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Abstract
Clustering of independent component (IC) topographies of Electroencephalograms (EEG) is an effective way to find brain-
generated IC processes associated with a population of interest, particularly for those cases where event-related potential 
features are not available. This paper proposes a novel algorithm for the clustering of these IC topographies and compares its 
results with the most currently used clustering algorithms. In this study, 32-electrode EEG signals were recorded at a sam-
pling rate of 500 Hz for 48 participants. EEG signals were pre-processed and IC topographies computed using the AMICA 
algorithm. The algorithm implements a hybrid approach where genetic algorithms are used to compute more accurate versions 
of the centroids and the final clusters after a pre-clustering phase based on spectral clustering. The algorithm automatically 
selects the optimum number of clusters by using a fitness function that involves local-density along with compactness and 
separation criteria. Specific internal validation metrics adapted to the use of the absolute correlation coefficient as the similar-
ity measure are defined for the benchmarking process. Assessed results across different ICA decompositions and groups of 
subjects show that the proposed clustering algorithm significantly outperforms the (baseline) clustering algorithms provided 
by the software EEGLAB, including CORRMAP.

Keywords Clustering · EEG · ICA · GA

Introduction

EEG recordings are used in clinical and cognitive brain 
research. Comparative across subjects using directly such 
scalp-recorded EEG signals poses some problems because 
they are a mixture of an unknown number of brain and 

no-brain contributions, and therefore the spatial relation-
ship of the physical electrode site to the underlying cortical 
areas that summed generate such activity may be rather dif-
ferent in different subjects, depending on the physical loca-
tions, extents, and particularly the orientation of the cortical 
source areas, both in relation to the own active electrode site 
and its reference channel. A way to circumvent this issue is 
the use of independent component analysis (ICA) (Bell and 
Sejnowski 1995). ICA is nowadays an essential method for 
the processing of EEG signals, particularly for the removal 
of artifacts. ICA is a blind source separation algorithm that 
performs a linear un-mixing of multi-channel EEG record-
ing into maximally temporally independent statistical source 
signals, which are further referred to as independent compo-
nents (ICs), and which represent brain and non-brain (arti-
fact) processes.

There is not a straightforward way to identify equivalent 
components across subjects so that an effective way to assess 
the reliability of the results of an EEG-based experiment 
is studying IC clusters. A typical goal is to find clusters of 
brain-generated IC processes associated more frequently 
with the population of interest. When external information 
about the labels is available, supervised or semi-supervised 
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methods (Yin et al. 2012; Piroonsup and Sinthupinyo 2018) 
can be applied, but in most real-world cases, these external 
information is not present and clustering of ICs is a challeng-
ing unsupervised learning task that requires well-defined 
internal validation metrics.

ASSR (Auditory steady-state response) EEGs measure 
the response that is evoked by a periodically repeated audi-
tory stimulus (Farahani et al. 2021; Hwang et al. 2020). This 
kind of neurophysiological response has been used success-
fully to study patients with schizofrenia (Koshiyama et al. 
2021), bipolar disorder, depression and autism (Jefsen et al. 
2022) and, more recently, developmental dyslexia (Gallego-
Molina et al. 2022). Event-Related Potentials (ERPs) are 
not available in those cases so that clustering of ICs must be 
tackled using other features such as spectra-time frequency 
results or source-localization (e.g. (Lin et al. 2011)). How-
ever, some authors, such as (Miyakoshi 2023), advice against 
the use of multiple clustering criteria and recommend the 
use of source locations, and others (e.g. (Viola et al. 2009)) 
point out that the joint use of features leaves the user with a 
choice of weights which is not easy to address. Thus, (Artoni 
et al. 2014, 2018) and CORRMAP (Viola et al. 2009) pro-
pose the use of correlation coefficient between IC time 
courses and IC topographies, respectively. IC topographies, 
or also termed as (2D) scalp or topographic maps, coincide, 
as we will show later, with the inverse weight returned by 
the ICA analysis. More recently, (de Meneses et al. 2022) 
has proved the effectiveness of the use of topographic maps 
for supervised group classification using Convolutional Net-
works. CORRMAP, which is the most popular clustering 
method for IC scalp maps, works as an open-source plugin 
for the popular EEGLAB software (Delorme and Makeig 
2004), which further provides the possibility of clustering 
IC scalp maps using other clustering algorithms. To the best 
of our knowledge, these are the most currently used cluster-
ing algorithms for topographic maps, so their results will be 
used as the baseline performances for benchmarking.

This paper presents a new hybrid genetic algorithm for 
the clustering of IC topographies along with the defini-
tion of internal validation metrics to assess and compare 
their results. The new clustering algorithm implements 
two genetic algorithms (GA): one for the computation of 
the polarity inversion of the components before computing 
the average image of the clusters (centroids) and another 
for getting the final partitional clustering. The algorithm 
automatically estimates the number of clusters using a fit-
ness function that incorporates local-density aspects. This 
algorithm is defined as hybrid since the initialization values 
of the second GA are provided by a pre-clustering phase. 
This pre-clustering phase is based on spectral-clustering, 
allowing a direct adaptation from the pairwise absolute cor-
relation coefficients. The proposed algorithm outperforms 
the results provided by the most currently used clustering 

methods when these are assessed across ICA decomposi-
tions and groups of subjects.

The rest of this paper is organized as follows. Section 2 
describes the database used and the methods followed for 
the development of this work, including the metrics applied 
for benchmarking. Section 3 reviews the clustering meth-
ods for IC topographies and Sect. 4 introduces the proposed 
algorithm. Section 5 assesses these results across different 
ICA decompositions and groups of subjects. Lastly, Sect. 6 
discusses the main conclusions.

Materials and Methods

This work uses the EEG data obtained by the Leeduca 
research group at the University of Málaga (Ortiz et al. 
2020). Forty-eight participants took part in the study by 
the Leeduca Study Group. These subjects were matched in 
age (t(1) = −1.4, p > 0.05, age range 88–10 months). The 
participants were 32 skilled readers (17 males) and 16 dys-
lexic readers (7 males). The control group had a mean age 
of 94.1 ± 3.3 months, and the dyslexic group 95.6 ± 2.9 
months. The experiment was conducted in the presence of 
each child’s legal guardians and with their understanding 
and written consent.

EEG signals were recorded using the Brainvision acti-
CHamp Plus with actiCAP (Brain products GmbH, Ger-
many). It had 32 active electrodes and was set at a sampling 
rate of 500Hz. These electrodes were located in the 10–20 
standardized system. Participants underwent 15-minute 
sessions in which they were presented white noise audi-
tory stimuli modulated at 4.8, 16, and 40Hz sequentially 
in ascending and descending order, for 2.5 min each. Par-
ticipants were right-handed, native Spanish speakers. They 
had a normal or corrected-to-normal vision and no hearing 
impairments.

For the analysis carried out in this paper, just a sample 
of the complete study has been taken; more specifically, we 
have selected the EEGs corresponding to subjects of the con-
trol group under the stimuli of ascending 40Hz. The cluster-
ing have been carried out for sets of 5 subjects, which means 
155 ICs each, looking for a compromise between enough 
complexity to test the clustering methods and convenience 
to represent and interpret the results.

Figure 1 shows the workflow of the benchmark, indicat-
ing the processes applied to the recorded EEG signals to 
obtain the ICs, their clustering and the metrics to compare 
the results. The figure also includes the sections where each 
aspect is addressed throughout the paper.
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Signal Pre‑processing

EEG signal pre-processing constitutes an important stage 
due to the presence of artifacts and the low signal-to-
noise ratio of EEG signals. A prior pre-processing during 
recording of EEG signal consisted of removal of the most 
evident artifacts and the normalization of the duration to 
be 136-second segments (instead of 150 s). Then, the pre-
processing of these segments, carried out using EEGLA-
Bv2021b, included the following steps: 

1. Import EEG Data and channel location into EEGLAB. 
A .sph file with the Matlab spherical coordinates was 
initially created according to the 10–20 EEG Placement 
method used for the EEG recording. EEG Data, stored in 
a .mat file, were then imported along with the .sph file.

2. Signal from each channel was referenced to the Cz elec-
trode. As a result, EEG data goes from having 32 to 31 
channels.

3. Baseline correction was applied to every channel to 
remove possible temporal drifts and prevent artifacts 
when filtering in the next step. As dataset is continuous, 
channel means are removed separately.

4. Data were filtered using a high-pass filter (FIR type 
with cancellation of phase shift) with cut-off frequency 
of 1Hz, which is a recommended value to obtain good 
quality ICA decompositions (Klug and Gramann 2021). 
Although the selection of 1 Hz as the lower edge filters 
out part of the Delta band, this value is chosen to cope 
with the sensitivity of ICA algorithms to low-frequency 
shift and because event related potentials were not going 
to be processed. A low-pass filter (of the same type) with 
cut-off frequency of 50 Hz was applied then to keep the 
core part of the Gamma waves but reducing the overlap 
with the electromyographic frequency band (Muthuku-
maraswamy 2013).

5. Automatic Channel Rejection was applied using Kur-
tosis. The Kurtosis value is computed for each channel 
and outliers are determined using a z-score threshold of 
10. This value is relatively high so that only seriously 
contaminated channels were rejected.

6. Line Noise removal was applied using an approach advo-
cated in (Mitra and Bokil 2007) and implemented with 
the plug-in Cleanline.

ICA Algorithm and IC Topographies

ICA is the most extended data-driven method for parsing 
EEG signals, combining brain and non-brain sources in the 
scalp electrodes, into a set of maximally temporally and 
functionally independent components (Bell and Sejnow-
ski 1995). More formally, there are some source activities 
b and we just know their projections on each electrode x, 
which record the mix of these activities because every neu-
ronal source projects to most (or even all) electrodes. This 
effect is modeled by a mixing or transformation matrix W, 
where each column is referred to as the extraction filter or 
“weights”, so that x = W ⋅ b . Thus, ICA (as a source blind 
separation) can be used to find the unmixing matrix A, with 
A = W−1 provided that W is invertible. Otherwise, in the gen-
eral case, the pseudoinverse is computed: A = (W ∗ SM)+ , 
with SM the spherical matrix that reprojects the ICA solution 
back into the original coordinate frame to undo the whiten-
ing (or sphering) of the data, generally applied in the first 
step of the ICA algorithms as a way to force the different 
channels to be uncorrelated. The columns of A are referred 
to as activation patterns, or “inverse weights”, and encode 
the strength with which the source’s activity is present in 
each channel (Haufe et al. 2014), so they are used to repre-
sent the IC topographies or scalp maps.

In practice, computation of A , when noise and the rest 
of interferences are considered, is not trivial and different 
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Fig. 1  Workflow applied to EEG data. It also indicates the sections 
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algorithms to compute ICA have been proposed which seek 
to maximize the statistical independence of the estimated 
components. The differences in the variable chosen to define 
the independence make these algorithms return somewhat 
different results when applied to the same EEG data. Info-
max (Lee et al. 2000) is likely the most applied algorithm 
for EEG data but for this work we have used AMICA, which 
(slightly) outperforms Infomax in component separation 
(Delorme et al. 2012). 68,000 points are used for the com-
putation, which is larger than the 30,800 ( ∼ 322 ∗ 30 ) data 
points usually recommended for 32 channels (Miyakoshi 
2023). The maximum number of learning steps is set to 
1000.

The output of this step is a matrix of dimensions 31 × 155 , 
corresponding to the 31 ICA inverse weights for the 31 chan-
nels (32 minus the reference) of the EEG recordings of 5 
subjects.

Quality Metrics

Component scalp maps have no absolute polarity, which is 
known as the sign ambiguity problem (Onton et al. 2006). 
Thus, the absolute correlation coefficients between the 
inverse weights computed by AMICA are used as the simi-
larity measure (Viola et al. 2009). Figure 2 shows an IC tem-
plate and different ICs with different values of correlation 
coefficient (negative values correspond to inverted polarity).

The goal of the clustering algorithms is dividing ICs into 
clusters such that scalp maps of ICs within the same cluster are 
similar while those in different clusters are distinct. External 
information is not available here (unsupervised learning task), 
so it is necessary to find a way to validate the goodness of 
these partitions. In the literature, a number of internal cluster-
ing validation measures have been proposed (Liu et al. 2012), 
presenting all of them certain limitations in the different appli-
cation scenarios (e.g. presence of noise, density differences, 
arbitrary cluster shapes (Sheng et al. 2005)). To the best of 
our knowledge, the closest clustering validity index (CVI) to 
this scenario is the Quality Index used in (Artoni et al. 2018, 
2014), which is further inspired by the Calinski-Harabasz 

criterion (Caliński and Harabasz 1974), defined as the differ-
ence between the average within-cluster similarities and the 
average between-cluster similarities:

where Cm denotes the set of ICs that belong to the m-th clus-
ter, and C−m the set of ICs that do not, |Rij| the similarity 
between the i-th and j-th ICs (i.e. the absolute correlation 
coefficient between inverse ICA weights in this case), and |S| 
the cardinality of the set S . The more compact the cluster, 
the higher the QIc. Then, the overall quality of a clusteriza-
tion, with k clusters, is computed as the weighted average of 
the QIc, with weights proportional to the size of each cluster:

This index is complemented here with the adaptation to 
this specific similarity measure of two of the most impor-
tant CVIs: the silhouette graph (Rahim et al. 2021) and the 
Davies-Bouldin index (Davies and Bouldin 1979).

Silhouette graphs represent the indexes si for each compo-
nent, computed as follows:

with ai the average of the absolute correlation coefficients 
from the i-th IC (in cluster Cm ) to the other ICs in the same 
cluster:

and bi the maximum average absolute correlation coefficient 
value of the i-th IC to ICs in a different cluster, maximized 
over clusters:

(1)

QIcm = 100 ∗
[

1
|Cm|

2 − |Cm|

∑

i, j ∈ Cm

i ≠ j

|Rij| −
1

|Cm||C−m|

∑

i∈ Cm

∑

j∈ C−m

|Rij|

]

(2)QI =

k∑
m=1

|Cm|
|Cm| + |C−m|QIcm.

(3)si = (ai − bi)∕max(ai, bi),

(4)
ai =

1

|Cm|
∑

j ∈ Cm

i ≠ j

|Rij|,

Fig. 2  Scalp maps of ICs with 
different correlation coefficients 
with an IC template
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The function max(ai, bi) returns the maximum value between 
ai and bi , so that the silhouette values range from -1 to 1. 
Finally, the Silhouette CVI, denoted by Sh, is computed as 
the average of the si excluding noisy ICs. Noisy ICs, or outli-
ers, are those ICs that are not assigned to any cluster, being 
included within the cluster “others”.

Davies-Bouldin index provides a rate between compact-
ness and separation. Compactness for the m-th cluster, with 
centroid M, is computed as:

 and the separation as the similarity between the centroids 
of the different clusters: |RMN| , which stands for the similar-
ity between the centroid of the clusters m and n. Then, the 
Davies-Bouldin CVI is computed, for a total of k clusters, 
as follows:

with:

 where it must be noted that this rate has been inverted 
regarding the traditional definition of the index to adapt it 
to the similarity measure used here. This way, likewise the 
original index, DBm represents the worst-case within-to-
between cluster ratio for cluster m and the optimal clustering 
solution has the smallest DB index value.

Finally, although the validation of the clusterings is inter-
nal, a CVI inspired by the rand index (RI) (Gates and Ahn 
2017) is used to compare the results of the different cluster-
ing with those provided by the ICLabel algorithm (Pion-
Tonachini et al. 2019a), described in the next section. This 
modified rand index, RIm, is properly defined later.

Fitness Function

The fitness function used in the GA is based on the CVIs 
introduced in the previous section but modified with local 
information (Tinós et al. 2018). More specifically, this cost 
function Q̂I is based on the QI defined in the previous sec-
tion but the different subfunctions Q̂Icm do not depend on all 
the objects but just on a reduced number of objects, so that 
neighborhood relations are used to compute the functions. 
Thus, for computing the between-cluster similarities, each 

(5)bi =
max

n ≠ m

(
1

|Cn|
∑
j∈ Cn

|Rij|
)
.

(6)dm =
1

|Cm|
∑
i∈ Cm

|RiM|,

(7)DB =
1

k

k∑
m=1

DBm,

(8)DBm =
max

m ≠ n

( |RMN|
dm + dn

)
,

function Q̂Icm is influenced by the objects in the m-th cluster 
and by a subset of the |Cm|Fc closest objects; i.e. the high-
est similarities in terms of absolute correlation coefficient, 
where Fc is a regularization factor. More formally,

where sortp sorts in descending order the between-cluster 
similarities. For the experiments in this paper, Fc has been 
set to 10).

Computation of Centroids

The computation of the centroid, or average scalp map, of 
each cluster requires, as a consequence of the sign ambigu-
ity, to determine firstly the polarity inversions to apply to 
the ICs. These polarity inversions can be represented as a 
vector s ∈ {−1, 1}n , with n the number of ICs. CORRMAP 
and EEGLAB use references to determine the polarities of 
the different ICs as the sign of the correlation coefficients of 
these with such reference. This method, however, presents 
problems when the reference has low absolute correlation 
values with some of the elements. A simple toy example 
which illustrates this point is presented next. Let us assume 
that IC1 is selected as template (reference) for the following 
correlation coefficient matrix between the ICs:

Thus, the vector s ∈ {−1, 1}4 that determines the polarity 
inversion would be s1 = [1 1 -1 -1 ] , implying that IC2 and 
IC3 would be subtracted, which does not seem to be correct 
since the correlation between them is high and positive. In 
the proposed algorithm, this problem is addressed by analyz-
ing the polarity inversions globally with the implementation 
of a GA that seeks to find a polarity inversion vector s which 
minimizes the following cost function:

where.* denotes element-by-element multiplication, ||R|| the 
entrywise L1-norm on matrix R and S the matrix with the 
signs of R ; i.e. Si,j = 1 if Ri,j is positive, and -1 otherwise. 
This cost function has a value 2.4 for the previous s1 , while 
it is just 0.2 for the optimal solution computed with the algo-
rithm: s2 = [1 1 1 -1 ] (and its complementary [-1  -1  -1  1]). 

(9)

Q̂Icm = 100 ∗

[
1

|Cm|2 − |Cm|
∑

i, j ∈ Cm

i ≠ j

|Rij|…

−
1

|Cm|Fc

|Cm|FC∑
p=1

sortp(|Rij|, ∀i ∈ Cm and ∀j ∈ C−m

]

R =

⎡⎢⎢⎢⎣

1 0.1 −0.1 −0.8

0.1 1 0.9 −0.5

−0.1 0.9 1 −0.3

−0.8 −0.5 −0.3 1

⎤⎥⎥⎥⎦
.

(10)Cost = 0.5�sT ∗ s − S�. ∗ ‖R‖1
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For more details about the implementation of this GA, we 
refer the reader to (Munilla et al. 2022).

Clustering Algorithms for IC Topographies

This section reviews the main clustering methods for scalp 
maps, showing the results for the 155 previously computed 
ICs. Next section assesses the results across different ICA 
decompositions and groups of subjects. It is also worth to 
mention that other clustering algorithms not specifically 
intended for this purpose, such as DBSCAN (Schubert et al. 
2017), have been also tried, with conversion from correla-
tions to distances when required, but the results obtained 
were not relevant enough to be included here.

ICLabel

ICLabel classifier is an EEG IC classifier that has shown to 
perform very well estimating IC classifications as compo-
sitional vectors across seven IC categories (Pion-Tonachini 
et al. 2019b): 1) brain, activity believed to originate from 
locally synchronous activity in one (or two well-connected) 
cortical patches; 2) muscle, high-frequency and broad-
band components, above 20–30Hz, originated from groups 
of muscle motor units; 3) eye, which activity originating 
from the eyes and which can be further subdivided into 
ICs accounting for activity associated with horizontal eye 
movements and ICs accounting for blinks and vertical eye 
movements; 4) heart, they are quite rare and are related to 
the fact of placing an electrode directly above a superficial 
vein or artery; 5) Line Noise, concentrated at 50/60Hz and 
which captures the effects of line current noise emanating 
from nearby electrical fixtures o poorly grounded EEG 
amplifiers; 6.) Channel Noise, indicating that some portion 
of the signal recorded at an electrode channel is already 
nearly statistically independent of those from other chan-
nels; and 7) Others, which catches those ICs that fit none of 
the previous types. Thus, ICLabel provides us with a rough 
initial clustering along with an “estimated” label for the IC 
components. For this particular case, it results in 3 clusters 
with: 87 brains, 7 muscles and 15 eyes, leaving 46 as others. 
The silhouette graph is plotted in Fig. 3, corresponding to 
Sh = 0.21 , and QIc of 10.2, 1 and 23 for the clusters Brain, 
Muscle and Eye, respectively ( −1.7 for others), with QI=8 
and Q̂I=7.6.

CORRMAP

CORRMAP finds scalp maps that are similar to another 
selected by the user as a template. It is thus defined as a 
semi-automatic clustering tool because it does not directly 
provide the clusters but finds IC topographies that are similar 

to an user-defined template. The core of the algorithm is 
a two-step loop. In the first step, the absolute correlation 
coefficients between a selected IC (template) and the rest of 
ICs from all datasets are computed. For each dataset, COR-
RMAP selects up to a number g, chosen by the user from 
1 to 3, of ICs with the largest supra threshold absolute cor-
relation with the template. Next, an average cluster map is 
calculated, after inversion of those ICs showing a negative 
correlation with the template and root mean square (RMS) 
normalization of each IC. In the second step, the process is 
repeated but using the average cluster map obtained in the 
first step as the new template.

To evaluate CORRMAP clustering performances, we run 
it 155 times by selecting every IC as the template and look-
ing for similar ICs across subjects (with automatic thresh-
old). A symmetric adjacency matrix is then built setting an 
edge between the IC selected as template and the ICs found 
by CORRMAP for such template.

The best results are obtained for g = 1 . Figure 4 shows the 
silhouette graph of the obtained clustering, with Sh=−0.1, 
and a graph with the centroid connections. In the latter, clus-
terization are represented as a graph, with an edge between 
the centroid m, computed as the average image of the clus-
ter Cm , and any node i provided that |Rmi| ≥ min(|Rmj|) for 
∀j ∈ Cm , revealing the relationship between clusters. The 
figure allows checking at a glance the number of clusters, 
number of outliers, size of the clusters and separation of 
the different clusters. Ideally, each element should be con-
nected to a single centroid and each centroid exclusively to 
the elements of its cluster. Additionally, the figure points out 
with different colors those ICs labelled by IClabel as eyes 
(green) or muscle (red), so it is possible to check how these 
have been clustered. A total of 13 clusters are obtained with 
QI=15.8, Q̂I=11.3 and 8 outliers. It must be noted that there 
is a big cluster of 111 ICs, which makes even bigger when g 
increases (125 for g = 2 and 127 for g=3).
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Fig. 3  Silhouette graph for ICLabel
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PCA‑Based Built‑In EEGLAB Clustering Algorithms

EEGLAB implements some PCA-based clustering algo-
rithms that allow clustering EEG data according to differ-
ent characteristics, including the scalp map similarities. The 
performances provided K-means (Statistics Toolbox), Neu-
ral Network and K-meansCluster (Non-Statistic toolbox), 
henceforth K-meansC, are analyzed here. These methods 
do not work directly on the inverse ICA weights but on their 
corresponding topographic map (67x67 matrices).

A grid search for the optimal number of clusters k and num-
ber of PCA components p is carried out between 10 and 18, 
and 3 and 11, respectively, and averaging on 10 realizations for 
K-means and Neural Network as these algorithms use random 
initial seeds. The best results, in terms of the cost function ̂QI , 
and the parameters used in each case are described next. For 
K-means, QI = 14 ± 0.6 and Q̂I = 9.8 ± 0.5 are obtained for 
k = 13 , p = 7 and separating as outliers those components to 
more than 3 standard deviations. For Neural Networks, the best 
results are obtained for k = 10 and p = 11 : QI = 10.7 ± 0.8 
and Q̂I = 9 ± 1.2 . And finally, for K-meansC, QI = 14 and 

Q̂I =9.3 are obtained for k = 14 and p = 6 . Figure 5 shows 
the silhouette and the centroid connections for K-means (one 
of the realizations).

Novel Clustering Algorithm

Figure 6 shows the flowchart of the novel clustering algorithm 
proposed in this paper. A pre-clusterization based on spec-
tral clustering is followed by a clustering genetic algorithm 
(CGA). Spectral clustering (Ng et al. 2001) is not based on 
distance but in similarity graphs, which makes it particularly 
suitable for this case where the absolute correlation coefficient 
is used as similarity measure. Thus, the proposed clustering 
algorithm starts by computing a similarity graph G as an undi-
rected graph where the edges between two vertices (ICs) carry 
a non-negative weight proportional to the similarity measure. 
More exactly, the adjacency matrix J of G is computed as: 
J = |R| (see Sect. 2.3). Then the symmetric normalized Lapla-
cian is computed (Chung 1997):

(11)L = I − D
−1∕2

JD
−1∕2
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(b) Clusters: centroid connections.

Fig. 4  Results using CORRMAP
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Fig. 5  Results using Kmeans of EEGLAB
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where D is the degree matrix of G.
The next step is computing the first k eigenvectors of L , 

corresponding to the k smallest eigenvalues. The value k is an 
input parameter of the algorithm and will determine the initial 
number of pre-clusters. For a first approach to this value, the 
eigenvalues can be used. From the Laplacian properties, the 
number of eigenvalues which are (approximately) zero coin-
cides with the number of components (independent clusters) 
in the graph (von Luxburg 2007). The first nonzero eigen-
value is called the eigengap or spectral gap, and informs us 
about the connectivity of the graph and the number of clusters. 
As explained later, the final number of clusters may change 
after applying the second optimization phase. The k smallest 

eigenvectors are then arranged in columns to have a matrix 
U ∈ ℝ

n×k , with n=155 in this case. Using this, the n vectors 
yi ∈ ℝ

k corresponding to the rows of U are clusterized in 
k clusters to get the pre-clustering. These vectors yi are the 
coordinates of the original data points in a lower-dimensional 
space created by the selected eigenvectors. This change of the 
representation of the data points from ℝn to ℝk makes cluster-
ing easier and is the “key” of the spectral-clustering. Thus, 
for this step, a simple K-means without outliers algorithm has 
been employed. Finally, each original point i is assigned to the 
same cluster that its representation yi in the reduced dimen-
sional space.

The clustering obtained in the previous phase is then 
used as the initial seed for the GA implemented in the 
next phase. This is an elitist algorithm that implements 
centroid-based encoding. Integer encoding with a vector 
of N=155 positions is employed (Hruschka et al. 2009), 
allowing that the number of clusters can change during 
the optimization process. A population of Nc children 
is generated by randomly selecting one of the N objects 
(ICs). For each of these children, one of four possible 
mutation operator is employed: merge and agglomera-
tive if the selected IC is an outlier, and split and move, 
otherwise. The operators merge and agglomerative, 
applied with probability � and 1 − � , respectively, join 
the selected IC, which currently is an outlier, to the clos-
est outlier (provided that it exists) to form a new clus-
ter (merge) or to the cluster with the closest centroids 
(agglomerative). The operators split and move, applied 
with probability �  and 1 − � , respectively, assign the 
selected IC to the group of outliers (split) or the clus-
ter with the closest centroid (move). The Nc resulting 
clusterings are evaluated and compared with the initial 
seed. The best solution is chosen as seed for the next 
iteration. The process is repeated for up to a maximum 
of iterations, MaxIter, or the results are not improved for 
a certain number of iterations ΔIter . This optimization 
automatically returns the optimum number of clusters 
provided that k in the pre-clustering phase is chosen 
within a certain range.

For these input parameters: N = 155 , k = 13 , Nc = 20 , 
� = 0.5 , � = 0.5 , MaxIter = 5000 and ΔIter=250, Fig.  7 
shows the silhouette graph ( SH = 0.18 ± 0.01 ) and the cen-
troid connections. The number of final clusters is 13.9 ± 0.8 
clusters (values from k between 9 and 15 converge to around 
14), the ICs classified as others is 4.7 ± 1.5 , QI = 26.8 ± 1.1 
and Q̂I = 24.3 ± 0.8 . These results clearly outperform those 
provided by previously analyzed clustering methods. Next sec-
tion assesses these results across different ICA decompositions 
and subjects.

Fig. 6  Flowchart of the proposed clustering algorithm
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Results

For the assessment of the results, this section computes the 
outputs of the clustering algorithms across 10 ICA decom-
positions for the same group of subjects and, after that, for 
10 different groups of subjects.

Before assessing the results of the clustering algorithm, 
the reliability of the AMICA decompositions must be ana-
lyzed. This reliability is evaluated here by analyzing the 
results of ICLabel across the 10 ICA decompositions. Fig-
ure 8(a) graphs the boxplot of the assigned label. The results 
show great stability (narrow boxes) which is confirmed when 
performing a �2 square test for the observed distributions 
of the given labels, taking the means as the expected values 
and six degrees (seven possible labels minus 1) of freedom 
(see Fig. 8(b); the p-values are above 95% (the green dot 
indicates the decomposition used in the previous section). 
Building upon this stability, a new CVI (RIm), inspired by RI 
and with values between 0 and 1, is included regarding the 
ICs labelled as eyes by ICLabel, and computed as follows:

where Ceye denotes the eye-cluster generated by ICLABEL, 
and Seye the set of clusters Ci in the evaluated clustering such 
that Ci ∩ Ceye ≠ �.

Then, Tables 1 and 2 collect the results across ICA 
decompositions and groups of subjects, respectively. The 
relative positions between the clustering methods remain: 
the proposed method obtains the best results, followed 

(12)RIm = |Ceye| ⋅
∑

Ci∈Seye

1

|Ci|
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Fig. 7  Results using the proposed method

Fig. 8  AMICA shows great stability when labels assigned by ICLabel are analyzed. a Boxplot of the labels. b �2 scores and the corresponding 
p-values for the distribution of the assigned labels (the green dot indicates the decomposition used in the previous section)
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by CORRMAP and K-means and K-meansC, with simi-
lary performances. As expected, the variations of the 
results are larger for the subject assessment than for the 
ICA assessment. However, we note that performances of 
CORRMAP improves when different groups of subjects 
are tested. This can be explained because the number of 
clusters is not an input parameter of this algorithm, which 
allows that it can be freely adjusted for each group of sub-
jects. Even so, the proposed method still outperforms it 
clearly for all the CVIs.

Discussion

Clustering of scalp maps is proved to be an effective way to 
identify relevant source components for ASSR EEGs. This 
paper proposes a hybrid CGA that dramatically outper-
forms clustering algorithms provided by EEGLAB; namely, 
K-means, Neural Network, K-meansCluster and CORRMAP. 
It consists of a pre-clustering phase based on spectral clus-
tering, which allows a direct adaptation from the pairwise 
absolute correlation coefficients to similarity graphs, fol-
lowed by a genetic optimization phase. This optimization 
phase minimizes a cost function to determine the final par-
titions, including the number of clusters and the elements 
which are not assigned to any cluster. This phase implies 
the computation of centroids that is based on another GA 
that estimates the polarities of the components. The perfor-
mances of the proposed algorithm have been evaluated using 
specific metrics and assessed across different ICA decom-
positions and groups of subjects, resulting in the proposed 
algorithm reaching the best results.

Conclusions

We described in this paper the complete clustering process 
of topographic maps of the scalp obtained with EEG. The 
most challenging aspect of this clustering is that tradi-
tional euclidean-distance based methods and metrics can-
not be directly applied here so they have to be adapted 
to the use of the absolute correlation coefficient as the 
similarity measure. Thus, spectral-clustering is combined 
with genetic optimization to propose a novel hybrid clus-
tering algorithm. We evaluated the use of this algorithm 
using specifically adapted metrics and concluded that it 
outperforms significantly the baseline clustering methods. 
A better clustering of scalp maps should result in a simpler 
identification of brain-generated processes, so we hope 
that this work can help researchers working in the field of 
ASSR EEGs to associate obtained topographic scalp maps 
with the corresponding populations of interest.
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Table 1  Assessment across ICA 
decompositions

1 (⋅102)

Algorithm QI Q̂I Sh1 DB1 RIm1 #clusters #others

CORRMAP 15.5±1.5 10.9±1.1 15±3 38±2 13±1 13.4±2.6 6.4±1.1
K-means 13.6±1.1 9.3±1 − 12±2 54±2 24±4 12.4±0.5 7.8±5.4
N.Network 10.2±0.8 8.4±1.1 − 14±5 57±3 16±2 10 0
K-meansC 13.6±0.4 8.3±0.5 − 10±2 53±2 22±3 14 0
Proposed Met 27.6±0.9 24±0.7 18±2  34±2 46±8 14±0.9 4.9±2.2

Table 2  Assessment across 
Subjects’ groups

1 (⋅102)

QI Q̂I Sh1 DB1 RIm1 #clusters #others

CORRMAP 20.9±3.9 14.7±3.3 − 10±5 42±3 15±5 15.8±2.3 7.3±2.1
K-means 13.7±2 9.4±2 − 11±4 53±3 16±5 12.9±0.3 1.6±2.1
N.Network 8.7±2.5 7±3 − 15±6 61±3 12±6 9.7±0.6 1.4±3.8
K-meansC 12.8±2.2 7.6±2.3 − 13±4 54±3 17±5 14 0
Proposed Met 28±2.3 25±2.2 17±3  36±3 28±8 13.9 ±1.2 3.3 ±1.1
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