
Improving Search Efficiency and Diversity of
Solutions in Multiobjective Binary Optimization

by Using Metaheuristics plus Integer Linear
Programming

Miguel Ángel Domı́nguez-Ŕıos, Francisco Chicano[0000−0003−1259−2990], and
Enrique Alba[0000−0002−5520−8875]

ITIS Software, Universidad de Málaga, Spain⋆

miguel.angel.dominguez.rios@uma.es, chicano@lcc.uma.es, eat@lcc.uma.es

Abstract. Metaheuristics for solving multiobjective problems can pro-
vide an approximation of the Pareto front in a short time, but can also
have difficulties finding feasible solutions in constrained problems. Inte-
ger linear programming solvers, on the other hand, are good at finding
feasible solutions, but they can require some time to find and guaran-
tee the efficient solutions of the problem. In this work we combine these
two ideas to propose a hybrid algorithm mixing an exploration heuristic
for multiobjective optimization with integer linear programming to solve
multiobjective problems with binary variables and linear constraints. The
algorithm has been designed to provide an approximation of the Pareto
front that is well-spread throughout the objective space. In order to check
the performance, we compare it with three popular metaheuristics us-
ing two benchmarks of multiobjective binary constrained problems. The
results show that the proposed approach provides better performance
than the baseline algorithms in terms of number of the solutions, hyper-
volume, generational distance, inverted generational distance, and the
additive epsilon indicator.

Keywords: multiobjective optimization · hybrid algorithms · integer
linear programming

1 Introduction

Metaheuristics and, in particular, evolutionary algorithms have been very suc-
cessful solving multiobjective optimization problems using only the information

⋆ This research is partially funded by the Spanish Ministry of Economy and Com-
petitiveness and FEDER under contract TIN2017-88213-R (6city); Universidad de
Málaga, Consejeŕıa de Economı́a y Conocimiento de la Junta de Andalúıa and
FEDER under grant number UMA18-FEDERJA-003 (PRECOG); Spanish Ministry
of Science, Innovation and Universities and FEDER under contracts RTC-2017-6714-
5 (Eco-IoT) and RED2018-102472-T (SEBASENet 2.0); and TAILOR ICT-48 Net-
work (No 952215) funded by EU Horizon 2020 research and innovation programme.

2 M.A. Domı́nguez-Ŕıos et al.

about the fitness function and the constraint violations [18]. Most of the time, in
a real context, we have more information than just the evaluation of each solu-
tion. The structure of the objective and constraint functions is usually available
to be exploited.

With an increasing number of constraints, finding feasible solutions can be
difficult for evolutionary computation, where, in many cases, the strategy to
get feasibility is based on some kind of penalty: either in the objective function
or during the selection or replacement of the solutions in the population [21].
We propose the use of integer linear programming (ILP) solvers for this pur-
pose. The combination of metaheuristics and ILP solvers is not new. The term
‘matheuristic’ is also used for these hybrids [5] and a great number of papers on
the topic have been published [2]. One prominent example is Construct, Merge,
Solve and Adapt (CMSA), by Blum et al. [3,4]. In a matheuristic, the ILP solver
is commonly used to optimize some subproblem for which an optimal solution
can be found in a short time. This differs with our proposal here in which we
propose the use of ILP to find a feasible solution that is also located in a region
of the objective space determined by a high level strategy to find well-spread
solutions (exploration). We leave the optimization to a local search (exploita-
tion). Finding a well-located feasible solution is much easier than optimizing a
constrained problem, and the ILP solver is able to do it in a very short time,
improving the efficiency of the search. In short, the contributions of this work
are:

– The use of ILP solvers to find feasible solutions in particular regions of
the objective space very fast for linear multiobjective constrained binary
optimization problems.

– The combination of ILP solvers with a high level exploration technique and
an efficient local search based on delta-evaluation.

– We compare our algorithm (MultiObjective search based on integer lin-
ear programming for Feasibility and Local Search, MOFeLS), with three
well-known evolutionary algorithms used in the literature: NSGA-II [9],
SPEA2 [25] and MOEA/D [23]. We use 28 problem instances from two dif-
ferent benchmarks.

The method is able to approximate the Pareto front for multiobjective con-
strained binary optimization problems, including equality constraints, which are
a handicap in classical metaheuristics based on bit-flip mutation.

The rest of this paper is organized as follows. In Section 2 we present the
basic definitions required to describe our proposed algorithm, which is presented
in Section 3. Section 4 presents the computational experiments and Section 5
concludes the paper.

2 Background

In this section, we present the background for this work. It is divided into two
subsections: the definition of the general concepts and a general framework to
solve MultiObjective Combinatorial Optimization (MOCO) problems.

Improving Efficiency and Diversity in MOBO Using Metaheuristics and ILP 3

2.1 Definitions

A binary linear multiobjective program of dimension p is defined as minx∈X Cx,
where C ∈ Rp×n is the objective matrix in which row i represents the coeffi-
cient vector for objective function fi(x). Vector x ∈ Bn is the binary decision
vector, and X = {x ∈ Bn : Ax ∗op b} is the feasible set, which is supposed
to be non-empty. Here, A is an m × n matrix with the coefficients of the m
constraints and b ∈ Rm is the right-hand side vector. All elements in C,A and
b are real numbers. The operator vector ∗op has length m, and element i con-
tains the sense of the i-th constraint: ‘≤’, ‘≥’ or ‘=’. The objective matrix is
also expressed as Cx = f(x) = (f1(x), . . . , fp(x)). All objective functions are
considered to be minimized. If we need to maximize some objective, we use the
property max(fi(x)) = −min(−fi(x)).

Given two vectors x and y, we say that y dominates x (y ≺ x), if fi(y) ≤
fi(x) ∀i = 1, . . . , p, and the inequality is strict for at least one index. When a
feasible solution is not dominated by any other feasible solution, we say that it
is efficient. The image of an efficient solution x, is called a non-dominated point,
z = f(x). The set of all efficient solutions is called efficient set, XE , and its
image is called Pareto front, PF = f(XE). Due to the fact that many of the
elements in XE could lead to the same image, we are only interested in the set
PF and one anti-image for each element of this set. Although it is common to
use the term efficient solution in the decision space and non-dominated point in
the objective space, sometimes the term solution is used to refer to both spaces.
Given two p-dimensional vectors l and u with l < u, that is, li < ui,∀i = 1, . . . , p,
we define the box [l, u] = {x ∈ Rp | li ≤ x < ui, ∀i = 1, . . . , p}.

2.2 A framework to solve MOCO problems

In this section we describe a generic and exact formulation for solving MOCO
problems. This framework is extracted from the work of Dächert and Klam-
roth [8]. Our work is based on this approach as we will see in detail in Section 3.
The idea of the method is to maintain a set of search zones, U, which are p-
dimensional boxes. Every box is defined by its upper bound and the lower bound
is assumed to be the ideal point I of the Pareto front.

In Algorithm 1, U is the set of boxes to be analyzed. Initially, the set of non-
dominated solutions N is empty (Line 1) and in Line 2 the set of boxes contains
the initial element, U , defined by an upper bound for the nadir point [11]. The
algorithm then enters a loop until no box is left for its analysis. In each iteration
of the loop it selects one box (Line 4), solves an optimization problem based on
the box, and if a new non-dominated point is found, it is saved in N . Every time
it finds a new non-dominated point, it updates the set U accordingly (Line 7), to
prevent repeated solutions in the future. Another goal of the updating procedure
is to reduce the number of boxes at each iteration. More specifically, at least box
B is extracted from U. The algorithm ends because in MOCO problems the
number of non-dominated points is finite.

4 M.A. Domı́nguez-Ŕıos et al.

Algorithm 1 General exact method for MOCO problems

1: N = ∅
2: U← {U}
3: while (U ̸= ∅) do
4: Select B ∈ U
5: if (Model P(B) is feasible) then
6: N = N ∪ {f(x∗)}
7: Update U
8: else
9: U← U− {B}
10: end if
11: end while
12: return N

After a solution is found, some boxes are split into p new boxes each. The
splitting process often generates redundant zones. If we have two boxes B1 =
[I, u1], B2 = [I, u2] with u1 ≤ u2, all potential non-dominated points generated
by exploring B1 could also be generated by exploring B2, which means that B1 is
redundant. Therefore, a filtering process should be implemented after the split.
Klamroth et al. [15] proposed two different algorithms for this purpose. In this
work we use one of them, called RE (redundancy elimination), which consists in
eliminating at each iteration the dominated boxes. For more information about
how this filtering process works, see [15]. At the end of the execution, Algorithm 1
returns the set N containing the complete Pareto front.

3 Algorithmic proposal

We present our proposal, MOFeLS, in Algorithm 2, which is able to solve any
binary linear multiobjective program. If the objective functions or the con-
straints are not linear, they can be easily linearized adding new variables for
the product of two binary variables and some additional constraints. For exam-
ple, the product of binary variables x1x2 can be replaced by y and constraints
2y ≤ x1 + x2 ≤ y + 1. The algorithm is based on the framework described in
Algorithm 1, and uses an ILP solver to find a feasible solution in each iteration.
Then, in the heuristic part of the algorithm, a search using a hill climber is
conducted to find a local optima in the objective space. A non-dominated set
of solutions N is maintained during the search. The mathematical program to
solve at each iteration is the one developed by Chalmet et al. [6]. The method
combines parameterization of the objective functions (weighted sum) and the
ε-constraint method:

min

p∑
k=1

λkfk(x)

s.t. fk(x) ≤ uk, k = 1, . . . , p (1)

x ∈ X.

Improving Efficiency and Diversity in MOBO Using Metaheuristics and ILP 5

If we use λk > 0 ∀k = 1, . . . , p, and the model of Eq. (1) has a solution, then it is
efficient. Vector u = (u1, . . . , up) is the upper bound of the considered box. The
positive weights combination does not have any influence in the feasibility of
the model, and we consider λk = 1 ∀k. We denote with P (u) this mathematical
program.

Algorithm 2 MOFeLS

Input: TILIM // Time limit for an ILP solver call
Output: N // Approximated Pareto front
1: N = ∅
2: U = ∅ // List of boxes
3: δ = (δ1, . . . , δ1) // 0 < δ1 < 1
4: Estimate bounds for the problem using linear relaxation: Lb, Ub

5: U← ([Lb, Ub])
6: while (U ̸= ∅) and (not stopping condition) do
7: B ← Select box with the highest volume in U
8: if (Solution is found for P(B.u− δ) in TILIM time) then
9: x← Get the solution of P (B.u− δ)
10: Slack ← Get the slack vector from the ILP solver
11: x← Hill Climbing(x, Slack)
12: N ← Filter (N

⋃
{(x, f(x))})

13: Update (U, f(x))
14: else
15: U← U− {B}
16: end if
17: end while

The input parameter TILIM represents the maximum total time employed
by the ILP solver at each call. It is fixed during the execution. At the beginning
of Algorithm 2, we initialize the non-dominated set, N , and the list of boxes, U.
The vector δ in Line 3 is necessary to guarantee that the potential new solution
is not equal to the upper bound of the box, B.u (see Line 8).

Before starting the loop, we need to determine the initial box. This must
contains a lower and an upper bound for the Pareto front. This estimation is
done by solving linear relaxations (the decision variables are continuous instead
of binary) of min{fi(x)} and max{fi(x)}. The minimum value obtained for each
fi is the i-th component of the lower bound for the ideal point. The maximum
values form the upper bound of the nadir point. We have to note that for hard
problems, the execution time used for this calculation could be also high, so if
the parameter TILIM is very low, the algorithm could end without any solution.
After inserting the initial box in the list U (Line 5), the algorithm runs a loop
while there exists a box to analyze and it does not exceed a preset limited
time (stopping condition). At the beginning of the loop, the algorithm selects
always the box with the highest volume (Line 7). This is efficiently implemented
using heaps for the list U. Taking the box with the highest volume helps to

6 M.A. Domı́nguez-Ŕıos et al.

increase the diversity of solutions in the objective space (spread), since it tends
to select boxes where many potential solutions exist far away from other found
solutions. This is just a heuristic, and it could happen that no solution is found
in the box at all. But experiments show that it works well in general. The upper
bound of the analyzed box is the vector u in the model, and MOFeLS then calls
the ILP solver to obtain a feasible solution, always under the condition of not
exceeding the TILIM time. The reason for introducing the TILIM parameter
is the following: when the ILP solver takes ‘long time’ to calculate a feasible
solution, it is probable that the box is empty (the corresponding objective space
region has no solution), so we discard it and do not waste time looking for
solutions that may not exist.

The possible outputs after an execution of the ILP solver1 are:

a) An optimal solution is found.
b) A feasible suboptimal solution is found.
c) TILIM exceeded, but a feasible solution is found.
d) There is no solution (infeasible).
e) TILIM exceeded and no solution is found.
f) Problem is infeasible or unbounded.

In the cases where the output is d), e) or f), we discard that box (Line 15)
and get the next one. Otherwise, we have a new feasible solution and MOFeLS
calls the hill climber to improve it. Every local optimum is inserted into U and
repeated or dominated ones are discarded during the execution (Line 12). The
updating procedure splits all boxes affected by the new solution found, reducing
the total search space, and filtering the redundant boxes, avoiding repeated
solutions in the future. For more information of how the redundancy elimination
(RE) works, see [15].

Algorithm 3 Hill Climbing(x, Slack)

1: Set all components of x unmarked
2: while (x has an unmarked component) do
3: j ← Select a random index of an unmarked component of x
4: Mark xj

5: (δc,∆)← Bit F lip(x, j, Slack)
6: if (δc < 0) then
7: xj = 1− xj

8: Slack ← Slack +∆ // Update vector Slack
9: Unmark all components in x
10: end if
11: end while
12: return (x)

Next, we explain an efficient strategy to reduce the computational cost in the
hill climber, which starts with a feasible solution and applies local search until

1 Outputs for the ILP solver CPLEX 12.6.2.

Improving Efficiency and Diversity in MOBO Using Metaheuristics and ILP 7

a local optimum is found. In this case, the fitness value of a solution is given by∑p
i=1 fi(x) (see Eq. (1)). The neighborhood of a solution x is the set of solu-

tions at Hamming distance 1 from x (one differing variable). The Hill Climbing
function is described in Algorithm 3. The input parameters of this function are
the feasible solution x, and the slack vector Slack = b − Ax. This vector has
one real component per constraint in the model. Every value represents the gap
between the right-hand side value and the value of the constraint. These values
can be extracted from the ILP solver. When the local optimum is found, the
modified x is also the output. The hill climber selects every decision variable
and checks if making a bit-flip (using the Bit Flip function) maintains feasibility
and improves the solution with a decrease in the objective cost (δc < 0). If so,
it moves to the new solution and starts again exploring the neighborhood, until
no 1-bit improvement is found.

We note that in constraints of type ‘≤’ the slack value is always non-negative.
In ‘≥’ constraints it is always non-positive, and for equality constraints it must
be 0 for any feasible solution. We illustrate this with an example:

min f(x) = (x2 + x3, x3 + x4 + 2x5) ,

s.t.

x1 + 2x2 − 2x3 + 7x4 + x5 ≤ 8,

x1 + x2 + x3 − x4 + 4x5 ≥ 2, (2)

x1 + x5 = 2,

x ∈ B5.

Suppose that the ILP solver reports the feasible solution x = (1, 1, 0, 0, 1). Then,
Slack = (4,−4, 0) and the objective value is f1(x) + f2(x) = 1 + 2 = 3.

The Bit Flip function uses delta-evaluation to efficiently compute the objec-
tive function and the constraints violation. The input parameters are the decision
vector, the index of the variable to flip, and the slack vector. Its pseudocode is
displayed in Algorithm 4. At the beginning, we define a vector ∆ that controls
the variation of Slack, and initialize it to the vector (0, . . . , 0). In Line 3 we
get the coefficient in the objective function associated to variable xj , that is,
δc =

∑p
i=1 cij . If this value equals 0, then no improvement in the objective func-

tion is made, regarding the value of xj . Moreover, in the case of δc < 0, if xj = 1,
and a bit-flip is done, the variable will not be in the solution, so the objective cost
increases |δc| units, and the bit-flip should be discarded. For the same reason,
if δc > 0 and xj = 0, the bit-flip is discarded. These conditions are condensed
in Line 4. If δc · (−1)xj < 0, we continue checking the constraints, and change
the value of δc to −|δc|. That would be the improvement in objective function if
the bit-flip is finally accepted. Similar arguments have been carried out for the
analysis of the constraints. If one of them is violated, we return δc = 0.

Let us illustrate this again with the example of Eq. (2). Starting from the
initial solution, x = (1, 1, 0, 0, 1), the objective function equals 3. We analyze

8 M.A. Domı́nguez-Ŕıos et al.

Algorithm 4 Bit Flip(x, j, Slack)

1: // Analyzing whether flipping xj affects the objective cost
2: ∆ = (0, . . . , 0) // Variation of Slack vector
3: δc ← Get objective coefficient cost of xj from the ILP solver
4: if (δc · (−1)xj) ≥ 0) then return (0, (0, . . . , 0))
5: δc = − | δc |
6: // Analyzing constraints
7: for i = 1 to m do
8: d← Type of the slack (1 for ‘≤’ ; -1 for ‘≥’ ; 0 for ‘=’)
9: if (d ̸= 0) then
10: t← aij · (−1)xj

11: if (d · Slack[i] < d · t) then return (0, (0, . . . , 0))
12: ∆i = −t
13: else
14: if (aij ̸= 0) return 0, (0, . . . , 0)))
15: end if
16: end for
17: return (δc,∆)

whether a bit-flip on the second component is possible. We have x2 = 1 and
δc = 1. The condition in Line 4 is false and δc is changed to δc = −1 (Line 5).
We continue analyzing the constraints. For the first one, d = 1, t = 2 ·(−1) = −2
and it holds d·Slack[1] = 1·4 ≥ −2. The constraint is not violated (Line 11), and
∆1 changes to ∆1 = 2. This means that the gap for that constraint will increase
in two units if we finally accept the flip. In the second constraint, Slack[2] = −4,
d = −1, t = 1·(−1) = −1 and it holds (−1)·(−4) ≥ (−1)·(−1). This constraint is
not violated and ∆2 changes to ∆2 = 1. This means that flipping the variable x2

makes the slack on the second constraint to increase in one unit (we are nearer
to the saturation of the constraint). For the last constraint, d = 0 (equality
constraint) and aij = 0, so finally the function returns (−1, (2, 1, 0)) and the flip
for x2 is accepted. When we return to the Hill Climbing function, we update the
slack vector, and Slack = (4 + 2,−4 + 1, 0 + 0) = (6,−3, 0). The new objective
value is 3− 1 = 2.

4 Computational experiments

We conduct the experimental study in this section. First, we present the instances
used in this work. In the second subsection, we define the metrics we use to assess
the results. In the third, we set the input parameters of all the used algorithms
and, finally, we provide the numerical results.

Improving Efficiency and Diversity in MOBO Using Metaheuristics and ILP 9

4.1 Instances

A representative benchmark of 28 binary linear multiobjective instances are se-
lected from two existing benchmarks in the literature. We select 20 instances2

from the work of Kirlik et al. [14], and 8 instances from multiobjective multidi-
mensional knapsack problems3. We summarize them in the following:

– 10 instances of a 3-dimensional assignment problem, each with 50 agents and
tasks. Every instance has 2500 variables and 100 constraints. The group of
all of them is named AP.

– 10 instances of a 1-dimensional knapsack with 4 objectives. Every instance
has 40 variables and one constraint. The group of all of them is named KP.

– 4 instances of a 3-dimensional knapsack problem with 3 objectives, with
100, 250, 500 and 750 variables, respectively. They are named MKP3 100,
MKP3 250, MKP3 500 and MKP3 750.

– 4 instances of a 4-dimensional knapsack problem with 4 objectives, with 100,
250, 500 and 750 variables, named MKP4 100 to MKP4 750.

Multiobjective assignment problems have been selected because they have equal-
ity constraints. In addition, knapsack problems with different numbers of knap-
sacks and objectives are chosen because they are widely used NP-hard problems.

4.2 Quality indicators

To evaluate the quality of the solutions [27] in our algorithm, we have decided to
use a group of quality indicators that are representative [13]. The first of them is
the overall non-dominated vector generation, which is defined as the cardinal of
the elements found in the objective set, after discarding the dominated vectors,

ONVG(N) = |N |. (3)

The hypervolume indicator is the quality measure with the highest discrim-
inatory power among the known unary quality measures [19, 26, 27]. There are
many software packages that calculate the hypervolume of a set, given a refer-
ence point, as in the works of Fonseca et al. [12] and While et al. [22]. Given
a set of k points in the objective space, N= {z1, z2, . . . , zk}, the hypervolume
HV is the measure of the region which is simultaneously dominated by N and
bounded by a reference point r ∈ Rp. It can be expressed by

HV(N, r) = volume

 k⋃
j=1

[zj , r]

 . (4)

The reference point can be taken as ri = maxj=1,...,k z
j
i ∀i = 1, . . . , p. This

is a good choice when we have no information about the complete Pareto front.

2 Available in http://home.ku.edu.tr/∼moolibrary/
3 Available in https://sop.tik.ee.ethz.ch/download/supplementary/testProblemSuite/

10 M.A. Domı́nguez-Ŕıos et al.

In some cases, a positive value for each component of the reference point is
added [16], in order to take into account the extreme solutions.

The generational distance [9] is frequently used in multiobjective evolutionary
algorithms and it is defined as

GD(N,P) =

(∑|N |
i=1 d

2
i

)1/2

|N |
, (5)

where P is the reference set and di is the smallest Euclidean distance from a
vector in N to the closest vector in P. The reference set we use depends on
the instance. In those instances in which we have the complete Pareto front, we
use the Pareto front as reference set and the metrics are more precise. For the
remaining instances, the reference set consists of the union of all the outputs of
the independent runs of the algorithms plus the union of the outputs of each
algorithm after 40 minutes of computation. These unions are filtered in order to
have only non-dominated points.

The inverted generational distance has a similar formulation to GD, but in
this case we take the smallest distance for every element in P to the closest
solution in N,

IGD(N,P) = GD(P,N). (6)

The additive epsilon indicator gives the minimum additive factor by which
the approximation set has to be translated in the objective space in order to
weakly dominate the reference set [17, 27]. We have scaled each objective to
obtain a value in the range [0,1]. This additive epsilon indicator is defined as

ε+(N,P) = max
x∈P

min
y∈N

max
i=1,...,p

(
yi − xi

ri

)
, (7)

where ri is the range of objective i in N.
Note that all the metrics used in this paper are Pareto compliant [24].

4.3 Parameters of the algorithms

Before the execution of the algorithms we use the iterated racing for automatic
algorithm configuration (IRACE) [20] to tune and obtain the best parameter val-
ues for each algorithm. For MOFeLS algorithm, the TILIM parameter varies in
the set {0.0001, 0.001, 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1}. IRACE chose the value 0.4.
For the other three metaheuristics we let IRACE to decide the best configuration
between the following ranges: the number of cut points in the crossover varies
from 1 to 5; the crossover probability is free in the set [0, 1]; the mutation prob-
ability is in [0, 0.5]; and the population size varies from 10 to 1000 with a step
of 10. For the constrained MOEA/D algorithm [1], we also set the probability
of selecting the solution in the neighborhood (solutions with close weights) or in
the whole population, in the range [0, 1], and the neighborhood size varies from

Improving Efficiency and Diversity in MOBO Using Metaheuristics and ILP 11

Table 1. Configuration of the parameters of NSGA-II, SPEA2 and MOEA/D using
IRACE.

A lgorithm Number of
crossover

cuts

Crossover
probability

Mutation
probability

Population
size

Neighborhood
probability

Neighborhood
size

NSGA-II 5 0.77 0.0009 310 - -
SPEA2 4 0.70 0.0017 430 - -

MOEA/D 2 0.86 0.0036 760 0.86 15

2 to 20. The final configuration computed by IRACE in the three metaheuristics
is shown in Table 1.

The ILP solver used in MOFeLS is CPLEX 12.6.2. We changed three CPLEX
parameters. The first one, CPX PARAM MIPEMPHASIS, controls trade-offs between
speed, feasibility, optimality, and moving bounds. Setting the value to 1, we
emphasize feasibility over optimality. This is done because we only use the solver
to obtain a feasible solution. CPX PARAM INTSOLLIM sets the number of integer
solutions to be found before stopping. We set this parameter to 1 (we only
need one feasible solution). Finally, CPX PARAM TILIM sets the maximum time,
in seconds, for a call to the optimizer (denoted as TILIM in the the paper). This
parameter was tuned with IRACE, as mentioned above, and it is set to 0.4.

4.4 Numerical results

For the 28 instances considered, we execute 30 times each algorithm, using a
cluster with ten machines Intel Core 2 Quad (Q9400) CPU at 2.7 GHz, a total
of 4 cores each, 11 GB of memory and Ubuntu 16.04 LTS. For each run we used
only 1 core, 2 GB of RAM and 30 seconds of computation, and reported the
average values for the quality indicators. In the groups AP and KP we have also
considered average values among the ten instances of each group. MOFeLS4 is
programmed using C++. For NSGA-II, SPEA2 and the constrained MOEA/D,
we used the jMetal 5.8 implementation5 (see jMetal package in [10]), conveniently
modified to use a time limit as stopping condition.

When executing the three metaheuristics, only solutions which do not violate
any constraint were considered, and an ulterior filtering of the points were made,
avoiding repetition or domination between them. This is done off-line. We ran an
exact algorithm during one week and we divided the instances into two groups:
those for which we obtained the complete Pareto front using the exact algorithm
and the remaining ones. In Section 4.2 we explained how the reference set was
computed in each case. In Tables 2 and 3 we show the numerical results for these
two groups of instances, respectively.

We can observe in the numerical results of Table 2 that none of the three
classic metaheuristics is able to find any solution for AP. This is because those al-
gorithms use random bit-flip mutation, and if one bit is changed, the constraints

4 https://github.com/MiguelAngelDominguezRios/MOFeLS
5 https://github.com/jMetal/jMetal

12 M.A. Domı́nguez-Ŕıos et al.

Table 2. Computational results for instances with known Pareto front. Best results
are marked in bold. Undefined values are marked with hyphen.

MOFeLS NSGA-II SPEA2 MOEA/D

ONVG
AP 98.85 0.00 0.00 0.00
KP 628.62 97.40 119.46 122.41

MKP3 100 225.70 40.03 42.27 94.03

HV
AP 9.90E+07 0.00E+00 0.00E+00 0.00E+00
KP 4.56E+14 3.70E+14 3.72E+14 4.38E+14

MKP3 100 9.41E+11 6.04E+11 6.52E+11 9.41E+11

IGD
AP 0.54 - - -
KP 6.57 27.83 27.169 15.88

MKP3 100 13.36 44.60 38.57 12.18

GD
AP 1.94 - - -
KP 0.78 16.17 11.55 5.91

MKP3 100 8.55 51.27 62.65 28.76

ε+

AP 0.11 - - -
KP 0.11 0.49 0.49 0.27

MKP3 100 0.22 0.58 0.56 0.31

can be violated with high probability. One of the main advantage of MOFeLS
is that it works well with equality constraints because the ILP solver provides a
feasible solution. When the local search is not able to find an improving move
due to the equality constraints, the feasible solution provided by the ILP solver
is used as the final solution. For the rest of instances in the table, we observe
that MOFeLS finds the best values for all the instances except in one case for
IGD. Note that a lower average value in GD is preferable, meaning that the
approximated front is closer to the Pareto front.

For the other group of instances, we do not have the complete Pareto fronts,
and we execute during 40 minutes each algorithm and take as a reference set the
union of these sets plus the union of the corresponding executions at 30 s. This
is done for each instance. Analyzing Table 3, we see that MOFeLS has the best
average number of solutions with a great difference with respect to the others.
In this case, the value of the metric is just an approximation because we do not
know the Pareto front. We see that MOFeLS has also the best value for HV,
IGD and GD in all the cases. For the ε+ metric, there is no clear winner and we
need to do the corresponding hypothesis tests to support any conclusion. The
number of solutions in MOEA/D is lower than in MOFeLS. This means that
fewer solutions are closer to the reference Pareto set and this facilitates a lower
value for ε+ indicator.

To justify the well-spread of the solutions given by MOFeLS, we first define
the percentage of the total hypervolume reached,

HVR(N, r) =
HV(N, r)

HV(PF , r)
. (8)

Improving Efficiency and Diversity in MOBO Using Metaheuristics and ILP 13

Table 3. Computational results for instances with unknown Pareto front. Best results
are marked in bold.

MOFeLS NSGA-II SPEA2 MOEA/D

ONVG

MKP3 250 438.63 43.60 48.20 160.47
MKP3 500 430.33 59.97 49.00 194.87
MKP3 750 283.87 47.87 40.27 165.67
MKP4 100 393.03 91.10 107.83 168.77
MKP4 250 546.03 93.63 100.33 267.80
MKP4 500 384.50 91.53 95.50 292.93
MKP4 750 307.67 84.17 82.57 240.77

HV

MKP3 250 5.25E+12 2.63E+11 4.42E+11 3.79E+12
MKP3 500 6.31E+13 2.02E+12 1.93E+12 1.96E+13
MKP3 750 1.89E+14 4.13E+12 3.98E+12 2.48E+13
MKP4 100 8.06E+15 6.5E+13 2.36E+14 2.55E+15
MKP4 250 2.32E+17 1.77E+15 3.35E+15 4.12E+16
MKP4 500 5.57E+18 2.08E+16 3.06E+16 3.18E+17
MKP4 750 1.69E+19 4.88E+16 6.62E+16 3.56E+17

IGD

MKP3 250 32.65 86.43 84.88 43.47
MKP3 500 51.91 132.16 176.40 110.91
MKP3 750 75.17 255.64 354.76 268.28
MKP4 100 17.26 39.69 32.97 19.20
MKP4 250 31.00 69.93 73.86 48.40
MKP4 500 53.25 129.94 175.09 126.95
MKP4 750 71.05 254.02 356.08 266.17

GD

MKP3 250 8.56 519.09 615.60 138.02
MKP3 500 40.18 1487.41 2369.15 732.73
MKP3 750 106.41 3592.33 5588.16 1985.89
MKP4 100 31.22 49.77 72.07 47.02
MKP4 250 60.16 337.82 478.08 183.39
MKP4 500 280.19 1409.77 2112.19 897.70
MKP4 750 396.11 3167.34 4561.25 2008.69

ε+

MKP3 250 0.26 0.41 0.35 0.20
MKP3 500 0.19 0.33 0.27 0.18
MKP3 750 0.23 0.36 0.27 0.22
MKP4 100 0.15 0.47 0.42 0.24
MKP4 250 0.12 0.44 0.40 0.30
MKP4 500 0.14 0.42 0.35 0.32
MKP4 750 0.10 0.33 0.24 0.24

We show in Table 4 the average values of HVR and IGD for every instance for
which we know the Pareto front. Thus, a value close to 1 in HVR indicates a
good spread over the objective space. On the other hand, IGD measures the
average distances between points in the Pareto front to the closest points in
N. The more close is this value to 0, the more well-spread is the approximated
Pareto front.

To finish our computational experiments, we do the appropriate hypothesis
tests to support the conclusions. For each metric, algorithm and instance we

14 M.A. Domı́nguez-Ŕıos et al.

Table 4. Average values for HVR and IGD using MOFeLS for each instance with
known Pareto front.

HVR IGD HVR IGD

AP1 0.8511 0.53 KP1 0.9953 9.37
AP2 0.8549 0.56 KP2 0.9785 6.06
AP3 0.8562 0.57 KP3 0.9999 4.56
AP4 0.8494 0.55 KP4 0.9957 8.28
AP5 0.8666 0.53 KP5 0.9867 7.21
AP6 0.8620 0.56 KP6 0.9908 6.98
AP7 0.8635 0.56 KP7 0.9947 6.64
AP8 0.8533 0.47 KP8 0.9994 5.30
AP9 0.8636 0.51 KP9 0.9819 6.77
AP10 0.8770 0.52 KP10 0.9999 4.52

MKP3 100 0.9041 13.36

compute the average values given by the 30 runs of the algorithm. Then, for
each metric and algorithm we use the 28 samples (average of runs for each
instance) as an input for the non-parametric Wilcoxon signed rank test. We
compare MOFeLS with the other three using significance level α = 0.01. All the
p-values are below 10−5, leading us to the conclusion that MOFeLS is the best
overall algorithm for all the metrics. We also conclude, based on the results of
the HVR and IGD indicators, that MOFeLS finds a well-spread set of solutions
over the objective space.

5 Conclusions and future work

We present a hybrid algorithm able to solve binary linear constrained multiob-
jective problems, with good spread of the solutions over the objective space. The
algorithm is able to deal with equality constraints, which is a handicap using
other metaheuristics. MOFeLS provides the best approximated Pareto fronts in
terms of number of solutions, hypervolume, generational distance and inverted
generational distance in all the cases. For the metric ε+, the best results are
obtained by our proposed algorithm and MOEA/D. We think these preliminary
results encourage the investigation of other hybrids combining exact methods
and metaheuristics. In the future, it would be interesting to compare this algo-
rithm with other matheuristics existing in the literature using additional bench-
mark problems. We also plan to extend the research and consider higher order
objective and constraint functions (not only linear), using the advances in gray-
box optimization for constrained multiobjective problems [7]. We also want to
analyze the behaviour of the algorithms as time progresses.

References

1. Asafuddoula, M., Ray, T., Sarker, R., Alam, K.: An adaptive constraint handling
approach embedded moea/d. In: 2012 IEEE Congress on Evolutionary Computa-

Improving Efficiency and Diversity in MOBO Using Metaheuristics and ILP 15

tion. pp. 1–8. IEEE (2012)
2. Ball, M.O.: Heuristics based on mathematical programming. Surveys in Operations

Research and Management Science 16(1), 21–38 (2011)
3. Blum, C., Pereira, J.: Extension of the cmsa algorithm: an lp-based way for reduc-

ing sub-instances. In: Proceedings of the Genetic and Evolutionary Computation
Conference 2016. pp. 285–292 (2016)

4. Blum, C., Pinacho, P., López-Ibáñez, M., Lozano, J.A.: Construct, merge, solve
& adapt a new general algorithm for combinatorial optimization. Computers &
Operations Research 68, 75–88 (2016)

5. Boschetti, M.A., Maniezzo, V., Roffilli, M., Röhler, A.B.: Matheuristics: Optimiza-
tion, simulation and control. In: International Workshop on Hybrid Metaheuristics.
pp. 171–177. Springer (2009)

6. Chalmet, L., Lemonidis, L., Elzinga, D.: An algorithm for the bi-criterion integer
programming problem. European Journal of Operational Research 25(2), 292–300
(1986), https://doi.org/10.1016/0377-2217(86)90093-7

7. Chicano, F., Whitley, D., Tinos, R.: Efficient hill climber for constrained pseudo-
boolean optimization problems. In: Proceedings of the Genetic and Evolutionary
Computation Conference 2016. pp. 309–316 (2016)

8. Dächert, K., Klamroth, K.: A linear bound on the number of scalarizations needed
to solve discrete tricriteria optimization problems. Journal of Global Optimization
61(4), 643–676 (2015), https://doi.org/10.1007/s10898-014-0205-z

9. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: Nsga-ii. In: International
conference on parallel problem solving from nature. pp. 849–858. Springer (2000)

10. Durillo, J.J., Nebro, A.J.: jmetal: A java framework for multi-objective optimiza-
tion. Advances in Engineering Software 42(10), 760–771 (2011)

11. Ehrgott, M., Tenfelde-Podehl, D.: Computation of ideal and nadir values and impli-
cations for their use in MCDMmethods. European Journal of Operational Research
151(1), 119–139 (2003), https://doi.org/10.1016/S0377-2217(02)00595-7

12. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep al-
gorithm for the hypervolume indicator. In: Proceedings of the IEEE Congress
on Evolutionary Computation, 2006. CEC 2006. pp. 1157–1163. IEEE (2006),
https://doi.org/10.1109/CEC.2006.1688440

13. Jiang, S., Ong, Y.S., Zhang, J., Feng, L.: Consistencies and contradictions of per-
formance metrics in multiobjective optimization. IEEE transactions on cybernetics
44(12), 2391–2404 (2014), https://doi.org/10.1109/TCYB.2014.2307319

14. Kirlik, G., Sayın, S.: A new algorithm for generating all nondominated solutions of
multiobjective discrete optimization problems. European Journal of Operational
Research 232(3), 479–488 (2014), https://doi.org/10.1016/j.ejor.2013.08.001

15. Klamroth, K., Lacour, R., Vanderpooten, D.: On the representation of the search
region in multi-objective optimization. European Journal of Operational Research
245(3), 767–778 (2015), https://doi.org/10.1016/j.ejor.2015.03.031

16. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation:
A survey. ACM Computing Surveys 52(2), 1–38 (2019)

17. Liefooghe, A., Derbel, B.: A correlation analysis of set quality indicator values
in multiobjective optimization. In: Proceedings of the Genetic and Evolutionary
Computation Conference 2016. pp. 581–588 (2016)

18. Liu, Q., Li, X., Liu, H., Guo, Z.: Multi-objective metaheuristics for discrete opti-
mization problems: A review of the state-of-the-art. Applied Soft Computing 93,
106382 (2020). https://doi.org/https://doi.org/10.1016/j.asoc.2020.106382

16 M.A. Domı́nguez-Ŕıos et al.

19. López-Ibáñez, M., Stützle, T.: Automatically improving the anytime behaviour of
optimisation algorithms. European Journal of Operational Research 235(3), 569–
582 (2014), https://doi.org/10.1016/j.ejor.2013.10.043

20. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The
irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives 3, 43–58 (2016)

21. Mezura-Montes, E., Coello Coello, C.A.: Constraint-handling in
nature-inspired numerical optimization: Past, present and future.
Swarm and Evolutionary Computation 1(4), 173 – 194 (2011).
https://doi.org/https://doi.org/10.1016/j.swevo.2011.10.001

22. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hyper-
volumes. IEEE Transactions on Evolutionary Computation 16(1), 86–95 (2012),
https://doi.org/10.1109/TEVC.2010.2077298

23. Zhang, Q., Li, H.: Moea/d: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on evolutionary computation 11(6), 712–731
(2007)

24. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: On the
design of pareto-compliant indicators via weighted integration. In: International
Conference on Evolutionary Multi-Criterion Optimization. pp. 862–876. Springer
(2007)

25. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evo-
lutionary algorithm. TIK-report 103 (2001)

26. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary al-
gorithms—a comparative case study. In: International conference on
parallel problem solving from nature. pp. 292–301. Springer (1998),
https://doi.org/10.1007/BFb0056872

27. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.:
Performance assessment of multiobjective optimizers: An analysis and re-
view. IEEE Transactions on evolutionary computation 7(2), 117–132 (2003),
https://doi.org/10.1109/TEVC.2003.810758

