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ABSTRACT
The Quantum Approximate Optimization Algorithm (QAOA) is

a hybrid quantum algorithm described as ansatzes that represent

both the problem and the mixer Hamiltonians. Both are param-

eterizable unitary transformations executed on a quantum ma-

chine/simulator and whose parameters are iteratively optimized

using a classical device to optimize the problem’s expectation value.

To do so, in each QAOA iteration, most of the literature uses a

quantummachine/simulator to measure the QAOA outcomes. How-

ever, this poses a severe bottleneck considering that quantum ma-

chines are hardly constrained (e.g. long queuing, limited qubits,

etc.), likewise, quantum simulation also induces exponentially-

increasing memory usage when dealing with large problems re-

quiring more qubits. These limitations make today’s QAOA im-

plementation impractical since it is hard to obtain good solutions

with a reasonably-acceptable time/resources. Considering these

facts, this work presents a new approach with two main contri-

butions, including (I) removing the need for accessing quantum

devices or large-sized classical machines during the QAOA opti-

mization phase, and (II) ensuring that when dealing with some

𝑘-bounded pseudo-Boolean problems, optimizing the exact prob-

lem’s expectation value can be done in polynomial time using a

classical computer.
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1 INTRODUCTION
Quantum Computing (QC) is based on including peculiar principles

from quantum mechanics (e.g. superposition, entanglement, etc.)

in classical computation [14]. Several QC paradigms exist, but the

two main ones are the discrete variable gate-based model and the

adiabatic one. The first describes computation as a series of unitary

transformations called quantum gates acting on a set of quantum

bits (so-called qubits), while the second QC paradigm is based on

the adiabatic theorem. The gate-based paradigm is the closest one

to universality described by Deutsch [3], while the second is mainly

designed for finding an optimum in discrete optimization problems.

These counter-intuitive fundamentals of QC allow it to achieve

a computational speed-up that goes beyond the one provided by

classical computation (e.g. quasi-exponential in [16, 17]). This turns

out to have a large plethora of applications, especially in opti-

mization problem-solving. In this same line of thought, several

promising algorithms have been devised in both gate-based and

adiabatic QC paradigms. Considering the latter, quantum annealers

are specially designed to find the state of minimum energy of an

Ising model. Now, when considering the gate-based paradigm, sev-

eral algorithms also exist, but one of the most general and widely

investigated optimizers in that paradigm is the Quantum Approxi-

mate Optimization Algorithm (QAOA) [5]. The QAOA is a hybrid

quantum algorithm described as variational circuits (i.e. ansatzes)

representing the problem and the mixer Hamiltonian. The ansatzes

are composed of parameterizable quantum gates whose parameters

are iteratively optimized to minimise the expectation value of the

problem’s Hamiltonian. Considering these facts, the hybrid nature

of the QAOA rises from the fact that its hyperparameter tuning is

done on a classical machine, while the execution of its variational

circuit is performed using a quantum machine/simulator.

The ansatzes hyperparameter-tuning has a big impact on the

QAOA efficiency and is correlated with the expectation value of

the problem Hamiltonian. Indeed, to assess the quality of a given

QAOA hyperparameter value, the expectation value of the problem

Hamiltonian need to be computed. To do so, most of today’s QAOA

literature (e.g. [18, 19]) involves, by default, the use of a Quantum

Processing Unit (QPU) or simulator to measure the outcome of

the QAOA using the given hyperparameter values. However, such

an approach turns out to have a very hard-to-overcome limitation

whether using quantum computers or simulators. Actually, most of

today’s quantum machines are accessible for a fee, and even those

publically accessible have long tasks queuing as well as a limited

capacity (e.g. the number of qubits). Similarly, the use of quantum

simulators suffers from the fact that as the problem variables in-

crease, the number of required qubits increases as well, inducing

exponential memory consumption.

Considering the above-mentioned facts, current QAOA imple-

mentations are unsuitable since they require substantial time and
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resources. This turns out to be even more problematic when consid-

ering that today’s quantum machines are in their noisy intermediate
scale era where most devices have very limited capacities (e.g. few

and noisy qubits). To solve this issue, this paper proposes a new

approach that allows (I) to omit the need to access a quantum

computer/simulator for executing the QAOA during its iterative

training, and (II)when dealing with a subset of𝑘-bounded pseudo-
Boolean functions, it ensures to find the optimum expectation value

of the problem’s Hamiltonian in polynomial time.

The rest of the paper is structured as follows. First, Section 2

presents the fundamental concepts of quantum computation in

general and the QAOA in particular. Later, Section 3 highlights the

main limitation of today’s QPU-dependent QAOA implementation

and the challenging problematics it induces, as well as the math-

ematical demonstration of the proposed approach to cope with it.

Afterwards, Section 4 discusses the direct consequences and uses of

the main theoretical results derived in this paper. Finally, Section 5

concludes the paper.

2 BACKGROUND
This section presents the basic concepts of gate-based QC and

QAOA that are needed to grasp the working principle of the pro-

posed approach.

2.1 Gate-Based Quantum Computation
Computation in the gate-based QC paradigm is described as quan-

tum circuits, composed of a set of quantum gates represented by

unitary 𝑈 and non-unitary (e.g. measurement) transformations,

where 𝑈 verifies the following equation: 𝑈 †𝑈 = 𝑈𝑈 † = 𝐼 . Here

𝑈 †
is the conjugate transpose (also Hermitian transpose) of𝑈 and

𝐼 is the identity matrix. We say that an operator 𝐴 is Hermitian if

𝐴† = 𝐴. Quantum gates act on a set of qubits in a given quantum

state. States in a quantum circuit are represented by vectors in a

complex vector space. We will use the Dirac notation for vectors,

that is, |𝑠⟩, where 𝑠 is a label of the state. In particular, we will use

|0⟩ and |1⟩ to denote the two states of a qubit that represent 0 and 1
with certainty in the computational basis. A general state of a qubit

can be written as |𝑠⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼, 𝛽 ∈ C are complex

numbers that fulfil the normalization condition |𝛼 |2 + |𝛽 |2 = 1. In

matrix (column) form, this qubit’s state can be represented as:

|𝑠⟩ =
(
𝛼

𝛽

)
. (1)

The symbol ⊗ denotes the tensor product of two vectors. Thus,

|0⟩ ⊗ |0⟩ in a 2-qubit quantum circuit represents a state where the

two qubits are in their |0⟩ state. We will prefer the shorter notation

|00⟩ = |0⟩ ⊗ |0⟩ for multi-qubit states. The tensor product of two

general states can be computed in matrix (column) form as the

Kronecker product of the matrix form of the two states, that is:

|𝑠⟩ ⊗ |𝑡⟩ =
(
𝛼

𝛽

)
⊗

(
𝛾

𝛿

)
=

©«
𝛼

(
𝛾

𝛿

)
𝛽

(
𝛾

𝛿

)ª®®®¬ =

©«
𝛼𝛾

𝛼𝛿

𝛽𝛾

𝛽𝛿

ª®®®¬ . (2)

Single-qubit operators are linear maps that act on the single-

qubit states. We will define here, for the sake of completeness, an

important family of unitary (and Hermitian) single-qubit operators

given by Equations (3)-(6), where 𝐼 , 𝑋 , 𝑌 and 𝑍 define the identity

and Pauli 𝑋 , 𝑌 and 𝑍 gates.

𝐼 =

(
1 0

0 1

)
(3)

𝑋 =

(
0 1

1 0

)
(4)

𝑌 =

(
0 −𝑖
𝑖 0

)
(5)

𝑍 =

(
1 0

0 −1

)
(6)

Any single-qubit operator can be written as a linear combination

of the previous four single-qubit operators. We can combine single-

qubit operators acting on different qubits using the tensor product

to form a multi-qubit operator. Using the Dirac notation, the tensor

product of two single-qubit operators 𝐴 and 𝐵 acts on the tensor

product of two vectors |𝑠⟩ and |𝑡⟩ as follows:

(𝐴 ⊗ 𝐵) ( |𝑠⟩ ⊗ |𝑡⟩) = (𝐴 |𝑠⟩) ⊗ (𝐵 |𝑡⟩) . (7)

In other words, each single-qubit operator acts on its correspond-

ing vector.

The scalar product (or dot product) of two vectors |𝑠⟩ and |𝑡⟩ gives
a complex number and is represented in Dirac notation by ⟨𝑠 |𝑡⟩.
Based on the scalar product we can define co-vectors, which are

linear functions that take a vector and produce a complex number.

In Dirac notation they are represented as ⟨𝑠 |, where 𝑠 is a label.

The co-vectors ⟨0| and ⟨1| (dual basis) are defined in such a way

that ⟨0|0⟩ = ⟨1|1⟩ = 1 and ⟨0|1⟩ = ⟨1|0⟩ = 0. The scalar product of

⟨𝑠 | ⊗ ⟨𝑡 | and |𝑠′⟩ ⊗ |𝑡 ′⟩ is ⟨𝑠 |𝑠′⟩ · ⟨𝑡 |𝑡 ′⟩.
Tensor products of operators can be expressed in matrix form

using the Kronecker product. For example, Equation (8) computes

the tensor product of both Pauli 𝑌 and 𝑋 gates.

𝑌 ⊗ 𝑋 =

(
0 −𝑖
𝑖 0

)
⊗

(
0 1

1 0

)
=

©«
0 ·

(
0 1

1 0

)
−𝑖 ·

(
0 1

1 0

)
𝑖 ·

(
0 1

1 0

)
0 ·

(
0 1

1 0

) ª®®®¬
=

©«
0 0 0 −𝑖
0 0 −𝑖 0

0 𝑖 0 0

𝑖 0 0 0

ª®®®¬ . (8)

When we want to make explicit that one operator acts only on a

qubit 𝑗 , we will use 𝑗 as a subindex of the operator. For example, 𝑋 𝑗

is operator 𝑋 (logical not) acting on qubit 𝑗 and leaving the other

qubits intact. This is equivalent to the following tensor product of

operators:

𝑋 𝑗 ≡
(
𝑗−1⊗
𝑙=1

𝐼

)
⊗ 𝑋 ⊗ ©«

𝑛⊗
𝑘=𝑗+1

𝐼
ª®¬ . (9)

Using linear combinations of the tensor product of the basic

four single-qubit operators, one can build any multi-qubit operator.

However, not any multi-qubit operator can be implemented in a

quantum computer, only unitary operators do. There is a simple

way to build unitary operators from Hermitian operators. If 𝐴 is
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a Hermitian operator, 𝑒𝑖\𝐴 is a unitary operator, where the expo-

nentiation operation is defined by Equation (10). When 𝐴2 = 𝐼 , the

exponentiation has a very plain expression in terms of 𝐴 and 𝐼 (see

Equation (11)). This is the case of the four single-qubit operators 𝐼 ,

𝑋 , 𝑌 , and 𝑍 .

𝑒𝑖\𝐴 =

∞∑︁
𝑗=0

(𝑖\𝐴) 𝑗
𝑗 !

. (10)

𝑒𝑖\𝐴 = cos\𝐼 + 𝑖 sin\𝐴. (11)

2.2 QAOA for Pseudo-Boolean Optimisation
QAOA has been first devised by Farhi et al. [5]. Technically, it is a

variational quantum algorithm that is described as a parameterized

quantum circuit that models a probability distribution over the set

of potential solutions to a given problem. An important feature

of QAOA is its hybrid nature, where its parameterizable circuit is

executed on a quantummachine/simulator, while its ansatzes hyper-

parameters are iteratively optimized on a classical one. Eventually,

the goal is to min/maximize the expected value of the objective

function of the solutions generated by sampling the variational

circuit defined by:

𝑈 (𝛾,𝛽 ) =
𝑝∏
𝑗=1

(
𝑒−𝑖𝛽 𝑗𝐻𝑀 𝑒−𝑖𝛾 𝑗𝐻𝑃

)
𝐻⊗𝑛, (12)

where 𝐻𝑃 is the problem Hamiltonian, 𝐻𝑀 =
∑𝑛
𝑖=1 𝑋𝑖 is the mixer

Hamiltonian, 𝐻 represents the Hadamard gate, 𝑛 is the number of

variables of the problem (qubits of the circuit), and the vectors 𝛾

and 𝛽 are the hyper-parameters that the classical optimizer has to

find.

Having a pseudo-Boolean problem to be solved, QAOA evolves

the Hamiltonian representing the problem to be solved, being the

goal of finding the eigenstate of the corresponding problem Hamil-

tonian 𝐻𝑃 that optimizes the expected value of 𝐻𝑃 in the solutions

sampled from the circuit𝑈 (𝛾,𝛽 ) applied to the initial state |00 . . . 0⟩.
This state will be represented by:���𝜓 (𝛾,𝛽 )

〉
= 𝑈 (𝛾,𝛽 ) |00 . . . 0⟩ . (13)

The expected value of 𝐻𝑃 in state

���𝜓 (𝛾,𝛽 )
〉
is given by:

𝐹 (𝛾,𝛽 ) =
〈
𝜓 (𝛾,𝛽 )

���𝐻𝑃

���𝜓 (𝛾,𝛽 )
〉
. (14)

The classical optimization algorithm of QAOA min/maximizes

the expectation value 𝐹 (𝛾,𝛽 ) of the problem Hamiltonian 𝐻𝑃 when

the quantum machine is sampled in state

���𝜓 (𝛾,𝛽 )
〉
. In other words,

QAOA optimizes the probability distribution over the search space

provided by the state

���𝜓 (𝛾,𝛽 )
〉
in order to min/maximize the ex-

pected value for the objective function of the problem. Figure 1

depicts the general workflow of the standard QAOA.

It is worth noting that in the literature, it is common to show

how an optimization problem should be expressed as a Quadratic

Unconstrained Binary Optimisation problem (QUBO) as a previous

step to solve the problem with a quantum annealer or QAOA. In

fact, the original QAOA paper illustrates its use to solve MAX-CUT,

a combinatorial optimisation problem that can be easily expressed

as a QUBO. But, QAOA is not restricted to QUBOs since it can be

used to solve higher-order pseudo-Boolean functions, as shown in

[8]. However, this fact is not spread in the QC community.

Figure 1: Workflow of the vanilla QAOA

Although the QAOA was originally devised to solve polynomials

of a given order [5], it has also been repurposed in other works to

prove quantum supremacy [7], or describe universal computation

[10, 12].

2.3 Pseudo-Boolean functions
A pseudo-Boolean function 𝑓 takes a binary string as input and

provides a real value as output, that is, 𝑓 : {0, 1}𝑛 → R, where 𝑛
is the length of the binary string (or number of Boolean variables).

Without loss of generality, we can always write a pseudo-Boolean

function 𝑓 as a polynomial:

𝑓 (𝑥) =
∑︁

𝑆⊆[𝑛]
𝐶𝑆

∏
𝑗∈𝑆

𝑥 𝑗 , (15)

where [𝑛] denotes the set {1, 2, . . . , n}, 𝑆 is a subset of variables

from [𝑛], 𝐶𝑆 is the coefficient of the term involving the product

of variables in 𝑆 and 𝑥 ∈ {0, 1}𝑛 is a vector of 𝑛 Boolean variables

𝑥 = {𝑥1, . . . , 𝑥𝑛} (binary string).

We say that a pseudo-Boolean function is 𝑘-bounded for 𝑘 a

constant, when it can be written as a sum of sub-functions, each

one depending on at most 𝑘 Boolean variables:

𝑓 (𝑥) =
𝑚∑︁
𝑖=1

𝑓𝑖 (𝑥,𝑀𝑖 ), (16)

where 𝑓𝑖 depends at most on 𝑘 variables from 𝑥 ,𝑀𝑖 is a mask that

defines the variables involved in the 𝑖𝑡ℎ sub-function and𝑚 is the

total number of sub-functions in the sum.

3 THE PROPOSED QPU-NEEDLESS QAOA
This section explains the main problematics induced by the vanilla

(i.e. standard) QAOA implementation, as well as the mathematical

proof of the proposed approach to cope with it.

3.1 Analysis of QAOA QPU-Dependency
QAOA is increasingly being investigated in the literature. Actually,

for several reasons, growing interest is given from both academics

and industry. This work does not aim at sketching the QAOA litera-

ture, but roughly speaking, the former can be brought to analyzing
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the QAOA performances [11, 23], proposing more efficient variants

of it [4, 13, 15], and eventually applying it for solving different real-

world problems (e.g. in routing [1], scheduling [9], etc.).When going

over the QAOA literature, it can be seen that most of the vanilla im-

plementations involve the use of a quantum machine/simulator in

each iteration of the QAOA. Such an approach is also widely-spread

in introductory materials given by major quantum technology man-

ufacturers such as IBM
1
and Google

2
.

An important fact to keep in mind is that, from a mathematical

point of view, it is possible to express QAOA as a discretized version

of a quantum Annealer process [22]. Thus, both approaches can

be explained using the same principles. Also, as explained in Sec-

tion 2.2, a key feature of the QAOA is the cyclic quantum vs classical

machine interactions where a classical optimizer iteratively opti-

mizes the QAOA ansatz hyperparameters in order to min/maximize

the expected value 𝐹 (𝛾,𝛽 ) . However, to assess the quality of the

newly-optimized hyperparameters, the QAOA variational circuit

needs to be executed on a quantum machine/simulator and the

produced quantum state should be measured. Said differently, in

the original QAOA, the expected value is approximated by sam-

pling solutions in state

���𝜓 (𝛾,𝛽 )
〉
and evaluating 𝐻𝑃 on the sampled

solutions to compute the average. This implies preparing the cir-

cuit, running it on the quantum computer and sampling a solution

several (around a thousand) times. Technically speaking, the vari-

ational quantum circuit represents a probability distribution over

the search space. The goal of the classical optimizer is to maximize

the average quality of the solutions sampled with that probability

distribution.

However, considering today’s state of quantum technology, per-

forming executions on real quantum machines is subject to several

constraints. For instance, few quantum machines are freely acces-

sible and, those which do, have long queuing systems, and very

limited capacities (e.g. few and noisy qubits). Likewise, quantum

simulators have also their limitations. For instance, as the number

of variables of the problem to be solved increases, the number of

required qubits increases as well. The former causes the memory

requirements during simulation to exponentially scale. As a mat-

ter of fact, it has been proven that, when reaching a given circuit

complexity, the QAOA cannot be efficiently simulated on a classical

machine [7]. Therefore, themain problematic is that the iterative use
of a quantum device/simulator in today’s QAOA implementation

poses a very serious limitation towards the practical applicability of

the QAOA on real-life problems requiring real-time solving, where

good solutions need to be obtained in a reasonable time and with

affordable resources.

On the other hand, an interesting fact is that in the original

paper, Farhi et al [5] illustrate the use of QAOA over MAX-CUT

and explain how for this particular problem, the evaluation of the

QAOA variational circuit can be efficiently done on a classical

computer and therefore, the solutions sampling via a QPU can be

avoided thanks to the particular mathematical structure of MAX-

CUT problem. The authors in [20] have investigated this alternative,

1
IBM QAOA Materials: https://learn.qiskit.org/course/ch-applications/solving-

combinatorial-optimization-problems-using-qaoa

2
Google QAOA Materials: https://quantumai.google/cirq/experiments/qaoa/example_

problems

starting mainly from the observation of the QAOA parameters’

concentration. However, their work only considers the classical

2-order Ising model. Later, the work in [6] proposed a formula,

as a function of 2𝑝 QAOA parameters, for the expected value of

the problem’s Hamiltonian in the QAOA that can be evaluated

on a computer with O(16𝑝 ) complexity. The proposal has been

investigated on the Sherrington-Kirkpatrick model. Afterwards,

the authors in [2] could achieve a more efficient calculation than

the one given in [6] with the complexity of O(𝑝24𝑝 ) proved for both
the Sherrington-Kirkpatrick model and generalized to the Max-q-

XORSAT. In [6], the authors went up to 𝑝=12, while in [2] they

reached 𝑝=20, where for 𝑝=11, the QAOA was able to outperform

a classical algorithm that can find an approximate solution for

Sherrington-Kirkpatrick model within (1 - 𝜖) times the ground state

energy. This being said, experiments using 𝑝=20 in [2] took almost

14 hours to complete.

In this same line of thoughts, this present work extends the re-

sults given by Farhi et al. [5] and [20] and rigorously demonstrates

that for any 𝑘-bounded pseudo-Boolean problem or 𝑘-bounded

generalized Ising model, under very mild assumptions of the prob-

lem Hamiltonian 𝐻𝑃 , we can exactly and efficiently evaluate the

expected value 𝐹 (𝛾,𝛽 ) and its gradient in a classical computer in

polynomial time, thus, reducing the time and resources needed to

run QAOA. The efficient evaluation of the variational circuit in a

classical computer would make QAOA much faster than its vanilla

implementation, where a quantum computer is used to evaluate its

circuit (see Figure 2). In this paradigm, the quantum computer is

used only in the final stage of the algorithm, when the circuit is

already designed, to sample solutions for the problem with high

average quality. In the following section, more insight into the

mathematical proof of the proposed approach is given.

Figure 2: The proposed polynomial QPU-needless QAOA

3.2 Average Hamiltonian
We will assume that the problem Hamiltonian, 𝐻𝑃 , is a polynomial

in the operators 𝑍𝑙 with a maximum of 𝑘 operators per term, that

is, a 𝑘-bounded generalized Ising model. In formal terms, 𝐻𝑃 can

be written as:

𝐻𝑃 =
∑︁
𝑆⊆ [𝑛]
|𝑆 |≤𝑘

𝑤𝑆

⊗
𝑗∈𝑆

𝑍 𝑗 . (17)

https://learn.qiskit.org/course/ch-applications/solving-combinatorial-optimization-problems-using-qaoa
https://learn.qiskit.org/course/ch-applications/solving-combinatorial-optimization-problems-using-qaoa
https://quantumai.google/cirq/experiments/qaoa/example_problems
https://quantumai.google/cirq/experiments/qaoa/example_problems
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Let us consider the following example:

𝐻𝑃 = 2𝑍1 ⊗ 𝑍4 − 5𝑍2 ⊗ 𝑍3 ⊗ 𝑍5 + 8𝑍1 ⊗ 𝑍2, (18)

where in this case 𝑘 = 3. The maximum number of terms of a

𝑘-bounded generalized Ising model for 𝑘 constant is

(𝑛
𝑘

)
∈ 𝑂 (𝑛𝑘 ),

which is polynomial in 𝑛.

It is well-known that any compressible pseudo-Boolean function

can be rewritten in polynomial time as a𝑘-bounded pseudo-Boolean

function, and a 𝑘-bounded pseudo-Boolean function can be trans-

formed into a 𝑘-bounded generalized Ising model by applying the

Walsh-Hadamard transform in polynomial time. Thus, any com-

pressible pseudo-Boolean function can be written in the form (17)

in polynomial time. In order to write an efficient expression for

𝐹 (𝛾,𝛽 ) , we need to introduce some mathematical results.

We will frequently work with multi-qubit operators that are

tensor products of single-qubit operators. With a little abuse of

notation, we will represent with capital letters, like 𝐴, the multi-

qubit operator and will add subindices to this symbol, e.g., 𝐴 𝑗 , to

represent the single-qubit operator acting on a particular qubit 𝑗 .

In formal terms, this can be expressed as follows:

𝐴 ≡
𝑛⊗
𝑗=1

𝐴 𝑗 . (19)

The first mathematical result provides an expression for the

commutator of multi-qubit operators that are tensor products of

single-qubit operators.

Lemma 3.1. Let 𝐴 and 𝐵 be two 𝑛-qubit operators that can be
expressed as the tensor product of single-qubit operators. Then, the
commutator of 𝐴 and 𝐵 can be written as the sum of at most 𝑛 tensor
products and the concrete value is:

[𝐴, 𝐵] =
𝑛∑︁
𝑗=1

𝑗−1⊗
𝑙=1

𝐵𝑙𝐴𝑙 ⊗ [𝐴 𝑗 , 𝐵 𝑗 ] ⊗
𝑛⊗

𝑙=𝑗+1
𝐴𝑙𝐵𝑙 (20)

Proof. We can prove this by induction over the number of

qubits, 𝑛. If 𝑛 = 1, we have [𝐴, 𝐵] = [𝐴1, 𝐵1] and the claim trivially

holds. Let us assume that the expression is true when we have 𝑛 − 1

qubits (induction hypothesis) and let us prove it for 𝑛 qubits. In

that case the expression for [𝐴, 𝐵] can be-written as follows:

[𝐴, 𝐵] =
[

𝑛⊗
𝑙=1

𝐴𝑙 ,

𝑛⊗
𝑙=1

𝐵𝑙

]
=

𝑛⊗
𝑙=1

𝐴𝑙𝐵𝑙 −
𝑛⊗
𝑙=1

𝐵𝑙𝐴𝑙

= 𝐴1𝐵1 ⊗
𝑛⊗
𝑙=2

𝐴𝑙𝐵𝑙 − 𝐵1𝐴1 ⊗
𝑛⊗
𝑙=2

𝐵𝑙𝐴𝑙

= 𝐴1𝐵1 ⊗
𝑛⊗
𝑙=2

𝐴𝑙𝐵𝑙 − 𝐵1𝐴1 ⊗
𝑛⊗
𝑙=2

𝐴𝑙𝐵𝑙

+ 𝐵1𝐴1 ⊗
𝑛⊗
𝑙=2

𝐴𝑙𝐵𝑙 − 𝐵1𝐴1 ⊗
𝑛⊗
𝑙=2

𝐵𝑙𝐴𝑙

= [𝐴1, 𝐵1] ⊗
𝑛⊗
𝑙=2

𝐴𝑙𝐵𝑙 + 𝐵1𝐴1 ⊗
(

𝑛⊗
𝑙=2

𝐴𝑙𝐵𝑙 −
𝑛⊗
𝑙=2

𝐵𝑙𝐴𝑙

)

using the induction hypothesis

= [𝐴1, 𝐵1] ⊗
𝑛⊗
𝑙=2

𝐴𝑙𝐵𝑙

+ 𝐵1𝐴1 ⊗
𝑛∑︁
𝑗=2

𝑗−1⊗
𝑙=2

𝐵𝑙𝐴𝑙 ⊗ [𝐴 𝑗 , 𝐵 𝑗 ] ⊗
𝑛⊗

𝑙=𝑗+1
𝐴𝑙𝐵𝑙

= [𝐴1, 𝐵1] ⊗
𝑛⊗
𝑙=2

𝐴𝑙𝐵𝑙

+
𝑛∑︁
𝑗=2

𝑗−1⊗
𝑙=1

𝐵𝑙𝐴𝑙 ⊗ [𝐴 𝑗 , 𝐵 𝑗 ] ⊗
𝑛⊗

𝑙=𝑗+1
𝐴𝑙𝐵𝑙

=

𝑛∑︁
𝑗=1

𝑗−1⊗
𝑙=1

𝐵𝑙𝐴𝑙 ⊗ [𝐴 𝑗 , 𝐵 𝑗 ] ⊗
𝑛⊗

𝑙=𝑗+1
𝐴𝑙𝐵𝑙 .

□

Equation (20) allows us to express any commutator of single-

qubit operator tensor products as a sum of single-qubit operator

tensor products. This will be useful to prove the efficiency of evalu-

ating the ansatz of QAOA in a classical computer. We can observe

that the number of terms in the sum of the right-hand side of

Equation (20) is the number of nonzero single-qubit commutators

[𝐴𝑙 , 𝐵𝑙 ]. This is an important number for which we provide a short

notation:

#(𝐴, 𝐵) = |{𝑙 ∈ [𝑛], [𝐴𝑙 , 𝐵𝑙 ] ≠ 0}| (21)

Lemma 3.2. Let 𝐴 and 𝐵 be 𝑛-qubit operators that are the tensor
product of single-qubit operators. We also assume that 𝐵 is its own
inverse: 𝐵2 = 𝐼 . Then, we have:

𝑒𝑖\𝐵𝐴𝑒−𝑖\𝐵 = 𝐴 − (𝑖𝐼 cos\ − 𝐵 sin\ ) sin\ [𝐴, 𝐵], (22)

which is a sum of at most 2#(𝐴, 𝐵) + 1 tensor products of single-qubit
operators.

Proof.

𝑒𝑖\𝐵𝐴𝑒−𝑖\𝐵 = (𝐼 cos\ + 𝑖𝐵 sin\ )𝐴 (𝐼 cos\ − 𝑖𝐵 sin\ )
= (𝐼 cos\ + 𝑖𝐵 sin\ ) (𝐴 cos\ − 𝑖𝐴𝐵 sin\ )
= 𝐴 cos

2 \ − 𝑖 [𝐴, 𝐵] cos\ sin\ + 𝐵𝐴𝐵 sin
2 \

= 𝐴 cos
2 \ − 𝑖 [𝐴, 𝐵] cos\ sin\ + 𝐵( [𝐴, 𝐵] + 𝐵𝐴) sin2 \

= 𝐴 − 𝑖 [𝐴, 𝐵] cos\ sin\ + 𝐵 [𝐴, 𝐵] sin2 \
= 𝐴 − (𝑖𝐼 cos\ − 𝐵 sin\ ) sin\ [𝐴, 𝐵]

We know by Lemma 3.1 that [𝐴, 𝐵] is a sum of #(𝐴, 𝐵) tensor
products of single-qubit operators. When we pre-multiply these

tensor products by 𝐵 we will get another #(𝐴, 𝐵) tensor products of
single-qubit operators that, in general, are not linear combinations

of the ones in the sum of [𝐴, 𝐵]. We also have𝐴. In total, this means

that the 𝑒𝑖\𝐵𝐴𝑒−𝑖\𝐵 can be written as the sum of 2#(𝐴, 𝐵) +1 tensor
products of single-qubit operators. □

Corollary 3.3. If 𝐵 is an operator representing one term in the
sum of the problem Hamiltonian, 𝐻𝑃 , representing a 𝑘-bounded gen-
eralized Ising model, then #(𝐴, 𝐵) ≤ 𝑘 and the number of 𝑒𝑖\𝐵𝐴𝑒−𝑖\𝐵

can be written as a sum of no more than 2𝑘 + 1 tensor products of
single-qubit operators.
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Proof. A 𝑘-bounded generalized Ising model contains terms

with at most 𝑘 variables. Each term is transformed into a multi-

qubit operator which is a tensor product of single-qubits operators,

where for each qubit the identity 𝐼 or the 𝑍 operator is used. The

identity operator commute with any other operator and the number

of 𝑍 operators in 𝐵 is bounded by 𝑘 . Thus, #(𝐴, 𝐵) ≤ 𝑘 and the

results follows as a consequence of Lemma 3.2. □

Corollary 3.4. If 𝐵 is an operator acting on a single-qubit with
𝐵2 = 𝐼 , and 𝐴 is a tensor product of single-qubit operators then
𝑒𝑖\𝐵𝐴𝑒−𝑖\𝐵 is a tensor product of single-qubit operators.

Proof. Let 𝑗 be the only index such that [𝐴 𝑗 , 𝐵 𝑗 ] ≠ 0. Then:

𝑒𝑖\𝐵𝐴𝑒−𝑖\𝐵 =

𝑛⊗
𝑙=1

𝐴𝑙

− sin\

(
𝑖 cos\

𝑛⊗
𝑙=1

𝐼𝑙 − sin\

𝑛⊗
𝑙=1

𝐵𝑙

)
·

𝑗−1⊗
𝑙=1

𝐴𝑙 ⊗ [𝐴 𝑗 , 𝐵 𝑗 ] ⊗
𝑛⊗

𝑙=𝑗+1
𝐴𝑙

=

𝑛⊗
𝑙=1

𝐴𝑙 − 𝑖 sin\ cos\

𝑗−1⊗
𝑙=1

𝐴𝑙 ⊗ [𝐴 𝑗 , 𝐵 𝑗 ] ⊗
𝑛⊗

𝑙=𝑗+1
𝐴𝑙

+ sin
2 \

𝑗−1⊗
𝑙=1

𝐴𝑙 ⊗ 𝐵 𝑗 [𝐴 𝑗 , 𝐵 𝑗 ] ⊗
𝑛⊗

𝑙=𝑗+1
𝐴𝑙

=

𝑗−1⊗
𝑙=1

𝐴𝑙 ⊗
(
𝐴 𝑗 − sin\

(
𝑖𝐼 𝑗 cos\ − sin\𝐵 𝑗

)
[𝐴 𝑗 , 𝐵 𝑗 ]

)
⊗

𝑛⊗
𝑙=𝑗+1

𝐴𝑙

which is a tensor product of operators that differ from 𝐴 only in

the 𝑗-th factor. □

Proposition 3.5. Let 𝐴 be a tensor product of single-qubit oper-
ators 𝐴𝑙 for 1 ≤ 𝑙 ≤ 𝑛, and 𝐻𝑀 the mixing Hamiltonian. Then, we
have:

𝑒𝑖𝛽𝐻𝑀𝐴𝑒−𝑖𝛽𝐻𝑀 =

𝑛⊗
𝑗=1

(
𝐴 𝑗 − sin 𝛽

(
𝑖𝐼 𝑗 cos 𝛽 − sin 𝛽𝑋 𝑗

)
[𝐴 𝑗 , 𝑋 𝑗 ]

)
(23)

which is a tensor product of single-qubit operators.

Proof. We iteratively apply Corollary 3.4 to the 𝑒𝑖𝛽𝑋 𝑗𝐴𝑒−𝑖𝛽𝑋 𝑗

factors and the result follows. □

Proposition 3.6. Let 𝐴 be a tensor product of single-qubit opera-
tors 𝐴𝑙 for 1 ≤ 𝑙 ≤ 𝑛 where𝑚 of them are different from the identity,
and let 𝐻𝑃 be the problem Hamiltonian of a 𝑘-bounded generalized
Ising model. Then, 𝑒𝑖𝛾𝐻𝑃𝐴𝑒−𝑖𝛾𝐻𝑃 can be written as a sum of at most
(2𝑘 + 1)𝑐𝑚 tensor products of single-qubit operators, where 𝑐 is the
maximum number of appearances of a variable in the terms of the
generalized Ising model. The newly generated tensor products have,
at most, 𝑚(𝑐 (𝑘 − 1) + 1) single-qubit operators different from the
identity.

Proof. First, we notice that 𝑒−𝑖𝛾𝐻𝑃
can be written as a product

of operators as follows, due to the commutativity of all the terms

in the sum of 𝐻𝑃 :

𝑒−𝑖𝛾𝐻𝑃 =
∏

𝑆⊆[𝑛]
𝑒−𝑖𝛾𝑤𝑆

⊗
𝑙 ∈𝑆 𝑍𝑙 . (24)

All the factors in the product commute among them. Thus, in the

expression 𝑒𝑖𝛾𝐻𝑃𝐴𝑒−𝑖𝛾𝐻𝑃
, we can move the factors that do com-

mute with A in 𝑒−𝑖𝛾𝐻𝑃
to the left, commute them with𝐴 and cancel

them with the inverse factor in 𝑒𝑖𝛾𝐻𝑃
. Doing this, the only factors

that remain in the exponentials are those that do not commute

with 𝐴. They are exactly those factors 𝑒−𝑖𝛾𝑤𝑆

⊗
𝑙 ∈𝑆 𝑍𝑙

where there

is an 𝑙 ∈ 𝑆 for which 𝐴𝑙 ≠ 𝐼𝑙 . If we denote with 𝑐 the maximum

number of appearances of a 𝑍𝑙 in the terms of 𝐻𝑃 , the number of

factors remaining is, at most, 𝑐𝑚, where𝑚 is the number of factors

𝐴𝑙 which are not the identity.

According to Corollary 3.3, after applying each of these factors

the results can be expressed as a sum of at most (2𝑘+1) single-qubit
tensor products. Thus, the expression for 𝑒𝑖𝛾𝐻𝑃𝐴𝑒−𝑖𝛾𝐻𝑃

can be

written as a sum of at most (2𝑘 + 1)𝑐𝑚 single-qubit tensor products.

For each of the non-identity factors,𝐴 𝑗 , the terms 𝑒−𝑖𝛾𝑤𝑆

⊗
𝑙 ∈𝑆 𝑍𝑙

can add𝑘−1 newnon-identity terms in the resulting tensor products.

Since there are at most 𝑐 of these factors, the new tensor products of

single-qubit operators will have at most 𝑐 (𝑘 −1) non-identity terms

for each 𝐴 𝑗 ≠ 𝐼 𝑗 . We have𝑚 of such single-qubit operators𝐴 𝑗 , and,

thus, the new tensor products of single-qubit operators, have at

most𝑚𝑐 (𝑘 − 1) +𝑚 =𝑚(𝑐 (𝑘 − 1) + 1) non-identity factors. □

Combining Propositions 3.5 and 3.6 we conclude that the expres-

sion corresponding to one layer of the ansatz,

𝑒𝑖𝛾𝐻𝑃 𝑒𝑖𝛽𝐻𝑀𝐴𝑒−𝑖𝛽𝐻𝑀 𝑒−𝑖𝛾𝐻𝑃 ,

for a tensor product of single-qubit operators, 𝐴, with 𝑚 non-

identity single-qubit operators, can bewritten using, atmost,𝑚(𝑐 (𝑘−
1) + 1) tensor products of single-qubit operators. The reason is that

the factor including the mixing Hamiltonian does not change the

number of terms in the sum and the factor including the problem

Hamiltonian can be written with, at most,𝑚(𝑐 (𝑘 − 1) + 1) terms.

The next proposition provides an upper bound on the number of

linearly independent tensor products of single-qubit operators for

𝑈
†
(𝛾,𝛽 )𝐻𝑃𝑈 (𝛾,𝛽 ) .

Proposition 3.7. Let 𝐻𝑃 be a 𝑘-bounded generalized Ising model
with 𝑡 terms where each variable 𝑍𝑙 appears in at most 𝑐 terms. Then,
the expression 𝑈

†
(𝛾,𝛽 )𝐻𝑃𝑈 (𝛾,𝛽 ) can be written as a sum of at most

𝑡 (2𝑘 + 1)
𝑘

𝑘−1 ( (𝑐 (𝑘−1)+1)
𝑝−1) linearly independent tensor products of

single-qubit operators.

Proof. Let us start the proof by counting the number of non-

identity single-qubit operators in the tensor products of the expres-

sion for 𝑈
†
(𝛾,𝛽 )𝐻𝑃𝑈 (𝛾,𝛽 ) depending on the number of layers 𝑝 . The

terms in 𝐻𝑃 have at most 𝑘 non-identity single-qubit operators in

their tensor products (by definition of 𝑘-bounded). Let us call this

𝑚0 = 𝑘 . By Proposition 3.6, after one layer, the tensor products of

single-qubit operators will have𝑚1 =𝑚0 (𝑐 (𝑘 − 1) + 1) = 𝑘 (𝑐 (𝑘 −
1) + 1), which increase to𝑚2 =𝑚1 (𝑐 (𝑘 − 1) + 1) = 𝑘 (𝑐 (𝑘 − 1) + 1)2
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after two layers. It is easy to see that the general result is

𝑚𝑝 = 𝑘 (𝑐 (𝑘 − 1) + 1)𝑝 . (25)

Let us focus now in the upper bound for the number of linearly

independent tensor products of single-qubit operators. This number

starts in 𝑡 and Proposition 3.6 proves that this number is multiplied

by (2𝑘 + 1)𝑐𝑚𝑝−1
in after applying layer 𝑝 . Thus the final number

will be:

𝑡

𝑝∏
𝑙=1

(2𝑘 + 1)𝑐𝑚𝑙−1 = 𝑡 (2𝑘 + 1)𝑐
∑𝑝

𝑙=1
𝑚𝑙−1

= 𝑡 (2𝑘 + 1)𝑐𝑘
∑𝑝

𝑙=1
(𝑐 (𝑘−1)+1)𝑙−1

= 𝑡 (2𝑘 + 1)𝑐𝑘
(𝑐 (𝑘−1)+1)𝑝 −1

𝑐 (𝑘−1)

= 𝑡 (2𝑘 + 1)
𝑘

𝑘−1 ( (𝑐 (𝑘−1)+1)
𝑝−1) ,

as we claim in the proposition. We can now complete the proof

by considering that the application of the Hadamard gates to each

single-qubit does not add new linearly independent tensor products

of single-qubit operators. □

Lemma 3.8. Let 𝐴 be a tensor product of single-qubit operators,
where each 𝐴𝑙 is written as the sum of the 𝐼𝑙 , 𝑋𝑙 , 𝑌𝑙 , and 𝑍𝑙 single-
qubits operators as follows: 𝐴𝑙 = 𝑤𝑙,𝐼 𝐼𝑙 +𝑤𝑙,𝑋𝑋𝑙 +𝑤𝑙,𝑌𝑌𝑙 +𝑤𝑙,𝑍𝑍𝑙 .
Then, we have:

⟨0 . . . 0|𝐻⊗𝑛𝐴𝐻⊗𝑛 |0 . . . 0⟩ =
𝑛∏
𝑙=1

(
𝑤𝑙,𝐼 +𝑤𝑙,𝑋

)
, (26)

which can be computed in 𝑂 (𝑛) time.

Proof. By simple algebraic manipulations we can find that

𝐻𝑋𝑙𝐻 = 𝑍𝑙 , 𝐻𝑌𝑙𝐻 = −𝑌𝑙 , 𝐻𝑍𝑙𝐻 = 𝑋𝑙 and 𝐻𝐼𝑙𝐻 = 𝐼𝑙 . Thus, we

have:

𝐻𝐴𝑙𝐻 = 𝑤𝑙,𝐼𝐻𝐼𝑙𝐻 +𝑤𝑙,𝑋𝐻𝑋𝑙𝐻 +𝑤𝑙,𝑌𝐻𝑌𝑙𝐻 +𝑤𝑙,𝑍𝐻𝑍𝑙𝐻

= 𝑤𝑙,𝐼 𝐼 +𝑤𝑙,𝑋𝑍 −𝑤𝑙,𝑌𝑌 +𝑤𝑙,𝑍𝑋 .

Now using the definitions of 𝐼 , 𝑋 , 𝑌 and 𝑍 in Equations (3) to (6)

we can easily check that:

⟨0|𝑋 |0⟩ = ⟨0|𝑌 |0⟩ = 0, (27)

⟨0| 𝐼 |0⟩ = ⟨0| 𝑍 |0⟩ = 1. (28)

Now we can use the expression

⟨0 . . . 0|
𝑛⊗
𝑙=1

𝐴𝑙 |0 . . . 0⟩ =
𝑛∏
𝑙=1

⟨0|𝐴𝑙 |0⟩

to complete the proof. □

Theorem 3.9. Let 𝐻𝑃 be a 𝑘-bounded generalized Ising model
with 𝑡 terms where each variable 𝑍𝑙 appears in at most 𝑐 terms. Then,
the expression 𝐹 (𝛾,𝛽 ) , which QAOA optimizes, and its gradient with
respect to variables 𝛾 𝑗 and 𝛽 𝑗 can be evaluated in a classical computer

in time 𝑂
(
𝑛𝑡 (2𝑘 + 1)

𝑘
𝑘−1 ( (𝑐 (𝑘−1)+1)

𝑝−1)
)
.

Proof. The expression for 𝐹 (𝛾,𝛽 ) is:〈
𝜓 (𝛾,𝛽 )

���𝐻𝑃

���𝜓 (𝛾,𝛽 )
〉
= ⟨00 . . . 0|𝑈 †

(𝛾,𝛽 )𝐻𝑃𝑈 (𝛾,𝛽 ) |00 . . . 0⟩ . (29)

We know by Proposition 3.7 that 𝑈
†
(𝛾,𝛽 )𝐻𝑃𝑈 (𝛾,𝛽 ) can be written as

a sum of at most 𝑡 (2𝑘 + 1)
𝑘

𝑘−1 ( (𝑐 (𝑘−1)+1)
𝑝−1)

linearly independent

tensor products of single-qubit operators. Lemma 3.8 proves that

the evaluation of each tensor product of single-qubit operators can

be computed in 𝑂 (𝑛) time. Thus, the computation of 𝐹 (𝛾,𝛽 ) can be

done in 𝑂

(
𝑛𝑡 (2𝑘 + 1)

𝑘
𝑘−1 ( (𝑐 (𝑘−1)+1)

𝑝−1)
)
time.

The expression 𝐹 (𝛾,𝛽 ) can be written in closed form depending

on the sines and cosines of the parameter vectors 𝛽 and 𝛾 . Thus, its

gradient can be computed in a time which is also

𝑂

(
𝑛𝑡 (2𝑘 + 1)

𝑘
𝑘−1 ( (𝑐 (𝑘−1)+1)

𝑝−1)
)
.

□

4 CONSEQUENCES
Theorem 3.9 have interesting consequences for QAOA. We discuss

them in this section.

If 𝑘 , 𝑐 and 𝑝 are constant, then 𝐹 (𝛾,𝛽 ) can be evaluated in a

time that is linear in 𝑛. Farhi et al. [5] shows this for MAX-CUT

when the degree of the nodes is bounded by a constant. The bound

on the degrees of the nodes implies that 𝑐 is a constant. In this

case, it makes little sense to use a quantum computer to evaluate

this expression, unless 𝑘 , 𝑐 or 𝑝 are large. Furthermore, we have

access to the exact value of the expression and we can evaluate the

gradient exactly. This opens the door to the use of gradient-based

optimization techniques, which are not available when the circuit

in run in a quantum computer. Using the evaluation in the classical

computer, we avoid the noise associated with the finite sampling

of solutions and quantum machine, improving the quality of the

parameters for the variational circuit.

Once the circuit is optimized using the classical computer, we still

need to implement and run the circuit in a quantum computer to

sample the solutions to the problem. This sampling is not efficient in

a classical computer because we need to represent the state

���𝜓 (𝛾,𝛽 )
〉

in a classical computer and, as far as we know, this would require

𝑂 (2𝑛) space and time. However, we can also imagine a quantum-

inspired algorithm based on QAOA where we get the values of

some variables in high-quality or even optimal solutions. The idea

is to evaluate the expressions

〈
𝜓 (𝛾,𝛽 )

���𝑍 𝑗

���𝜓 (𝛾,𝛽 )
〉
for 1 ≤ 𝑗 ≤ 𝑛.

We can do this efficiently as a consequence of Theorem 3.9. If

the values obtained are close to 1 or −1, we can guess that the

corresponding variable has that value in a (quasi-)optimal solution.

If the value is around 0we cannot conclude what is the value for 𝑍 𝑗 .

However, in that case, we could evaluate pairs of variables in the

ansatz:

〈
𝜓 (𝛾,𝛽 )

���𝑍 𝑗𝑍𝑙

���𝜓 (𝛾,𝛽 )
〉
. This can also be done efficiently and

provides information about the correlation among the variables.

The consequences of Theorem 3.9 generalize beyond 𝑘-bounded

problems. For instance, it is proven that there exist general and

specialized transforms that allow reducing multi-linear pseudo-

Boolean polynomials to 𝑘-bounded pseudo-Boolean functions for

all 𝑘 ≥ 2 [21], which ensures always having 𝑘-bounded pseudo-

Boolean functions. In this particular case, these two aforementioned

types of functions are defined by Equations (15) and (16), respec-

tively.
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5 CONCLUSIONS AND PERSPECTIVES
QAOA is one of the widely-investigated quantum algorithms whose

working principles rely on the iterative optimization of its ansatz

hyperparameters. This repetitive process, de facto, involves the

intensive use of both quantum and classical machines. Regarding

the nature of quantum computation and the state of today’s quan-

tum technology, the use of a quantum machine/simulator in the

case of the QAOA poses several challenges and limitations that

substantially limit its real-time applicability and induces the need

for substantial resources whether using quantum machines or sim-

ulators. To cope with this, this work proposes a new approach that

has two main contributions (I) eliminates the need for the use of

QPU/simulator during the QAOA hyperparameter-training, and

(II), when dealing with 𝑘-bounded pseudo-Boolean problems, the

set of optimal parameters, and therefore the minimum expectation

value, can be found in polynomial time. The proposed approach is

thought to lead the way for wider and more efficient implementa-

tion and use of QAOA.

In addition to the theoretical development provided in the cur-

rent work, the next step stands in the practical demonstration

of these theoretical findings on a diverse and wide set of bench-

marks representing QAOA for tackling different 𝑘-bounded and

unbounded pseudo-Boolean problems.
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