13). When at the start or during period t a stock-out occurs, the order quantity Qt will be higher 
than necessary. A practical way to deal with the lost sales during lead time is to take as order quantity  
𝑄𝑄𝑟𝑟 = 𝑄𝑄�𝑟𝑟𝑟𝑟 if 𝑄𝑄𝑟𝑟−1 + ∑ 𝐼𝐼𝑏𝑏,𝑟𝑟−1 − 𝜇𝜇𝑟𝑟 ≤ 0𝑀𝑀−1

𝑏𝑏=1 .  
 
YQS augmented heuristic: This approach based on SEW in (Hendrix et al 2023) also uses basic order-
up-to level Ŝr+1,t . The actual order quantity Qt is calculated using Eq. (11), but in case the replenishment 
cycle is of length r = M, or when at the start or during period t a stock-out occurs, the order quantity is 
taken according to Eq. (13). In a simulation-optimisation approach, if in a simulation the average CSL 
is below the target on one or more days t, the order-up-to level of the previous order moment of the 
minimum average CSL value is augmented by one unit. The new order-up-to levels St are input in a new 
simulation run, until for all days the target CSL is met, resulting in a vector (S1, S2,.., S7) of order-up-to 
levels that meets the CSL requirement. 
 
YQSal incremented basic order-up-to level: Textbooks like Chopra and Meindl (2016) focus on an 
order-up-to level St that covers the lead time and the upcoming replenishment cycle. The order quantity 
is determined using the available inventory at the beginning of the day (Eq. (11)). Alternatively, consider 
the value for St to cover only the replenishment cycle after lead time. We call this order-up-to level S 
after lead time: Sal, which provides a lower safety stock level than using the previously defined order-
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up-to level Ŝr+1,t. The basic 𝑆𝑆𝑎𝑎�𝑙𝑙𝑟𝑟 is determined by Eq. (13), so 𝑆𝑆𝑎𝑎�𝑙𝑙𝑟𝑟 = 𝑄𝑄�𝑟𝑟𝑟𝑟. The order quantity is 
determined based on the anticipated inventory level at the end of the day, where the expected demand 
is subtracted from the inventory level at the beginning of the day. The corresponding order quantity is 
given by 
 

𝑄𝑄𝑟𝑟 = �
𝑆𝑆𝑎𝑎�𝑙𝑙𝑟𝑟if  𝑟𝑟 = 𝑀𝑀

�𝑆𝑆𝑎𝑎�𝑙𝑙𝑟𝑟 − ��𝑄𝑄𝑟𝑟−1 +∑ 𝐼𝐼𝑏𝑏,𝑟𝑟−1 − 𝜇𝜇𝑟𝑟𝑀𝑀−1
𝑏𝑏=1 �+��

+
if  𝑟𝑟 < 𝑀𝑀

     (19) 

 
Although the basic order-up-to levels 𝑆𝑆𝑎𝑎�𝑙𝑙𝑟𝑟 may lead to acceptable performance, the parameter 
setting may not be optimal and might violate the service level requirement due to waste during the 
replenishment cycle. Using a simulation-optimisation procedure, we varied the levels of 𝑆𝑆𝑎𝑎�𝑙𝑙𝑟𝑟 
adding values in the range {0,..,5} if r < M, resulting in incremented order-up-to levels Sal, that are 
corrected for waste during the replenishment cycle.  
 
Order schedules including three order moments require an enumeration of at most of 63 = 216 
vectors Sal to be tested. This number becomes 62 = 36, if one of the order quantities is fixed. Order 
schedules with four order moments have at most 64 = 1296 combinations to simulated. 
The simulation-optimization procedure evaluates performance of a vector of order-up-to levels 𝑆𝑆𝑎𝑎�𝑙𝑙𝑟𝑟 
on attained service levels and related costs. Functions 𝑇𝑇𝑇𝑇� (𝑆𝑆𝑎𝑎𝑙𝑙) (20) and 𝑐𝑐𝑐𝑐𝑙𝑙� (𝑆𝑆𝑎𝑎𝑙𝑙) (21) return the 
estimators of total costs and reached service levels respectively based on demand realisations d. 
Aiming at α = 0.90, a sample size of N = 5000 gives a rule of thumb accuracy of about 0.005 for 
estimators 𝑇𝑇𝑇𝑇� and 𝑐𝑐𝑐𝑐𝑙𝑙�  (Hendrix et al., 2015). 
TCi in equation (20) measures simulated costs of week i, given a vector Sal. This is simulated for 
N weeks and averaged accordingly to obtain estimator 𝑇𝑇𝑇𝑇� . 

𝑇𝑇𝑇𝑇� (𝑆𝑆𝑎𝑎𝑙𝑙) = 1
𝑁𝑁
∑ 𝑇𝑇𝑇𝑇𝑖𝑖(𝑆𝑆𝑎𝑎𝑙𝑙)𝑁𝑁
𝑖𝑖=1          (20) 

Attained service levels are retrieved in a similar way. The indicator function γt(Sal, d) equals one 
when all demand during period t could be met from stock, and zero if a stock-out occurs. 

𝛾𝛾𝑟𝑟(𝑆𝑆𝑎𝑎𝑙𝑙,𝑑𝑑) = �1   if 𝑑𝑑 ≤ ∑ 𝐼𝐼𝑏𝑏𝑟𝑟𝑀𝑀−1
𝑏𝑏=1 − 𝑄𝑄𝑟𝑟−1

0   otherwise
       (21) 

This translates the service level constraint into  

𝑐𝑐𝑐𝑐𝑙𝑙�𝑟𝑟(𝑆𝑆𝑎𝑎𝑙𝑙) = 𝑃𝑃�𝑑𝑑 ≤ ∑ 𝐼𝐼𝑏𝑏𝑟𝑟𝑀𝑀−1
𝑏𝑏=1 − 𝑄𝑄𝑟𝑟−1� = 𝐸𝐸 𝛾𝛾𝑟𝑟 (𝑆𝑆𝑎𝑎𝑙𝑙,𝑑𝑑)      (22) 

Now, N sample paths are tested to estimate this probability. The average service level is 

𝑐𝑐𝑐𝑐𝑙𝑙�𝑟𝑟(𝑆𝑆𝑎𝑎𝑙𝑙) = 1
𝑁𝑁
∑ 𝛾𝛾𝑟𝑟(𝑆𝑆𝑎𝑎𝑙𝑙,𝑑𝑑𝑖𝑖)𝑁𝑁
𝑖𝑖=1          (23) 

The minimum cost order-up-to level vector Sal that meets the service level criterion is chosen. 
 
YQ reduced order quantity: Minner and Transchel (2010) showed that in certain situations, a COP 
performs reasonably well. Therefore, we also examine a YQ policy implying a fixed order quantity 
for each order moment. A sound starting point to determine optimal order quantities Qt is the basic 
order-up-to level 𝑆𝑆𝑎𝑎�𝑙𝑙𝑟𝑟 = 𝑄𝑄�𝑟𝑟𝑟𝑟 as described by Eq. (13). As these levels provide upper bounds, it is 
expected that the quantities need to be adjusted downwards in an optimisation step. A finite number 
of vectors is assessed in a similar way as followed by the YQSal approach. Now the value is adjusted 
downwards using values {-5 (occasionally -7),.., 0}.  
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4.   Numerical evaluation 
We evaluate the described order policy approaches. The design of experiments is described in 
Section 4.1, followed by the obtained results in Sections 4.2 and 4.3.  
 
4.1  Design of experiments 
All approaches are evaluated in a rolling horizon simulation of 10,000 weeks using pseudo random 
samples from the Poisson - and the binomial distribution. The expected demand µt varies during the 
week and is taken from observed data in a practical retail case regarding iceberg lettuce. The 
evaluated three demand patterns are shown in Table 3 and Figure 2; a base demand, double base 
demand and a pattern with higher peaks on Wednesday and Saturday. The target CSL is taken as 
90%.  
 

Table 3. Expected Poisson demand 
 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 
Periods t 1 2 3 4 5 6 7 
Base µt 3.5 2.3 3.0 2.8 4.5 4.2 2.0 
Double base µt 7.0 4.6 6.0 5.6 9.0 8.4 4.0 
Peaks µt 2.6 2.9 4.4 2.0 3.6 8.5 5.9 

 

 
Fig. 2. Evaluated patterns of expected demand during the week, where day 1 corresponds to Monday 

 
The variable purchasing cost is c = 1 per unit. As a result, the average total cost per week is equal 
to the average order quantity per week. The practitioners in retail we consulted, estimate a LIFO 
fraction of about 0.4 to be realistic. For the base demand pattern, we vary the fraction of LIFO 
demand λ ϵ {0, 0.4, 0.6} for all schedules. To show the effect of partly LIFO demand on the order 
policies and the average amount of waste, also the situation of only FIFO withdrawal and a LIFO 
fraction of 0.6 are investigated for the base demand pattern. The other demand patterns are 
evaluated for a LIFO fraction of λ = 0.4, for all schedules.  
 
4.2  Results  
Tables 4 and 5 present the simulation results for the approaches for nine pre-specified reorder schedules. 
In Table 4, the LIFO fractions are varied for the base demand pattern. Table 5 gives the results for three 
demand patterns and a fixed LIFO fraction of λ = 0.4. For all approaches, a higher LIFO fraction leads 
to higher costs and waste. The results substantially vary per schedule. For example, for the YQ reduced 
approach and a LIFO fraction of λ = 0.4, schedule mtf (€31) is 14.8% more expensive than schedules 
mwfs and wtfs (€27) for the base demand. The results of schedule mtf are equal for all approaches for 
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the base demand. This schedule has the highest costs, because it requires the highest order quantities, 
due to two replenishment cycles of a length equal to the maximum shelf life M. However, the schedule 
is robust for all LIFO fractions, where a higher LIFO fraction λ implies more waste and a lower service 
level. Table 7 shows the same effect for schedule mtf in case of double base demand. The YQSEW 
approach does not meet the CSL target with four out of five reorder schedules with four order moments, 
for all demand patterns. The YQS augmented and YQSal incremented policies generate seven times the 
same parameters, for base demand and λ = 0.4, and four times for a double base demand. For two other 
schedules, mtfs and wtfs, the results of those policies are very close. For the peaks demand pattern, all 
approaches give different solutions, except in schedules mtf and tfs. In general, in most schedules, a 
more expensive approach generates more waste, but provides also higher cycle service levels.  
 

Table 4. Results for the 9 pre-specified reorder schedules with base demand: LIFO fractions λ = 0, 0.4, 0.6 
  YQSEW YQS augmented YQSal incremented YQ reduced 
 λ avgTC avgTW minSL avgTC avgTW minSL avgTC avgTW minSL avgTC avgTW minSL 
mwfs 0.0 26.51 4.55 0.92 26.09 4.32 0.92 25.52 3.86 0.91 26.00 4.28 0.90 

0.4 28.84 6.98 0.89 28.06 6.42 0.91 27.94 6.34 0.91 27.00 5.42 0.90 
0.6 29.76 8.04 0.83 30.03 8.39 0.90 30.20 8.52 0.91 29.00 7.25 0.93 

mtfs 0.0 27.39 5.66 0.90 28.56 6.79 0.91 27.42 5.85 0.90 27.00 5.44 0.90 
0.4 27.93 6.36 0.84 28.97 7.27 0.92 27.87 6.33 0.90 28.00 6.44 0.90 
0.6 28.11 6.89 0.70 29.39 7.72 0.92 29.26 7.66 0.90 29.00 7.41 0.90 

wtfs 0.0 28.22 6.38 0.94 28.08 6.30 0.92 28.08 6.30 0.92 28.00 6.24 0.93 
0.4 28.91 7.13 0.93 29.07 7.33 0.92 29.07 7.33 0.92 29.00 7.23 0.93 
0.6 29.77 7.99 0.93 30.21 8.45 0.93 30.21 8.45 0.93 30.00 8.20 0.93 

mwtf 0.0 27.90 6.23 0.88 27.89 6.16 0.91 27.89 6.16 0.91 28.00 6.31 0.91 
0.4 28.40 6.85 0.84 28.36 6.75 0.90 28.36 6.75 0.90 28.00 6.42 0.90 
0.6 28.73 7.25 0.83 29.64 7.99 0.91 29.64 7.99 0.91 29.00 7.39 0.91 

ttfs 0.0 25.20 3.41 0.92 25.53 3.76 0.92 25.08 3.40 0.90 25.00 3.38 0.90 
0.4 26.93 5.34 0.84 27.88 6.26 0.91 27.88 6.26 0.91 27.00 5.37 0.91 
0.6 28.29 6.88 0.78 30.71 9.03 0.92 30.10 8.43 0.91 29.00 7.27 0.90 

wfs 0.0 28.87 6.93 0.93 27.39 5.63 0.90 28.30 6.45 0.93 28.00 6.21 0.92 
0.4 30.32 8.40 0.94 30.08 8.22 0.93 30.08 8.22 0.93 29.00 7.24 0.91 
0.6 32.07 10.11 0.94 30.46 8.69 0.91 30.46 8.69 0.91 31.00 9.12 0.93 

mwf 0.0 29.42 7.46 0.91 27.95 6.16 0.91 27.95 6.16 0.91 28.00 6.24 0.91 
0.4 31.05 9.12 0.91 29.47 7.73 0.91 29.47 7.73 0.91 29.00 7.28 0.91 
0.6 32.02 10.09 0.91 30.85 9.07 0.91 30.85 9.07 0.91 30.00 8.24 0.91 

mtf 0.0 31.00 9.18 0.91 31.00 9.18 0.91 31.00 9.18 0.91 31.00 9.18 0.91 
0.4 31.00 9.20 0.92 31.00 9.20 0.92 31.00 9.20 0.92 31.00 9.20 0.92 
0.6 31.00 9.22 0.92 31.00 9.22 0.92 31.00 9.22 0.92 31.00 9.22 0.92 

tfs 0.0 28.18 6.37 0.91 28.29 6.49 0.91 28.29 6.49 0.91 28.00 6.26 0.91 
0.4 29.57 7.78 0.91 29.92 8.17 0.91 29.92 8.17 0.91 29.00 7.30 0.91 
0.6 31.18 9.33 0.91 30.24 8.58 0.91 31.14 9.40 0.91 30.00 8.26 0.91 
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Table 5. Results for the 9 pre-specified reorder schedules for 3 demand patterns: LIFO fraction λ = 0.4 
Demand pattern Base demand Double base demand Peaks demand 
 Approach avgTC avgTW minSL avgTC avgTW minSL avgTC avgTW minSL 
mwfs YQSEW 28.84 6.98 0.89 50.05 6.38 0.84 36.27 7.13 0.81 
 YQS augm 28.06 6.42 0.91 51.40 7.66 0.92 38.43 9.32 0.90 
 YQSal 27.94 6.34 0.91 50.18 6.59 0.91 37.61 8.56 0.91 
 YQ  27.00 5.42 0.90 50.00 6.36 0.91 36.00 6.97 0.90 
mtfs YQSEW 27.93 6.36 0.84 50.70 7.32 0.81 36.66 7.73 0.78 
 YQS augm 28.97 7.27 0.92 52.36 8.69 0.91 39.51 10.30 0.92 
 YQSal 27.87 6.33 0.90 52.26 8.63 0.90 38.27 9.22 0.91 
 YQ  28.00 6.44 0.90 53.00 9.31 0.92 38.00 8.86 0.91 
wtfs YQSEW 28.91 7.13 0.93 53.10 9.26 0.91 39.93 10.50 0.94 
 YQS augm 29.07 7.33 0.92 53.19 9.43 0.91 39.67 10.40 0.92 
 YQSal 29.07 7.33 0.92 53.15 9.45 0.91 38.47 9.38 0.91 
 YQ  29.00 7.23 0.93 53.00 9.26 0.91 38.00 8.82 0.90 
mwtf YQSEW 28.40 6.85 0.84 52.73 9.19 0.84 38.72 9.61 0.80 
 YQS augm 28.36 6.75 0.90 52.80 9.09 0.91 38.62 9.34 0.93 
 YQSal 28.36 6.75 0.90 52.80 9.09 0.91 37.45 8.32 0.91 
 YQ  28.00 6.42 0.90 53.00 9.28 0.91 38.00 8.81 0.91 
ttfs YQSEW 26.93 5.34 0.84 49.49 5.78 0.87 37.08 7.87 0.84 
 YQS augm 27.88 6.26 0.91 51.04 7.35 0.91 38.88 9.70 0.91 
 YQSal 27.88 6.26 0.91 50.50 6.92 0.90 37.70 8.64 0.90 
 YQ  27.00 5.37 0.91 50.00 6.35 0.90 36.00 6.84 0.90 
wfs YQSEW 30.32 8.40 0.94 54.24 10.25 0.94 40.10 10.62 0.94 
 YQS augm 30.08 8.22 0.93 53.49 9.64 0.91 39.32 9.98 0.92 
 YQSal 30.08 8.22 0.93 53.49 9.64 0.91 38.20 8.97 0.90 
 YQ  29.00 7.24 0.91 53.00 9.21 0.90 38.00 8.71 0.90 
mwf YQSEW 31.05 9.12 0.91 54.64 10.94 0.93 39.38 9.92 0.93 
 YQS augm 29.47 7.73 0.91 53.99 10.11 0.92 38.93 9.59 0.92 
 YQSal 29.47 7.73 0.91 53.99 10.11 0.92 37.95 8.71 0.91 
 YQ  29.00 7.28 0.91 54.00 10.13 0.92 38.00 8.78 0.91 
mtf YQSEW 31.00 9.20 0.92 56.00 12.20 0.90 40.00 10.69 0.91 
 YQS augm 31.00 9.20 0.92 56.00 12.20 0.90 40.00 10.69 0.91 
 YQSal 31.00 9.20 0.92 56.00 12.20 0.90 39.00 9.78 0.91 
 YQ  31.00 9.20 0.92 56.00 12.20 0.90 39.00 9.78 0.91 
tfs YQSEW 29.57 7.78 0.91 55.01 11.01 0.92 41.07 11.60 0.91 
 YQS augm 29.92 8.17 0.91 54.81 10.93 0.92 40.11 10.85 0.91 
 YQSal 29.92 8.17 0.91 53.86 10.08 0.91 40.11 10.85 0.91 
 YQ  29.00 7.30 0.91 54.00 10.16 0.92 38.00 8.78 0.91 

 
4.3.  Computational aspects 
With respect to the computational aspects of the four described approaches to determine order policies, 
we found the following. The YQSEW approach offers easy and fast calculation rules to determine the 
order quantity. The determination of the parameters with the simulation-optimization approaches, YQS 
augmented, YQSal incremented and YQ reduced require far more computation time. Computing time is 
hard to compare among the implemented methods, because different software and processors were used. 
The computational speed also depends on the way of programming. For the investigated experiments, 
the YQS augmented heuristic needs 2.4 s to 15.3 s. There is no clear distinction in time between three or 
four order moments. These experiments were performed in Matlab, on an Intel Core i7-4770 CPU @ 
3.40 GHz desktop processor.  
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YQSal incremented and YQ reduced have been programmed in Python on an Intel Xeon X3450 @ 2.67 
Ghz server processor. For the pre-specified reorder schedules, the computation time of YQSal and YQ 
depends on the range needed to obtain satisfactory results and the number of Sal or Q values that can be 
varied (after a replenishment cycle of M days, the values are fixed). For all demand patterns, a range of 
6 values was used. YQSal needs 2.3 to 14.8 min for four order moments, and 23.1 to 3.64 s for three 
order moments. YQ needs 11.9 min for four order moments and 116 s for three order moments. 
 
5.  Discussion 
In the retail situation we describe, ordering takes place on pre-specified days of the week according 
to reorder schedules provided by stakeholders. This implies that fixed ordering cost and holding cost do 
not influence the decision on the order quantity. Therefore, these costs were not included in the model. 
In this paper, disposal costs or salvage values of wasted items are not considered. In case of waste, the 
purchasing cost is lost. For future research, a disposal cost or salvage value (negative cost) of wasted 
items may be included in the model, additional to the selling price of the product. Like in the newsvendor 
problem, considering a profit margin may lead to higher stock keeping and consequently to higher waste 
and service levels. 
 
We assume that an order can contain any integer number of items. When products are ordered in 
batches, this will have a negative effect on costs and waste, if the service level requirement remains 
unchanged.  
 
6.  Conclusion 
The research question of this paper deals with the development and investigation of order policies 
for a Dutch retail situation with pre-specified reorder schedules, varying replenishment cycle 
lengths and a cycle service level requirement, when the age-distribution of the inventory is 
unknown. We investigated a retail situation where a product has a fixed shelf life of three days upon 
delivery, demand is non-stationary during the week, but stationary over the weeks, with a mixed LIFO-
FIFO depletion and a lead time of one day. 
 
Table 6 gives an overview of the studied approaches and an indication of the required computation time 
to find the corresponding optimal parameter values.  
 

Table 6. Overview of studied approaches with computation time indication 
Approach  |  Characteristics 4 / 3 reorder days 
YQSEW < second 
YQS augmented heuristic seconds 
YQSal incremented minutes / seconds 
YQ reduced minutes 

 
For all reorder schedules and demand patterns, the minimum amount of waste is realised by the 
lowest cost approach. This is a logical consequence in absence of the disposal cost or salvage value 
and not focusing on a profit margin. 
 
All designed approaches can be implemented without knowledge of the age-distribution of items 
in stock. Overall, the YQ reduced approach generates the best policy parameters. YQSal 
incremented is second best and performs slightly better than the YQS augmented heuristic. 
Considering the computation time, it is up to the logistics department of a retail organisation 
whether the YQ reduced approach can be implemented. Potentially, computing time can be reduced 
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by further programming investment or increase computing power. For a fast computation option, 
the YQS augmented heuristic can be a good alternative.  
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