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Abstract. Wildfires have evolved significantly over the last decades,
burning increasingly large forest areas every year. Smart cyber-physical
systems like small Unmanned Air Vehicles (UAVs) can help to monitor,
predict, and mitigate wildfires. In this paper, we present an approach to
build control software for UAVs that allows autonomous monitoring of
wildfires. Our proposal is underpinned by an ensemble of artificial intel-
ligence techniques that include: (i) Recurrent Neural Networks (RNNs)
to make local UAV predictions about how the fire will spread over its
surrounding area; and (ii) Deep Reinforcement Learning (DRL) to learn
policies that will optimize the operation of the UAV team.

Keywords: wildfire monitoring · artificial intelligence · UAVs

1 Introduction

Every year, large extensions of terrain are burned by wildfires. In Spain, 2022 has
been the worst in the last 15 years, with 267,939.64 hectares of forest devastated
[3]. The use of human-supervised, software-controlled Small Unmanned Air Ve-
hicles (UAVs) like drones is considered as a promising approach to effectively
monitor and mitigate the impact of wildfires without the limitations of human
operators (limited ability to handle complexity, long reaction time, etc.).

There are multiple approaches that already employ techniques such as Deep
Reinforcement Learning on analogous applications that endow drones with au-
tonomous behavior [2] [1]. However, these approaches are currently limited be-
cause they: (i) do not consider key factors like smoke, which can have a re-
markable disruptive effect on the monitoring task of UAVs, and (ii) are largely
reactive and not equipped to anticipate how the fire will spread in the short
term. This second limitation is particularly relevant because it may result in sit-
uations where drone behavior may either be too slow to react on time to avoid
drone damage, or too conservative (and thus suboptimal to effectively monitor
areas that are relatively close to the fire).

In this paper, we describe a work-in-progress that aims at overcoming such
limitations by proposing an approach that allows: (i) defining a more realistic
model of the wildfire propagation behavior that incorporates a smoke model; and
(ii) a combination of machine learning techniques that will be used to anticipate
the forest fire spread and proactively adapt the behavior of the UAV team to it.
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2 Problem description

The core of our problem description is based on an analogous one for aircraft-
class drones [2]. However, our work extends the environment description to con-
sider smoke, and adapts the problem to the specific context of quadcopter UAVs.

Wildfire modeling A forest area is represented as a matrix of N ×N cells,
where each cell c ∈ C incorporates two time-dependent variables that represent:
(i) the amount of burnable fuel in the cell F : C → N; and (ii) whether the
cell is burning (B : C → {0, 1}). We assume a discrete notion of time, and for
simplicity, we represent the fuel value of a variable associated with a cell c at
time instant t as e.g., Ft(c). When one time unit elapses, each cell can change
in three ways:

– If cell c is burning and there is remaining fuel (Ft(c) > 0 ∧ Bt(c) = 0), fuel
is decreased according to a burning rate parameter β (consumption speed).

– When Ft(c) = 0, the fire is extinguished in that cell (Bt+1(c) = 0).
– When there is fuel remaining and the cell is not burning (Ft(c) > 0∧Bt(c) =

0), we define a probability pι : C → [0, 1] of the cell getting ignited that is
inversely proportional to the proximity to other burning cells.1

A concrete example of how wildfire propagates through a grid where N = 25
can be seen in Figure 1.

Wind and smoke modeling Wind is modeled as the bias of a cell igniting
probability, depending on the direction (north, east, south, west) and strength.
For instance, if the wind blows north, any cell (c′) north of a burning cell c will
see its ignite probability pι(c) increased according to a wind speed parameter µ,
while cells south of c will see their ignite probability decreased by µ.

(a) (b) (c) (d)

Fig. 1. Wildfire propagation in a 25x25 grid: (a) t = 0 (b) t = 5 (c) t = 10 (d) t = 15

Smoke is modeled analogously to wind, with three variables for each cell:
(i) S : C → {0, 1} indicates whether the cell contains smoke or not, (ii) H : C →
N indicates smoke height, and (iii) DC : C → N is a dispelling smoke counter.

1 Readers interested in details can refer to [2].
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Smoke appears only if there is fire in a cell. After smoke appears over a
burning cell c, it gains height each time unit by an ascension rate (Ht+1(c) =
Ht(c) + Φ). When the cell stops burning, the smoke stops gaining height, and
the dispelling counter starts to discount (DCt+1(c) = DCt(c) − γ if Bt(c) =
0 ∧ St(c) = 1) according to a discount rate γ. When DC(c) = 0, the smoke in
that cell disappears (S(c) = 0). Moreover, smoke can be spread over cells with
or without fire. For a given cell c, there is a probability to get smoke based on
the weighted multiplication of contiguous cells smoke level.

Unmanned Air Vehicles We assume that the UAV is in constant flight
and can move at a constant speed measured in cells per time unit. The available
actions to a UAV are changing altitude, moving north, east, south, and west.

The goal of a UAV is to maximize its covered forest area, i.e., to monitor
as many cells on fire as possible. At the same time, the UAV should avoid the
smoke (which hampers its ability to effectively monitor its surroundings), as well
as getting too close to the fire to avoid damage. Globally, the goal for the UAV
team is to maximize the overall monitored forest area.

3 Self-Adaptive Wildfire Monitoring

We envisage a solution to the problem described in Section 2 based on MAPE-
K [?], considered to be one of the most successful approaches to engineering self-
adaptive software that has at its core a set of models used to support reasoning
at run time about when (analysis) and how (planning) to best adapt the system.
For our solution, we intend to instantiate MAPE-K making use of components
that implement both RNNs and DRL to inform the analysis and planning stages
of the MAPE loop, respectively, as illustrated in Figure 3. The managed system
layer (bottom) is the UAV’s software, which includes components to control both
sensors and actuators. The managing system layer (top) incorporates the various
stages that endow the system with autonomous, self-adaptive behavior:

1. The monitor stage aggregates sensor information and provides it to the RNN,
which predicts the next elements of a sequence of observations (e.g., about
the state of the terrain, other drones) based on previous ones, providing to
the analyze stage a prediction of how the fire will spread.

2. Based on the output provided by the RNN component, the analyze stage
determines whether the current situation demands an action from the UAV
(e.g., because it may be too close to the fire). If analyze determines that there
is a need for adaptation, then the plan stage is triggered.

3. When the plan stage is triggered, it employs DRL for decision-making. Con-
cretely, the DRL component receives as input a local observation of the
area, and a prediction of how it will partially evolve in the next time units
(obtained from the RNN component). The DRL generates a decision by
calculating the weighted reward of the inputs, together with variables con-
cerning about other UAVs state and generates a plan as output, that consists
in moving the respective UAV to a new position in order to maximize the
monitored fire area, which is passed on to the execute stage.
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Fig. 2. An overview of our self-adaptive wildfire monitoring approach

4. Finally, the execute stage receives the plan and enacts its execution by co-
ordinating the effectors embedded at the managed system layer.

4 Conclusions and Future Work

We have presented a work-in-pogress approach to build self-adaptive software for
wildfire monitoring with UAVs that is supported by an ensemble of AI techniques
aimed at anticipating the evolution of the environment to optimize UAV team
operations. In future work, we plan on moving towards more realistic scenarios
and refining our RNN and DRL architectures to make them more precise.
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