<u>On stability</u> assessment using the WalkIT smart rollator

Joaquín Ballesteros² Manuel Fernandez-Carmona¹ Cristina Urdiales¹ Jesús M. Gómez-de-Gabriel³

¹ Ingeniería de Sistemas Integrados Group, University of Málaga, Málaga, Spain {mfcarmona, acurdiales}@uma.es

² ITIS Software, Universidad de Málaga, Málaga, Spain jballesteros@uma.es

³ Robotics and Mechatronics Group, University of Málaga, Málaga, Spain jesus.gomez@uma.es

International Work-Conference on Artificial Neural Networks, Ponta Delgada, Azores, Portugal June 19, 2023

DE MÁLAGA

Contents

Introduction

- Methodology
 - Theoretical Background
 - CoM Calculation
- 3 Experiments and Results
 - Experimental setup
 - CoM Calculation & Estimation
 - Fall Risk Assessment

An ageing population

- New approach: prevention and monitoring.
- Key metric: Stability.
- Manual assessment: Tinetti Mobility Test.
- Automatic assessment: automatic adquisition of spatiotemporal gait parameters, such as walking speed, stride-to-stride variability or person's center of mass.

Monitoring through mobility assistive devices.

The WalkIT architecture

Traditional smart rollators:

- custom made: blackboxes difficult to replicate and customize.
- change barrier: users are reluctant to use any device but the one they are used to.

WalkIT: Open Source modular architecture.

- based on using off-the-shelf components.
- can turn most commercial rollators into a smart device.

Theoretical Background CoM Calculation

Center of Mass (CoM)

On stability assessment using WalkIT

Theoretical Background CoM Calculation

Base of Support (BoS) I

Theoretical Background CoM Calculation

Base of Support (BoS) II

BoS x-axis limits in rollators:

- correct handlebar height^{*a*}.
- appropriate distance from the frame.
- elbow is naturally flexed at a 15-to-30-degree angle.

^{*a*}handlebar height = user height *0.45 + 0.087

Theoretical Background CoM Calculation

Margin of Stability (MoS)

M. Fernandez-Carmona et al

On stability assessment using WalkIT

Theoretical Background CoM Calculation

M. Fernandez-Carmona et a

On stability assessment using WalkIT

Experimental setup CoM Calculation & Estimation Fall Risk Assessment

- experiments took place at *Macrosad Arroyo de la Miel* nursing home.
- volunteers had to follow a corridor, perform a U-Turn at the end and return to their departure point.

Experimental setup CoM Calculation & Estimation Fall Risk Assessment

	Age	Gender	Height	Weight	Medical condition			
A	43	Male	1.74	94	No previous conditions, nor			
					experience using rollators			
В	38	Male	1.84	110	Recovered from severe leg			
					polytrauma.			
C	82	Female	1.55	61	Several chronic conditions such			
					as hypertension, polyarthritis,			
					generalized arthrosis, and			
					polyarthralgia.			

Experimental setup CoM Calculation & Estimation Fall Risk Assessment

- Dataset contained CoM over time and sensor data used to obtain it.
- 75% of the dataset was used to train our models and the remaining 25% to evaluate them.
- Three different regression models were used with each user indepently to predict next CoM sample over time: Linear Regression (LR), Support Vector Regression (SVR) and Regression Trees (RT).

Patient	Patient A			Patient B			Patient C		
Estimator	LR	SVR	RT	LR	SVR	RT	LR	SVR	RT
Mean error	0.14	0.06	0.07	0.17	0.06	0.09	0.09	0.09	0.11
Std. dev	0.11	0.05	0.07	0.08	0.05	0.08	0.07	0.05	0.09

Experimental setup CoM Calculation & Estimation Fall Risk Assessment

How accurate is this predicted CoM? Back to MoS.

	Data CoM inside BoS	Data CoM outside BoS
Predicted CoM inside BoS	True Positive	False Positive
Predicted CoM outside BoS	False Negative	True Negative

Patient	Patient A			Patient B			Patient C		
Estimator	LR	SVR	RT	LR	SVR	RT	LR	SVR	RT
TP	1496	1532	1567	465	526	522	238	200	237
TN	6	27	84	1	1	14	0	11	18
FP	97	76	19	17	17	4	26	15	8
FN	84	48	13	61	0	4	3	41	4
Precision	93.91	95.27	98.8	96.47	96.87	99.24	90.15	93.02	96.73
Recall	94.68	96.96	99.18	88.4	100.0	99.24	98.76	82.99	98.34
F-Score	94.3	96.11	98.99	92.26	98.41	99.24	94.26	87.72	97.53

- A novel stability assessment method for smart rollator users has been presented.
 - Tested by three volunteers with different tipology.
 - Based on the prediction of the projection of each user's CoM onto their BoS.
 - Three different prediction techniques have been used: Lineal Regression, Support Vector Regression and Regression Trees.

- Extending tests to a significant number of volunteers for further validation.
- Study specific user assessment, not just in terms of height, weight, and sex, but specifically considering their gait traits.
- Introduce warnings about risk fall situations.
- Study the impact of selective braking in the smart rollator.

Thanks for your attention. Questions?

<u>On stability</u> assessment using the WalkIT smart rollator

Joaquín Ballesteros² Manuel Fernandez-Carmona¹ Cristina Urdiales¹ Jesús M. Gómez-de-Gabriel³

¹ Ingeniería de Sistemas Integrados Group, University of Málaga, Málaga, Spain {mfcarmona, acurdiales}@uma.es

² ITIS Software, Universidad de Málaga, Málaga, Spain jballesteros@uma.es

³ Robotics and Mechatronics Group, University of Málaga, Málaga, Spain jesus.gomez@uma.es

International Work-Conference on Artificial Neural Networks, Ponta Delgada, Azores, Portugal June 19, 2023

DE MÁLAGA

