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a b s t r a c t 

A new theoretical model is presented for an aquatic vehicle self-propelled by a rigid foil 

undergoing pitching oscillations generated by a torque of small amplitude applied at an 

arbitrary pivot axis at which the foil is elastically supported to allow for passive heav- 

ing motion. The model is based on 2D linear potential-flow theory coupled with the self- 

propelled dynamics of the semi-passive flapping foil elastically mounted on the vehicle 

hull through translational and torsional springs and dampers. It is governed by just three 

ordinary differential equations, whose numerical solutions are assessed with full viscous 

numerical simulations of the self-propelled foil. Analytical approximate solutions for the 

combined effect of all the relevant non-dimensional parameters on the swimming veloc- 

ity and efficiency are also obtained by taking advantage of the small-amplitude of the 

applied torque. Thus, simple power laws for the velocity and efficiency dependencies on 

Lighthill number and torque intensity are obtained. It is found that the swimming veloc- 

ity and transport efficiency can be greatly enhanced by selecting appropriately the non- 

dimensional constants of the translational and torsional springs, which are mapped for 

typical values of the remaining parameters in aquatic locomotion. These resonant values 

serve to select optimal frequencies of the forcing torque for given structural and geometric 

parameters. Thus, the present model and analysis provide a useful guide for the design of 

an efficient flapping-foil underwater vehicle. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

1. Introduction 

Several aquatic propulsion technologies based on flapping foils, mostly bioinspired on efficient swimming animals, have 

been developed in the past few decades [1–4] . In addition to be able to reach sufficiently high propulsion efficiencies,

these flapping propellers may have some other advantages in relation to traditional rotating propellers depending on how 

the flapping foils are configured, including high maneuverability, easy control, low-frequency and less cavitation problems, 

among others. Of the many configurations that have been proposed and studied, we consider here a particular one consisting 

of a rigid foil with a pitching motion generated by a given torque, but with torsional spring and damper to allow the

pitching motion to adapt passively to the forcing torque, and with a fully passive heaving motion of the foil elastically
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mounted to translational spring and damper. In relation to fully constrained configurations of rigid foils, this one allows for 

the possibility of resonant modes of the pitching and heaving motions that, as we shall see, may greatly enhance the thrust

force and, therefore, the swimming velocity and the propulsive efficiency. 

It is widely known that a semi-passive flapping foil configuration consisting of a forced pitching foil with passive heave

may enhance their performance by resonant phenomena in both propulsion [5–7] and energy harvesting [8–12] systems. 

However, to our knowledge, the self-propulsion performance of a vehicle propelled by such a flapping-foil configuration, 

where its forward velocity is generated by the thrust force produced by the elastically mounted flapping foil, instead of 

just considering its propulsive performance in a uniform current, has not been analyzed. This study involves the complex 

fluid-structure interaction of the rigid foil elastically mounted to translational springs and dampers anchored to the vehicle 

hull, practically infeasible to solve using full numerical simulations. For that reason we use here a model based on linear

potential-flow coupled with the dynamics of the elastically mounted rigid foil to the vehicle. The model is validated by 

comparing its performance with full numerical simulations of the viscous-flow in the limit of large translational spring 

constant, so that the heaving motion of the self-propelled foil is inhibited [13] . 

The self-propulsion performance of isolated rigid foils with prescribed pitching and/or heaving motion has been studied 

theoretically, experimentally and numerically [14–18] . In the pioneering work by Alben and Shelley [14] it was shown nu-

merically that a foil undergoing a vertical heaving motion within a viscous fluid may spontaneously develop, for sufficiently 

large frequency Reynolds number, a unidirectional horizontal locomotion as an attracting state for an initial nonlocomoting 

foil. In their interesting theoretical study on a self-propelled foil with prescribed pitching motion, Sanchez-Rodriguez et al. 

[15] also used, like in the present work, analytical results from the linear potential-flow theory to model the lift and thrust

forces that the fluid exerts on the foil, but with a different model for the thrust. Additionally, here we consider the more

realistic situation of an elastically mounted foil whose pitching motion is generated by a given torque applied at an arbitrary

pivot axis, instead of being prescribed, and coupled to a passive heaving motion, thus taking advantage of the resonances 

arising in the elastically mounted system to enhance the propulsion of the vehicle where this propeller is anchored. 

2. Formulation of the problem 

We consider an underwater vehicle like, for instance, that sketched in Fig. 1 (a), self propelled by a thin rigid hydrofoil

through pitching and passive heaving motions. The foil has a large aspect ratio, so that the flow and the fluid-foil interaction

are assumed two-dimensional (2D). It is actuated at a pivot point located at ˜ x ′ = ˜ a by a sinusoidal torque per unit span

M i (t) , where ˜ x ′ is the coordinate along the foil centerline from the mid-chord (see Fig. 1 (b); a tilde ˜ over a symbol

denotes a dimensional quantity, and it is only used when the same symbol without the tilde will be employed later for its

dimensionless counterpart). The foil is elastically mounted to translational and torsional springs and dampers at the pivot 

point, with dimensional constants ˜ k h and 

˜ k α for the springs, and 

˜ b h and 

˜ b α for the dampers, respectively. The corresponding 

force (along the transversal coordinate ˜ z ) and torque exerted by these springs and dampers at the pivot point are denoted

in Fig. 1 (a) by L o and M o , respectively, both per unit span. 

In what follows all magnitudes are made dimensionless with the semi-chord length c/ 2 , the fluid density ρ and the

frequency ω of the input torque, which in dimensionless form is given by 

ˆ C M i 
:= 

8 M i 

πρc 4 ω 

2 
= ε sin t , (1) 

where ε is the (known) non-dimensional torque intensity, which will be assumed small in the model described in 

Sections 3 and 4 . This torque induces a pitching motion α(t) about x ′ = a , where the dimensionless pivot point location

may vary from a = −1 (leading edge) to a = 1 (trailing edge). Due to the fluid-structure interaction (FSI) and to the action

of the translational and torsional springs and dampers, the foil also undergoes a (passive) heaving motion along the z direc-

tion whose dimensionless amplitude will be denoted by h (t) . Both h (t) and α(t) are unknowns. Additionally, the hydrofoil

moves together with the vehicle it propels in the negative x direction at a dimensionless velocity u (t) , also unknown, so

that in the vehicle reference frame (x, z) the free-stream velocity towards the foil is u (t) (see Fig. 1 (b)). Remember that this

velocity is scaled with ωc/ 2 , which means that u (t) is actually the inverse of the reduced frequency k (t) commonly used in

unsteady aerodynamics [19] , which now depends on time, 

u (t) := 

2 ̃

 u (t) 

ωc 
= 

1 

k (t) 
. (2) 

The dynamics of the rigid foil is governed by the following two non-dimensional equations (momentum in the z direction 

and moment around the pivot axis, respectively): 

R 

[
˙ v + (a − x 0 ) 

(
α̈ cos α − ˙ α2 sin α

)]
= 

ˆ C L + 

ˆ C L i − ˆ C L o , v := 

˙ h , (3) 

R [ (x 0 − a ) ̇ v cos α − I a ̈α] = 2( ̂  C M 

+ 

ˆ C M i 
− ˆ C M o 

) , (4) 

with 

ˆ C L o = k h h + b h v , ˆ C M o 
= −k αα − b α ˙ α , (5) 
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Fig. 1. Sketch of a vehicle (a) self-propelled by an elastically supported foil (b). Dimensional quantities (see main text). 

 

 

 

 

 

 

 

 

where each dot denotes a derivative with respect to the dimensionless time t (scaled with ω) and v is the dimensionless

heave velocity. In these equations, ˆ C L and 

ˆ C M 

are the non-dimensional force component in the z direction and the non- 

dimensional moment, respectively, that the fluid exerts on the foil per unit span, 

ˆ C L := 

8 L 

πρc 3 ω 

2 
, ˆ C M 

:= 

8 M 

πρc 4 ω 

2 
. (6) 

We have also included in Eqs. (3) - (4) an input force in the z direction 

ˆ C L i (t) for completeness (see also Fig. 1 (b)), though it

will be set to zero in the reported results. The ‘hat’ ˆ on all these coefficients is to remark that they are not the usual lift

and moment coefficients, C L and C M 

, scaled with 

1 
2 ρu 2 c and 

1 
2 ρu 2 c 2 , respectively; they are related to each other through 

C L := 

2 L 

ρ ˜ u 

2 c 
= 

π ˆ C L 
u 

2 
, C M 

:= 

2 M 

ρ ˜ u 

2 c 2 
= 

π ˆ C M 

u 

2 
, (7) 

and similarly for ˆ C M i 
and 

ˆ C L i . In addition to the pivot point location a , the non-dimensional parameters appearing in Eqs. (3) -

(5) are the mass ratio R , the center of mass x 0 , the moment of inertia about the pivot point I a , the translational and torsional

spring stiffnesses k h and k α , and the translational and torsional damper constants b h and b α . Note that R (x 0 − a ) is the

non-dimensional static moment about x = a . In terms of the foil’s density and thickness distributions, ρs ( ̃  x ′ ) and γ ( ̃  x ′ ) ,
respectively, the first three ones are defined as 

R = 

4 m 

πρc 2 
, m = 

∫ c/ 2 

−c/ 2 

ρs γ d ̃  x ′ , (8) 

x 0 = 

1 

2 

∫ 1 

−1 

x ′ M d x ′ , I a = 

1 

2 

∫ 1 

−1 

(x ′ − a ) 2 M d x ′ , M := 

ρs γ c 

m 

, (9)
238 
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where m is the mass of the hydrofoil per unit span. If the density ρs and the thickness γ were constants, M = 1 , so that

the center of mass would be at the mid-chord, x 0 = 0 , and 

I a = a 2 + 

1 

3 

. (10) 

Also note that we do not assume that the pivot point location coincides with the center of mass. It remains to define the

spring and damper constants, related to their dimensional counterparts (per unit span) through 

k h = 

4 ̃

 k h 
πρc 2 ω 

2 
, b h = 

4 ̃

 b h 
πρc 2 ω 

, k α = 

8 ̃

 k α

πρc 4 ω 

2 
, b α = 

8 ̃

 b α

πρc 4 ω 

. (11) 

In relation to the equation of motion along the x direction, we use Newton’s second law applied to the vehicle center of

mass, to write, in dimensionless form, 

R 

′ ˙ u = 

ˆ C T − Li u 

2 . (12) 

In this equation, 

ˆ C T := 

8 T 

πρc 3 ω 

2 
= 

u 

2 C T 
π

(13) 

is the non-dimensional thrust force that the fluid exerts on the hydrofoil and propels the vehicle in the −x direction, with

T the dimensional thrust force per unit span, and Li u 2 the vehicle’s non-dimensional drag force written in terms of the

Lighthill number Li , related to the drag coefficient C D by 

Li := 

A w 

πcs 
C D , with C D := 

2 D 

ρ ˜ u 

2 A w 

, (14) 

where D is the drag force (see Fig. 1 (a)), A w 

is a characteristic surface of the vehicle and s is the foil’s span length. Note that

u and ˆ C T are assumed positive when pointing in the direction of negative x , while the drag force is positive in the opposite 

direction. For simplicity we shall assume that C D is constant in the relevant range of Reynolds numbers for underwater 

propulsion [20,21] . Finally, 

R 

′ = 

4 m 

′ 
πρc 2 s 

(15) 

is the dimensionless mass ratio of the underwater vehicle, with m 

′ its total mass [contrary to m in (8) , which has units of

mass per unit span of the foil, m 

′ has units of mass]. We shall not consider the vehicle’s vertical motion due to the action

of gravity, which in any case can be minimized using a neutrally buoyant vehicle. 

Eqs. (3) , (4) and (12) constitute a set of three ordinary differential equations (ODEs) for h (t) [or v (t ) ], α(t ) and u (t) that

can be solved for the given torque (1) if the coefficients ˆ C L (t) , ˆ C M 

(t) and ˆ C T (t) coming from the FSI are known in terms of 

h , α and u (see §3 below). But before that, it is convenient to define some relevant quantities to characterize the vehicle’s

self-propulsion. 

Once Eqs. (3) , (4) and (12) are solved for a given set of initial conditions, the solution will eventually reach a final

permanent state consisting of an oscillatory periodic motion around a mean, or time-averaged, value of each variable. These 

mean quantities will be denoted by an over-bar, and, except otherwise specified, will be computed by averaging over a cycle

of the forcing torque, 

X = 

1 

2 π

∫ t+2 π

t 

X (t ′ ) dt ′ , (16) 

for any magnitude X(t) and with t sufficiently large. Of particular relevance is the mean swimming speed U = u , or mean

value of u as t → ∞ , which in some circumstances is of interest to maximize in terms of the different parameters governing

the problem. Notice that once a constant swimming velocity U has been reached, the time-average of the left hand side of

Eq. (12) vanishes, and so does the mean of the right hand side. Thus, the mean thrust generated by the flapping hydrofoil

becomes equal to the mean drag of the whole cruising vehicle: ˆ C T = Li u 2 > 0 for t → ∞ . 

Alternatively, one may be interested in maximizing the propulsive (Froude) efficiency. To compute it, one has to obtain 

previously the input power needed to generate the oscillatory motion of the foil. The (instantaneous) input power P is

defined as the product of the heave velocity by the input lift plus the product of the angular velocity times the input

torque. In dimensionless form, scaled with πρc 4 ω 

3 / 16 , 

ˆ C P := 

16 P 

πρc 4 ω 

3 
= 

˙ h ̂

 C L i − 2 ̇ α ˆ C M i 
. (17) 

(Note that the minus sign comes from the different sign convention for the pitch angle and the input torque; see Fig. 1 .) In

the present work we assume ˆ C L i = 0 , so that the heaving motion, if any, is passive, and all the input power is associated to

the input torque. On the other hand, the (instantaneous) propulsive power coefficient is the product of ˜ u times the thrust
239 
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force that generates this speed scaled with the same characteristic power used above; i.e., u ̂  C T . The propulsive efficiency is

the ratio of these two quantities when time-averaged, 

η = 

u ̂

 C T 

ˆ C P 

= 

R 

′ u ̇

 u + Li u 

3 

ˆ C P 

� 

Li u 

3 

ˆ C P 

, (18) 

where Eq. (12) has been used. The last expression after ‘ � ’ comes from the fact that once the final oscillatory state has

been reached, u becomes an almost harmonic function of time and u ̇ u � 0 . From this expression it results that, for given

powering torque and vehicle’s drag ( Li ), maximizing the dimensionless swimming velocity U is equivalent to maximizing η. 

Note, however, that the swimming velocity is scaled with the selected forcing frequency ω. 

It is known that maximum propulsive efficiency is usually reached in a narrow range of the Strouhal number [22] , which

is defined as 

St = 

ω ̃

 A 

2 π ˜ U 

= 

A 

2 πU 

, (19) 

where ˜ A is the beat amplitude, taken as the maximum peak-to-peak flapping foil amplitude ( A is its dimensionless counter- 

part). Thus, sometimes it is more interesting to characterize the cruising velocity U in terms of St , usually in combination

with the corresponding Reynolds number, Re = 

˜ U c/ν , [23] where ν is the kinematic viscosity. 

Finally, for cruising, it is sometimes preferable the use of the cost of transport instead to the Froude efficiency as a

measure of the self -propulsion efficiency [18,24] . It is defined as the energy consumption per unit distance travelled by the

vehicle: 

˜ CoT = 

P 

˜ U 

= 

πρc 3 s ω 

2 

8 

C oT , C oT = 

ˆ C P 
U 

, (20) 

where CoT is a dimensionless cost of transport that will be used in the reported results. Some authors use the non-

dimensional cost of transport P / (W 

˜ U ) , where W is the weight of the vehicle, but we believe that the above CoT is more

consistent with the present non-dimensionalization. In any case, the results would be scaled by just a constant factor. 

3. Linearized model 

If the torque intensity ε is small enough, one may assume that the pitch and heave amplitudes are also small, | α| � 1

and | h | � 1 , so that one may use the expressions of ˆ C L (t) , ˆ C M 

(t) and ˆ C T (t) from the linear potential flow theory for a

harmonic foil motion, but written in a general form in terms of α, h and u and their temporal derivatives. In particular, we

use Theodorsen’s expressions for the lift and moment coefficient [19] , modified by [25] with additional terms proportional 

to ˙ u to account for the pulsating stream, and with Theodorsen’s function appearing in the circulatory terms evaluated at 

variable k (t) = 1 /u (t) . In the present notation, 

ˆ C L (t) = − ˙ v − a ̈α + u ̇ α + 

˙ u α + Re [ C(k )] u 
0 (t) , (21) 

ˆ C M 

(t) = 

1 

2 

[ 
a ̇ v + 

(
a 2 + 

1 

8 

)
α̈ + 

(
1 

2 

− a 

)
u ̇ α − a ̇ u α

] 
− 1 

2 

(
1 

2 

+ a 

)
Re [ C(k )] u 
0 (t) , (22) 


0 (t) = −2 

[ 
v + 

(
a − 1 

2 

)
˙ α − uα

] 
, (23) 

where 

C(k ) = 

H 

(2) 
1 

(k ) 

iH 

(2) 
0 

(k ) + H 

(2) 
1 

(k ) 
= F( k ) + i G(k ) (24) 

is Theodorsen’s function and Re means real part. These force and moment, which have been widely validated against exper- 

imental data for pitching and heaving rigid foils even for not so small amplitude of the oscillations [26,27] , are used in the

linearized form of Eqs. (3) and (4) : 

R [ ̇ v + (a − x 0 ) ̈α] = 

ˆ C L + 

ˆ C L i − ˆ C L o , 
˙ h = v , (25) 

R [ (x 0 − a ) ̇ v − I a ̈α] = 2( ̂  C M 

+ 

ˆ C M i 
− ˆ C M o 

) , (26) 

where now x ′ � x and z ′ � z. 

As for the thrust coefficient, we shall use in Eq. (12) the result from the linearized vortical impulse theory [28] , which

has been validated against experimental data for small amplitude of the oscillations and sufficiently large Reynolds num- 

bers, both for pitching and heaving foils in a uniform flow [28–31] and for self-propelled pitching foils [13] . In the present

notation it can be written as 

ˆ C T = −α ˆ C L + ˙ α[ v + a ̇ α − uα] + 
0 

{
Re 

[
2 i C 1 (k ) 

π

]
[ −v + 2 αu + (1 − a ) ̇ α] − Re [ C(k ) ] uα

}
, (27) 
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where 

C 1 (k ) = 

1 
k 

e −ik 

iH 

(2) 
0 

(k ) + H 

(2) 
1 

(k ) 
= F 1 ( k ) + i G 1 (k ) . (28) 

The resulting system of ODEs (25), (26) and (12) is solved numerically for h (t) , α(t) and u (t) as described in Section 6 be-

low. 

The present self-propulsion model is more general than the one considered by Sanchez-Rodriguez et al. [15] , where a

prescribed pitching kinematics is used, α(t) = α0 sin t in the present notation, instead of the more realistic torque (1) used

here. Consequently, we need the additional moment Eq. (26) which is not considered in [15] . This is also physically rele-

vant because we can compute the input power, and therefore, the propulsive efficiency and the cost of transport, which 

cannot be obtained with the simpler model by Sanchez-Rodriguez et al. [15] . Therefore we can select the sets of parame-

ters that produce the optimal efficiency or the optimal cost of transport. Additional translational and torsional springs and 

dampers are also used here, which enriches the model and whose characteristics may be varied to improve the propulsion 

performance due to resonance between passive and forced motions [32] . Further, the pivot axis location x = a is set here

independently of the center of mass of the foil x = x 0 , so that one may explore its effect on the propulsion performance

separately. Finally, we use expression (27) for the thrust, which, though yielding practically the same results as Garrick’s 

[33] thrust used in [15] at low reduced frequencies, has proven to agree better with experimental data in a wider range

of parameters [28,30,31] . The differences are particularly relevant for high reduced frequencies, corresponding to the small 

velocity limit considered in next section’s asymptotic analysis (remember that u = 1 /k ). 

4. Approximate analytical solution from two-scales perturbation method 

Alternatively to the numerical solution of the model Eqs. (25) , (26) and (12) , one may take advantage of the small torque

intensity ε to obtain an analytical approximation for h (t) , α(t) and u (t) using perturbation methods. In particular, from the 

structure of the equations one might assume two timescales: t , associated to period of the oscillations, and 

τ = Bεb t , (29) 

associated to the slower variations of the mean values, where the constants B and b will be determined from the scaling of

the different terms in Eq. (12) . Thus, the time derivatives are approximated by 

d 

dt 
= 

∂ 

∂t 
+ Bεb ∂ 

∂τ
. (30) 

Assuming that, according to (25) - (26) , the lowest order amplitude of the pitching and heaving oscillations is of the same

order ε as the forcing torque ˆ C M i 
, the asymptotic expansions for h and α with the two timescales can be written as 

h (t, τ ) ∼ εh 1 (t, τ ) + ε2 h 2 (t, τ ) + . . . , α(t, τ ) ∼ εα1 (t, τ ) + ε2 α2 (t, τ ) + . . . . (31)

As we shall see, only the next terms in these expansions depend on the expansion of u if, as shown below, u � ε. In general,

we can write the expansion for u as 

u (t, τ ) ∼ εn 1 u 1 (t, τ ) + εn 2 u 2 (t, τ ) + . . . , (32) 

with 1 < n 1 < n 2 < . . . to be determined. 

To perform the expansions for the force and moment coefficients we take into account that k = u −1 	 1 , so that one may

use the large- k approximation of the functions (24) and (28) [30] to write 

Re [ C(k )] = 

1 

2 

+ O (k −2 ) , Re 

[
2 i C 1 (k ) 

π

]
= 

1 

(4 πk ) 1 / 2 
+ O (k −3 / 2 ) . (33) 

Since it will turn out that both b and n 1 are larger than unity, the two leading terms of ˆ C L and 

ˆ C M 

are 

ˆ C L ∼ −ε

(
∂ 2 h 1 

∂t 2 
+ a 

∂ 2 α1 

∂t 2 

)
− ε2 

(
∂ 2 h 2 

∂t 2 
+ a 

∂ 2 α2 

∂t 2 

)
+ O (ε1+ b , ε1+ n 1 ) , (34) 

ˆ C M 

∼ ε

[
a 
∂ 2 h 1 

∂t 2 
+ 

(
a 2 + 

1 

8 

)
∂ 2 α1 

∂t 2 

]
+ ε2 

[
a 
∂h 

2 
2 

∂t 2 
+ 

(
a 2 + 

1 

8 

)∂α2 
2 

∂t 2 

]
+ O (ε1+ b , ε1+ n 1 ) . (35) 

After substituting into (25) and (26) , one gets two pairs of equations for the two leading orders of h and α, which are

independent of u . At the lowest order ( ε) these equations are 

O (ε) : 

⎧ ⎪ ⎨ ⎪ ⎩ 

(
R + 1 

)
∂ 2 h 1 

∂t 2 
+ 

[ 
R (a − x 0 ) + a 

] 
∂ 2 α1 

∂t 2 
+ b h 

∂h 1 

∂t 
+ k h h 1 = 0 , [ 

R (x 0 − a ) − a 

] 
∂ 2 h 1 

∂t 2 
−

[ 
RI a + 

(
a 2 + 

1 

8 

)] 
∂ 2 α1 

∂t 2 
− 2 b α

∂α1 

∂t 
− 2 k αα1 = 2 sin t. 

(36) 
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The solution to this system of two linear equations for h 1 and α1 contains transient terms of the form e λ1 t that decay

very fast to zero from any initial condition provided that the real part of the eigenvalues λ1 of the following determinant

are all negative: ∣∣∣∣(R + 1) λ2 
1 + b h λ1 + k h (a + R (a − x 0 )) λ2 

1 

(a + R (a − x 0 )) λ2 
1 (RI a + a 2 + 1 / 8) λ2 

1 + 2 b αλ1 + 2 k α

∣∣∣∣ = 0 . (37) 

Only these stable solutions with Re (λ1 ) < 0 will be considered, which, for x 0 = 0 , covers all the values of the mass ratio R if

the pivot point is located upstream of the foil’s mid-chord, −1 ≤ a ≤ 0 (see Appendix A ). For b h = b α = 0 (no dampers) the

system is neutrally stable; i.e., Re (λ1 ) = 0 . 

Thus, discarding unstable solutions with Re (λ1 ) > 0 , we only write the permanent, or particular, solution of Eqs. (36) as-

sociated to the forcing torque (term 2 sin t on the right hand side), which can be written as 

h 1 = H 1 sin (t + φh 1 ) , α1 = A 1 sin (t + φa 1 ) , (38) 

where the complex constants 

H 1 ≡ H 1 e 
iφh 1 and A 1 ≡ A 1 e 

iφa 1 (39) 

satisfy the linear system of equations 

A ·
(
H 1 

A 1 

)
≡

(
−(R + 1) + b h i + k h −(a + R (a − x 0 )) 

a + R (a − x 0 ) RI a + a 2 + 1 / 8 − 2 b α i − 2 k α

)
·
(
H 1 

A 1 

)
= 

(
0 

2 

)
. (40) 

Of particular interest are the values of the spring constants k h and k α that maximize the heaving and pitching amplitudes,

since the thrust force and, consequently, the swimming velocity U will be enhanced (see below). These values, denoted 

here by k hr and k αr , are obtained by minimizing | det (A ) | , where A is the 2 × 2 matrix in (40) , and physically correspond

to particular resonant frequencies for given dimensional constants ˜ k h and 

˜ k α according to the non-dimensionalization (11) . 

A good approximation for the resonant value of k h when the damping constants b h and b α are small is the value of k h for

which | det (A ) | actually vanishes when b h = b α = 0 ; i.e., 

k hr0 = 1 + R − [ a + R (a − x 0 )] 2 

RI a + a 2 + 1 / 8 − 2 k α
. (41) 

Note that k hr0 → ∞ for 

k α = 

1 

2 

(
RI a + a 2 + 

1 

8 

)
≡ k α∞ 

. (42) 

It is interesting to remark that, with the present lowest order solution, the optimal propulsion conditions might be approxi- 

mately predicted by just minimizing a rather simple algebraic expression such as | det (A ) | . This will be done in Section 5 be-

low, considering not only the maximum of the time-averaged swimming velocity, but also the maximum efficiency and the 

minimum cost of transport. 

Similarly, one may obtain the solution for the next order ( ε2 ) of both α and h , which is also independent of the swim-

ming velocity u , but it will not be given here because we are only interested in the lowest order solution. 

Although the solution for the heaving and pitching motions is independent of the swimming velocity up to order ε2 ,

u depends strongly on both, h and α, even at its lowest order through 

ˆ C T in Eq. (12) . Actually, the leading orders of the

expansion for ˆ C T can be written as 

ˆ C T ∼ ε2 

[ 

α1 
∂ 2 h 1 

∂t 2 
+ aα1 

∂ 2 α1 

∂t 2 
+ 

∂α1 

∂t 

∂h 1 

∂t 
+ a 

(
∂α1 

∂t 

)2 
] 

+ ε2+ n 1 / 2 u 

1 / 2 
1 √ 

π

[ (
∂h 1 

∂t 

)2 

+ 

(
2 a − 3 

2 

)
∂α1 

∂t 

∂h 1 

∂t 
+ 

(
a − 1 

2 

)
(a − 1) 

(
∂α1 

∂t 

)2 
] 

+ . . . . (43) 

After substituting (38) into (43) and using the expansion (32) , the leading order terms in Eq. (12) are 

R 

′ 
(

∂ 

∂t 
+ Bεb ∂ 

∂τ

)
( εn 1 u 1 + εn 2 u 2 + εn 3 u 3 + . . . ) = ε2 A 1 

{
H 1 cos (2 t + φh 1 + φa 1 ) + aA 1 cos [2(t + φa 1 )] 

}
+ ε2+ n 1 2 

u 

1 / 2 
1 √ 

π

{
C + 

H 

2 
1 

2 

cos [2(t + φh 1 )] + 

(
a − 3 

4 

)
A 1 H 1 cos (2 t + φh 1 + φa 1 ) + 

(
a − 1 

2 

)
(a − 1) 

A 

2 
1 

2 

cos [2(t + φa 1 )] 

}
+ · · · − Liε2 n 1 u 

2 
1 + . . . , (44) 

with 

C = 

H 

2 
1 

2 

+ 

(
a − 3 

4 

)
A 1 H 1 cos (φh 1 − φa 1 ) + 

(
a − 1 

2 

)
(a − 1) 

A 

2 
1 

2 

, (45) 
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proportional to the square of the (passive) pitch and heave amplitudes, A 1 and H 1 . If n 1 < 2 , the leading O (εn 1 ) term of

Eq. (44) yields 

∂u 1 

∂t 
= 0 ; i.e., u 1 = u 1 (τ ) , (46) 

so that the lowest order of u only depends on the slow time τ . On the other hand, in the permanent final state, the leading

drag term must balance the leading thrust term. Since the O (ε2 ) thrust term only depends on t , the drag term, proportional

to u 2 
1 
, must balance the next order in the expansion of ˆ C T , which contains a constant term; i.e., 2 n 1 = 2 + n 1 / 2 , or n 1 = 4 / 3 ,

which lies between 1 and 2, as assumed. In addition, these terms must balance the leading term on the left-hand side of

(44) containing derivatives with the slow time τ ; i.e., 

b = n 1 = 

4 

3 

. (47) 

The leading O (ε2 ) term of the thrust coefficient must balance the next order on the left-hand side of (44) , i.e., n 2 = 2 , while

the following term must be n 3 = 2 n 1 = 8 / 3 . Thus, the equations at the following two orders, ε2 and ε8 / 3 , are 

R 

′ ∂u 2 

∂t 
= A 1 

{
H 1 cos (2 t + φh 1 + φa 1 ) + aA 1 cos [2(t + φa 1 )] 

}
, (48) 

R 

′ 
(

B 

du 1 

dτ
+ 

∂u 3 

∂t 

)
= 

u 

1 / 2 
1 √ 

π

{ 

C + 

H 

2 
1 

2 

cos [2(t + φh 1 )] + 

(
a − 3 

4 

)
A 1 H 1 cos (2 t + φh 1 + φa 1 ) 

+ 

(
a − 1 

2 

)
(a − 1) 

A 

2 
1 

2 

cos [2(t + φa 1 )] 

}
− Liu 

2 
1 , (49) 

respectively. To avoid secular terms in the timescale t , we have the freedom within the two-scales perturbation method 

[34] to select the equation for u 1 (τ ) that cancels the non-oscillatory terms in (49) ; i.e., 

R 

′ B 

du 1 

dτ
= 

C √ 

π
u 

1 / 2 
1 

− Liu 

2 
1 , (50) 

R 

′ ∂u 3 

∂t 
= 

u 

1 / 2 
1 √ 

π

{
H 

2 
1 

2 

cos [2(t + φh 1 )] + 

(
a − 3 

4 

)
A 1 H 1 cos (2 t + φh 1 + φa 1 ) 

+ 

(
a − 1 

2 

)
(a − 1) 

A 

2 
1 

2 

cos [2(t + φa 1 )] 

}
. (51) 

Defining 

u 1 (τ ) = U 1 w (τ ) , U 1 = 

(
C √ 

πLi 

)2 / 3 

, (52) 

and selecting 

B = 

LiU 1 

R 

′ = 

C 2 / 3 Li 1 / 3 

π1 / 3 R 

′ , (53) 

with C given by (45) , Eq. (50) becomes 

dw 

dτ
= w 

1 / 2 − w 

2 , (54) 

so that w always tends to unity as τ → ∞ , and the lowest order (time-averaged) final swimming velocity is 

U ∼ ε4 / 3 u 1 = ε4 / 3 U 1 . (55) 

The solution of (54) that satifies w (0) = 0 can be formally written in implicit form as 

τ = 2 

w 

2 − w 

1 / 2 

w 

3 / 2 − 1 

F [1 , 1 / 3 ; 4 / 3 , w 

3 / 2 ] , (56) 

where F is Gauss’ hypergeometric function [35] . 

The oscillatory part of the swimming velocity can be obtained, at the leading orders ε2 and ε8 / 3 , from (48) and (51) ,

respectively. Both equations are easily integrated in t , but we shall keep here only the lowest order ε2 from (48) , whose

solution is 

u 2 = 

A 1 

2 R 

′ 
{

H 1 sin (2 t + φh 1 + φa 1 ) + aA 1 sin [2(t + φa 1 )] 
}

+ U 2 (τ ) , U 2 (0) = 0 . (57)

The function U 2 (τ ) has to be obtained from the next oder, ε10 / 3 , in the same way as done with Eq. (49) , but we already

have the lowest order dependence of the swimming velocity on τ , u (τ ) , to which U (τ ) is a small correction. 
1 2 
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Fig. 2. Contour plots in the k α − k h plane of A 1 (a) and H 1 (b) for a = −1 , R = 0 . 02 , x 0 = 0 , b h = b α = 0 . 05 . The thick continuous line corresponds to the 

minimum of | det (A ) | , k h = k hr (k α ) , while the dashed one to k hr0 given by (41) , being the vertical branch k α∞ from (42) . 

Fig. 3. As in Fig. 2 , but for the contours of the scaled lowest order swimming velocity, ULi 2 / 3 /ε4 / 3 ∼ U 1 Li 2 / 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Self-propulsion characteristics from the lowest order asymptotic solution 

Summing up the results of the previous section, the lowest order swimming velocity can be written as 

u ∼ ε4 / 3 U 1 w (τ ) + ε2 A 1 

2 R 

′ 
{

H 1 sin (2 t + φh 1 + φa 1 ) + aA 1 sin [2(t + φa 1 )] 
}

+ . . . , τ = ε4 / 3 Bt , (58)

where constants U 1 and B are defined in Eqs. (52) and (53) , respectively, and function w (τ ) given by Eq. (56) . On the other

hand, the lowest order heaving and pitching motions are 

h = εH 1 sin (t + φh 1 ) + . . . , α = εA 1 sin (t + φa 1 ) + . . . , (59) 

with H 1 , A 1 , φh 1 and φa 1 given by Eqs. (39) - (40) . It is observed that the dimensionless, time-averaged swimming velocity

is proportional to ε4 / 3 U 1 ∼ [ ε max (A 1 , H 1 )] 4 / 3 /Li 2 / 3 , i.e., proportional to the pitch or heave amplitude to the power 4 / 3

divided by the Lighthill number to the 2 / 3 . Thus, to maximize U one has to look for the highest amplitudes of the hydrofoil

oscillations and to reduce as much as possible the body drag. 

The maxima of A 1 and H 1 are obviously attained at the resonant values of k h and k α for given values of the remaining

parameters. Actually, these amplitudes become infinity for vanishing dampers constants when k h = k hr0 given by (41) in 

terms of k α . Thus, in order to approach the best performance, we shall consider small values of b h and b α , just to account

for any mechanical friction: b h = b α = 0 . 05 , say. For these small values, the resonance curve in the k α − k h plane at which

both A 1 and H 1 reach their maxima is very close to k hr0 , as show in Fig. 2 for specific values of the remaining parameters.

In particular, we select R = 0 . 02 , typical for a hydrofoil in water, a pitch axis at the leading edge ( a = −1 ) and the centre of

mass coinciding with the centre of the foil ( x 0 = 0 ). These values, which are physically justified in §7 below, will be used in

all the reported results, except otherwise specified. 

As expected, the maxima of the swimming velocity are also reached for k h = k hr � k hr0 as k α is varied when b h and b α
are small, as shown in Fig. 3 for the same values of the parameters used in Fig. 2 . The quantity U 1 Li 2 / 3 = (C/ 

√ 

π) 2 / 3 plotted

in this figure is the lowest order swimming velocity scaled with Li 2 / 3 /ε4 / 3 , which is independent of the Lighthill number

and of the torque amplitude ε. Clearly, the perturbation solution ceases to be valid as one approaches the resonant curve
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Fig. 4. As in Fig. 2 , but for the contours of the scaled lowest order cost of transport, CoT / (εLi ) 2 / 3 (a), and the scaled efficiency, ηLi/ε2 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k hr (k α) since U 1 becomes so large that the small swimming velocity requirement (32) cannot be satisfied even for very small

ε. This will be discussed further in Section 6 below, where the lowest order asymptotic solution will be compared with the

numerical solution of the model Eqs. (25) , (26) and (12) , and also with the numerical solutions from the full Navier-Stokes

equations in some particular cases. 

In addition to the swimming velocity, one is interested in the efficiency and the cost of transport derived from the lowest

order asymptotic solution. To that end one has to compute first the power coefficient (17) , which, from the above lowest

order solution for α(t) , is 

ˆ C P ∼ ˆ C P1 = −2 ε2 A 1 cos (t + φa 1 ) sin t , (60) 

and its time average, 

ˆ C P1 = ε2 A 1 sin φa 1 . (61) 

With this quantity one may compute the cost of transport (20) , which at the lowest order is given by 

C oT ∼ ε2 / 3 A 1 sin φa 1 

U 1 

= 

ε2 / 3 π1 / 3 Li 2 / 3 A 1 sin φa 1 

C 2 / 3 
. (62) 

Finally, the efficiency (18) at this lowest order of the asymptotic solution can be written as 

u ̂

 C T ∼ ε4 C √ 

π
U 

3 / 2 
1 

= ε4 C 2 

πLi 
, η ∼ ε2 C 2 

π sin (φa 1 ) A 1 Li 
. (63) 

Note that the term related to the inertia of the vehicle, proportional to R ′ in the numerator of (18) , does not enter at

the lowest order ε4 of the power output u ̂  C T , as already commented on at the end of Section 2 . These two alternative

efficiencies, CoT and η, are plotted in Fig. 4 , scaled in such a way that they are independent of both Li and ε, as in the

previous figures of this section. The high-efficiency pattern around the resonant values k h = k hr (k α) almost coincides with

that of the maxima of the swimming velocity, as afore-commented, and with that of local maxima of the cost of transport.

This result where the cost of transport behaves inversely to the propulsive efficiency is analogous to that previously found by

Akoz and Moored [36] by forcing a constant self-propelled swimming velocity for a defined body via a change of frequency,

and in the numerical simulations for a self-propelled fishlike body by Paniccia et al. [18] . Hence, one has to select different

values of the spring constants in order to optimize either the Froude efficiency and the swimming velocity or the cost

of transport. This will be discussed in more detail below, but using numerical results of the model, not just the present

analytical approximation. 

Another interesting result is that the Strouhal number (19) , which at the lowest order of the asymptotic solution is given

by 

St ∼ 2 ε[ H 1 + (1 + | a | ) A 1 ] 

2 πU 

= 

Li 2 / 3 

ε1 / 3 

H 1 + (1 + | a | ) A 1 

(πC) 2 / 3 
, (64) 

reaches its minima around the resonant values of k h = k hr (k α) (see Fig. 5 ), where the maxima of η are located. 

6. Assessment of the model and numerical results from the model equations 

Numerical results of the model equations (25), (26) and (12) with (21), (22) and (27) are presented and discussed in this

section. They are solved using Matlab’s solver ode45, starting from the initial conditions α(0) = 0 , h (0) = 0 and u (0) = 0 . 01 .

The results are compared with the lowest order asymptotic solution of the previous Sections 4 and 5 . But before that a

validation of the model is presented. 
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Fig. 5. As in Fig. 2 , but for the contours of the scaled lowest order Strouhal number St ε1 / 3 /Li 2 / 3 . 

Fig. 6. (a): Comparison between u (t) obtained with ˆ C T from full Navier-Stokes numerical simulations (N-S num.) for the pitching motion α(t) = 0 . 042 sin t

given by the blue line in (b), with u (t) from the numerical solution to the model Eqs. (25) , (26), (12), (21), (22) and (27) (Model num.) for ε = 0 . 05 , R ′ = 

0 . 2 , Li = 0 . 1 , R = 0 . 02 , a = −1 , x 0 = 0 , b h = 0 . 05 , b α = 1 , k h = 100 and k α = 0 . 05 . (b): α(t) from the model equations generated by the input torque ˆ C M i = 

ε sin t (red) compared to the input pitch in the N-S simulations (blue). The inset in (a) is a detail of the last cycles of u (t) . 

 

 

 

 

 

 

 

 

 

 

 

 

As already mentioned in Section 3 , the non-stationary thrust force (27) on which the present self-propulsion model is 

based has already been validated comparing with viscous numerical results and experimental data when the pitching foil is 

immersed into a uniform current [31] , and also with full viscous numerical results of the self-propelled foil for a prescribed

pitching motion [13] , provided that the pitch amplitude is sufficiently small and the Reynolds number is larger than about

10 3 . In relation to this last mentioned work, in the present one the hydrofoil undergoes an additional passive heaving motion

generated by Theodorsen’s lift force (21) and moment (22) , which have been widely validated against experimental data for 

pitching and heaving rigid foils even for not so small an amplitude of the oscillations when the Reynolds number is large

enough [26,27] . 

Nonetheless, to reinforce this validation for the present problem, that includes a self-propelled vehicle characterized by 

a drag and a mass through the non-dimensional parameters Li and R ′ , Fig. 6 shows a comparison of the numerical results

of the model Eqs. (25), (26), (12), (21), (22) and (27) with those from full viscous numerical simulations for a vehicle with

Li = 0 . 1 and R ′ = 0 . 2 (typical values for a small vehicle with a size of about 1 m, see Section 7 below) self-propelled by a

purely pitching foil with pitch amplitude α0 = 0 . 042 (small enough for the present model be valid). The numerical code,

which is fully described and validated in [13] , provides the thrust coefficient ˆ C T (t) at each instant of time by solving the

full Navier-Stokes (N-S) equations for the instantaneous position of the pitching foil, which follows the same dynamical 

Eq. (12) of the model, but now with 

ˆ C T (t) computed numerically form the exact N-S equations instead of the model (27) . In

both cases we use for the hydrofoil R = 0 . 02 , a = −1 and x 0 = 0 , as in the analytical results reported above. The frequency

Reynolds number selected is Re ω = ωc 2 / (4 ν) = 5 0 0 0 , where ν is the fluid kinematic viscosity. The model equations are
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Fig. 7. Comparison between u (t) (a), h (t) (b) and α(t) (c) computed numerically from the model Eqs. (25) , (26) and (12) and their analytical lowest order 

perturbation solutions (58) - (59) . The input torque ˆ C M i is also included in (c) for reference. ε = 0 . 05 , R ′ = 0 . 2 , Li = 0 . 1 , R = 0 . 02 , a = −1 , x 0 = 0 , b h = b α = 

0 . 05 , k h = 2 . 5 and k α = 3 . 

Fig. 8. As in Fig. 7 , but for k α = 1 . 5 . 

 

 

 

 

 

 

 

 

 

 

 

solved with the translational spring constant k h = 100 , so that the heaving motion is negligible, thus matching the problem

solved numerically for a pure pitching foil, together with b h = 0 . 05 , k α = 0 . 05 and b α = 1 . This last value is selected to re-

duce as much as possible the transient in α(t) when generated by the torque (1) , so that it rapidly approaches the pure

pitching motion used as an input in the N-S simulations. As observed in Fig. 6 (b), the pitch α(t) from the model equa-

tions with torque intensity ε = 0 . 05 rapidly evolves to the value α = 0 . 042 sin t used in the N-S simulations. Also note that

the corresponding lowest-order pitch amplitude in the asymptotic solution is almost the same, εA 1 � 0 . 044 . 

From Fig. 6 it is observed that, despite of the differences in the transient of the pitch α(t) , which in the model equa-

tions is generated by a sinusoidal torque of given intensity ε, instead of being imposed as in the N-S simulations, the

numerical results reached for the swimming velocity u (t) from both approaches are very close, yielding almost the same

time-averaged swimming speed U and phase, though with larger oscillations when the model is used. Similar results are 

obtained for other (small) values of α0 and Re ω between about 10 3 and 10 4 . 

Next we compare the analytical asymptotic solution of the previous sections with the numerical solution of the model 

equations. As mentioned above in §5 , the perturbation solution ceases to be valid as the resonant curve k hr (k α) is ap-

proached because U 1 becomes too large (infinite if b h = 0 ). This is shown in Figs. 7 and 8 for k h = 2 . 5 when k α decreases

from 3 to 1.5, thus approaching the resonant curve from the right in the k α − k h plane (see, e.g., Fig. 2 ). It is observed that
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Fig. 9. Comparison between the swimming velocity U (a) and the Strouhal number St (b) computed numerically from the model equations (continuous 

lines) and their analytical lowest order perturbation solutions (52) and (64) (dashed lines) as a function of k α for two values of k h , 2.5 and 100. ε = 

0 . 05 , R ′ = 0 . 2 , Li = 0 . 1 , R = 0 . 02 , a = −1 , x 0 = 0 , b h = b α = 0 . 05 . 

Fig. 10. Contour plots in the k α − k h plane of U computed numerically from the model equations (25), (26) and (12) for b α = 0 . 05 (a) and b α = 1 (b), with 

ε = 0 . 05 , R ′ = 0 . 2 , Li = 0 . 1 , R = 0 . 02 , a = −1 , x 0 = 0 , b h = 0 . 05 . The thick continuous line corresponds to the minimum of | det (A ) | , k h = k hr (k α ) , while the 

dashed one to k hr0 given by (41) , being the vertical branch k α∞ from (42) . 

 

 

 

 

 

 

 

 

 

 

the excellent agreement between the numerical and analytical solutions for k α = 3 in Fig. 7 , particularly for the large time

oscillatory motion, disappears for k = 1 . 5 in Fig. 8 , especially for u (t) . This disagreement becomes more pronounced as k α
approaches k hr (k α) ( � 0 . 92 for k h = 2 . 5 ), which is better appreciated in Fig. 9 . This figure shows the swimming velocity U

and the Strouhal number St as k α is varied for two values of k h ( k h = 2 . 5 and k h = 100 ), comparing the numerical solution

of the model equations with the lowest order analytical solution. With both approaches, U and St reach their extrema at 

the corresponding resonant value of k α for each k h . Close to this resonance, the perturbation solution ceases to be valid and

departs from the numerical one, with peaks (or troughs) much more pronounced than those obtained numerically. 

Similarly happens for other values of k h as k α is varied. Therefore, the contour plots of the previous Section 5 are reliable

except close to the resonant curve, where the extremum values of the different variables are much less pronounced. This 

can be observed in the left panels of Figs. 10 - 13 , where contour plots in the k α − k h plane of U , St , CoT and η, respectively,

are plotted for the same small value of the torsional damper constant ( b α = 0 . 05 ) of Figs. 2 - 5 . As b α increases ( b α = 1 in

the right panels of Figs. 10 - 13 ), the maxima of U and η (the minima of St and CoT ) decrease (increase) and displace towards

smaller values of k h , but always near the corresponding resonant values of k α , marked with thick lines in Figs. 10, 11 , 12 , 13 .

Note that in these figures the different magnitudes are not scaled with ε and Li as in the contour plots of the approximate

analytical solutions in Figs. 2 - 5 . The torque intensity ε = 0 . 05 and the same typical values of the remaining non-dimensional

parameters used in the above comparison with the numerical solution of the full N-S equations have been selected. 
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Fig. 11. As in Fig. 10 but for the contours of St . 

Fig. 12. As in Fig. 10 but for the contours of CoT . 

Fig. 13. As in Fig. 10 but for the contours of the efficiency η. 

 

 

 

 

 

 

It is noticeable that the maxima of U and η are located close to the values of k h and k α where the resonant curve k hr (k α)

has a maximum, decreasing both U and η as the torsional damper constant b α increases. Thus, the maximum efficiency for 

b α = 0 . 05 is almost 35% when k α � k α∞ 

� 0 . 6 and k h � 6 , while, for b h = 1 , the maximum η decreases to just above 7%

when k α � k h � 1 . 5 . In the regions with the highest efficiency for each value of b α , the Strouhal number remains practically

constant, below 0.32 for b h = 0 . 05 and about 0.39 for b h = 1 . The first value for the largest efficiency is within the range

of Strouhal numbers where many swimming and flying animals in many scales cruise propelled by flapping fins and wings 

[22,37] . On the other hand, the maxima of CoT practically coincide with the maxima of U and η for b α = 0 . 05 , while for

b h = 1 the highest values of U and η, which are significantly smaller than for b α = 0 . 05 , are achieved with much lower CoT .
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Fig. 14. U (a), St (b), η (c), CoT (d) vs. b α for two values of b h (0.05 and 0.5) at the optimal conditions of k h (e) and k α (f) where η reaches a maximum 

value when 0 . 05 ≤ k h ≤ 10 and 0 . 05 ≤ k α ≤ 5 . ε = 0 . 05 , R ′ = 0 . 2 , Li = 0 . 1 , R = 0 . 02 , a = −1 , x 0 = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above contour plots are for a small value of the translational damper constant, b h = 0 . 05 , but the behaviour as

b h increases remains qualitatively the same, only with U and η decreasing slightly, the more so the larger b α . To better

appreciate this, Fig. 14 shows the different magnitudes U , St , CoT and η as functions of b α for two values of b h when k h and

k α are selected to maximize η. The corresponding values of k h and k α are also shown. All this for ε = 0 . 05 , R ′ = 0 . 2 , Li =
0 . 1 , R = 0 . 02 , a = −1 , x 0 = 0 , as in the previous reported results. The figure shows that the maximum value of the efficiency

is about 35% as b α → 0 , being almost independent of b h in this limit. This optimal efficiency is found for the resonant values

of the non-dimensional spring constants; particularly, in the range of large k h (limited to 10 in the optimization process)

where k α = k α∞ 

given by (42) ( � 0 . 6 in the present case). For these conditions, the non-dimensional swimming velocity

also reaches its maximum, close to 0.3, and the Strouhal number its minimum about 0.31. However, CoT is about four times

larger than its minimal value, which is found to be around 0.007, also for b h → 0 , but now with b α of order unity or larger,

for which the resonant values of k α (where η reaches its maximum) are larger than k α∞ 

, and k hr is slightly larger than 1 + R

[see Eq. (41) and, for instance, Fig. 13 (b)]. For these conditions, the passive heave amplitude is much larger than the pitch

amplitude and both U and η are the smallest. The corresponding Strouhal number is larger, about 0.4. 

7. Conclusions 

We have developed here a simple model of an aquatic vehicle self propelled by a rigid hydrofoil elastically mounted 

to translational and torsional springs and dampers that allow for passive heave when the pitching motion is generated 

by a given sinusoidal torque. The results of the model are obtained by just integrating a set of three ODEs, which are vali-

dated with full numerical simulations of the Navier-Stokes equations for sufficiently small pitching amplitudes and frequency 

Reynolds numbers between about 10 3 and 10 4 . 

Analytical solutions are also obtained for small non-dimensional swimming velocity, yielding relevant information about 

the propulsive performance through simple algebraic expressions in terms of the non-dimensional torque amplitude ε, the 

Lighthill number Li , and the remaining dimensionless parameters. Thus, it is found that the non-dimensional swimming 

velocity behaves as U ∝ ε4 / 3 Li −2 / 3 (dimensional swimming velocity ˜ U ∝ (M i /ρ) 4 / 3 ω 

−5 / 3 c −13 / 3 Li −2 / 3 , where M i is the input

torque amplitude, ρ the fluid density, c the hydrofoil chord length and ω the forcing angular frequency), the propulsive 

efficiency as η ∝ ε2 Li −1 ∝ (M i /ρ) 2 ω 

−4 c −8 Li −1 , and the dimensionless cost of transport as CoT ∝ (ε Li ) 2 / 3 (dimensional cost of

transport ˜ CoT ∝ (M i ωLi ) 2 / 3 (ρc) 1 / 3 ). Further, the maxima of the swimming velocity and efficiency are found for the resonant

values of the non-dimensional spring constants k h and k α , whose expression k hr as a function of k α and the remaining 
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non-dimensional parameters is provided with a simple algebraic equation. Particularly, for typical values of the remaining 

dimensionless parameters (which are discussed below, with a practical example) and dimensionless torque intensity ε = 

0 . 05 , the highest efficiency found is near 35% , with the highest non-dimensional swimming velocity U close to 0.3, achieved

in absence of dampers ( b h � b α � 0 ) and negligible heaving motion ( k h 	 1 ) and for the corresponding resonant value of

the torsional spring constant, k α = k α∞ 

= [ R (a 2 + 1 / 3) + a 2 + 1 / 8] / 2 , where R is the mass ratio of the foil and a the pivot

axis where the torque is applied to the foil. Larger values of ε would yield higher values of both η and U as they grow as

ε2 and ε4 / 3 , respectively, but it has to remain small for the present linear approximation be valid. This configuration with 

maxima of η and U does not correspond, however, to the minima of CoT , which are also achieved at the resonant values

of k h with negligible translational damper ( b h � 0 ), but now for torsional damper and spring constants larger than unity,

corresponding to an almost purely heaving motion, with the resonant value of the translational spring constant k hr slightly 

larger than 1 + R . In this limit U and η are close to their minima. 

The values of the parameters used in the reported results (other than spring and dampers constants, which are varied in

a wide range) are for a typical underwater vehicle (or animal) of a size of the order of the meter with a hydrofoil of chord

length about ten times smaller. For instance, for c = 0 . 3 m, s = 1 m, ρs = 2 ρ , the selected R = 0 . 02 in water corresponds to a

foil thickness γ � 2 . 4 mm, which is assumed constant, so that x 0 = 0 . The pivot axis at the leading edge ( a = −1 ) is chosen

because it is known to maximize the propulsive performance of a pitching and heaving foil [38] . With these values, the

selected R ′ = 0 . 2 corresponds to a small vehicle’s mass of about 14 kg, and Li = 0 . 1 to a vehicle’s surface A w 

� 0 . 094 /C D m 

2 .

The value ε = 0 . 05 has been selected small for the model to be valid, but this does not limit the input torque M i because it

is proportional to the square of the flapping frequency according to (1) . Thus, with the above foil dimensions in water, the

torque amplitude (for s = 1 m) is about 6.5 Nm for a frequency f = 1 Hz, and about 25 Nm for 2 Hz. 

Since the optimal propulsive efficiency and non-dimensional swimming velocity are reached for k h large, k α � k α∞ 

� 0 . 6 ,

and b h � b α � 0 , Eq. (11) gives the dimensional springs and dampers constants once the forcing frequency is selected (note

that these expressions are per unit of hydrofoil span). For f = 1 Hz, ˜ k α � 75 Nm, and 300 Nm for f = 2 Hz. Selecting

k h = 10 , ˜ k h � 28 0 0 0 and 112 0 0 0 Pa for f = 1 and 2 Hz, respectively, while the dampers constants are set to zero, or as low

as possible. As aforementioned, the resulting efficiency would be about 35% , for any frequency, and the resulting swimming

velocities would be ˜ U � 0 . 28 and 0.56 m/s for f = 1 and 2 Hz, respectively. Remember that the dimensional velocity in-

creases linearly with f , but at the cost of rapidly increasing the spring constants and the input torque, which are quadratic

with f . The dimensional cost of transport would be ˜ CoT � 10 and 40 kJ/km for f = 1 and 2 Hz, respectively. It may be re-

duced by a factor of about 4 by selecting k h � 1 + R � 1 and k α � 2 , but reducing the swimming velocity and the efficiency

more than four times. The corresponding Strouhal number, about 0.4, is larger than that for maximum efficiency, which is 

about 0.3. 

The above results are in qualitative agreement with recent numerical results, both inviscid and viscous, by Paniccia et al. 

[18] for a fishlike body propelled by an oscillating tail. These authors find also that peak efficiencies are reached for smaller

values of the Strouhal number than those where the cost of transport are the lowest, being ˜ CoT higher when η is large,

and the efficiency poor when the cost of transport is optimally low. Although the largest efficiencies found by these authors

are higher than the present ones because the amplitudes of the tail oscillations in their simulations are not small, like it is

assumed the present theory, their reported optimal values of ˜ CoT are quite similar to those found here. 

Since the model uses potential flow theory, it cannot be applied to situations where the aquatic vehicle is propelled

by large amplitude oscillations of the flapping foil, where flow separation, and particularly the leading edge vortex, plays 

an important role. In Nature, these situations are usual in fishes for maneuvering and when very high thrust is needed

regardless of its efficiency. However, for high efficiency cruising the effective angle of attack of the foil has to be reduced,

with weak, or even absence of, vortex formation at the leading edge [38,39] . For these flapping conditions with weak or no

flow separation, for which the present theoretical model is intended, the lift and thrust forces given by the potential flow

theory agree quite well with experimental data of pitching and heaving foils, surprisingly even for not so small amplitude 

of the oscillations [26,27,29,31] . The present results, especially the numerical results of the model equations which are not 

as limited in amplitude as the analytical asymptotic results, would be applicable for modeling the efficient cruising of real 

aquatic vehicles propelled by a biomimetic flapping foil. This is supported by the fact that the Strouhal numbers found for

the optimal efficiency conditions at resonance are always within the range where many swimming and flying animals, of 

many scales, cruise propelled by flapping fins and wings [22,37] . 
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Fig. A1. Contour plots in the k α − k h plane of max [ Re (λ1 )] for R = 0.02, x 0 = 0, b h = b α = 0 . 05 , and for a = −1 (a) and a = −0 . 5 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A. Eigenvalues of Eq. (37) 

Without dampers, b h = b α = 0 , and for x 0 = 0 , the solution of (37) has no real part, 

λ1 = ±i 

(
2 k α(R + 1) + k h (RI a + a 2 + 1 / 8) 

R 

2 / 3 + 11 R/ 24 + 1 / 8 

)1 / 2 

, (A.1) 

and the system is always neutrally stable. For x 0 = 0 and any positive values of the dampers constants b h and b α , Re (λ1 ) is

found to be negative, and therefore the system stable, for any value of k h and of k α , and for all physically relevant values

of R and a which have been considered. As an example, Fig. A.1 shows the results in the plane ( k α, k h ) of the maximum

of Re (λ1 ) for b h = b α = 0 . 05 , R = 0 . 02 and two values of a . Similar results are found for −1 ≤ a ≤ x 0 = 0 (i.e., pitching axis

upstream of the center foil, which is the center of mass) and any value of R . Actually, the system becomes more stable as R

increases. 
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