
The Journal of Systems & Software 197 (2023) 111579

t
2
i
t
m
s
e
p
t
d
b
b

✩

(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Amodularmetamodel and refactoring rules to achieve software
product line interoperability✩,✩✩

Jose-Miguel Horcas ∗, Mónica Pinto, Lidia Fuentes
Andalucía Tech, ITIS Software, Universidad de Málaga, Spain

a r t i c l e i n f o

Article history:
Received 13 January 2022
Received in revised form27 September 2022
Accepted 30 November 2022
Available online 5 December 2022

Dataset link: https://github.com/CAOSD-gr
oup/rhea

Keywords:
Variability modeling language
Modular metamodel
Model refactoring
Model specialization
Interoperability
Edge computing

a b s t r a c t

Emergent application domains, such as cyber–physical systems, edge computing or industry 4.0.
present a high variability in software and hardware infrastructures. However, no single variability
modeling language supports all language extensions required by these application domains (i.e.,
attributes, group cardinalities, clonables, complex constraints). This limitation is an open challenge
that should be tackled by the software engineering field, and specifically by the software product line
(SPL) community. A possible solution could be to define a completely new language, but this has a
high cost in terms of adoption time and development of new tools. A more viable alternative is the
definition of refactoring and specialization rules that allow interoperability between existing variability
languages. However, with this approach, these rules cannot be reused across languages because each
language uses a different set of modeling concepts and a different concrete syntax. Our approach
relies on a modular and extensible metamodel that defines a common abstract syntax for existing
variability modeling extensions. We map existing feature modeling languages in the SPL community
to our common abstract syntax. Using our abstract syntax, we define refactoring rules at the language
construct level that help to achieve interoperability between variability modeling languages.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
t

1. Introduction

Emergent application domains, such as cyber–physical sys-
ems (Fadhlillah et al., 2021; Krüger et al., 2017; Meixner et al.,
019), edge computing (Cañete et al., 2020; Liu et al., 2019), or
ndustry 4.0 (Wortmann et al., 2020) present a high variability in
erms of software infrastructures (e.g., different kinds of virtual
achines or platforms) and hardware (e.g., IoT devices, cloud
ervers or edge devices). Specifying such diversity in formal mod-
ls allows us to manage variability across products in a software
roduct line (SPL). There are a large number of formal models
o specify variability such as feature models (Kang et al., 1990),
ecision models (Schmid et al., 2011), or OVM (Pohl et al., 2005),
ut feature models stand out as the most popular ones and can
e considered as the de-facto standard for specifying variability

✩ Work supported by the projects MEDEA RTI2018-099213-B-I00, IRIS
PID2021-122812OB-I00 (co-financed by FEDER funds), Rhea P18-FR-1081
(MCI/AEI/FEDER, UE), LEIA UMA18-FEDERIA-157, and DAEMON H2020-
101017109. We would also like to thank Miguel de la Morena Pérez who
worked on the implementation of this study as part of the Rhea project and his
Master Dissertation. Funding for open access: Universidad de Málaga / CBUA.

✩ Editor: Heiko Koziolek.
∗ Corresponding author.

E-mail addresses: horcas@lcc.uma.es (J.-M. Horcas), pinto@lcc.uma.es
M. Pinto), lff@lcc.uma.es (L. Fuentes).
 c

ttps://doi.org/10.1016/j.jss.2022.111579
164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
in SPLs (Raatikainen et al., 2019). Thus, in this paper, we focus on
feature models and feature modeling languages. Feature models
allow to formally specify the variability of a system in terms of
a set of features and the relationships and constraints among
them (Alférez et al., 2019). However, the domains mentioned
above require advanced feature modeling concepts (or language
constructs) to fulfill their specific requirements, beyond those
defined for basic variability modeling (Alférez et al., 2019) — i.e.,
optional and mandatory features to decide whether a feature must
always be present in a product or not, alternative (‘‘xor’’) and
selection (‘‘or’’) groups to decide exclusive feature selections and
allowed combinations of features in a product, and requires or
excludes constraints to specify whether a feature must be present
or excluded in the presence of another feature.

The necessity of using advanced variability modeling can be
easily identified in the edge computing domain. Edge comput-
ing brings computation from data centers towards the edge of
the network, exploiting smart objects, mobile phones or net-
work gateways to perform application tasks, providing services
on behalf of the cloud (Merenda et al., 2020). Edge comput-
ing presents variability at different levels, and this variability
needs to be modeled using advanced variability constructs. For
instance, the functionality level of an edge computing application
is usually defined in terms of a set of tasks (e.g., data cap-
ure, processing, mixing, filtering) where the data type, the data

apturing frequency, or the intermediate buffers’ size present

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2022.111579
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111579&domain=pdf
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
http://creativecommons.org/licenses/by/4.0/
mailto:horcas@lcc.uma.es
mailto:pinto@lcc.uma.es
mailto:lff@lcc.uma.es
https://doi.org/10.1016/j.jss.2022.111579
http://creativecommons.org/licenses/by/4.0/

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

m
ultiple variants in terms of non-Boolean features (e.g., the nu-
merical feature (Munoz et al., 2019) advanced construct). Also,
the hardware level, where the edge computing application is
deployed, requires to configure multiple similar devices with
different configurations (i.e., it requires the use of features with
cardinalities or multi-features (Czarnecki et al., 2005), which is
also an advanced construct). The same occurs with the network
or the software infrastructure levels. All this variability needs to
be formally represented in order to be able to reason about it
(e.g., counting valid products, validating partial configurations,. . .)
and find the best configuration according to certain criteria (e.g.,
energy efficiency). Moreover, once a particular configuration is
created from the variability model, the code to be included in
each part of the system should be automatically generated from
the code of each selected feature. Thus, the language needs to pro-
vide a mapping between the variability model and the artifacts
that implement the features.

Unfortunately, current variability modeling languages and tools
support these advanced characteristics only partially, as demon-
strated in Horcas et al. (2022). For instance, for the scenario
described above, several tools can be used to create the vari-
ability model, such as FeatureIDE (Meinicke et al., 2017), Glen-
coe (Schmitt et al., 2018), UVL (Sundermann et al., 2021), FaMa
(Benavides et al., 2007), or Clafer (Juodisius et al., 2019), but only
Clafer provides support for modeling advanced characteristics
such as numerical features and multi-features. On the other hand,
languages and tools with high expressiveness such as Clafer (Juo-
disius et al., 2019) offer poor performance when reasoning about
variability in large configuration spaces (e.g., counting configura-
tions for large industrial models). While tools with good support
for automatic reasoning, such as Glencoe (Schmitt et al., 2018) or
FaMa (Benavides et al., 2007) are less expressive, only supporting
basic variability constructs (Munoz et al., 2021). In addition, from
the above tools, only FeatureIDE (Meinicke et al., 2017) can be
used to automatically generate the application code for a par-
ticular configuration. To sum up, none of them provide full tool
support to model, reason, and implement variability for modern
application domains, such as edge computing, our motivating
case study.

In this paper, we propose an approach to address the afore-
mentioned problem based on model-driven engineering (MDE)
and metamodeling (Atkinson and Kuhne, 2003) and guided by
the language constructs of feature modeling languages. Despite
the definition of a new feature modeling language (Benavides
et al., 2019; Sundermann et al., 2021) that incorporates all lan-
guage constructs may express all the variability required for most
existing domains, it requires too much effort to develop tools
supporting all its characteristics. In addition, the resulting feature
models could be very difficult to formalize and analyze with
existing solvers. On the opposite side, a succinct core language
with basic constructs, easy to formalize, and that can be sup-
ported by many tools is most likely not sufficient to express the
requirements of industrial domains, as demonstrated in Knüppel
et al. (2017) and illustrated in the edge computing domain (see
Section 2). Our approach provides interoperability between existing
feature modeling languages. It relies on the idea of having a common,
general, and modular abstract syntax (Horcas et al., 2020; Schobbens
et al., 2007) of existing language constructs to model variability.
Interoperability is achieved by representing existing feature modeling
languages in the common abstract syntax and providing model
transformations at the language construct level in terms of the
abstract syntax (see Section 3).

Since the introduction of feature models in 1990 (Kang et al.,
1990), the number of language constructs has increased consider-
ably to cope with the requirements of many different application

domains (Horcas et al., 2022; Galster et al., 2014), including

2

the edge computing domain. Each of these language constructs
(e.g., cardinality-based variability (Czarnecki et al., 2005), multi-
features (Czarnecki et al., 2005); numerical features (Munoz et al.,
2019) or non-Boolean features; attributed feature models (Bena-
vides et al., 2005); and complex constraints (Alférez et al., 2019))
usually comes with its own syntax and semantics, and often coin-
cides with the definition of a completely new modeling language
or a new tool to support it (ter Beek et al., 2019). The complexity
of defining a common language is caused by reaching a com-
promise between, (1) its applicability to several domains with
different requirements (Thüm et al., 2019), i.e., the expressiveness
of its abstract syntax; and (2) the effort to develop practical tools
that can support all language constructs (Horcas et al., 2022). We
present the theory of extensible and modular language constructs
for feature modeling defined in Horcas et al. (2020) and use it to
define a common abstract syntax with a set of well-known language
constructs in the SPL community (ter Beek et al., 2019; Horcas et al.,
2020). Then we apply it to represent the existing feature modeling
languages in the proposed common abstract syntax (see Section 4).

Interoperability and translations between feature modeling
languages are achieved by the definition of edits (Thüm et al.,
2009) and model transformations (Feichtinger, 2021; Feichtinger
and Rabiser, 2020). However, transformations between language
constructs are not always possible without losing information
(e.g., a numerical feature may be translated into a Boolean feature
by discretizing its values in intervals). Although some refactor-
ings (i.e., transformations without lose of information) have been
studied in the literature (Knüppel et al., 2017), they are based
on the concrete syntax of a specific feature model language
and, furthermore, have been formalized only in theory without
demonstrating its viability in practice. As a proof of concept, we
demonstrate the feasibility and applicability of our proposal by
providing (1) an implementation of the common abstract syntax as
a set of modular metamodels (Atkinson and Kuhne, 2003) using the
EMF/Ecore framework (Steinberg et al., 2008); and (2) two different
implementations of a subset of the existing refactorings between lan-
guage constructs to provide interoperability between feature models
(see Section 6).

The rest of the paper is organized as follows. Section 2 presents
the state of the art and motivates our approach with a case
study to better illustrate the requirements that emergent systems
impose in the definition of feature modeling languages. Then
Section 3 describes our approach based on a common abstract
syntax (called CAF) to achieve interoperability. Section 4 formal-
izes CAF, illustrates it with existing language constructs, and map
well-known feature modeling dialects to our common abstract
syntax. Section 5 describes the model transformations between
language constructs focusing on the refactorings that have been
formalized in the literature. Section 6 provides an implementa-
tion of CAF as a proof of concept and evaluates our approach.
Finally, Section 7 concludes the paper.

2. State-of-the-art and motivation

As previously stated, the motivation of our work is based on
the lack of support of current feature modeling languages and
tools to specify variability in emergent application domains, such
as edge computing. We begin the section by contextualizing the
language constructs available for feature modeling and use an ex-
ample in the edge computing domain to illustrate the problematic
(Section 2.1). Then, we summarize the current state of the art
of feature modeling languages and tools (Section 2.2), focusing
on their limitations throughout our example. Finally, we describe
the current works trying to cope with these limitations, either
by defining a new common variability language or providing
interoperability between the existing ones (Section 2.3).

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

t
v
p
2

n
o
d
i
p
s
m
o
b
i

l
(
s
u
t
o
h
o
o
s
d
I

Fig. 1. An excerpt of the feature model of an edge computing system with different types of feature modeling constructs.
2.1. Feature models and language constructs for variability modeling

Features models (FMs) have been widely used to model vari-
ability since their introduction in FODA by Kang et al. (1990) and
have become the de-facto standard for variability modeling in
software product lines (SPLs). FODA (Kang et al., 1990) introduced
the basic characteristics for modeling variability in FMs, such as
mandatory and optional features, alternative (‘‘xor’’) and selection
(‘‘or’’) groups, and requires and excludes constraints between fea-
ures. Due to the success of the FMs for variability modeling, a
ast number of modeling languages and extensions have been
roposed (ter Beek et al., 2019; Benavides, 2019; Schobbens et al.,
007).
Focusing specifically on the language constructs desirable in

owadays application domains, Fig. 1 illustrates the complexity
f modeling the variability of an edge computing application. It
oes not pretend to be a complete model, but a partial one to
llustrate the problems that need to be faced and for which we are
roposing a solution in this paper. It models the variability of a
mart surveillance edge computing application, where the figure
ainly illustrates the variability of the edge nodes that are part
f the application. Notice that the different language constructs
eing used in this feature model are identified with their names
n bold and an arrow pointing to the corresponding feature(s).

An edge computing system presents variability at different
evels, although Fig. 1 illustrates only the variability of edge nodes
EdgeNode feature) and virtual infrastructures (VirtualInfra-
tructure feature). Moreover, for virtual infrastructure we are
sing the feature model composition (Urli et al., 2012) construct
hat makes reference to another feature model. Focusing then
n the edge nodes, an edge computing application will usually
ave multiple edge nodes, all defined in terms of the same set
f features, but configured differently. For instance, with or with-
ut a local storage with different buffer size, providing different
ervices that use different algorithms and data formats, or using
ifferent communication mechanisms or deployment strategies.
n this scenario, multi-features (clonables) (Czarnecki et al., 2005)
are needed to express this variability in a simple and elegant
way, which is to avoid repeating the same feature model sub-
tree for each edge node. Moreover, the number of instances for
each clonable needs also to be specified, and this cannot be done
without using the cardinality associated to multi-features. In our
model, the EdgeNode feature is a multi-feature with a [1..∗]

cardinality. Other examples of language constructs that are com-
monly needed in these systems are group cardinalities (Czarnecki
et al., 2005), numerical features (Munoz et al., 2019), multiple
groups decomposition (Czarnecki and Eisenecker, 2000) or feature
attributes (Benavides et al., 2005). For example, an edge node
may support several Communication mechanisms, but with a
3

minimum of two (i.e., group cardinality is 2..*). The edge node
can be deployed using or not a specific container modeled as a
mutex group (Berger et al., 2014) (i.e., it allows selecting 0 or 1 of
its alternatives). Also, there are many features whose value is not
discrete and thus numerical features are needed (e.g., the type
of the BufferSize feature is Integer). And these numerical
features may be involved in complex cross-tree constraints as for
example that the BufferSize must be at least of 128 MB (128
≤ BufferSize).

The complexity of modeling and analyzing this variability
relies on the lack of existing languages and tools that support all
the presented languages constructs as exposed in the following
section.

2.2. Languages and tool support for feature modeling and analysis

There are many languages and tools for feature modeling
(Bashroush et al., 2017; ter Beek et al., 2019; Horcas et al., 2022;
Galster et al., 2014; Horcas et al., 2020). In this section, we
focus on those selected in the practical study published in earlier
work (Horcas et al., 2022), which corresponds to the feature
modeling languages supported in well-known and widely used
tools in the SPL community for feature modeling (see Table 1).
For these tools, we summarize their language constructs (Ta-
ble 1), automatic analysis support (Table 2) and interoperability
(Table 3).

By observing Tables 1 and 2 the conclusion is that none of
these languages provide all the constructs and the analysis sup-
port needed in nowadays application domains, such as in the
edge computing domain. Moreover, although there is interop-
erability between some tools (Table 3), this is not enough to
easily combine the use of several of these languages in com-
plex scenarios (Berger and Collet, 2019; Horcas et al., 2022;
Galster et al., 2014). Such interoperability is provided by means
of import/export operation of the concrete syntax between lan-
guages of the same expressiveness. Similar results are obtained
by Sepúlveda et al. (2016), where authors identify a low level
of maturity of existing languages due to the lack of an abstract
syntax and low level of expressiveness.

Observing our case study, a practitioner may easily decide
to use Clafer (Juodisius et al., 2019) to model the variability of
the edge computing systems, since Clafer is the most expressive
language currently available (see Table 1). Indeed, Clafer supports
the constructs required by our case study like numerical features
and multi-features. Then, the user needs to analyze the feature
model by checking for inconsistencies, constraint validation, and
calculating the degree of variability by determining the number
of valid products. But, according to the information presented in
Table 2, the automated analysis of a large model, typical of an

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579
Table 1
Language constructs supported by feature modeling tools (ter Beek et al., 2019; Horcas et al., 2022, 2020).

Tools O
pt
io
na

l
fe
at
.

Xo
r
gr
ou

p

O
r
gr
ou

p

Ab
st
ra
ct

fe
at
.

M
ut
ex

-G
ro
up

G
ro
up

Ca
rd

in
al
ity

M
ul
ti

de
co

m
p.

M
ul
ti-

fe
at
ur

e

Ty
pe

d
fe
at
ur

e

N
um

er
ic
al

fe
at
.

Fe
at
.a

tt
ri
bu

te

Bi
nd

in
g
tim

e

D
ef
au

lt
va

lu
e

D
el
ta

va
lu
e

Ra
ng

e

Si
m
pl
e
co

ns
t.

Pr
op

.l
og

.c
on

st
.

Fi
rs
t-
or
de

r
co

ns
t.

Re
la
tio

na
l
ex

pr
.

Ar
ith

m
et
ic

ex
pr

.

Ty
pe

co
ns

t.

D
ef
au

lt
co

ns
t.

Co
m
po

si
tio

ns

Co
nf
.r

ef
er
en

ce

Co
nt
ai
ne

rs

M
od

el
ve

rs
io
n

M
ul
ti-

vi
ew

s

Co
nf
ig
ur

at
io
n

Pa
rt
ia
l
co

nf
.

Glencoe # # # # # # # # # # # # # # # # # # # G# #
SPLOT # # # # # # # # # # # # G# # # # # # # # # # #
FaMa # # # # # # G# # # # G# # # # # # # # # # #
Clafer # G# G# G# # G# G# G# G# G# # #
FeatureIDE # # # # # # G# # # # # # # # # # # # # # #
pure::variants # # # G# # G# G# # # # # # G# G# # # G# G# # #

 : support. G#: partially support. #: not support.
Table 2
Current tool support for automated analysis of feature models (Benavides et al., 2010; Horcas et al., 2022).

Tools Vo
id

fe
at
.m

od
el

#P
ro
du

ct
s

D
ea

d
fe
at
ur

es

Va
lid

pr
od

uc
t

Al
l
pr

od
uc

ts

Ex
pl
an

at
io
ns

Re
fa
ct
or
in
g

O
pt
im

iz
at
io
n

Co
m
m
on

al
ity

Fi
lte

r

Va
lid

co
nf
.

At
om

ic
se
ts

Fa
ls
e
op

tio
na

l

Co
rr
ec

tiv
e
ex

pl
an

.

D
ep

en
d.

an
al
ys
is

EC
R

G
en

er
al
iz
at
io
n

Co
re

fe
at
ur

es

Va
ri
ab

ili
ty

fa
ct
or

Ar
bi
tr
ar
y
ed

it

Co
nd

.d
ea

d
fe
at
.

H
om

og
en

ei
ty

LC
A

M
ul
ti-

st
ep

co
nf
.

Ro
ot
s
fe
at
ur

es

Sp
ec

ia
liz

at
io
n

O
rt
ho

go
na

lit
y

Re
du

nd
an

ci
es

Va
ri
an

t
fe
at
ur

es

W
ro
ng

ca
rd

in
al
.

Glencoe # # # # # # # # #
SPLOT # # # # # # # # # # # # # # # # # #
FaMa G# G# # # G# # G# # # # # G# G# # # # # # # # # # #
Clafer G# # G# # # G# # # G# # # # # # # # # # # # # # # # # # # #
FeatureIDE G# G# # # # # # G# # # # # #
pure::variants G# # # # # # # # # # # # # # # # # # # # #

 : support. #: not support. G#: support with limitations or not scale for large models.
Table 3
Current state of the tools interoperability for feature models.

Tools \ Formats G
le
nc

oe

SP
LO

T

Fa
M
a

Cl
af
er

Fe
at
ur

eI
D
E

pu
re
::
va

ri
an

ts

D
IM

AC
S

SP
AS

S

G
ui
ds

l

v.
co

nt
ro
l

SP
L
Co

nq
ue

re
r

CN
F
tx
t

CS
V

tx
t

Glencoe # # # # H# H# H# # H# # # #
SPLOT # H# # H#− # # # # # # # #
FaMa # # # # # # # # # # # #
Clafer # H#− # # # # # # # # # #
FeatureIDE # H# # # # # H# H# #
Pure::variants # # G#− # # # # # # # #

 : import and export. G#: import. H#: export. #: not support.
−Supported with external plug-ins (Horcas et al., 2022).

edge-based system, cannot be achieved efficiently with Clafer. For
instance, Clafer uses an SMT solver that requires to enumerate all
products in order to count all valid configurations (Juodisius et al.,
2019). Thus, the feature model should be translated to the con-
crete syntax of another tool or solver, such as Glencoe (Schmitt
et al., 2018) which already provides a complete set of solvers, to
be able to make the automated analysis of its variability. But, no
direct translation (import/export) exists between these two tools
(see Table 3). Here the problem is that Glencoe is not as expres-
sive as Clafer since Glencoe does not support advanced variability
characteristics like numerical features or multi-features. At this
point, a translation in terms of edits (Thüm et al., 2009) between
language constructs of both languages is needed. Concretely, a
specialization (Thüm et al., 2009) (i.e., a transformation in which
there is some loss of information) is required in order to represent
the numerical features in Glencoe, for example, by discretizing
the values of the numerical features into Boolean features. Being
aware of these limitations, the user decides to limit the analysis
of the edge system to a subset of products including only basic
Boolean features. After modeling the sub-version of the case
4

study in Glencoe and analyzing its variability, the user needs
to connect the variability with the code implementing the fea-
tures. However, neither Glencoe nor Clafer provides support for
automatically generating the code of products from feature con-
figurations. Therefore, the user needs to use an alternative tool
such as FeatureIDE (Meinicke et al., 2017). In this case, a transla-
tion from Glencoe to FeatureIDE is needed, but none of the tools
provides a direct translation to each other (see Table 3). While
Glencoe supports the modeling of group cardinalities (Czarnecki
et al., 2005), FeatureIDE supports only xor-groups and or-groups
(see Table 1). Thus, a similar problem appears again, but in
this case, a transformation in terms of refactorings (Thüm et al.,
2009) (i.e., a transformation without loss of information) exists
because the feature modeling language of both tools (Glencoe and
FeatureIDE) is equally expressive (Schobbens et al., 2007).

2.3. Related work about interoperability of feature models

The results discussed in Section 2.2 justifies the large number
of approaches that are arising toward either the definition of
a common variability modeling approach or the improvement
of the interoperability between existing languages. Although the
definition of a new common language is not the objective of this
paper, there are some design principles that are shared in both
approaches (Horcas et al., 2020). For this reason, in this section
we first present the state-of-the-art on defining a new common
variability language, and then we discuss the refactoring and
specialization rule-based approaches that exist in the literature.

Definition of a common variability language. Several works, such
as Berger and Collet (2019) and Thüm et al. (2019), focus on
identifying the language constructs and language levels that a
common variability language should include, considering the sce-
narios that the resulting language should support. Their main
purpose is the organization of existing language constructs at
different language levels, with different expressiveness, to handle

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

t
s
e
e
p
e
i
a
e
t
s
o
i
i
t

a
e
2
l
c
t
t
m
i
t
l
a
B
d
s
c
m
b
X
m
t
a
i
f
w
p
Z
T
a
t
s

F
t
i
e
a
m
b
t
v
l
f
e
e
o
o
(
t
c
e

he complexity of defining a common language. Other works,
uch as ter Beek et al. (2019), review textual variability mod-
ling languages and identify five dimensions to classify their
lements: configurable elements, constraints, configuration sup-
ort, scalability support, and language characteristics. Sepúlveda
t al. (2016), Sepúlveda et al. (2012) propose a metamodel that
ncludes a set of core language constructs that are identified after
systematic review of the maturity and expressiveness level of
xisting variability modeling languages. These goals of classifying
he variability modeling elements and of modeling the language con-
tructs in different levels are shared with the modular definition of
ur common abstract syntax, in which our interoperability approach
s based. In fact, the levels of expressiveness and language constructs
dentified in these works were the starting point for the definition of
he common ground in our approach.

The definition of the new common variability language in
modular way is shared by many existing works (Benavides

t al., 2019). Thanks to the MODEVAR initiative (Benavides et al.,
019), there is currently an attempt of a universal variability
anguage (UVL) (Sundermann et al., 2021) proposed by the SPL
ommunity. The goal of UVL is to be as simple as possible and
o cover the needs of current demanding requirements, but, ac-
ually, UVL is in its infancy and only supports basic variability
odeling. Seidl et al. (2016) define an SPL of feature model-

ng notations and constraints to generate different variants of
hem. Villota et al. (2019) introduce the high-level variability
anguage (HLVL), a unified language that follows an orthogonal
pproach and serves as an intermediate language for variability.
utting et al. (2018a,b) propose the definition of a family of
omain-specific modeling languages that focus on reusing ab-
tract syntax in the form of metamodel parts. Their approach
omposes the syntax and semantics of independently developed
odeling languages through the use of a composition mechanism
ased on well-defined language extension points. Zhiyi and
iao (2014) build a family of software modeling tools based on
etamodeling and SPL technologies. A feature model specifies

he commonality and variability of modeling tools and provides
general tool framework for reusing components and generat-

ng code for components, specifying the mapping between the
eature model and the components for modeling tools. All these
orks share with our proposal the necessity of having a modular ap-
roach. More concretely, we share with them Butting et al. (2018a,b),
hiyi and Xiao (2014) the use of abstract syntax and metamodeling.
he difference is that they focus on the definition of new languages,
nd our proposal focuses mainly on achieving interoperability be-
ween existing languages. In any case, our modular and abstract
yntax could also be used for the definition of a new language.

eature modeling languages interoperability. A more feasible al-
ernative to the definition of new variability modeling languages
s to improve the interoperability among existing ones. Interop-
rability and translations between feature modeling languages
re achieved by the definition of edits (Thüm et al., 2009) and
odel transformations (Feichtinger, 2021; Feichtinger and Ra-
iser, 2020). In Thüm et al. (2009), four possible edits are iden-
ified: (1) a feature-model refactoring preserves exactly the set of
alid feature selections; (2) a specialization removes feature se-
ections without adding new ones; (3) a generalization adds valid
eature selections without removing any; and (4) an arbitrary
dit both adds and removes valid feature selections. Also, Alves
t al. (2006) propose a set of unidirectional refactorings, but
nly between basic constructs (e.g., from an ‘‘or’’ feature to an
ptional feature, from optional to mandatory). Tanhaei et al.
2016) automate those refactorings through a model transforma-
ion approach, while Gheyi et al. (2011) automate the process of
hecking the refactorings validation. However, these works (Alves

t al., 2006; Gheyi et al., 2011; Tanhaei et al., 2016) do not

5

apply the transformations among different expressiveness or lan-
guage levels, dealing only with basic variability modeling. Re-
cently, Feichtinger (2021), Feichtinger and Rabiser (2021) study
how flexible a transformation approach for variability models
must be, and propose TRAVART (Feichtinger and Rabiser, 2020;
Feichtinger et al., 2021), an approach transforming artifacts de-
scribing variability. TRAVART focuses on transformations between
different variability modeling approaches such as feature mod-
eling, decision modeling, and orthogonal variability modeling
(OVM); in contrast to our approach where we focus on a specific
variability modeling approach: feature models, and thus, we deal
with transformations between constructs of feature modeling
concepts.

Horcas et al. (2022) define roadmaps for tool interoperability
based on the activity to be performed (e.g., modeling, analysis,
derivation), but these roadmaps are limited to the current im-
port/export support of the tools (Table 3). Concerning language
analysis, Schobbens et al. (2007) provide formal semantics for
feature diagrams that result in a language: varied feature diagrams
(VFD) that is expressively complete in terms of Boolean features,
making it able to express several diverse constructs. Knüppel et al.
(2017) analyze whether less expressive languages are sufficient
for industrial SPLs. They focus on feature models with complex
constraints and provide an algorithm to express these constraints
using only basic feature models. Romero et al. (2021) propose a
new repository for feature model exchange. They list information
that would be useful to store in the repository, as well as depen-
dencies with language elements that will affect the development
of the repository, such as the concrete and abstract syntax of the
models and their level of expressiveness. Our approach enables the
interoperability of large-scale case studies, by defining a common
ground where reusable functionality (e.g., model transformations)
can be defined based on notation-independent language constructs
and shared across existing languages.

3. Our approach to achieve SPL interoperability

Fig. 2 shows our approach to provide interoperability between
existing feature modeling languages. An essential characteristic
of our work is that it relies on the idea of having a common,
general, and modular abstract syntax for feature modeling (called
CAF), which incrementally includes all the important language
constructs to model variability in complex application domains
such as edge computing, video processing, or cyber–physical sys-
tems. Concretely, we propose an approach based on model-driven
engineering (MDE) and metamodeling (Asikainen and Männistö,
2009; Atkinson and Kuhne, 2003) that applies the concepts of
extensible language (ter Beek et al., 2019) and modular language
design (Thüm et al., 2019) to specify the abstract syntax of differ-
ent language constructs. The core element is a set of extensible
and modular metamodels which specify the abstract syntax of
all language constructs from existing languages (middle-top of
Fig. 2). Details of these metamodels are presented in Section 4.

The other key component of our approach is that, using this
common abstract syntax, it is possible to define reusable map-
pings among language constructs with similar expressiveness.
This mapping is independent of the concrete syntax or internal
representation used in each language. Moreover, the definition of
the mappings at the abstract syntax level makes them reusable
in the mapping between any pair of concrete languages. These
mappings are represented as model-to-model (M2M) transfor-
mations defined at the language construct level. Concretely, our
approach supports the four kinds of model transformations iden-
tified by Thüm et al. (2009) as edits for feature models: refac-
torings, specializations, generalizations, and arbitrary edits. In this

paper, we are interested in refactorings, which are those that do

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

t
b
u
m
w
s
b
s
u
A
l
C
t
m
t
w
s
s
t
g

a
t

4

o
a
F
i
s
l
f
l
s

Fig. 2. An extensible MDE approach to provide interoperability between feature modeling languages guided by the abstract syntax of the language constructs.
A

a
a
f
m
s
p
p
o
w
d
o
f
p

D
f

m

not lose information between transformations. Details of these
model transformations are given in Section 5.

The common abstract syntax (CAF) and the M2M transforma-
ions are the core of our approach. However, for this approach to
e adopted, it is important that domain engineers can continue
sing the feature modeling languages they are used to. This
eans that, as illustrated in Fig. 2, to represent a feature model
ith our abstract syntax, we first need to deal with the concrete
yntax of its language (e.g., Clafer, FeatureIDE). This is achieved
y using text-to-model (T2M) transformations from the concrete
yntax to our abstract syntax. Such T2M transformations are
sually implemented using parsing technologies such as ANTLR.1

s a result, we obtain a feature model represented using the
anguage constructs of a specific subset Lx of the metamodels in
AF. Once the languages are represented in our abstract syntax,
he generic mapping between them can be done in terms of the
apping between the language constructs used in each language

o represent similar variability modeling concepts. As a result,
e obtain a feature model represented using the language con-
tructs of the language Ly. Finally, to translate from the abstract
yntax to the concrete syntax of each language, a set of model-
o-text (M2T) transformations can be defined using a writing or
enerator technology.
In the following sections we detail the two main parts of our

pproach: the common abstract syntax (Section 4) and the M2M
ransformations (Section 5) between language constructs.

. CAF: Common abstract syntax for feature modeling

In previous work (Horcas et al., 2020), the abstract syntax
f the language constructs for feature modeling was formalized
s a set of extensible and modular metamodels (called FM).
or self-containment, we summarize and illustrate this formal-
zation, renaming it as CAF (Section 4.1). Then, we focus on
howing a specific realization of CAF with a subset of existing
anguage constructs from the literature (Section 4.2), and on
ormally demonstrating that by combining several of the existing
anguage constructs defined in CAF, we are able to represent the
emantics of existing feature modeling languages (Section 4.3).

1 https://www.antlr.org/
6

4.1. Formalization of CAF

We use the following definitions for feature modeling (Harel
and Rumpe, 2004; Batory, 2005; Schobbens et al., 2007):

Definition 1 (Feature, Feature Model, Configuration, Product, Soft-
ware Product Line). A feature f is a characteristic or end-user-
visible behavior of a software system. A feature model m is a set
of features (F) and their relationships (or dependencies), where a
subset P ⊆ F is the set of features that are mapped to artifacts
(i.e., concrete features). A configuration c of a feature model m is
a subset of its features, i.e., c ∈ P(F). A configuration is valid if
and only if it fulfills all the feature dependencies of m. The set of
all valid configurations of m is denoted by Cm. A product p is a
configuration that contains only concrete features, i.e., p ∈ P(P).
software product line spl is a set of products, i.e., spl ∈ P(P(P)).

Any modeling language must consist of three elements (Harel
nd Rumpe, 2004): a syntactic domain (L), a semantic domain (S),
nd a semantic function (M). Fig. 3 illustrates these concepts. In
eature modeling, the syntactic domain (L) is the set of all feature
odels that comply with a given abstract syntax. The abstract

yntax is a representation of the feature model, which is inde-
endent of its physical representation. The concrete syntax is the
hysical representation of the feature model in terms of textual
r graphical notations (e.g., the feature diagram). For convenience,
e use interchangeably L as the abstract syntax and the syntactic
omain in the following. The semantic domain (S) specifies the set
f all existing product lines, defined as S = P(P(P)). The semantic
unction M : L → S maps a feature model m ∈ L to its software
roduct line spl ∈ S , denoted by M[[m]].

efinition 2 (Semantics of Feature Models). The semantics of a
eature model m is its set of valid products, defined by [[m]] :=

{c ∩ P | c ∈ Cm}. That is, its software product line.

The semantic function M is total and is defined for all ele-
ments of L. This means that each feature model in L represents
at least one software product line in S. The inverse function is
partial and defines the expressiveness of the language as the part
of the semantic domain that its syntax can express.

Definition 3 (Expressiveness). The expressiveness of a language
L is the set E(L) = {M[[m]] | m ∈ L}, also noted M[[L]]. A
language L with semantic domain S is expressively complete if
E(L) = S , otherwise L is expressively incomplete. A language L1 is
ore expressive than a language L if E(L) ⊂ E(L).
2 2 1

https://www.antlr.org/

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

m
S

e
m
2
M

l

l
o
c

r
F
2
a
n

m

D
C

{

Fig. 3. Syntactic domain, semantic domain, and semantic function for feature
odeling.
ource: Adapted from Heymans et al. (2007).

One of the mechanisms for expressing the constructs of a mod-
ling language, as well as their relationships and constraints, is a
etamodel (Atkinson and Kuhne, 2003; Asikainen and Männistö,
009). A metamodel (Atkinson and Kuhne, 2003; Asikainen and
ännistö, 2009) specifies the abstract syntax (L) of a model-

ing language, e.g., the feature modeling language. Therefore, a
feature model is an instance of the metamodel used to specify
the language L. The semantics of the valid expressions (feature
models) produced by the metamodel is given by Definition 2. The
metamodel is specified using a metalanguage, e.g., Meta-Object
Facility (MOF) (Object Management Group (OMG), 2016).

Definition 4 (Well-Formed Feature Model). A feature model m is
well-formed (aka, correct, well-defined) if m is defined conform
to its metamodel and m represents at least one software product
line, that may be empty (i.e., m is a void feature model). That is,
m is an instance of its metamodel respecting all expressions and
relationships defined in the metamodel, and M[[m]] ̸= ∅.

Given a well-formed feature model m we denote M as its
corresponding metamodel. The metamodel defines the abstract
syntactic domain (L) of the feature models. The set of all feature
models that can be specified using the metamodel M is denoted
by LM . That is, the feature model m is a model instance of the
metamodel M , denoted by m ∈ LM .2 A metamodel M is defined
as a non-empty set of modeling constructs (or language constructs),
i.e., M = {l1, l2, . . . , lt}, where each language construct li ∈

M specifies the abstract syntax of a specific feature modeling
concept (e.g., optional feature, group feature, requires constraint,
multi-feature, attributed feature).

Definition 5 (Language Construct). A language construct l ∈ M is
the abstract syntax of a specific feature modeling concept.

Examples of language constructs are Feature to represent the
concept of a feature, Root to represent the root feature of the
feature model, OptionalFeature and MandatoryFeature to
represent optional and mandatory features, respectively, Alter-
nativeGroup for ‘‘xor’’ and OrGroup for ‘‘or’’ feature groups,
Multi-Feature for clonable features (Czarnecki et al., 2005),
NumericalFeature for non-Boolean numerical features (Munoz
et al., 2019), FeatureAttribute for attributed features (Bena-
vides et al., 2005), BindingTime to model the points in time
when the variability may happen (ter Beek et al., 2019), and so
on. Here, we also define a special language construct for feature
models:

2 We overload ∈ for set membership and feature models specified in a
anguage L.
 m

7

Definition 6 (Feature Model Construct). A feature model construct
m ∈ M is a language construct that represents the concept
f a feature model as a container of other feature modeling
oncepts such as features and constraints. That is, lm is the main
containment element in the metamodel (aka, the root element).3

Examples of feature model constructs are Feature Model to
epresent the most generic feature model, Cardinality-Based
M to represent feature models with cardinalities (Czarnecki et al.,
005), Attributed FM for models that support features with
ttributes (Benavides et al., 2005), Numerical FM for models with
umerical features (Munoz et al., 2019), etc.
With these definitions, we define CAF as a set of modular

etamodels as follows:

efinition 7 (CAF). CAF is a set of inter-related metamodels, i.e.,
AF = {M0,M1,M2, . . . ,Mn}, where each metamodel Mi ∈ CAF

is a different non-empty set of language constructs, i.e., Mi =

l1, l2, . . . , lt} and Mi ∩ Mj = ∅, ∀Mi,Mj ∈ CAF, i ̸= j.
The criteria to decide whether a language construct is defined

in one metamodel or another is a design decision and is part of
the realization of CAF (Section 4.2).

In CAF, we define two kinds of relations between language
constructs (extension and composition), and a dependency rela-
tion between metamodels:

Definition 8 (Extension, Composition, Dependency). A language
construct li ∈ Mi extends another language construct lj ∈ Mj,
noted li <: lj, if li is a subtype of lj. A language construct li ∈ Mi is
composed by another language construct lj ∈ Mj, noted li |H lj, if
li uses or refers to lj as part of the definition of li. A metamodel
Mi ∈ CAF depends on another metamodel Mj ∈ CAF, noted
Mi ⇒ Mj, if ∃ li ∈ Mi, lj ∈ Mj| li <: lj ∨ li |H lj.

The subtype establishes an is-a relationship between the lan-
guage constructs (including multiple inheritance). Note that <:

is transitive, i.e., ∀li, lj, lk : li <:j ∧lj <: lk ⇒ li <: lc . The
composition relation establishes a usage or reference relationship
between the language constructs (including multiple composi-
tion). Finally, two metamodels have a dependency between them
if there is a construct that extends or uses a construct defined in
the other metamodel. We do not impose any restriction in CAF
regarding the arity of those relationships, and thus, CAF allows a
language construct to extend more than one language construct
(i.e., multiple inheritance), and to be composed by more than one
language construct (i.e., multiple composition) being defined in
the same or distinct metamodels.

To complete the definition of CAF let us define an initial
metamodel M0 ∈ CAF with, at least, a feature model construct
lm ∈ M0 which describes the generic concept of feature model
(Definition 6). The combination of language constructs, that in-
cludes lm ∈ M0, allows us to specify well-formed feature models,
the semantics of which is defined according to Definition 2, that
is, the set of products that can be specified with those language
constructs. The boxes in the middle-top of Fig. 2 show a generic
schema of CAF that illustrates all the concepts formalized. In the
following, we present a concrete realization of CAF with existing
language constructs for feature modeling.

4.2. Realization of CAF with existing feature modeling constructs

CAF can be realized with any number of metamodels and
language constructs as long as the structure of CAF proposed
in the previous section is respected. Ideally, CAF should expose

3 Do not confuse with the Root feature language construct of the feature
odel.

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

e
t
s
(
p
f
m
c
c
e
(
T
t

Table 4
Realization of CAF with existing language constructs for feature modeling extracted from the literature (part I: configurable
elements). We show its metamodels (M), the set of language constructs, their extension relationships of each language construct
(Ext.), the metamodel dependencies (Dep.), and the semantics and main references.
M Language constructs Ext. Dep. Semantic Refs.

CONFIGURABLE ELEMENTS
M0 lm: Feature Model – – The top element of the metamodel. Kang et al. (1990)

l0,1: Feature – – The unit of variability. A feature can be
optional or mandatory.

l0,2: Root l0,1 – The root feature r ∈ F of the feature model. r
is always mandatory.

l0,3: Optional Feature l0,1 – It represents an optional feature.
l0,4: Mandatory Feature l0,1 – It represents a mandatory feature.
l0,5: Parent-Child Rel. – – Features decomposition. A child can be

selected only when its parent is selected.
l0,6: Feature Group l0,1 – Children of a feature f ∈ F can be grouped.
l0,7: Alternative Group l0,6 – It defines a one-out-of-many choice, i.e., an xor

group <1..1>.
l0,8: Or Group l0,6 – It defines a some-out-of-many choice, i.e., an

or group <1..*>.
l0,9: Cross-Tree Constr. – – The generic concept of a constraint.

M1 l1,1: Abstract Feature l0,1 M0 Distinction between concrete and abstract
features in leaf features.

Knüppel et al. (2017)

M2 l2,1: Mutex-Group l0,6 M0 Feature groups where at most one feature can
be selected.

Berger et al. (2013)

M3 l3,1: Cardinality-Based FM lm M0 It allows defining cardinalities for features and
groups.

Czarnecki et al. (2005)

l3,2: Multiplicity – – It defines lower and upper bounds.
M4 l4,1: Group Cardinality l0,6 M0,M3 Arbitrary multiplicities <n..m> for group

features, bounded and unbounded (*).
Czarnecki et al. (2005).

M5 l5,1: Multiple Decomp. l0,5 M0 Different group features (e.g., or and xor),
below the same feature.

Czarnecki and Eisenecker (2000)

M6 l6,1: Dir. Acyclic Graph l0,5 M0 Features with multiple parents. Kang et al. (1998)
M7 l7,1: Multi-Feature l0,1 M0,M3 Features with cardinalities (aka, clonable

features).
Czarnecki et al. (2005)

M8 l8,1: Non-Boolean FM lm M0 Definition of arbitrary data types for features
and/or attributes.

Juodisius et al. (2019)

l8,2: Data Type – – Primitive (e.g., Boolean, Integer, Float,
String,. . .), and user-defined types.

l8,3: Value Assignment – – It allows providing a value to a specific data
type.

l8,4: Typed Feature l0,1 – Arbitrary data types for features.
l8,5: Attached Inf. – – Additional information (e.g., attributes,

meta-attributes) for configurable elements.
M9 l9,1: Numerical FM l8,1 M0,M8 Feature model with numerical features. Munoz et al. (2019)

l9,2: Numerical Feature l8,4 – Non-Boolean numerical features (e.g., Natural,
Integer, Real,. . .).

M10 l10,1: Attributed FM l8,1 M0,M8 Feature models with attributes. Benavides et al. (2007)
l10,2: Feature Attribute l8,5 Features with attributes (e.g., cost,

performance).
M11 l11,1: Binding time l8,5 M0,M8 Point time when the variability decision must

be made.
Schmid et al. (2018)

M12 l12,1: Default Value l8,3 M0,M8 It allows establishing a default value to a
typed feature or attribute.

Al-Azzawi (2018)

M13 l13,1: Delta Value l8,3 M0,M8 ,
M9,M18

It reduces the number of acceptable numeric
values.

Alférez et al. (2019)

M14 l14,1: Range l8,3 M0,M8 ,
M9,M18

It allows defining ranges of values for
numerical features or attributes.

Alférez et al. (2019)
the language constructs of existing feature modeling languages,
the semantics of most of them have been already formalized
in Schobbens et al. (2007), Eichelberger et al. (2013). Tables 4 to 7
present the complete realization of CAF (adapted from Horcas
t al. (2020)) with existing language constructs from the litera-
ure. For each metamodel, we present its set of language con-
tructs, the main relationship between the language constructs
the extends relation, aka, the supertype), and the metamodel de-
endencies. We also show the semantics and the main references
or the language constructs introduced in each metamodel. The
odularization of the language constructs is based on different
riteria. First, metamodels and language constructs have been
lassified following four of the dimensions proposed in ter Beek
t al. (2019): configurable elements (Table 4), constraints support
Table 5), scalability support (Table 6), and configurations (
able 7). Second, we classify the language constructs based on
he type of variability they model. For instance, metamodel M
0

8

contains the FODA (Kang et al., 1990) concepts for modeling basic
variability (excluding constraints).M2 toM5 define different types
of feature groups. M6 and M7 model parent–child relationships.
M8 to M10 model non-Boolean feature models (Cordy et al., 2013)
such as numerical features (Munoz et al., 2019), attributes (Bena-
vides et al., 2005), or additional information (Alférez et al., 2019).
Third, we put together in the same metamodel those language
constructs whose definitions directly depend on other constructs
(Definition 8). For example, the Typed Feature construct, which
represents arbitrary data types for features, requires to define a
data type (Data Type construct) and providing a value (Value
Assignment construct). Thus, we define all these constructs
together in metamodelM8. However, this is not a strict rule as ex-
plained below for the Group Cardinality and Multi-Feature
constructs.

The realization exposes more than 50 language constructs
over more than 30 metamodels. Despite the high number of

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

a
t
l
e
t
m
a
l
r
t
a
e

Table 5
Realization of CAF (part II: constraints support).
M Language constructs Ext. Dep. Semantic Refs.

CONSTRAINTS SUPPORT
M15 l15,1: Simple dependency l0,9 M0 Requires and excludes constraints. Kang et al. (1990)
M16 l16,1: Propositional logic l0,9 M0 Arbitrary propositional formulas over the

features (¬, ∧, ∨, ⇒, ⇔).
Batory (2005)

M17 l17,1: First-order logic l0,9 M0,M3 ,
M7

Quantifiers (∀, ∃), predicates, functions, and
constants.

Asikainen et al. (2006)

M18 l18,1: Relational expr. l0,9 M0,M8 Operators for comparing features or attributes
(==, <, <=, >, >=, ̸=, !).

Al-Azzawi (2018)

M19 l19,1: Arithmetic expr. l0,9 M0,M8 Arithmetic formulas, functions, and operators
(+ , −, ×, /, %,. . .).

Al-Azzawi (2018)

M20 l20,1: Cardinality expr. l0,9 M0,M3 ,
M4

Cardinalities expressed in terms of constraints. Czarnecki et al. (2005)

M21 l21,1: Type restrictions l0,9 M0,M8 Type-specific operators for constraints (e.g.,
String operators, regular expressions).

Haugen et al. (2008)

M22 l22,1: Default constraints l0,9 M0 Constraints that can be altered as part of the
constraint-resolution process.

Schmid et al. (2018)
Table 6
Realization of CAF (part III: scalability support).
M Language constructs Ext. Dep. Semantic Refs.

SCALABILITY SUPPORT
M23 l23,1: Compositional FM lm M0,M8 Mechanisms for composition and inheritance

for large feature models.
Acher et al. (2013)

l23,2: Interface – – The concept of interface of feature model for
modularization.

l23,3: Scope – – Support for declaring scopes (e.g., scoped
import of models).

M24 l24,1: Configuration Refer. l23,2 M0,M23 It defines links between models and
configurable elements.

Haugen et al. (2008)

M25 l25,1: Containment Feature l23,2 M0,M23 Composition on type level (aka, composite
units).

Haugen et al. (2008)

M26 l26,1: Imports – M0,M23 Import of models. Schmid et al. (2018)
M27 l27,1: Merge – M0,M23 Operator for overlapping. Acher et al. (2013)
M28 l28,1: Aggregate – M0,M23 Operator for disjoint models. Acher et al. (2013)
M29 l29,1: Include – M0,M23 Models can be composed of a model of a

larger scale.
Classen et al. (2011)

M30 l30,1: Model Version l8,1 M0,M8 Support for managing versions of the models. Schmid et al. (2018)
M31 l31,1: Visibility l8,1 M0,M8 Visibility (e.g., public, private) for configurable

elements.
Abele et al. (2010)

M32 l32,1: View-Points l8,1 M0,M8 Multiple view-points for feature models. Rosenmüller et al. (2011)
Table 7
Realization of CAF (part IV: configurations).
M Language constructs Ext. Dep. Semantic Refs.

CONFIGURATIONS
M33 l33,1: FM Configuration – M0 A full configuration of a feature model as a

selection (and assignment) of features.
Kang et al. (1990)

M34 l34,1: FM Partial Config. l33,1 M0 , M33 A partial configuration of a feature model. Alférez et al. (2019)
metamodels and language constructs, the modular design of CAF
llows practitioners to use just the parts they are interested in,
ogether with those parts that are needed to generate a valid
anguage, as explained in the following section. Some metamod-
ls only contain one language construct, and it may seem better
o group several related language constructs in the same meta-
odel to reduce the number of metamodels. However, selecting
metamodel implies including the abstract syntax of all the

anguage constructs that are part of that metamodel. For this
eason, if two language constructs are related among them but
here may exist languages that include only one of them, it is
lways better to define them in separated metamodels and then
xplicitly specify their dependencies. For instance, the Group
Cardinality and Multi-Feature constructs are defined in
separate metamodels (M4 and M7 respectively) since they are
different concepts that languages may not support together. How-
ever, both constructs require a Multiplicity construct (M3) to
specify a lower and upper bound to define its cardinality. Making
explicit the dependencies between the metamodels, allows the
automatic selection of the appropriate language constructs to
9

define a specific language with the desired modeling concepts.
Fig. 4 illustrates graphically the realization of CAF with a subset
of the metamodels defined in Tables 4 to 7.

4.3. Definition of existing feature modeling languages using CAF

We can combine the language constructs of different meta-
models to represent existing languages with different level of
expressiveness. The selection of the language constructs cannot
be done arbitrary and needs to be coherent in order to represent
a language where all the constructs make sense. That is, we
need to respect the metamodels’ relationships, as exposed in
Tables 4 to 7. Otherwise, the language represented by the selected
metamodels may be unexpressive or senseless. For instance, the
relational and arithmetic constructs to specify constraints expres-
sions over numerical values (metamodels M18 and M19) require
to select non-Boolean feature models (M8), since M8 defines the
modeling concepts to be used within those types of constraints
(e.g., data types and value assignment). However, neither nu-
merical (M) nor attributed feature models (M) are explicitly
9 10

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

r
n
t
w
a
t
c
c
i
c

B
c
F
s
o
a

Fig. 4. Realization of CAF (excerpt from metamodels in Tables 4 to 7).
Fig. 5. Trade-off between the expressiveness of existing feature modeling languages and the support for automated reasoning on them.
L

o
l
n
t
a
m

a
p
o
o
m
s

N
c
r
(
d
f
d
n

equired, because numerical constraints can be applied over both
umerical features and attributes independently, and we let prac-
itioners choose them based on their needs. We illustrate this
ith four feature modeling languages taken from real-world that
re well-known in the community and are representative of
he different levels of expressiveness according to the language
onstructs they offer (Fig. 5). Here we focus on those language
onstructs that affect the expressiveness of the language (Def-
nition 4), that is, the configurable elements (Table 4) and the
onstraints support (Table 5).

asic feature models (the FODA language). Consider the language
onstructs specified in metamodels M0 and M15 as shown in
ig. 4. The union of those language constructs defines the ab-
tract syntax for basic feature modeling, that is, mandatory and
ptional features, alternative (‘‘xor’’) and ‘‘or’’ group features,
nd requires and excludes cross-tree constraints. We denote this

language LBasicFMs defined as: LBasicFMs = LM0∪M15 .
This language corresponds with the abstract syntax of the

FODA language (Kang et al., 1990) and it is supported by all
existing tools for feature modeling (Horcas et al., 2022). However,
LBasicFMs is expressively incomplete since there are products of
certain SPL, which cannot be defined with their language con-
structs (Knüppel et al., 2017) (see Fig. 5), and more complex
constraints are needed, as for example those defined in M16 to
support propositional logic.

Relaxed feature models. Knüppel et al. (2017) demonstrated that
complex constraints, such as those defined in M16, can be repre-
sented with a simpler set of language constructs, as long as the
language (e.g., L) allows for leaf features to be abstract. That
BasicFMs

10
is, the language needs to include the abstract feature construct
(defined in M1). Knüppel et al. (2017) call this language Relaxed
Feature Models, and it is defined in our approach as: LRelaxedFMs =

M0∪M1∪M15 .
The problem with LRelaxedFMs is that the use of this language

may result in degenerated feature models with a loss of structure
(i.e., lack of naturalness of the feature model (Schobbens et al.,
2007)) or an exponential increase in size (i.e., lack of succinctness
f the model (Schobbens et al., 2007)). This occurs when the
anguage is not embeddable (Schobbens et al., 2007), that is, when
ot all language constructs of the source language can be directly
ranslated to a similar language constructs of the target language,
nd a combination of constructs is required to express the same
odeling concept.
Most of the existing tools (e.g., FeatureIDE, Glencoe) support,

t least, the LBasicFMs or the LRelaxedFMs language and, also, the
ropositional logic constraints (M16) that facilitate the modeling
f cross-tree constraints and avoid complicated models in terms
f design and structure. But, current application domains require
odeling more complex variability beyond Boolean features as
hown in Section 2.

umerical feature models. Let us consider an SPL for our edge
omputing domain that contains configurable parameters that
equire a numerical value in order to fully configure a product
e.g., the buffer size or the data capturing frequency of the sensor
evices). In order to represent a language supporting numerical
eature models (LNumericalFMs), we need the language constructs
efined in metamodel M9 (see Fig. 2). However, M9 by itself is
ot expressive enough because it only defines the concept of

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

n
s

i
s
m

i
c
S
a
o
e

C
e
t
i
c
m
c
s
(
C

l
t
o
a
t
f
S
B
i
o
s
a
f
o
l

5

s
s
s
a
a
t
O
l
a
r

b
m
r
(

umerical feature, and it needs support for defining types and as-
igning values to the numerical features (dependency withM8), in
addition to the concepts for basic feature modeling (dependency
with M0). Thus, LNumericalFMs will require, at least, the language
constructs defined in metamodels M0, M8, and M9. Moreover,
f we want to express constraints over the numerical features
uch as relational or arithmetic expressions we will also need
etamodels M18 and M19, respectively.
There are few real languages that currently support numer-

cal features. The main reason is that numerical features highly
omplicate the automating reasoning of the models, requiring an
MT or CSP solver instead of a SAT solver to deal with arithmetic
nd relational expressions (Galindo et al., 2019). Two examples
f languages supporting numerical features are Clafer (Juodisius
t al., 2019) and CVL (Haugen et al., 2008).

ardinality-based feature models. Cardinality-based feature mod-
ls were introduced by Czarnecki et al. (2005) to mainly support
wo characteristics: (1) group cardinalities, which allow specify-
ng arbitrary multiplicity in feature groups; and (2) features with
ardinalities (aka, clonable features) which allow instantiating
ultiple times the subfeatures of the clonable feature. These
haracteristics enable the possibility to define advanced con-
traints such as first-order logic (M17) and cardinality expressions
M20). Cardinality-based feature models can be represented in
AF as: LCardinalityFMs =

⋃
Mi, ∀i ∈ {0, 1, 3, 4, 7, 16, 17, 20}.

Following this approach, we can represent any language, as
ong as its constructs are part of the common abstract syn-
ax defined in the metamodels of CAF. Fig. 5 shows the trade-
ff between the expressiveness of feature modeling languages
nd the type of reasoners that support each language. While
hose languages that represent SPLs with products of Boolean
eatures (LBasicFMs and LRelaxedFMs) can be efficiently analyzed with
AT (Liang et al., 2015), #SAT (Sundermann et al., 2020), and
DD (Heradio et al., 2016) solvers, complex languages represent-
ng SPLs with products including clonable features (LCardinalityFMs)
r numerical features (LNumericalFMs), require other types of rea-
oners such as SMT or CSP solvers (Benavides et al., 2010), that
re usually less efficient in performing analysis operations on
eature models (e.g., counting configurations). To close this gap,
ur approach enables model-to-model transformations at the
anguage construct level.

. Model transformations between language constructs

CAF allows defining model transformations between the ab-
tract syntax of the language constructs in order to represent the
ame expressiveness of a given feature model with a different
et of language constructs. Since transformations in our approach
re done at the language construct level, a refactoring in our
pproach is possible when there exist language constructs in both
he target and the source languages that are equally expressive.
therwise, we can specify a specialization where, despite some
oss of information, the resulting feature models representing
subset of the SPL can be efficiently analyzed with existing

easoners (e.g., SAT, #SAT, or BDD solvers).
In the SPL literature, the language constructs for which have

een demonstrated to exist a refactoring, belong to transfor-
ations between LCardinalityFMs and LRelaxedFMs. Concretely, those

efactorings illustrated in Fig. 6 formalized by Knüppel et al.
2017):

1. Complex propositional logical cross-tree constraints
(M16 → M0

⋃
M1

⋃
M15). Cross-tree constraints defined

using complex propositional logic formulae can be trans-
formed into basic constraints using requires and excludes
constraints (M15), and abstract trees (M0 and M1) com-
posed together with the original feature model (see first
refactoring in Fig. 6).
11
2. Multiple Group Decomposition (M5 → M0
⋃

M1). Mul-
tiple group decompositions (e.g., an alternative group and
an or-group below the same feature), can be eliminated by
substituting each group by a mandatory abstract feature
(second refactoring in Fig. 6).

3. Mutex-group (M2 → M0
⋃

M1). Mutex-group (i.e., groups
where at most one feature can be selected) are transformed
by adding an optional abstract sub-feature that becomes an
alternative group (third refactoring in Fig. 6).

4. Group cardinality (M4 → M0
⋃

M16). Finally, group cardi-
nalities are transformed by changing its sub-features to op-
tional features and adding a complex cross-tree constraint
with the allowed combination of features (last refactoring
in Fig. 6).

While languages using these language constructs have been
demonstrated to be as expressive as LRelaxedFMs, other language
constructs such as clonable features (M7) or numerical features
(M9) have not been proven that can be represented with basic
language constructs because of the presence of the advanced
constraints such as those introduced in metamodels M17−20. For
example, a numerical feature language construct may be trans-
formed to Boolean features by discretizing the possible values
that the numerical feature can take (see Fig. 7). However, since
for instance the numerical feature BufferSize in our example
can take any integer value larger than 128, not all values can be
represented with Boolean features and there are products that
cannot be represented by the new feature model. Moreover, nu-
merical features, like feature attributes language constructs may
require to take into account several decisions when formalizing
and defining their M2M transformations, such as deciding the
range of values to be considered when the cross-tree constraints
do not limit the values, deciding the precision to be considered in
case of real numbers instead of integers, or considering complex
constraints where numerical values are involved together with
propositional logic constraints. Defining a refactoring for this case
can be complicated and in some case not possible. In such cases,
enabling the possibility of defining a specialization is appropriate.
Specializations make sense when we are interesting in analyzing
and testing specific subsets of products in an SPL.

The other kind of transformations (generalization and arbi-
trary edits) are also important and part of our approach. In
contrast to specializations, generalizations increase the number
of products of the resulting feature model when applying the
M2M transformation. This may happen when the target language
construct is more expressive than the source language construct
and the configuration space is not well restricted with the cross-
tree constraints. For example, a numerical feature that cannot
be limited with cross-tree constraints (e.g., maybe because the
target language does not support constraints involving arithmetic
expressions). Finally, arbitrary edits modify the set of products of
the feature model by adding new products and removing existing
ones. For example, changing an alternative group by an or-group
or other way round. As exposed by Thüm et al. (2009), designers
should avoid arbitrary edits and restructure them in terms of a
sequence of specializations, generalizations, and refactorings, to
understand the evolution of the feature model.

6. Proof of concepts and validation

We apply our approach to enable interoperability between
existing tools and implemented a prototype of CAF and the
refactorings to answer the following research questions (RQs):

• RQ1: How expressive are the feature modeling languages of
the existing tools? Rationale: In order to provide interop-
erability we need to know the level of expressiveness of

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579
Fig. 6. Refactorings between language constructs formalized in Knüppel et al. (2017).
Fig. 7. Example of specialization with loss of information (i.e., existing products are removed within the transformation).
the languages involved. We map the languages of exist-
ing tools to the abstract syntax of CAF and compare their
expressiveness with the dialects modeled in Section 4.3.

• RQ2: What is the complexity of providing interoperability
between existing feature modeling languages? Rationale:
The complexity can be measured by the number of trans-
formations required to provide such interoperability inde-
pendently of the approach. We compare the number of
transformations (T2M, M2M, and M2T) to be defined with
our approach and using direct imports/exports between the
tools.

• RQ3: How feasible and applicable is the proposed approach in
practice? Rationale: We define the two refactorings needed
to close the gap between two abstract syntax languages
(LCardinalityBasedFMs and LRelaxedFMs). We provide two different
implementations of the refactorings: using Henshin Arendt
et al. (2010) and Java. The objective is not to maintain both
implementations, but to analyze the viability and applica-
bility of the approach in practice and to select the best
implementation for further transformations.

• RQ4: Are the implemented refactorings correct, complete, and
scalable? Rationale: Refactorings should maintain the se-
mantics of feature models (soundness), representing the
same set of products with a different set of language con-
structs (completeness) even when dealing with large-scale
feature models (scalability). We evaluate and compare these
properties in the two implementations to decide which one
can be a good candidate to develop further transformations
between language constructs.
12
• RQ5:What specific language constructs should be considered in
the definition of a feature modeling language? Rationale: The
alternative approach to CAF is the definition of a completely
new feature modeling language that supports all the re-
quirements of the current domains (Horcas et al., 2022). Our
approach helps to understand which language constructs
should be provided in the definition of such a language in
order to provide enough expressiveness to represent the
requirements of current domains such as edge computing.

6.1. Open-source implementation of CAF

We provide an implementation of the abstract syntax4 by
using the Eclipse Modeling Framework (EMF) and Ecore meta-
models (Steinberg et al., 2008). We choose EMF/Ecore because it
is a well-known and stable MDE framework providing good sup-
port for multiple facilities such as model transformations, code
generation, serialization of structured data models, and mod-
els@runtime. In addition, there exist several implementations of
EMF/Ecore in different languages beyond EMF-Java and Eclipse,
and thus, Ecore metamodels can be directly used in Python or C++
by using the PyEcore5 and EMF4CPP6 frameworks respectively.

EMF/Ecore provides mechanisms that directly implement the
concepts used to formalize our abstract syntax (Section 4). It
provides classes to represent entities, attributes to represent prop-
erties of entities, and relations to represent relationships between

4 The implementation is available in https://github.com/CAOSD-group/rhea.
5 https://github.com/pyecore/pyecore
6 https://github.com/catedrasaes-umu/emf4cpp

https://github.com/CAOSD-group/rhea
https://github.com/pyecore/pyecore
https://github.com/catedrasaes-umu/emf4cpp

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

t
t
e
r
a
t

E
s
c
c
M
g
i
b
a
a
p
c
t
G
O
l
t
l

Fig. 8. Implementation CAF using EMF/Ecore metamodels (excerpt with metamodels M0, M1, M2, M3, M8, and M16).
he entities. The latter includes Super Type relations supporting
he extends relation, and compositions and (bi-directional) ref-
rences that support the composition relation. The dependency
elation between metamodels is implemented in EMF/Ecore as
referenced resource, making available all constructs defined in
he referenced metamodel.

Fig. 8 illustrates how to implement the abstract syntax with
MF/Ecore. Metamodels M0 and M1 implement the most ba-
ic language construct for feature models. The feature model
onstruct is always defined as a class because it serves as a
ontainer of features and constraints. For example, the Feature-
odel class in the metamodel M0 and M1 specifies the most
eneric type of feature model, while the NonBooleanFM class,
n metamodel M8, model specializations of the feature model
y extending the FeatureModel class. The extension relation
mong different metamodels is explicitly shown by showing the
ttributes of the super type in italic and light font as for exam-
le in the NonBooleanFM class. The rest of language constructs
an be defined as classes, attributes, or relations. For instance,
he Feature, Feature Group, Or Group and Alternative
roup language constructs of M0 are defined as classes. But, the
ptional Feature, Mandatory Feature, Abstract Feature
anguage constructs are implemented as a unique attribute of
he Feature class, while the Root and Parent-Child Re-
ationship constructs are defined as composition references.

The criteria to decide whether a language construct is mod-
eled as a class, attribute, or relationship is an implementation
decision of its abstract syntax but independent from the seman-
tics meaning of the language construct. Finally, the extension
13
and composition relations between language constructs are im-
plemented using the Super Type relation and the composition
reference, respectively. For example, the FeatureModel class in
M0 exposes the CrossTreeConstraint class using the compo-
sition relation. The latter class is abstract and enables specifying
concrete constraints in separate metamodels as in M16 where
AdvancedConstraints extends CrossTreeConstraint, using
the Super Type relation. Note that, in this case, the Super Type
relation between language constructs of different metamodels
is not explicitly shown in diagrams, but in the .xml source file
of the metamodel. The same design is used in metamodels M8
to define generic concepts for non-Boolean feature models and
typed features, which allows specializing those concepts for other
types of features like numerical features.

6.2. Results and discussion

In this section, we present the results of our evaluation by
answering each research question. We also discuss the threats to
validity associated with each experiment and research question.

RQ1: How expressive are the feature modeling languages of the ex-
isting tools?. We show how existing feature modeling languages
used in the SPL tools discussed in Section 2.2 are modeled in
CAF, so that their expressiveness can be compared in terms of the
expressiveness of the common language constructs. Table 8 maps
each tool language with the abstract syntax L it supports and
the level of expressiveness (illustrated in Fig. 9) with respect to

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

t
g
m
b
l

f
c
b
L
t
d
s
t
h
i
d
n
e
s
t
w
c

a
N
a
W
e

Table 8
Mapping between tool languages and abstract syntax in CAF.
CAF representation of existing tools Expressiveness

LSPLOT =
⋃

M0,M15−16 E(LSPLOT) = E(LRelaxedFMs)
LFeatureIDE =

⋃
M0−1,M16 E(LFeatureIDE) = E(LRelaxedFMs)

LGlencoe =
⋃

M0,M3−4,M15−16 E(LGlencoe) = E(LRelaxedFMs)
LFaMa =

⋃
M0,M3−4,M8,M10,M15−16 E(LFaMa) = E(LRelaxedFMs)

LPureVariants =
⋃

M0−1,M3,M7−8,M10,M15−19 E(LPureVariants) ⊆ E(LCardinalityFMs)
LClafer =

⋃
M0−4,M7−9,M12,M14−19 E(LClafer) ⊆ E(LNumericalFMs)

⋃
E(LCardinalityFMs)
Fig. 9. Expressiveness of the feature modeling language of the existing tools.
T

Q
h
g
g
S
L
2
c
h
e
A
l
r
K
i
o
m
p

A
p
b
s
b
a
o
o
t
i
u
i
p
c
s
l

he languages formalized in Section 4.3. On the one hand, all lan-
uages have at least the same expressiveness as LRelaxedFMs. That
eans that all languages can represent SPLs whose products are
ased on Boolean features expressed as arbitrary propositional
ogic formulae (i.e., using the logical operators ¬, ∨, ∧, ⇒, and
⇔). However, the language constructs used for each language
sometimes is different. For instance, while LFeatureIDE allows using
abstract features (M1) and arbitrary propositional formulae (M16),
LSPLOT supports basic constraints (M15) and propositional formu-
lae expressed as clauses (i.e., only using the ¬ and ∨ operators
rom M16). LGlencoe and LFaMa also support the group cardinality
onstruct from cardinality-based feature models (M3 and M4),
ut not the clonable feature construct (M7). On the other hand,
PureVariants and LClafer can be considered more expressive because
hey support clonable features (M7), but it has not been formally
emonstrated that clonable features can be represented with
impler language constructs such as those in LRelaxedFMs due to
he existence of advanced constraints (M17 and M20). The same
appens with LClafer and the numerical feature construct and
ts dependencies (M8, M9, M18, and M19), where there is no
emonstrated evidence that those complex product lines with
umerical features can be represented with simpler constructs,
ven deteriorating other properties of the feature models (e.g.,
tructure or size). A detailed study of these concerns is out of
he scope of this paper, but we present the basis for dealing
ith them from a common point of view based on the language
onstructs.
Conclusion: All feature modeling languages of the analyzed tools

llow specifying SPLs whose products are based on Boolean features.
on-Boolean SPLs require more expressive language constructs such
s numerical features, which are currently only supported in LClafer .
e have shown how the use of CAF allows reasoning about the

xpressiveness of these and other feature modeling languages.
14
hreats to validity for RQ1:

uantitative assessment of expressiveness (construct validity). We
ave compared the expressiveness of the feature modeling lan-
uage of existing tools by mapping them to well-known lan-
uages/dialects in feature modeling: LBasicFMs (Kang et al., 1990;
chobbens et al., 2007), LRelaxedFMs (Knüppel et al., 2017),
CardinalityFMs (Czarnecki et al., 2005), and LNumericalFMs (Alférez et al.,
019; Munoz et al., 2019). We have evaluated expressiveness
onsidering the language constructs they offer, whose semantics
ave already been formalized (Schobbens et al., 2007) and their
xpressiveness evaluated Knüppel et al. (2017) in the literature.
more appropriate solution to measure the expressiveness of

anguages is to determine the percentage of SPLs that can be rep-
esented with each abstract syntax language, as demonstrated by
nüppel et al. (2017). However, this procedure is only applicable
n practice for a very small number of features (i.e., a maximum
f four or five features), as the generation of all possible feature
odels with a specific language L and their SPLs is an NP-hard
roblem (Knüppel et al., 2017).

pplication beyond feature modeling (external validity). In this pa-
er, we have focused on feature modeling. The interoperability
etween feature models and other variability approaches (deci-
ion models (Schmid et al., 2011), OVM (Pohl et al., 2005)) have
een addressed in other related studies such as the TRAVART
pproach (Feichtinger et al., 2021) and such interoperability is out
f scope of our paper. However, the concepts and formalization
f our common and modular abstract syntax may be extended
o support other variability modeling approaches. For instance,
n another realization of CAF, the modular metamodels may
se ‘‘decisions’’ as the first citizen concept (unit of variability)
nstead of ‘‘features’’. However, a realization of CAF for other ap-
roaches (e.g., decision models) requires identifying the language
onstructs of such approaches and defining the common abstract
yntax of their modeling concepts. Then, mapping the existing
anguages (e.g., existing concrete syntaxes of decision models) to

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

R
d

t
t

R
e
m
t
t
f
e
a
t
t
t
w
t

d
b
n
p
v
i
t
t
(
r
t
s
v
l
s
M
c
d
c
w
a
o
t
t
i
c
t
(
g

Table 9
Metamodels needed to represent feature modeling languages of existing tools, and transformations required to provide interoperability between the tools at the
language construct level. We highlight in gray those metamodels for which a refactoring maintaining the semantics of the feature models can be defined in order
to provide interoperability among tools.

Language M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22

LSPLOT # # # # # # # # # # # # # # # # # # # #
LFeatureIDE # # # # # # # # # # # # # # # # # # # #
LGlencoe # # # # # # # # # # # # # # # # # #
LFaMa # # # # # # # # # # # # # # # #
LPureVariants # # # # # # # # # # # #
LClafer # # # # # # # #

M2M
transf.:

– LC R R R – – S LC S LC – LC – LC G - LC LC LC – – –

 : Metamodel needed. #: Metamodel not needed.
: Refactoring from Fig. 6 needed. S: Specialization needed. G: Generalization needed. LC: No transformation applies, and a new language construct need to be
efined. -: Non Applicable because all tools needed this metamodel or none tool needed it.
l
s

m
b
n
t
a
f
t
a
c
a
o
s
o

R
t
v
t
L
m
a
f
(

he new realization of CAF and defining the appropriate model
ransformations.

Q2: What is the complexity of providing interoperability between
xisting feature modeling languages? Once the existing feature
odeling languages have been represented in CAF, we can use

he following interoperability scenario to close the gap between
he expressiveness and tool support for managing and analyzing
eature models: Given a feature model in a concrete feature mod-
ling language, we represent the feature model in our common
bstract syntax (using a parser), and then apply our refactorings
o the feature model to obtain another feature model without
he specific language constructs considered. Finally, we translate
he resulting feature model into a concrete language (using a
riter). We measure the complexity of our approach by counting
he number of transformations (i.e., T2M, M2M, and M2T) that
must be defined using our approach and without it (i.e., defining
irect imports/exports functionalities) to provide interoperability
etween the tools considered. Using imports/exports, we will
eed to define two transformations (if possible) between each
air of languages, requiring a total of 30 transformations to pro-
ide full interoperability among the six tools considered. Taking
nto account the seven already existing imports/exports between
ools (Table 3 from Section 2.2), 23 imports/exports still need
o be defined. Within our approach, we need to define a parser
T2M) and a generator (M2T) for each tool to represent it in CAF,
equiring a total of 12 transformations plus the required M2M
ransformations between the language constructs in CAF. Table 9
ummarizes the M2M transformations that are required to pro-
ide interoperability between the tools at the language constructs
evel. We can observe that not all cases require a transformation,
uch as the case where all tool languages use a metamodel (e.g.,
0, M16) or no tool language uses it (e.g., M5, M6). There are other
ases in which a transformation does not exist and we need to
efine an explicit language construct to represent the modeling
oncept, such as in the case of abstract features (M1) or features
ith attributes (M10). For those language constructs that there is
n M2M transformation, in order to provide the minimum inter-
perability between the six tools, we need to provide, at least,
hose refactorings that have been formalized and guarantee that
he semantics of the feature models are maintained (highlighted
n gray in Table 9). These refactorings correspond to the language
onstructs of the LCardinalityBasedFMs language that can be translated
o LRelaxedFMs language. Concretely, the mutex group construct
M2) which is part of LClafer , but not in other languages, and the
roup cardinality construct (M3 andM4) which is lacking in LSPLOT ,

LFeatureIDE , and LPureVariants. As a result, with our approach, we need
to define up to 14 transformations (6 T2M, 2 M2M and 6 M2T),
in contrast to 30 imports/exports transformations (73% of fewer
15
transformations). Interoperability between languages with dif-
ferent expressiveness (e.g.,LNumericalFMs and LRelaxedFMs) will imply
some loss of information in the feature model. For example, the
specialization needed to support numerical features (M9) in other
anguages. Other transformations such as the generalization of
imple constraints (M15) to propositional logic constraints (M16),
in the case of LFeatureIDE is straightforward (Batory, 2005).

Conclusion: The complexity of providing interoperability is given
by the complexity of defining the required model transformations,
which is reduced when defining them at the language construct level
using a common metamodel as a central piece for the transformation
process.

Threats to validity for RQ2:

Complexity of model transformations (construct validity). We have
easured the complexity of our approach by counting the num-
er of transformations that need to be defined compared to the
umber of imports/exports needed. We have also assumed that
he complexity of defining the model transformations is the same
s for the imports/exports. In fact, defining an import/export
unctionality requires us to deal with all language constructs of
he source/target language in each import/export, while with our
pproach we only need to deal with the entire set of language
onstructs once for each language in order to represent it in CAF,
nd then the developer can focus on the model transformation
f a specific language construct in CAF regardless of its concrete
yntax. A more precise quantitative assessment of the complexity
f the model transformations is part of our future work.

Q3: How feasible and applicable is the proposed approach in prac-
ice?. To demonstrate the applicability of the approach, we pro-
ide an implementation of the two refactorings required to close
he gap between the abstract syntax of the LCardinalityBasedFMs and
RelaxedFMs languages. Concretely, we define the refactorings to
ap the mutex group construct (M2) to basic feature models (M0
nd M1), and to map the group cardinality construct (M3) to basic
eature models with propositional logic cross-tree constraints
M0, M1, and M16) as illustrated in Fig. 10.

- Refactoring for mutex group (Fig. 10(a)). Mutex groups
are a kind of decomposition relations that often occurs in
the software systems domain (Berger et al., 2013) (e.g., in
KConfig and CDL systems). A mutex group specifies a group
of features where at most one feature can be selected, that is
equivalent to a group cardinality with multiplicity 0..1. The
refactoring for mutex groups have been already formalized
in Knüppel et al. (2017) as follows: if a feature f is a mutex
group decomposed into feature f 1, . . . , fn, we change f ’s
decomposition type to a single feature with one optional
abstract sub-feature f ′. Feature f ′ becomes an alternative
(xor) group with subfeatures f 1, . . . , f .
n

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

t
a
u
f
a
u
p
m
t
t

Fig. 10. Mapping between language constructs.
R
e
b
t
c
t
p
r
a
s
i
a
r
u

t
b
w
f
t
t
i
i
t
s
t
m
(
r
c
t
(
E
a
w
a
r
(
e
t
m
t
f
n

- Refactoring for group cardinalities (Fig. 10(b)). Group car-
dinalities are feature groups with a custom multiplicity
specifying a lower (a) and a upper (b) bound where at least
a children and at most b children must be selected in a valid
configuration. Examples of languages (e.g., Clafer) support-
ing custom group cardinalities can be found in Czarnecki
et al. (2005). The refactoring for group cardinalities have
been also formalized in Knüppel et al. (2017) as follows:
if a feature f is a group cardinality with multiplicity <

a..b >, we change f ’s decomposition type to a single feature
with n optional features being n the number of sub-features
(f 1, . . . , fn) of f and add the following propositional logic
constraint:

f ⇒

⋁
M∈Pa,b

(
⋀
fi∈M

fi ∧
⋀

fj∈{f ′|f ′ is child of f }\M

¬fj) (1)

with Pa,b = {A ∈ 2{f ′|f ′ is child of f }
|a ≤ |A| ≤ b} being the

set of all feature combinations of sub-features of f where
each combination has at least a and at most b elements
(see generic case in Fig. 10(b)). In order to simplify the
resulting/refactored feature model, we identify a set of base
cases where the group cardinality can be translated to a
basic language construct (i.e., selection group or alternative
group), according to its multiplicity. Base cases from 1 to 5 in
Fig. 10(b) illustrate those scenarios where we obtain simpler
feature models in terms of language constructs without
the need of introducing complex (propositional logic) con-
straints. Note that base case 5 follows the same refactoring
as for mutex group, requiring then the application of the
generic case.

Both refactorings have been implemented using two different
echnologies to demonstrate their viability and select the most
ppropriate one in order to implement further refactorings: (1)
sing the Henshin transformation language (Arendt et al., 2010)
or a pure model-driven development approach and achieving
higher level of abstraction for the transformations; and (2)
sing object-oriented programming by accessing directly with a
rogramming language to the classes and relations defined in the
etamodels which allows using our approach outside Java and

he EMF/Ecore Eclipse environment (e.g., in Python or C++ using
he PyEcore or EMF4CPP, respectively).
16
efactorings as Henshin model transformations. Henshin Arendt
t al. (2010) is a model transformation language based on alge-
raic graph transformations. We choose Henshin to implement
he model transformations because of its several key benefits in
ontrast to other transformation languages (e.g., ATL): (i) changes
o a given input model (in our case, a feature model) are ex-
ressed using graphical rules facilitating the inspection of the
ules by a visual syntax; (ii) those rules support a largely declar-
tive specification of transformations described below; (iii) Hen-
hin concepts to specify rules aligns well with the concepts used
n the EMF/Ecore implementation (i.e., nodes, edges, attributes);
nd (iv) Henshin provides an execution engine which applies the
ules to the input model and can be executed programmatically
sing its API.
A Henshin model transformation consists of a set of transforma-

ions units. There are two kind of units: (1) rules that are the basic
uilding blocks for model transformations, and (2) composite units
hich enable the orchestration of multiple rules in a control

low. A rule comprises two graphs: the Left-hand side (LHS) graph
hat describes a pattern to be matched in the input model; and
he Right-hand side (RHS) graph that specifies a change of the
nput model. The graphical editor merges LHS and RHS into an
ntegrated representation. A graph specifies model patterns on
he abstract syntax level by means of nodes, edges, and attributes,
imilar to the concepts of EMF/Ecore (classes, relations, and at-
ributes). Nodes refer to objects (e.g., features, constraints, feature
odels, in our case); edges refer to references between objects

e.g., relationships between features); and attributes inside nodes
efer to properties (e.g., feature’s names). A transformation rule
an be applied whenever the LHS graph is matched by a given fea-
ure model instance. A matching is an assignment of all variables
nodes, edges, and attributes) occurring in LHS to concrete values.
lements in the LHS graph are matched with the input model
nd maintained (<<preserved>>) or removed (<<delete>>),
hile elements in the RHS pattern are created (<<create>>)
s for example to add a new feature in the model. Additional
estrictions can be imposed to prevent the existence of elements
<<forbid>>) as for example to avoid duplicate features. Any
lement not mentioned in both LHS/RHS remains unchanged, so
ransformations only need to define the differences between the
odels. A transformation can also accept parameters such as

he name of a feature. Finally, composite units specify control
low and have a fixed number of sub-units, allowing for arbitrary
esting. Several types of units are available such as loop units

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579
Fig. 11. Henshin transformation for mutex groups.
(to execute a particular rule as often as possible), iterate units
(to execute a rule a fixed number of times), sequential units or
conditional units, among others.

- Mutex group refactoring. We implement the mutex group
refactoring as a single rule (see Fig. 11) that translates the
mutex group language construct (the <<delete>> Mutex-
Group node) for a combination of a single feature
(<<create>> Feature node) and an optional alternative
group (<<create>> AlternativeGroup node), and we
also update the edges for the parent and the children of
the corresponding nodes. Then, to guarantee completeness,
we add an additional loop unit (AllMutexGroup) that en-
capsulates the MutexGroup rule in order to execute the
refactoring as often as possible to translate (or refactor) all
occurrences of the same language construct in a given input
model. Note that we also need an additional Henshin rule,
similar to the described one, but that matches with the root
feature in case that the root of the feature model was a
mutex group.

- Group cardinalities refactoring. The group cardinalities
refactorings are implemented as follows. Each base case of
the group cardinalities is implemented as a Henshin rule
and a loop unit to guarantee completeness similarly to the
mutex group refactoring presented in Fig. 11. Addition-
ally, we add a sequential unit which call every loop unit
to apply all base cases sequentially in the input feature
model. The generic case adds a complication due to we
need to generate a cross-tree constraint with all feature
combinations of sub-features of f taken k positive feature
terms and n − k negative feature terms, for all k from a
17
to b. Fig. 12 shows the Henshin rule that generates those
combinations for k = 2. We first generate the skeleton
of the constraint (CreateConstraint rule). Second we
generate all possible combinations of the positive terms
sub-features of f for all k values. In Fig. 12 we show the
transformation for k = 2 (AddPositives_F_k2 and Ad-
dPositive_F_K2 rules). Since k depends on the lower
and upper multiplicity of a particular instance of the group
cardinality construct, and the AddPositive rule differs for
different values of k, we programmatically generate the
AddPositive rule for every k of the group cardinality
considered. Third, we add the negative terms sub-features
of f (AddNegatives and AddNegative rules). Note that
we need to use Trace nodes to keep track of the elements
already considered in the transformation, and then we re-
move those traces (CleanFeatureTrace rule). Finally, we
transform the group cardinality language construct to a
selection group construct using a similar rule as for the base
cases and the mutex group (see Fig. 11). The complete refac-
toring transformation as well as the code to generate the
corresponding Henshin rules for the feature combinations
can be found online.7

Refactorings as Java transformations. The implementation of the
abstract syntax with the EMF/Ecore framework allows us work-
ing directly with the classes, attributes, and methods/relations
defined in the metamodels. Thus, we can also implement model
transformations between language constructs using a traditional

7 https://github.com/CAOSD-group/rhea

https://github.com/CAOSD-group/rhea

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

p
i
r
a
c
s
t
n
a
t
o
t
r
b

O

1

1
1
1
1
1

1
1
1
1
2
2
2

Fig. 12. Generation of the propositional logic constraints in the group cardinality refactoring.
1

1

2
2
2
2
2
2
2
2

3
3
3
3

3
3
3
3
3
3
4

rogramming paradigm such as object-oriented programming
n Java. Algorithm 1 illustrates the code for the mutex group
efactoring using the concepts modeled in our metamodels. The
lgorithm finds and transforms every instance of the language
onstruct (i.e., mutex group in this case). For each language con-
truct to be translated, the algorithm creates the objects of the
arget language construct(s), copies the attributes’ values (e.g., id,
ame, properties), and updates their relationships (e.g., parents
nd children features). The code for the group cardinality refac-
oring (Algorithm 2) follows the same structure with the addition
f generating the cross-tree constraints for all possible combina-
ions of the feature group, similarly as explained in the Henshin
ule. The complete Java implementation of the refactorings can
e found online in the code repository.

Algorithm 1 Mutex group refactoring.
Input: feature model (fm)
utput: refactored feature model (fm)
1: procedure MutexGroupRefactoring(fm)
2: for f ∈ fm.features do
3: if f instanceof MutexGroup then

▷ Create the new feature, copy properties, and update relations
4: feature = new Feature(id=f .id, name=f .name, mandatory=f .mandatory,

abstract=f .abstract)
5: if ¬feature.isRoot() then
6: feature.parent = f .parent
7: f .parent.children.remove(f)
8: feature.parent.children.add(feature)
9: end if

▷ Create the abstract alternative group and update relations
0: group = new AlternativeGroup(id=f .id+‘‘P’’, name=f .name+‘‘P’’, manda-

tory=false, abstract=true)
1: group.parent = feature
2: feature.children.add(group)
3: for child ∈ f .children do
4: child.parent = feature
5: end for

▷ Update model’s features
6: fm.features.remove(f)
7: fm.features.add(feature)
8: fm.features.add(group)
9: end if
0: end for
1: return fm
2: end procedure
18
Algorithm 2 Group cardinality refactoring.
Input: feature model (fm)
Output: refactored feature model (fm)
1: procedure GroupCardinalityRefactoring(fm)
2: for f ∈ fm.features do
3: if f instanceof GroupCardinality then

▷ Convert to a normal feature, copy properties, and update relations
4: feature = new Feature(id=f .id, name=f .name, mandatory=f .mandatory,

abstract=f .abstract)
5: if ¬feature.isRoot() then
6: feature.parent = f .parent
7: f .parent.children.remove(f)
8: feature.parent.children.add(feature)
9: end if

▷ Convert children to optional features
10: for child ∈ f .children do
11: child.mandatory = false
12: child.parent = feature
13: feature.children.add(child)
4: end for

▷ Generate cross-tree constraint
5: ctc = new AdvancedConstraint()

16: ctc .expr = new Implies()
17: ctc .expr.left = new FeatureTerm(feature=feature)
18: ctc .expr.right = new Or()
19: n = feature.children.size()
20: for k ∈ [f .multiplicity.lower, f .multiplicity.upper] do
21: for p ∈

(n
k
)
do

2: positiveTerms = feature.children.getAll(indexes=p)
3: negativeTerms = feature.children \ positiveTerms
4: andOp = new And()
5: for posT ∈ positiveTerms do
6: andOp.terms.append(new FeatureTerm(feature=posT))
7: end for
8: for negT ∈ negativeTerms do
9: andOp.terms.append(new Not(new

FeatureTerm(feature=negT)))
0: end for
1: ctc .expr.right.terms.append(andOp)
2: end for
3: end for

▷ Update model’s features
4: fm.features.remove(f)
5: fm.features.add(feature)
6: fm.features.add(group)
7: end if
8: end for
9: return fm
0: end procedure

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

l
m
e
s
p

T

T
o
e
t
f
l
E
t
a

R
i
g
g
b
t
a
f
m
s
t
t

e

Fig. 13. Soundness validation of our interoperability approach.
Conclusion: Defining the refactorings at the language construct
evel facilitates the analysis and comprehension of the transfor-
ations. Transformations can be implemented with model-driven
ngineering technologies or object-oriented programming using the
ame metamodel, which makes our approach more applicable in
ractice.

hreats to validity for RQ3:

echnical debt in model-driven technologies (internal validity). An-
ther threat to validity is related to the possible errors in the
xperimental materials and tools used. Model-driven engineering
ools are continuously evolving and the related technology suffers
rom a high technical debt. To mitigate this threat, we have re-
ied on well-known tools for model-driven development like the
MF/Ecore framework (Steinberg et al., 2008) and the Henshin
ransformation language (Arendt et al., 2010), which are under
ctive development and are also well documented.8

efactorings for other feature modeling languages (external valid-
ty). We have evaluated only two types of refactorings (mutex
roup and group cardinality) related with the LCardinalityFMs lan-
uage. First, we used those refactorings because they have already
een formalized (Knüppel et al., 2017) and demonstrated to have
he same expressiveness as LRelaxedFMs. Other refactorings, such
s clonable features and numerical features, have not yet been
ormalized and can be seen as open challenges in the feature
odeling community. Second, these are the only language con-
tructs that are missing in the existing feature modeling tools
o provide full interoperability between them, while maintaining
he same expressiveness (i.e., the expressiveness of the LRelaxedFMs
language). Other refactorings for LRelaxedFMs are not needed in the
tools analyzed because the respective language constructs are
available in all tools or in none tool (see Table 9). Finally, we used
those refactorings to illustrate our approach, since the objective
of this article is not to provide a refactoring for each existing
language construct, but to demonstrate the viability of an inter-
operability approach like the one presented in this paper. The
implementation of further refactorings as well as specializations
are in our planning agenda.

RQ4: Are the implemented refactorings correct, complete, and scal-
able?. We quantitatively evaluate the refactorings implemented
using metrics to show the soundness (correctness), completeness,
and scalability. We use the interoperability scenario illustrated
in Fig. 13 in which we focus on ensuring that the refactorings
for the language constructs (i.e., mutex groups and group cardi-
nalities) are correct. The evaluation corpus includes two sets of
feature models:

- Base case testing feature models. A set of 56 testing fea-
ture models (8 for the mutex-group and 48 for the group-
cardinality language construct) manually built to consider
every base case of the refactorings. The expected refactoring
for each feature model is known before the application of
the refactoring and all configurations and products of the

8 EMF/Ecore: https://www.eclipse.org/modeling/emf/, Henshin: https://www.
clipse.org/henshin/
19
feature model can be enumerated in order to compare them
with those generated by the output refactored model. The
size of these feature models varies from 3 to 30 features
in order to be able to enumerate and compare all their
configurations. We use this set of feature models to evaluate
the soundness and the completeness of our refactorings.

- Randomly-generated feature models. A set of 224 feature
models automatically generated to contain a specified large
number of features (from 250 to 7000 features) and with
a percentage of different types of language constructs (e.g.,
group cardinalities, mutex groups, optional and mandatory
features,. . .). We use this set of feature models to evaluate
the scalability of our refactorings.

The experiments were carried out on a desktop computer with
AMD Ryzen 5 2400G, 3.6 GHz, 16 GB of memory, and Windows
10 Pro. We use the Eclipse EMF/Ecore framework with Java 13,
and Henshin 1.6.0.

Soundness of the interoperable scenario. As shown in Fig. 13, we
want to demonstrate that given a feature model, the application
of the different model transformations leads to a feature model
that contains exactly the same products than the original one.

To demonstrate the soundness of our approach, we generate
each valid product of the input feature model and of the output
(transformed) feature model, and compare both set of products.
We perform this checking in each transformation step of our
approach to guarantee that the semantics of the feature model
does not change during the pipeline. We use the Clafer tool9 to
enumerate the products. Since the product operation (Benavides
et al., 2010) is costly or even infeasible for large-scale feature
models, we use the pre-defined set of feature models manually
generated (i.e., the base case testing feature models) that covers
all the casuistic of the refactorings and that their products can be
enumerated efficiently (see Fig. 14). These feature models cover
all base cases of the refactorings as well as all possible structural
combinations of the language constructs to be refactored (e.g.,
multiple nesting of the language constructs to be refactored), so
that any other (large) feature model can fit into one of these
base case models. For mutex-group we define 8 feature models,
one for each base case presented in Fig. 14. For instance, BC5
corresponds to the case in which a child of a mutex-group is also
a mutex-group, and thus, the refactorings should transform both
instances; while BC8 represents the case in which the mutex-
group is a child of any other kind of group like a xor-group or
a selection group. For group-cardinalities, we define up to 48
feature models covering the 8 base cases defined in Fig. 14 for
each of the 6 possibilities of the group-cardinality refactoring
with regard to its multiplicity, which were presented in Fig. 10(b).
In all cases, our refactorings (both in Henshin and Java) maintain
the set of products of the feature models after applying each
model transformation.

9 https://www.clafer.org/

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/henshin/
https://www.eclipse.org/henshin/
https://www.clafer.org/

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

C
a
m
c
r
i
o
l
m
W
m
a
h
c

S
t
t
t
a
f
m
l
t
t
w
b
f
g

a
t
o
o
(
a
w
t
t
i
H
a
e
7
f
i
h
s
m

Fig. 14. Base cases used to validate the soundness of our approach.
t
s
f
l
t
i
a

T

E
l
e
t
m
o
h
m
i
u
o
i
g
o
f
a
t

R
o
a
i
o
m
c
i
s
l
I
5
i

ompleteness of the refactorings. Given a feature model, applying
refactoring for a specific language constructs leads to a feature
odel which does not contain any instance of such language
onstruct. That is, all instances of the language constructs to be
efactored have been successfully transformed to the correspond-
ng target language construct. To demonstrate the completeness
f our refactorings we count the number of instances of a specific
anguage construct (e.g., group cardinality) to verify if no re-
aining instances are present in the transformed feature model.
e apply this metric to the entire evaluation corpus of feature
odels. In all cases, the resulting feature models do not contain
ny instance of mutex-groups nor group cardinalities as they
ave been successfully refactored to the appropriate language
onstructs (in both the Henshin and Java implementations).

calability. Given a feature model, how long does the refactoring
ake to transform every instance of the language construct to
he target construct? We use the execution time as a metric
o evaluate the scalability of our refactorings. We have gener-
ted a set of random feature models with different number of
eatures and different language constructs. We generate feature
odels which contain up to 7000 features, with a 10% to 20% of

anguage constructs (mutex-group and group cardinalities) to be
ransformed. We use this ratio of language constructs in order
o maintain the consistency of the feature model. A higher ratio
ill degrade the structure and naturalness of the feature model
ecause of inconsistencies with the number of children that each
eature group can have Schobbens et al. (2007) (i.e., a feature
roup must have at least two children).
For each refactoring and feature model, we performed 30 runs,

nd calculated the medians, means and standard deviations for
he execution time (see Table 10). The table shows the number
f features before and after applying the refactorings since some
f the refactorings can incorporate new features to the model
e.g., mutex group always incorporates one extra feature). We
lso show the number of refactorings performed that corresponds
ith the number of instances of the language construct to be
ransformed. We can observe a significant difference between
he performance of the pure MDD (Henshin) and the OOP (Java)
mplementations, where the Java refactorings outperform the
enshin versions in both type of language constructs. In fact,
s illustrated in Figs. 15 and 16, Henshin refactorings show an
xponential increase with the size of the feature model (around
s for a feature model of 7000 features and 1400 refactorings

or mutex groups) while Java refactorings shows a polynomial
ncrease (0.5 s for the same feature model). The difference is
igher for the group cardinality language construct where Hen-
hin takes more than 3 min to refactor 1400 groups in a feature

odel of 7000 features, while the Java version only takes around

20
0.5 s. We can conclude that from the point of view of the perfor-
mance, refactorings in Java are superior to Henshin refactorings.
However, Henshin refactorings allow following a complete MDD
approach maintaining a higher degree of abstraction, facilitating
the inspection of the rules by a visual syntax.

Conclusion: Refactorings are correct since the transformed fea-
ure model has the same semantics as the input model (i.e., the
ame set of products). Refactorings are complete because the trans-
ormed feature model do not contain any instances of the refactored
anguage construct. The scalability of the refactorings depends on
he implementation which can be exponential due to the overhead
ntroduced by MDD technologies regardless the inner complexity of
specific refactoring.

hreats to validity for RQ4:

xperimentation set-up (internal validity). A threat to internal va-
idity is our choice of feature models and their sizes for the
valuation corpus (i.e., 56 models with up to 30 features) and
he configuration parameters for the randomly-generated feature
odels (i.e., 224 models with up to 7000 features and with 20%
f a specific language construct). The reasons to use those values
ave been explained and discussed in RQ4. While a different set of
odels with other parameters will make the result of our exper-

ments more confident, we believe that the chosen setup allows
s to demonstrate the correctness, completeness, and scalability
f the evaluated refactorings. While a detailed evaluation of the
mpact of each parameter (e.g., number of features, number of
roups, configurations, etc.) in the refactorings is out of the scope
f this paper, we plan, as our future work, to study how other con-
iguration parameter for feature models affect the refactorings,
nd to perform a sensitivity analysis to study the robustness of
he refactorings with regard to configuration parameters.

eal-world feature models (external validity). There exist a vast set
f real-world feature models that could be used to evaluate our
pproach. However, those feature models are usually presented
n research papers as feature diagrams illustrating the variability
f a real-world system, but they are not available in any feature
odel format due to the lack of tool support for all language
onstructs required by those systems (Horcas et al., 2022). For
nstance, even for the Clafer language which is the most expres-
ive, there is a lack of models that include the most advanced
anguage constructs since common tools cannot support them.
n fact, the Clafer community has made publicly available up to
16 feature models in Clafer10 that vary in size and complex-
ty (including 341 feature models translated from the SPLOT11

10 https://github.com/gsdlab/clafer/tree/master/test/positive
11 http://www.splot-research.org/

https://github.com/gsdlab/clafer/tree/master/test/positive
http://www.splot-research.org/

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

i
t
b
g
f
f
m
i

R
d
t
a
e
a
f
s
S
s
F
n
h
p

Table 10
Evaluation of the refactorings. For each language construct and feature model we present the number of features before and after applying the
refactorings, the number of refactorings (#Refacts) performed and the execution time of both implementations. We present the mean, median and
standard deviation for 30 executions.
Language Feature model size #Refacts MDD (Henshin) OOP (Java)

construct #Features
before

#Features
after

Mean
Time (s)

Median
Time (s)

Std
Time (s)

Median
Time (s)

Median
Time (s)

Std
Time (s)

Mutex
group

500 600 100 0.05 0.04 0.02 2.90e−3 2.88e−3 8.62e−5
1000 1200 200 0.14 0.13 0.04 0.01 0.01 2.37e−3
2000 2400 400 0.42 0.42 0.03 0.04 0.04 2.93e−4
3000 3600 600 0.89 0.88 0.06 0.08 0.08 6.35e−4
4000 4800 800 1.51 1.49 0.08 0.16 0.16 8.11e−3
5000 6000 1000 3.04 2.96 0.44 0.26 0.26 6.76e−3
6000 7200 1200 4.65 4.69 0.46 0.38 0.38 1.02e−2
7000 8400 1400 7.41 7.19 1.73 0.51 0.51 7.79e−3

Group
cardinality
(generic
case a..b)

500 500 100 0.55 0.54 0.03 4.82e−3 4.81e−3 2.81e−4
1000 1000 200 2.10 2.06 0.10 0.02 0.02 1.17e−2
2000 2000 400 8.63 8.60 0.15 0.04 0.04 3.83e−4
3000 3000 600 23.01 23.02 0.36 0.09 0.09 1.31e−3
4000 4000 800 42.08 41.73 1.14 0.16 0.16 1.32e−3
5000 5000 1000 74.26 73.95 2.64 0.24 0.24 3.42e−3
6000 6000 1200 124.47 124.32 8.34 0.36 0.36 1.48e−2
7000 7000 1400 198.78 197.02 9.70 0.48 0.48 9.89e−3
repository). However, after checking all those models, we found
that there is a lack of models using the mutex-group and group
cardinality language constructs, and only a few include one or
two instances of those language constructs. In fact, those models
match with our models considered in the suit test cases we have
used. The reason for a lack of models with those specific language
constructs (mutex-group and group cardinality) is twofold. First,
most of the realistic feature models are synthesized from existing
real-world systems by the academia, but SPL researchers tend
to simplify them (e.g., considering only xor and or-groups) los-
ng variability information. Second, with the exception of Clafer,
he majority of tools to manage feature models only considers
asic language constructs (e.g., optional, mandatory, xor and or-
roups) Horcas et al. (2022) and feature models are translated
rom those less-expressive tools to Clafer. For instance, all the
eature models in the SPLOT repository are basic. This proves even
ore the necessity of having an approach such as the presented

n this paper.

Q5: What specific language constructs should be considered in the
efinition of a feature modeling language? Considering all M2M
ransformations, including refactorings, specialization, and gener-
lizations, that need to be defined in order to provide full interop-
rability among existing feature modeling tools (see Table 9), an
lternative to our approach is the definition of a completely new
eature modeling language that supports all the language con-
tructs already supported by existing tools (Horcas et al., 2022).
uch a language should include those language constructs of CAF
o that no transformations are needed to represent all SPL (see
ig. 5) without deteriorating the feature model structure (natural-
ess) or size (succinctness) (Schobbens et al., 2007). Our approach
elps to identify those language constructs. Concretely, as ex-
osed in Table 9, abstract features (M1), mutex groups (M2), group

cardinalities (M3 and M4), and propositional logic constraints
(M16) should be exposed as explicit language constructs to ease
the specification of feature models with the same expressiveness
as LRelaxedFMs. A language construct for multi-features or clon-
able features (M7) and for advanced constraints (M17) should be
exposed to achieve the full expressiveness of LCardinalityBasedFMs. Fi-
nally, to achieve the expressiveness of LNumericalFMs, numerical fea-
tures (M9), features with attributes (M10), as well as constraints
involving those features are needed (M18 and M19).

Conclusion: A simple language with only the language con-
structs that practitioners need, will be the best feature modeling
21
Fig. 15. Performance of the Mutex-group refactorings with respect to the size
of the feature model (number of features) and percentage of Mutex-groups.

language. However, the trade-off between a super set with all lan-
guage constructs and a minimal set of language construct is some-
thing practitioners need to think about in the SPL community. Our
approach allows feature models to be extended to support concepts
that might be needed in specific domains.
Threats to validity for RQ5:

Realization and implementation of CAF (conclusion validity). A
different realization of CAF from the proposed in Section 4.2 may
imply a different set of language constructs and thus different
refactorings. The same occurs with a different implementation in
the EMF/Ecore of CAF (Section 6.1) where the design decisions
of the developers may imply a different set of refactorings be-
tween language constructs. For example, a developer can decide
to model relationships between a feature and its parent using just
cardinalities without the need of defining a language construct for
each kind of feature group (Horcas et al., 2023). Our realization
of CAF is based on existing language constructs from earlier
work (Horcas et al., 2020) which have been demonstrated to be
commonly used in practice in SPL (Horcas et al., 2022). Regarding

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

l

Fig. 16. Performance of the Group Cardinality refactorings with respect to the
size of the feature model and percentage of group cardinalities.

the implementation, as a proof of concept that our approach
is feasible in practice, we opted to try to explicitly represent
each language construct, and thus, we define (if possible) a lan-
guage construct for each modeling concept, while other feature
modeling concepts have been defined as relationships between
language constructs (e.g., the root feature) or as properties of
anguage constructs (e.g., optional feature as part of the feature
construct).

7. Conclusions

We have presented an approach to provide interoperability
of feature models based on their variability modeling constructs.
Our approach relies on model-driven engineering techniques and
advocates for a modular and extensible design that allows practi-
tioners to decide which language levels support based on their
needs. Independent-notation languages with different expres-
siveness levels can be generated as instances of the common
abstract syntax by choosing only the language constructs that are
needed to represent the same expressiveness that practical tools
and existing languages offer. The abstract syntax of the language
constructs enables the development of a set of reusable model
transformations (e.g., refactorings) to support better interoper-
ability between existing languages and analysis capabilities that
are not available for a full language with all possible constructs.

CRediT authorship contribution statement

Jose-Miguel Horcas: Investigation, Conceptualization, Soft-
ware, Validation, Writing – review & editing. Mónica Pinto: In-
vestigation, Methodology, Validation, Writing – review & editing.
Lidia Fuentes: Work idea, Funding, Supervision, Resources.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing in-
terests: Jose Miguel Horcas reports a relationship with University
of Malaga that includes: employment and funding grants. Jose
Miguel Horcas reports a relationship with University of Seville
that includes: employment and funding grants. Monica Pinto
22
reports a relationship with University of Malaga that includes:
employment. Lidia Fuentes reports a relationship with University
of Malaga that includes: employment. JMH has co-authored sev-
eral papers with David Benavides, José A. Galindo, Rubén Heradio,
and David Fernandez-Amoros this year. JMH has collaborated in a
paper with Steffen Zschaler, Daniel Strüber, Alexandru Burdusel,
and Jabier Martinez this year. MP and LF have co-authored a
paper with Don Batory in the last three years. MP and LF have
co-authored a paper with Dillian Gurov in the last three years.
MP and LF have co-autohred a paper with Alessandro Vittorio
Papadopoulos (Mälardalen University, Västerås, Sweden). MP, LF
and JMH have co-authored a paper with Siobhán Clarke in the last
years. MP, LF and JMH have participated in a national network
of excellence in collaboration with the University of Seville, da
Coruña, País Vasco, Castilla-La Mancha, Extremadura, Mondragón,
Rey Juan Carlos, and Politécnica de Madrid.

Data availability

The implementation is available in a GitHub repository https:
//github.com/CAOSD-group/rhea.

References

Abele, A., Papadopoulos, Y., Servat, D., Törngren, M., Weber, M., 2010. The
CVM framework - A prototype tool for compositional variability man-
agement. In: Fourth International Workshop on Variability Modelling
of Software-Intensive Systems. In: ICB-Research Report, vol. 37, Univer-
sität Duisburg-Essen, pp. 101–105, URL http://www.vamos-workshop.net/
proceedings/VaMoS_2010_Proceedings.pdf.

Acher, M., Collet, P., Lahire, P., France, R.B., 2013. FAMILIAR: A domain-specific
language for large scale management of feature models. Sci. Comput.
Program. (SCP) 78 (6), 657–681.

Al-Azzawi, A.F., 2018. Py?fml - A textual language for feature modeling. Int. J.
Software Eng. Appl. (IJSEA) 9 (1), 41–53. http://dx.doi.org/10.5121/ijsea.2018.
9104.

Alférez, M., Acher, M., Galindo, J.A., Baudry, B., Benavides, D., 2019. Modeling
variability in the video domain: Language and experience report. Softw. Qual.
J. 27 (1), 307–347. http://dx.doi.org/10.1007/s11219-017-9400-8.

Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., de Lucena, C.J.P.,
2006. Refactoring product lines. In: 5th International Conference Generative
Programming and Component Engineering. GPCE, ACM, pp. 201–210. http:
//dx.doi.org/10.1145/1173706.1173737.

Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G., 2010. Henshin:
Advanced concepts and tools for in-place EMF model transformations. In:
13th International Conference on Model Driven Engineering Languages and
Systems. MODELS, In: Lecture Notes in Computer Science, vol. 6394, Springer,
pp. 121–135. http://dx.doi.org/10.1007/978-3-642-16145-2_9.

Asikainen, T., Männistö, T., 2009. Nivel: A metamodelling language with a formal
semantics. Software Syst. Model. 8 (4), 521–549. http://dx.doi.org/10.1007/
s10270-008-0103-2.

Asikainen, T., Männistö, T., Soininen, T., 2006. A unified conceptual foundation for
feature modelling. In: 10th International Software Product Line Conference.
SPLC 2006, IEEE Computer Society, pp. 31–40. http://dx.doi.org/10.1109/
SPLINE.2006.1691575.

Atkinson, C., Kuhne, T., 2003. Model-driven development: A metamodeling
foundation. IEEE Software 20 (5), 36–41.

Bashroush, R., Garba, M., Rabiser, R., Groher, I., Botterweck, G., 2017. CASE tool
support for variability management in software product lines. ACM Comput.
Surv. 50 (1), 14:1–14:45. http://dx.doi.org/10.1145/3034827.

Batory, D.S., 2005. Feature models, grammars, and propositional formulas. In:
Software Product Lines, 9th International Conference, SPLC 2005, Rennes,
France, September 26-29, 2005, Proceedings. pp. 7–20. http://dx.doi.org/10.
1007/11554844_3.

Benavides, D., 2019. Variability modelling and analysis during 30 years. In:
From Software Engineering to Formal Methods and Tools, and Back. In:
Lecture Notes in Computer Science, vol. 11865, Springer, pp. 365–373. http:
//dx.doi.org/10.1007/978-3-030-30985-5_21.

Benavides, D., Martín-Arroyo, P.T., Cortés, A.R., 2005. Automated reasoning on
feature models. In: 17th International Conference on Advanced Information
Systems Engineering. CAiSE, In: Lecture Notes in Computer Science, vol.
3520, Springer, pp. 491–503. http://dx.doi.org/10.1007/11431855_34.

Benavides, D., Rabiser, R., Batory, D.S., Acher, M., 2019. First international
workshop on languages for modelling variability (MODEVAR). In: 23rd
International Systems and Software Product Line Conference, Vol. A. SPLC,
ACM, p. 46:1. http://dx.doi.org/10.1145/3336294.3342364.

https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
https://github.com/CAOSD-group/rhea
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb2
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb2
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb2
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb2
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb2
http://dx.doi.org/10.5121/ijsea.2018.9104
http://dx.doi.org/10.5121/ijsea.2018.9104
http://dx.doi.org/10.5121/ijsea.2018.9104
http://dx.doi.org/10.1007/s11219-017-9400-8
http://dx.doi.org/10.1145/1173706.1173737
http://dx.doi.org/10.1145/1173706.1173737
http://dx.doi.org/10.1145/1173706.1173737
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/s10270-008-0103-2
http://dx.doi.org/10.1007/s10270-008-0103-2
http://dx.doi.org/10.1007/s10270-008-0103-2
http://dx.doi.org/10.1109/SPLINE.2006.1691575
http://dx.doi.org/10.1109/SPLINE.2006.1691575
http://dx.doi.org/10.1109/SPLINE.2006.1691575
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb9
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb9
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb9
http://dx.doi.org/10.1145/3034827
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1007/978-3-030-30985-5_21
http://dx.doi.org/10.1007/978-3-030-30985-5_21
http://dx.doi.org/10.1007/978-3-030-30985-5_21
http://dx.doi.org/10.1007/11431855_34
http://dx.doi.org/10.1145/3336294.3342364

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

B

B

B

B

B

B

B

C

C

C

C

C

E

F

F

F

F

F

G

G

enavides, D., Segura, S., Ruiz-Cortés, A., 2010. Automated analysis of
feature models 20 years later: A literature review. Inf. Syst. 35
(6), 615–636. http://dx.doi.org/10.1016/j.is.2010.01.001, URL http://www.
sciencedirect.com/science/article/pii/S0306437910000025.

enavides, D., Segura, S., Trinidad, P., Cortés, A.R., 2007. FAMA: Tooling a frame-
work for the automated analysis of feature models. In: First International
Workshop on Variability Modelling of Software-Intensive Systems. VaMoS,
pp. 129–134.

erger, T., Collet, P., 2019. Usage scenarios for a common feature modeling
language. In: 23rd International Systems and Software Product Line Confer-
ence, Vol. B. SPLC, ACM, pp. 86:1–86:8. http://dx.doi.org/10.1145/3307630.
3342403.

erger, T., Pfeiffer, R., Tartler, R., Dienst, S., Czarnecki, K., Wasowski, A., She, S.,
2014. Variability mechanisms in software ecosystems. Inf. Software Technol.
56 (11), 1520–1535. http://dx.doi.org/10.1016/j.infsof.2014.05.005.

erger, T., She, S., Lotufo, R., Wasowski, A., Czarnecki, K., 2013. A study of
variability models and languages in the systems software domain. IEEE Trans.
Software Eng. 39 (12), 1611–1640. http://dx.doi.org/10.1109/TSE.2013.34.

utting, A., Eikermann, R., Kautz, O., Rumpe, B., Wortmann, A., 2018a. Controlled
and extensible variability of concrete and abstract syntax with independent
language features. In: 12th International Workshop on Variability Modelling
of Software-Intensive Systems. VAMOS, ACM, pp. 75–82. http://dx.doi.org/10.
1145/3168365.3168368.

utting, A., Eikermann, R., Kautz, O., Rumpe, B., Wortmann, A., 2018b. Modeling
language variability with reusable language components. In: 22nd Interna-
tional Systems and Software Product Line Conference, Vol. 1. SPLC, ACM, pp.
65–75. http://dx.doi.org/10.1145/3233027.3233037.

añete, A., Amor, M., Fuentes, L., 2020. Supporting the evolution of applications
deployed on edge-based infrastructures using multi-layer feature models.
In: SPLC ’20: 24th ACM International Systems and Software Product Line
Conference, Montreal, Quebec, Canada, October 19-23, 2020, Volume B. pp.
79–87. http://dx.doi.org/10.1145/3382026.3425772.

lassen, A., Boucher, Q., Heymans, P., 2011. A text-based approach to feature
modelling: Syntax and semantics of TVL. Sci. Comput. Program. 76 (12),
1130–1143. http://dx.doi.org/10.1016/j.scico.2010.10.005.

ordy, M., Schobbens, P.-Y., Heymans, P., Legay, A., 2013. Beyond boolean
product-line model checking: Dealing with feature attributes and multi-
features. In: Proceedings of the 2013 International Conference on Software
Engineering. ICSE ’13, IEEE Press, Piscataway, NJ, USA, pp. 472–481, URL
http://dl.acm.org/citation.cfm?id=2486788.2486851.

zarnecki, K., Eisenecker, U.W., 2000. Generative Programming - Methods, Tools
and Applications. Addison-Wesley, URL http://www.addison-wesley.de/main/
main.asp?page=englisch/bookdetails&productid=99258.

zarnecki, K., Helsen, S., Eisenecker, U.W., 2005. Formalizing cardinality-based
feature models and their specialization. Software Process: Improv. Pract. 10
(1), 7–29. http://dx.doi.org/10.1002/spip.213.

ichelberger, H., Kröher, C., Schmid, K., 2013. An analysis of variability modeling
concepts: Expressiveness vs. analyzability. In: 13th International Conference
on Software Reuse. ICSR, In: Lecture Notes in Computer Science, vol. 7925,
Springer, pp. 32–48. http://dx.doi.org/10.1007/978-3-642-38977-1_3.

adhlillah, H.S., Feichtinger, K., Sonnleithner, L., Rabiser, R., Zoitl, A., 2021.
Towards heterogeneous multi-dimensional variability modeling in cyber-
physical production systems. In: SPLC ’21: 25th ACM International Systems
and Software Product Line Conference, Leicester, United Kindom, September
6-11, 2021, Volume B. ACM, pp. 123–129. http://dx.doi.org/10.1145/3461002.
3473941.

eichtinger, K., 2021. A flexible approach for transforming variability models.
In: SPLC ’21: 25th ACM International Systems and Software Product Line
Conference, Leicester, United Kindom, September 6-11, 2021, Volume B.
ACM, pp. 18–23. http://dx.doi.org/10.1145/3461002.3473069.

eichtinger, K., Rabiser, R., 2020. Variability model transformations: Towards
unifying variability modeling. In: 46th Euromicro Conference on Software
Engineering and Advanced Applications. SEAA 2020, Portoroz, Slovenia,
August 26-28, 2020, IEEE, pp. 179–182. http://dx.doi.org/10.1109/SEAA51224.
2020.00037.

eichtinger, K., Rabiser, R., 2021. How flexible must a transformation approach
for variability models and custom variability representations be? In: SPLC
’21: 25th ACM International Systems and Software Product Line Conference,
Leicester, United Kindom, September 6-11, 2021, Volume B. ACM, pp. 69–72.
http://dx.doi.org/10.1145/3461002.3473945.

eichtinger, K., Stöbich, J., Romano, D., Rabiser, R., 2021. TRAVART: An ap-
proach for transforming variability models. In: VaMoS’21: 15th International
Working Conference on Variability Modelling of Software-Intensive Systems,
Virtual Event / Krems. Austria, February 9-11, 2021, ACM, pp. 8:1–8:10.
http://dx.doi.org/10.1145/3442391.3442400.

alindo, J.A., Benavides, D., Trinidad, P., Gutiérrez-Fernández, A.M., Ruiz-
Cortés, A., 2019. Automated analysis of feature models: Quo vadis? Com-
puting 101 (5), 387–433. http://dx.doi.org/10.1007/s00607-018-0646-1.

alster, M., Weyns, D., Tofan, D., Michalik, B., Avgeriou, P., 2014. Variability in
software systems - A systematic literature review. IEEE Trans. Software Eng.
40 (3), 282–306. http://dx.doi.org/10.1109/TSE.2013.56.
23
Gheyi, R., Massoni, T., Borba, P., 2011. Automatically checking feature model
refactorings. J. UCS 17 (5), 684–711. http://dx.doi.org/10.3217/jucs-017-05-
0684.

Harel, D., Rumpe, B., 2004. Meaningful modeling: What’s the semantics of
‘‘semantics’’? IEEE Comput. 37 (10), 64–72. http://dx.doi.org/10.1109/MC.
2004.172.

Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A., 2008.
Adding standardized variability to domain specific languages. In: 12th
International Software Product Line Conference. SPLC 2008), IEEE Computer
Society, pp. 139–148. http://dx.doi.org/10.1109/SPLC.2008.25.

Heradio, R., Perez-Morago, H., Fernández-Amorós, D., Bean, R., Cabrerizo, F.J.,
Cerrada, C., Herrera-Viedma, E., 2016. Binary decision diagram algorithms
to perform hard analysis operations on variability models. In: New Trends
in Software Methodologies, Tools and Techniques - Proceedings of the
Fifteenth SoMeT_16. Larnaca, Cyprus, 12-14 September 2016, In: Frontiers
in Artificial Intelligence and Applications, vol. 286, IOS Press, pp. 139–154.
http://dx.doi.org/10.3233/978-1-61499-674-3-139.

Heymans, P., Schobbens, P.-Y., Trigaux, J.-C., Matulevicius, R., Classen, A., Bon-
temps, Y., 2007. Towards the comparative evaluation of feature diagram
languages. In: Software and Services Variability Management Workshop
Concepts, Models and Tools. SVM 2007.

Horcas, J.M., Galindo, J.A., Heradio, R., Fernandez-Amoros, D., Benavides, D., 2023.
A monte carlo tree search conceptual framework for feature model analyses.
195, p. 111551. http://dx.doi.org/10.1016/j.jss.2022.111551,

Horcas, J.M., Pinto, M., Fuentes, L., 2020. Extensible and modular abstract syntax
for feature modeling based on language constructs. In: 24th International
Systems and Software Product Line Conference. SPLC, ACM, http://dx.doi.org/
10.1145/3382025.3414959.

Horcas, J.M., Pinto, M., Fuentes, L., 2022. Empirical analysis of the tool support
for software product lines. Software Syst. Model. http://dx.doi.org/10.1007/
s10270-022-01011-2.

Juodisius, P., Sarkar, A., Mukkamala, R.R., Antkiewicz, M., Czarnecki, K., Wa-
sowski, A., 2019. Clafer: Lightweight modeling of structure, behaviour, and
variability. Program. J. 3 (1), 2. http://dx.doi.org/10.22152/programming-
journal.org/2019/3/2.

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S., 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Re-
port CMU/SEI-90-TR-21, Carnegie-Mellon Univ Pittsburgh Pa Software
Engineering Inst.

Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M., 1998. FORM: A feature-
oriented reuse method with domain-specific reference architectures. Ann.
Software Eng. 5, 143–168. http://dx.doi.org/10.1023/A:1018980625587.

Knüppel, A., Thüm, T., Mennicke, S., Meinicke, J., Schaefer, I., 2017. Is there a
mismatch between real-world feature models and product-line research? In:
11th Joint Meeting on Foundations of Software Engineering. ESEC/FSE, ACM,
pp. 291–302. http://dx.doi.org/10.1145/3106237.3106252.

Krüger, J., Nielebock, S., Krieter, S., Diedrich, C., Leich, T., Saake, G., Zug, S.,
Ortmeier, F., 2017. Beyond software product lines: Variability modeling in
cyber-physical systems. In: Proceedings of the 21st International Systems
and Software Product Line Conference - Volume. A. SPLC ’17, ACM, New
York, NY, USA, pp. 237–241. http://dx.doi.org/10.1145/3106195.3106217, URL
http://doi.acm.org/10.1145/3106195.3106217.

Liang, J.H., Ganesh, V., Czarnecki, K., Raman, V., 2015. SAT-based analysis
of large real-world feature models is easy. In: Proceedings of the 19th
International Conference on Software Product Line. SPLC ’15, Association for
Computing Machinery, New York, NY, USA, pp. 91–100. http://dx.doi.org/10.
1145/2791060.2791070.

Liu, F., Tang, G., Li, Y., Cai, Z., Zhang, X., Zhou, T., 2019. A survey on edge
computing systems and tools. Proc. IEEE 107 (8), 1537–1562.

Meinicke, J., Thüm, T., Schröter, R., Benduhn, F., Leich, T., Saake, G., 2017.
Mastering Software Variability with FeatureIDE. Springer, http://dx.doi.org/
10.1007/978-3-319-61443-4.

Meixner, K., Rabiser, R., Biffl, S., 2019. Towards modeling variability of products,
processes and resources in cyber-physical production systems engineering.
In: 23rd International Systems and Software Product Line Conference, Vol.
B. SPLC, ACM, pp. 68:1–68:8. http://dx.doi.org/10.1145/3307630.3342411.

Merenda, M., Porcaro, C., Iero, D., 2020. Edge machine learning for AI-enabled IoT
devices: A review. Sensors 20 (9), 2533. http://dx.doi.org/10.3390/s20092533.

Munoz, D., Gurov, D., Pinto, M., Fuentes, L., 2021. Category theory framework
for variability models with non-functional requirements. In: Advanced In-
formation Systems Engineering - 33rd International Conference, CAiSE 2021,
Melbourne, VIC, Australia, June 28 - July 2, 2021, Proceedings. In: Lecture
Notes in Computer Science, vol. 12751, Springer, pp. 397–413. http://dx.doi.
org/10.1007/978-3-030-79382-1_24.

Munoz, D., Oh, J., Pinto, M., Fuentes, L., Batory, D.S., 2019. Uniform random sam-
pling product configurations of feature models that have numerical features.
In: 23rd International Systems and Software Product Line Conference, Vol.
A. SPLC, ACM, pp. 39:1–39:13. http://dx.doi.org/10.1145/3336294.3336297.

Object Management Group (OMG), 2016. Meta object facility (MOF), v2.5.1.
https://www.omg.org/spec/MOF/Current.

http://dx.doi.org/10.1016/j.is.2010.01.001
http://www.sciencedirect.com/science/article/pii/S0306437910000025
http://www.sciencedirect.com/science/article/pii/S0306437910000025
http://www.sciencedirect.com/science/article/pii/S0306437910000025
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb16
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb16
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb16
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb16
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb16
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb16
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb16
http://dx.doi.org/10.1145/3307630.3342403
http://dx.doi.org/10.1145/3307630.3342403
http://dx.doi.org/10.1145/3307630.3342403
http://dx.doi.org/10.1016/j.infsof.2014.05.005
http://dx.doi.org/10.1109/TSE.2013.34
http://dx.doi.org/10.1145/3168365.3168368
http://dx.doi.org/10.1145/3168365.3168368
http://dx.doi.org/10.1145/3168365.3168368
http://dx.doi.org/10.1145/3233027.3233037
http://dx.doi.org/10.1145/3382026.3425772
http://dx.doi.org/10.1016/j.scico.2010.10.005
http://dl.acm.org/citation.cfm?id=2486788.2486851
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&productid=99258
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&productid=99258
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&productid=99258
http://dx.doi.org/10.1002/spip.213
http://dx.doi.org/10.1007/978-3-642-38977-1_3
http://dx.doi.org/10.1145/3461002.3473941
http://dx.doi.org/10.1145/3461002.3473941
http://dx.doi.org/10.1145/3461002.3473941
http://dx.doi.org/10.1145/3461002.3473069
http://dx.doi.org/10.1109/SEAA51224.2020.00037
http://dx.doi.org/10.1109/SEAA51224.2020.00037
http://dx.doi.org/10.1109/SEAA51224.2020.00037
http://dx.doi.org/10.1145/3461002.3473945
http://dx.doi.org/10.1145/3442391.3442400
http://dx.doi.org/10.1007/s00607-018-0646-1
http://dx.doi.org/10.1109/TSE.2013.56
http://dx.doi.org/10.3217/jucs-017-05-0684
http://dx.doi.org/10.3217/jucs-017-05-0684
http://dx.doi.org/10.3217/jucs-017-05-0684
http://dx.doi.org/10.1109/MC.2004.172
http://dx.doi.org/10.1109/MC.2004.172
http://dx.doi.org/10.1109/MC.2004.172
http://dx.doi.org/10.1109/SPLC.2008.25
http://dx.doi.org/10.3233/978-1-61499-674-3-139
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb39
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb39
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb39
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb39
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb39
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb39
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb39
http://dx.doi.org/10.1016/j.jss.2022.111551
http://dx.doi.org/10.1145/3382025.3414959
http://dx.doi.org/10.1145/3382025.3414959
http://dx.doi.org/10.1145/3382025.3414959
http://dx.doi.org/10.1007/s10270-022-01011-2
http://dx.doi.org/10.1007/s10270-022-01011-2
http://dx.doi.org/10.1007/s10270-022-01011-2
http://dx.doi.org/10.22152/programming-journal.org/2019/3/2
http://dx.doi.org/10.22152/programming-journal.org/2019/3/2
http://dx.doi.org/10.22152/programming-journal.org/2019/3/2
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb44
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb44
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb44
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb44
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb44
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb44
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb44
http://dx.doi.org/10.1023/A:1018980625587
http://dx.doi.org/10.1145/3106237.3106252
http://dx.doi.org/10.1145/3106195.3106217
http://doi.acm.org/10.1145/3106195.3106217
http://dx.doi.org/10.1145/2791060.2791070
http://dx.doi.org/10.1145/2791060.2791070
http://dx.doi.org/10.1145/2791060.2791070
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb49
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb49
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb49
http://dx.doi.org/10.1007/978-3-319-61443-4
http://dx.doi.org/10.1007/978-3-319-61443-4
http://dx.doi.org/10.1007/978-3-319-61443-4
http://dx.doi.org/10.1145/3307630.3342411
http://dx.doi.org/10.3390/s20092533
http://dx.doi.org/10.1007/978-3-030-79382-1_24
http://dx.doi.org/10.1007/978-3-030-79382-1_24
http://dx.doi.org/10.1007/978-3-030-79382-1_24
http://dx.doi.org/10.1145/3336294.3336297
https://www.omg.org/spec/MOF/Current

J.-M. Horcas, M. Pinto and L. Fuentes The Journal of Systems & Software 197 (2023) 111579

P

R

R

R

S

S

S

S

S

S

S

S

S

S

T

t

ohl, K., Böckle, G., van der Linden, F., 2005. Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer, http://dx.doi.org/10.1007/
3-540-28901-1.

aatikainen, M., Tiihonen, J., Männistö, T., 2019. Software product lines and
variability modeling: A tertiary study. J. Syst. Softw. 149, 485–510. http:
//dx.doi.org/10.1016/j.jss.2018.12.027.

omero, D., Galindo, J.A., Horcas, J.M., Benavides, D., 2021. A first prototype of a
new repository for feature model exchange and knowledge sharing. In: SPLC
’21: 25th ACM International Systems and Software Product Line Conference,
Leicester, United Kindom, September 6-11, 2021, Volume B. ACM, pp. 80–85.
http://dx.doi.org/10.1145/3461002.3473949.

osenmüller, M., Siegmund, N., Thüm, T., Saake, G., 2011. Multi-dimensional
variability modeling. In: 5th International Workshop on Variability Modelling
of Software-Intensive Systems. VaMoS, In: ACM International Conference
Proceedings Series, ACM, pp. 11–20. http://dx.doi.org/10.1145/1944892.
1944894.

chmid, K., Kröher, C., El-Sharkawy, S., 2018. Variability modeling with the
integrated variability modeling language (IVML) and EASy-producer. In: 22nd
International Systems and Software Product Line Conference, Vol. 1. SPLC
2018, ACM, p. 306. http://dx.doi.org/10.1145/3233027.3233057.

chmid, K., Rabiser, R., Grünbacher, P., 2011. A comparison of decision modeling
approaches in product lines. In: 5th International Workshop on Variability
Modelling of Software-Intensive Systems. VaMoS, In: ACM International
Conference Proceedings Series, ACM, pp. 119–126. http://dx.doi.org/10.1145/
1944892.1944907.

chmitt, A., Bettinger, C., Rock, G., 2018. Glencoe – A tool for specification,
visualization and formal analysis of product lines. In: 25th International
Conference on Transdisciplinary Engineering. In: Advances in Transdisci-
plinary Engineering, pp. 665–673. http://dx.doi.org/10.3233/978-1-61499-
898-3-665.

chobbens, P., Heymans, P., Trigaux, J., Bontemps, Y., 2007. Generic semantics of
feature diagrams. Comput. Networks 51 (2), 456–479. http://dx.doi.org/10.
1016/j.comnet.2006.08.008.

eidl, C., Winkelmann, T., Schaefer, I., 2016. A software product line of feature
modeling notations and cross-tree constraint languages. In: Modellierung. In:
LNI, vol. P-254, GI, pp. 157–172, URL https://dl.gi.de/20.500.12116/821.

epúlveda, S., Cares, C., Cachero, C., 2012. Towards a unified feature metamodel:
A systematic comparison of feature languages. In: 7th Iberian Conference on
Information Systems and Technologies. CISTI, pp. 1–7.

epúlveda, S., Cravero, A., Cachero, C., 2016. Requirements modeling languages
for software product lines: A systematic literature review. Inf. Softw. Technol.
69, 16–36. http://dx.doi.org/10.1016/j.infsof.2015.08.007.

teinberg, D., Budinsky, F., Merks, E., Paternostro, M., 2008. EMF: Eclipse
Modeling Framework. Pearson Education.

undermann, C., Feichtinger, K., Engelhardt, D., Rabiser, R., Thüm, T., 2021.
Yet another textual variability language?: A community effort towards a
unified language. In: SPLC ’21: 25th ACM International Systems and Software
Product Line Conference, Leicester, United Kingdom, September 6-11, 2021,
Volume A. ACM, pp. 136–147. http://dx.doi.org/10.1145/3461001.3471145.

undermann, C., Thüm, T., Schaefer, I., 2020. Evaluating #SAT solvers on indus-
trial feature models. In: 14th International Working Conference on Variability
Modelling of Software-Intensive Systems. VaMoS, ACM, pp. 3:1–3:9. http:
//dx.doi.org/10.1145/3377024.3377025.

anhaei, M., Habibi, J., Mirian-Hosseinabadi, S., 2016. Automating feature model
refactoring: A model transformation approach. Inf. Softw. Technol. 80,
138–157. http://dx.doi.org/10.1016/j.infsof.2016.08.011.

er Beek, M.H., Schmid, K., Eichelberger, H., 2019. Textual variability modeling
languages: An overview and considerations. In: 23rd International Systems
and Software Product Line Conference (SPLC), Volume B. ACM, pp. 82:1–82:7.
http://dx.doi.org/10.1145/3307630.3342398.
24
Thüm, T., Batory, D.S., Kästner, C., 2009. Reasoning about edits to feature models.
In: 31st International Conference on Software Engineering. ICSE, IEEE, pp.
254–264. http://dx.doi.org/10.1109/ICSE.2009.5070526.

Thüm, T., Seidl, C., Schaefer, I., 2019. On language levels for feature modeling
notations. In: 23rd International Systems and Software Product Line Confer-
ence, Vol. B. SPLC, ACM, pp. 83:1–83:4. http://dx.doi.org/10.1145/3307630.
3342404.

Urli, S., Blay-Fornarino, M., Collet, P., Mosser, S., 2012. Using composite feature
models to support agile software product line evolution. In: Proceedings of
the 6th International Workshop on Models and Evolution. ME@MoDELS 2012,
Innsbruck, Austria, October 1-5, 2012, pp. 21–26. http://dx.doi.org/10.1145/
2523599.2523604.

Villota, Á., Mazo, R., Salinesi, C., 2019. The high-level variability language: An
ontological approach. In: 23rd International Systems and Software Product
Line Conference, Vol. B. SPLC, ACM, pp. 84:1–84:8. http://dx.doi.org/10.1145/
3307630.3342401.

Wortmann, A., Barais, O., Combemale, B., Wimmer, M., 2020. Modeling languages
in industry 4.0: An extended systematic mapping study. Softw. Syst. Model.
19 (1), 67–94. http://dx.doi.org/10.1007/s10270-019-00757-6.

Zhiyi, M., Xiao, H., 2014. Building modeling tools based on metamodeling and
product line technologies. Chin. J. Electron. 23 (2).

José Miguel Horcas is a postdoc researcher at the University of Málaga, Spain,
where he received his M.Sc. degree in 2012 and his Ph.D. in Computer Sciences
in 2018. He is a member of the CAOSD research group of the University of
Málaga. He carried out two postdoc stays at King’s College London in 2019
for three months, and at the University of Seville for 18 months. His main
research areas are related to software product lines, including variability and
configurability, and quality attributes. More information available at https://sites.
google.com/view/josemiguelhorcas.

Mónica Pinto received the M.Sc. degree in computer science and the Ph.D.
degree from the Universidad de Málaga, Spain, in 1998 and 2004, respectively.
She is an Associate Professor since 2009 with the Department of Lenguajes y
Ciencias de la Computación, Universidad de Málaga. She is a research member
of the CAOSD research group, one of the constituent group of the Instituto de
Tecnología e Ingeniería del Software ‘‘José María Troya Linero of the Universidad
de Málaga. She is currently part of the institute management team. She actively
participates in Spanish and European research projects. Her main research areas
are energy-aware software development, quality-driven variability modeling and
analysis, model-driven software engineering, and Internet Of Things and Edge
computing systems development.

Lidia Fuentes received her M.Sc. degree in Computer Science from the University
of Málaga (Spain) in 1992 and her Ph.D. in Computer Science in 1998 from the
same University. She is a Full Professor at the Department of Computer Science
of the University of Málaga since 2011 (previously, Lecturer and Associate Pro-
fessor from 1993). Currently, she is the head of the CAOSD research group. Her
main research areas are Aspect-Oriented Software Development, Model-Driven
Development, Software Product Lines, AgentOriented Software Engineering, Self-
adaptive middleware platforms, Architecture Description Languages and Domain
Specific Languages.

http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1016/j.jss.2018.12.027
http://dx.doi.org/10.1016/j.jss.2018.12.027
http://dx.doi.org/10.1016/j.jss.2018.12.027
http://dx.doi.org/10.1145/3461002.3473949
http://dx.doi.org/10.1145/1944892.1944894
http://dx.doi.org/10.1145/1944892.1944894
http://dx.doi.org/10.1145/1944892.1944894
http://dx.doi.org/10.1145/3233027.3233057
http://dx.doi.org/10.1145/1944892.1944907
http://dx.doi.org/10.1145/1944892.1944907
http://dx.doi.org/10.1145/1944892.1944907
http://dx.doi.org/10.3233/978-1-61499-898-3-665
http://dx.doi.org/10.3233/978-1-61499-898-3-665
http://dx.doi.org/10.3233/978-1-61499-898-3-665
http://dx.doi.org/10.1016/j.comnet.2006.08.008
http://dx.doi.org/10.1016/j.comnet.2006.08.008
http://dx.doi.org/10.1016/j.comnet.2006.08.008
https://dl.gi.de/20.500.12116/821
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb65
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb65
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb65
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb65
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb65
http://dx.doi.org/10.1016/j.infsof.2015.08.007
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb67
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb67
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb67
http://dx.doi.org/10.1145/3461001.3471145
http://dx.doi.org/10.1145/3377024.3377025
http://dx.doi.org/10.1145/3377024.3377025
http://dx.doi.org/10.1145/3377024.3377025
http://dx.doi.org/10.1016/j.infsof.2016.08.011
http://dx.doi.org/10.1145/3307630.3342398
http://dx.doi.org/10.1109/ICSE.2009.5070526
http://dx.doi.org/10.1145/3307630.3342404
http://dx.doi.org/10.1145/3307630.3342404
http://dx.doi.org/10.1145/3307630.3342404
http://dx.doi.org/10.1145/2523599.2523604
http://dx.doi.org/10.1145/2523599.2523604
http://dx.doi.org/10.1145/2523599.2523604
http://dx.doi.org/10.1145/3307630.3342401
http://dx.doi.org/10.1145/3307630.3342401
http://dx.doi.org/10.1145/3307630.3342401
http://dx.doi.org/10.1007/s10270-019-00757-6
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb77
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb77
http://refhub.elsevier.com/S0164-1212(22)00255-2/sb77
https://sites.google.com/view/josemiguelhorcas
https://sites.google.com/view/josemiguelhorcas
https://sites.google.com/view/josemiguelhorcas

	A modular metamodel and refactoring rules to achieve software product line interoperability
	Introduction
	State-of-the-art and Motivation
	Feature models and language constructs for variability modeling
	Languages and tool support for feature modeling and analysis
	Related work about interoperability of feature models

	Our approach to achieve SPL Interoperability
	CAF: Common abstract syntax for feature modeling
	Formalization of CAF
	Realization of CAF with existing feature modeling constructs
	Definition of existing feature modeling languages using CAF

	Model transformations between language constructs
	Proof of Concepts and Validation
	Open-source implementation of CAF
	Results and discussion

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

