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A B S T R A C T

Explainable Artificial Intelligence (XAI) makes AI understandable to the human user particularly when the
model is complex and opaque. Local Interpretable Model-agnostic Explanations (LIME) has an image explainer
package that is used to explain deep learning models. The image explainer of LIME needs some parameters to
be manually tuned by the expert in advance, including the number of top features to be seen and the number
of superpixels in the segmented input image. This parameter tuning is a time-consuming task. Hence, with the
aim of developing an image explainer that automizes image segmentation, this paper proposes Ensemble-
based Genetic Algorithm Explainer (EGAE) for melanoma cancer detection that automatically detects and
presents the informative sections of the image to the user. EGAE has three phases. First, the sparsity of
chromosomes in GAs is determined heuristically. Then, multiple GAs are executed consecutively. However,
the difference between these GAs are in different number of superpixels in the input image that result in
different chromosome lengths. Finally, the results of GAs are ensembled using consensus and majority votings.
This paper also introduces how Euclidean distance can be used to calculate the distance between the actual
explanation (delineated by experts) and the calculated explanation (computed by the explainer) for accuracy
measurement. Experimental results on a melanoma dataset show that EGAE automatically detects informative
lesions, and it also improves the accuracy of explanation in comparison with LIME efficiently. The python
codes for EGAE, the ground truths delineated by clinicians, and the melanoma detection dataset are available
at https://github.com/KhaosResearch/EGAE.
1. Introduction

The paramount role of Artificial Intelligence (AI) in reasoning,
learning complex computational tasks for Decision Support Systems
(DSSs), and data analytics is not hidden from anyone. The DSSs utilize
AI aspects (such as medical DSSs) that may deal with human lives.
As such, it is a vital need for clinicians (as one of the primary target
audiences identified by Arrieta et al. [1]) to understand the pieces of
evidence behind the decisions of DSS [2]. In fact, the explanation of the
predictions has reached the same level of importance as the predictions’
accuracy in recent years. Thus, clinicians will not adopt accurate pre-
dictive models with weak explanations. In addition, trustworthy AI in
the ethical AI context also makes clinicians solely adopt simultaneously
high performance and interpretable prediction models [3]. Generally,
the need for explanation of machine learning algorithms increases as
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the sophistication and complexity of learning grows. Ensemble models
and deep learning have the highest levels of complexity. In contrast,
regressions, decision trees, and rule-based models are explicit and clear
so that the effect of each predictor variable on the response variable
is simply traceable [4]. Explainable AI (XAI) emerged to address this
problem through series of methods to unveil the obscurity of complex
ML models somehow. Literature also reveals the rising evolution of
the scientific trends in XAI during the last years [5,6]. Explainers
can be divided from three different perspectives. The first well-known
classification is model-agnostic against model-specific. Unlike model-
specific explainers that are learning model-dependent, model-agnostic
explainers are more flexible in model selection and can be used to
evaluate and compare the performance of different models. In other
major classification, explainers are categorized into intrinsic against
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post-hoc. Intrinsic explainers are Machine Learning (ML) models that
are interpretable such as decision trees and linear models. Post-hoc
explainers are applied to the model for interpretability after training
the learning model. Finally, explainers could be either local or global
so that local explainers explain the individual predictions while global
explainers explain the entire model. A good explainer also needs to be
interpretable so that the explanation is readily understandable to the
human user [1].

One of the main applications of XAI is the explanation of prediction
achieved by the deep learning models in Melanoma cancer [7,8].
Melanoma cancer is a skin pigmentation disorder that develops from
melanocytes which can be diagnosed by biopsy. The early diagnosis
in the golden time is essential. Otherwise, it is difficult to treat us-
ing chemotherapy or radiation therapy because abnormal melanocyte
cells spread rapidly to other tissues of the body and become highly
metastasis and increase the number of deaths [9]. American cancer
society reported that the 5-year relative survival rates for melanoma
skin cancer decreases to 30% when the cancer spread to distant parts
of the body [10]. In one classification, skin pigmentation disorders
are categorized into three groups: melanoma, nevus, and seborrheic-
keratosis. Nevi and seborrheic keratoses are benign non-cancerous
disorders. Nevi are moles, and seborrheic-keratoses are more common
in elderlies. Deep learning is being tested for the classification and
prediction of melanoma against non-cancerous classes [11]. However,
many layers and huge parametric space make Deep Neural Networks
(DNNs) a complex black box learning model. Therefore, explaining such
models to clinicians in the context of trustworthy AI is inevitable. There
are well-known explainers which have been used for explaining the
prediction of deep learning on melanoma datasets including Gradient-
weighted Class Activation Mapping (Grad-CAM) [12], SHapley Additive
exPlanations (SHAP) [7], and Local Interpretable Model-agnostic Ex-
planations (LIME) [13]. Inspired from LIME, the concentration of this
paper is on developing an image explainer with an automized image
segmentation so that the existing gaps, contributions, and novelty of
this paper are described in the following.

LIME is a post-hoc explainer that can show meaningful areas in a
given sample image (with its image explainer library) on a deep learn-
ing model trained for melanoma prediction [13]. The user intervention
in specifying the number of superpixels of the intended input image for
explanation and the number of top features to be seen within the image
(which is not always straightforward for experts to determine them
manually) in the process of explanation of LIME was the inspiration
and motivation of the contributions of this research. As such, to address
this gap the current research is done with the following contributions:

1. To develop a heuristic approach to intelligently discard trivial
solutions in the initial population that leads to better conver-
gence of GA

2. To develop a model-agnostic explainer for images by ensembling
consecutive genetic algorithms (GAs) namely, Ensemble-based
Genetic Algorithm Explainer (EGAE)

3. To include EGAE with consensus and majority voting strategies
for automatic specification of the important pixels positively
contributed to classification

Thereby, the novelty of this paper is to improve LIME formulation
y substituting the surrogate model in LIME image explainer (usu-
lly linear regression) with genetic algorithms. To the best of our
nowledge, this is the first attempt in the field to eliminate expert
ntervention in manually determining the number of superpixels of the
nput image as well as the final top features contributed positively in
lassification.

The rest of this paper is organized as follows. Section 2 divides
he existing works into two categories and clarifies in what category
he paper belongs. Section 3 explains GA and LIME briefly. Section 4
resents the proposed method (EGAE) including three phases. Section 5
resents the experiments and illustrates the results. This section also
rgues about the findings. Section 6 states the concluding remarks and
2

utlines the advantages and limitations of EGAE.
2. Related works

As stated earlier in Section 1, this paper tries to resolve the problem
of user intervention in the process of LIME image explainer. Even
though investigation of the literature does not reveal any clear attempt
to address this gap by existing studies, but there are still some other
papers that tried to add value to the existing LIME in other direc-
tions. Thus, Section 2.1 identifies the recent papers that resolved the
recognized limitations of LIME in different directions. In contrast, the
goal of some other research in Section 2.2 are to enhance the image
segmentation algorithm to help doctors in diagnosing diseases. The
results of this paper are directly compared with the existing LIME to
show how the proposed methodology is able to resolve the existing
gaps.

2.1. Research on LIME improvements

There are bulks of research that tried to either directly improve
LIME in different directions under recognized gaps or compare LIME
with existing explainers based on well-known metrics such as execution
time, reproducibility of the results, etc. Perhaps one of the most recent
papers that concentrated on solely comparison of LIME with existing
explainers on melanoma detection dataset is the work by Hurtado
et al. [7] in which it was technically argued how LIME outperforms
SHapley Additive exPlanations (SHAP) for the differential diagnosis of
pigmented skin lesions in a melanoma dataset. Generally, SHAP has
a core kernel explainer which is slow but appropriate for any model.
Likewise, SHAP has optimized variations (deep explainer and gradient
explainer) which can be used for deep learning. Hurtado et al. [7]
experimentally investigated the difference between LIME (with three
segmentation algorithms to show the top 5 superpixels) and SHAP
gradient explainer for a pre-trained ResNet model on a pigmentation
skin dataset containing three classes (melanoma, nevus, and seborrheic-
keratosis). The results showed that LIME had better reproducibility and
execution time than SHAP gradient explainer. Following the success
of LIME and its extensive application on image data, literature reveals
many attempts to improve LIME as a leading image explainer including
Anchor LIME [14], KL-LIME [15], NormLIME [16], LIME-Aleph [17],
MPS-LIME [18], and the most recent one LIMEcraft [8] so that each
one tried to add a value to the existing LIME. Anchor LIME [14] used
anchors to support high precision and precise coverage of interpretable
explanations. Anchors are some parts of the image that are sufficient
for prediction. Moreover, Anchor LIME superimposed another image
over the rest of the superpixels, instead of hiding the rest of the
superpixels as LIME does. Anchor LIME enhanced model prediction
on unseen data. KL-LIME [15] was an extension of LIME to Bayesian
models appropriate for different types of predictions. It worked by
minimizing the Kullback–Leibler divergence computed between the
predictive distributions of the original model and the explanation mod-
els’ predictive distributions. The proposed method was evaluated on
the benchmark MNIST digit dataset [19] with a concentration on the
classification of 3s and 8s. NormLIME [16] was a new metric for
feature importance. It was indeed an attempt to aggregate the local
explanation of LIME to form a global explanation by adding proper
normalization to the computation of the global weights for features.
NormLIME also used the MNIST dataset for experimental evaluations.
LIME-Aleph [17] explained a classifier decision based on logic rules
calculated from Inductive Logic Programming Aleph which yielded a
richer explanation. Generally, LIME forgoes the relationship between
specific parts in an image as an explanatory factor. This method was
tested on blocksworld domain images. Modified Perturbed Sampling
operation for LIME (MPS-LIME) [18] improved the existing sampling
operation in LIME. It was done by paying attention to complicated
correlation between features by converting the superpixel image into
an undirected graph. Various experiments on Google’s pre-trained In-

ception neural network revealed that MPS-LIME had better fidelity,
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understandability, and efficiency than LIME. LIMEcraft [8] claimed that
LIME might have static and meaningless explanations because explana-
tions of LIME do not take into account the semantic meaning of the
explained objects. Thus, LIMEcraft allowed user intervention to select
semantically consistent regions and examine the prediction for the
image instance. The main algorithm of LIMEcraft lets the users decide
among several options: to upload a prepared mask of superpixels, draw
an irregular shape path, choose the number of superpixels inside and
outside the mask, or change image features by editing them (editing
images increases the robustness of the model). LIME used the quick
shift segmentation algorithm, but LIMEcraft used manual or predefined
superpixel selections followed by the K-means clustering algorithm. The
experimental results revealed that LIMEcraft improved model safety.

2.2. Research on image segmentation

While many works are focusing on improving and adding value to
the existing LIME, there exist other works which concentrate on propos-
ing totally other image segmentation techniques. Binjun et al. [20]
used ANN to recognize lung cancer and then the lesion area was
automatically selected using the proposed lung cancer segmentation
algorithm. Binjun et al. [20] used Dice similarity coefficient measure
and Average Surface Distance (ASD) as the main evaluation indicators
as well as Positive Predictive Values (PPV) as the auxiliary evaluation
to show how the segmentation results of the algorithm proposed in
this study were close to the doctor’s annotations. Literature also shows
many attempts to develop novel segmentation techniques including Qi
et al. [21], Wang et al. [22] and Su et al. [23]. Qi et al. [21] proposed
a multi-level image segmentation model (MIS-XMACO) to improve
the effectiveness and efficiency of image segmentation in Covid-19
X-rays. MIS-XMACO used ant colony optimization with both direc-
tional crossover (DX) and mutation (DM) strategy initially. MIS-XMACO
also incorporated two-dimensional (2D) histograms, 2D Kapur’s en-
tropy, and a nonlocal mean strategy. MIS-XMACO resulted in superior
segmentation than other models at different threshold levels. Wang
et al. [22] proposed an image segmentation method that performs well
for the situations where it is difficult to distinguish the target lesion
boundary against the background. The proposed method utilized graph
theory and guided feathering so that guided feathering algorithm was
initially used for roughly separation of the foreground from background
image. Then, graph-based algorithm was used to accurately segment
the images. Finally, the segmented images were merged to create the
result. Su et al. [23] proposed a multilevel thresholding image seg-
mentation (MTIS) method based on an enhanced multi-verse optimizer
(CCMVO). Inspired from original multi-verse optimizer CCMVO also
used horizontal and vertical search mechanisms. The combination of
MTIS and CCMVO had good segmentation results on COVID-19 chest
radiography datasets based on Feature Similarity Index (FSIM), the
Peak Signal to Noise Ratio (PSNR), and the Structural Similarity Index
(SSIM) evaluation metrics.

One of the significant limitations of LIME (and the approaches
based on it) is the need for the user’s intervention. Thus, the user
must manually determine the number of top features and the num-
ber of superpixels in the input image. The top features are those
for which the best superpixels convey helpful information regarding
the prediction class identified by the 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 parameter in LIME
ibrary. Likewise, the user (expert) must also specify the number of
uperpixels along with a segmentation algorithm manually. As such,
his paper proposes an automatic explanation of the prediction model
sing Ensemble-based Genetic Algorithm Explainer (EGAE). EGAE also
mplicitly increases the accuracy of explanations compared with LIME
y detecting and discarding less important features LIME keeps. In
ddition, EGAE is an interpretable explainer that is also model-agnostic,
ost hoc, and local. This proposal tries to keep an acceptable rate of
eproducibility for explanations. Thereby, EGAE belongs to the cate-
ory of research intended to add value to LIME, similar to those in
3

ection 2.1. r
3. Preliminaries

This section briefly presents general concepts of both Genetic Algo-
rithm (GA) for solving discrete problems and LIME. Additionally, the
limitations of LIME on automatic explanation are discussed.

3.1. Genetic algorithm

Genetic Algorithms [24] belong to the family of guided random
search evolutionary algorithms and thus, suffer a lack of reproducibility
of the results. However, GAs guarantee optimization by discovering and
recombining good building blocks of solutions. GAs have three well-
known operators (namely selection, cross-over, and mutation) in which
mutation is the prominent operator that guarantees optimization. The
selection operator assigns probabilities to solutions based on their
fitness. Then, these probabilities are used to select the best parents
for recombination in the exploitation phase by cross-over. Mutation
provides good coverage of the search space by exploring new regions.
Different methods and variations are available for each operator and
GAs, respectively. The different variations of GAs refer to how they
combine operators. GAs are particularly practical for problems with
discrete search spaces like N-Queens [25], image encryption [26] or
mathematical functions and optimizations [27], among others. Algo-
rithm 11 shows one of the famous variations of GA used in this
research:

1. The problem is defined initially in line 1 by specifying the fitness
function and number of genes in chromosomes.

2. Line 2 sets the parameters of GA (population size, maximum
number of iterations, cross-over percentage, number of off-
springs generated from cross-over, mutation percentage, number
of mutants) and those needed for the parent_selection function
in line 6 (for example, selection pressure if the parent_selection
function is a roulette wheel).

3. The initialization of GA is done so that the initial popula-
tion (Pop) is generated and evaluated in lines 3–4, and the
best_solution is stored accordingly.

4. The cross-over population (PopCi ) and mutants (PopMi ) are both
generated and evaluated so that the population in the next
generation (Pop(i+1)) is created together with Popi in the main
loop of GA starting from line 5 to line 14. There are some options
for termination criterion in line 5, including reaching the time
limit (maximum number of iterations), passing time (consecutive
iterations) without improvement in the fitness function, and
reaching satisfactory fitness.

.2. LIME

Local Interpretable Model-agnostic Explanations (LIME) is an expla-
ation technique approximating any black box learning model [28,29].
he general idea of LIME with its image explainer is to generate a
pecified number of images (𝜋𝑥) in the vicinity of the image that needs
xplanation (𝑥) using a segmentation algorithm initially. Then, the
rediction model (f) is used to predict �̂� (the set of predicted labels
or (𝜋𝑥)). Next, LIME weighs (𝜋𝑥) and calculates (𝑤𝑥) using a distance
etric (the default distance metric is cosine) to calculate the distance of

ach member of (𝜋𝑥) to 𝑥. The general formulation of LIME is stated in
q. (1), where 𝑔 is a surrogate model with low complexity and high
nterpretability, which belongs to the class of 𝐺. Eq. (1) minimizes
(𝑥) so that 𝐿(𝑓, 𝑔, (𝜋𝑥)) and 𝛺(𝑔) are the locality-aware loss and the
omplexity of explanation. Assuming 𝑔 is a linear regression surrogate
odel. As such, a linear model (𝑙𝑚) can be fitted using (𝜋𝑥), �̂�, and (𝑤𝑥)

1 Variables are italicized to enhance the readability of algorithms in this
esearch
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Algorithm 1 One of the variations of Genetic Algorithm
Input: 𝑝𝑟𝑜𝑏𝑙𝑒𝑚: a problem
Output: 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
1: Define the 𝑝𝑟𝑜𝑏𝑙𝑒𝑚
2: Set GA parameters
3: Generate random initial population of 𝑃𝑜𝑝(𝑖=0)
4: Evaluate 𝑃𝑜𝑝(𝑖=0) and find 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑖=0)
5: while termination criterion is not satisfied do
6: 𝑃𝑜𝑝𝑆𝑖

← parent_selection (𝑃𝑜𝑝𝑖)
7: 𝑃𝑜𝑝𝐶𝑖

← cross_over (𝑃𝑜𝑝𝑆𝑖
)

8: Evaluate 𝑃𝑜𝑝𝐶𝑖
9: 𝑃𝑜𝑝𝑀𝑖

← mutate (𝑃𝑜𝑝𝑖)
10: Evaluate 𝑃𝑜𝑝𝑀𝑖
11: 𝑃𝑜𝑝(𝑖+1) ← Generate next generation from 𝑃𝑜𝑝𝑖, 𝑃 𝑜𝑝𝐶𝑖

, and
𝑃𝑜𝑝𝑀𝑖

12: Find 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑖+1) from 𝑃𝑜𝑝(𝑖+1)
13: 𝑖 ← 𝑖 + 1
14: end while
15: Return 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

to calculate coefficients (𝛽) as in Eq. (2). Finally, the list of 𝛽 is sorted
and the superpixels contribute to the prediction label are recognized.
The user can manually select the best coefficients to visualize the best
superpixels accordingly.

𝜖(𝑥) = argmin
𝑔∈𝐺

𝐿(𝑓, 𝑔, (𝜋𝑥)) +𝛺(𝑔) (1)

𝑙𝑚 ∼ ((𝜋𝑥), �̂�, (𝑤𝑥)) (2)

The limitation of the LIME image explainer is the intervention of
users in determining the number of superpixels in (𝜋𝑥) that is a time-
consuming task since it is not always clear whether the number of
superpixels should be high or low. Furthermore, the user also needs to
determine the number of top features (best coefficients in (𝛽) in case
of using linear model regression for 𝑔) to be seen. Thus, this paper
decreases user intervention by defining an automatic approach for the
explanation.

4. Proposed method

Fig. 1 reflects three contributions of the paper discussed in the
introduction section by illustrating three phases of EGAE in an abstract
technical view. First, the sparsity of chromosomes in GAs is determined
based on a heuristic search in phase 1. This helps a better generation
of the initial population in GA and leads to better convergence by
selecting non-trivial solutions in the initial population of GA. Second,
multiple GAs are executed consecutively so that each GA is devised
for a specified number of superpixels of the input image. The result
of each GA, which is a unique image with some active superpixels,
is finally recorded at the end of phase 2. It is tried to evaluate the
input image using different sizes of superpixels with respective GAs
(the size of superpixels is determined at the beginning of execution
of each GA). Thus, the unique images in phase 2 contain important
areas of the image, including small to large superpixels. Third, the
recorded images are finally ensembled in phase 3. EGAE generates two
images based on consensus and majority voting strategies from existing
images computed in phase 2. Consensus voting and majority voting
images contain pixels of the input image that automatically explain
the classification result. Consensus voting has a rigorous approach
to explanation which could negatively affect the interpretability of
the explanations in some minority cases. However, it provides good
accuracy of explanations. In contrast, majority voting usually has lower
accuracy of explanation than consensus voting but has more stability
and provides better interpretability. As such, using both explanations
4

(through two voting strategies) simultaneously can provide a good
perception to the expert on the classification logic. The input of EGAE
is an image divided into superpixels, and the outputs are two images
generated using pixels that positively contribute to classification. The
remaining subsections explain and elaborate on each phase of EGAE.

4.1. Determining the sparsity of chromosomes

Each chromosome in EGAE equals a unique perturbation. Each
perturbation equals (𝜋𝑥) in Eq. (1) or Eq. (2). As such, chromosomes
are encoded in binary with genes of 0 and 1 so that 0 and 1 show the
inactiveness and activeness of the respective superpixel within the input
image. The sparsity of chromosomes in the initial population of GAs
refers to the number of genes with 0 value (inactive superpixels) in each
chromosome with respect to the number of genes with 1 value (active
superpixels). EGAE controls this sparsity using a heuristic algorithm.
The general idea is to identify the portion of the image that mainly
contributes to prediction. If this portion is a vast part of the image,
EGAE decreases the sparsity of chromosomes. Otherwise, the solutions
in the initial population of the GA may have very low �̂� and could not
improve the fitness considerably during consecutive iterations using
cross-over and mutation operators. In other words, controlling the
sparsity of chromosomes results in more informative chromosomes in
the GA’s initial population, which affects better and more efficient
convergence. Thus, initially, the input image is divided into small
superpixels (h) using a segmentation algorithm. Then, the fitness of
all possible perturbations of the input image (2ℎ − 1) are calculated
heuristically (excluding the perturbation in which all superpixels are
inactive). As such, the weighted sum scalar fitness function shown in
Eq. (3) is calculated based on the prediction accuracy and the number
of active superpixels in each perturbation. The best perturbation has the
greatest accuracy (accuracy of the prediction model f in Eq. (1)) with
the least number of active superpixels. The weights of 𝛼 and 𝛽 are ex-
perimentally fixed to 0.7 and 0.3, respectively. Finally, the perturbation
with the best fitness is selected for sparsity calculation. The calculation
of chromosomes’ sparsity is shown using a piecewise function in Eq. (4).
v is the number of active superpixels in the best perturbation. Eq. (4)
shows that as 𝑣∕ℎ increases, the sparsity decreases by increasing the
value of 𝜑 in [0.5, 0.9] accordingly. The value of 0.9 for 𝜑 reveals that
with the probability of 0.9 a gene in a binary chromosome is 1 and
otherwise is 0. Algorithm 2 shows how, heuristically the sparsity of the
chromosomes in the initial population of GA can be calculated.

𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛)) + 𝛽 (
(ℎ − 𝑣 + 1)

ℎ
) (3)

⎧

⎪

⎨

⎪

⎩

𝜑 = 0.5, 𝑣∕ℎ ≤ 0.5
𝜑 = 𝑣∕ℎ, 0.5 < 𝑣∕ℎ < 1
𝜑 = 0.9, 𝑣∕ℎ = 1

(4)

Generally, Algorithm 2 starts by defining 𝑡𝑒𝑚𝑝 as a variable to
record the fitness of the best perturbation of the input image and
follows by creating an empty list of 𝑧 with size 2ℎ in line 2 (recalling
that ℎ shows the entire number of superpixels within an image and
equals 5 in this research). Next, each element of 𝑧 is initialized with
a binary array within [1, 2ℎ] in line 4. The binary array will be used
to generate the respective perturbed image. For example, the binary
array of [1, 1, 0, 0, 0] shows that the perturbed image only has two
active superpixels. As such, the perturbation of the input image that
has identical active/inactive superpixels to the binary array is gener-
ated using perturb function in line 5 and recorded in 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑_𝑖𝑚𝑎𝑔𝑒.
Line 6 calculates the 𝑦ℎ𝑎𝑡_𝑚𝑎𝑥 and line 7 calculates the respective
label and records it in 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑙𝑎𝑏𝑒𝑙. Line 8–10 records both fitness
(based on Eq. (3)) and the number of active superpixels of the best
𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑_𝑖𝑚𝑎𝑔𝑒 in 𝑡𝑒𝑚𝑝 and 𝑣 respectively. At the end, the sparsity is
calculated in lines 13–19 based on Eq. (4). Generally, the greater 𝜑s
denote less sparse chromosomes in EGAE.
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Fig. 1. Phases of EGAE.
)

Algorithm 2 Sparsity calculation of chromosomes
Input: ℎ, 𝑖𝑚𝑎𝑔𝑒, 𝑚𝑜𝑑𝑒𝑙, 𝑟𝑒𝑎𝑙_𝑙𝑎𝑏𝑒𝑙
Output: 𝜑
1: 𝑡𝑒𝑚𝑝 ← 0
2: 𝑧 = [𝑁𝑜𝑛𝑒] ∗ 2ℎ

3: for 𝑖 ← 1 to 2ℎ do
4: 𝑧[𝑖] ← decimal_to_binary(𝑖)
5: 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑_𝑖𝑚𝑎𝑔𝑒 ← perturb(𝑖𝑚𝑎𝑔𝑒, 𝑧[𝑖])
6: 𝑦ℎ𝑎𝑡_𝑚𝑎𝑥 ← max(𝑚𝑜𝑑𝑒𝑙.predict(𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑_𝑖𝑚𝑎𝑔𝑒))
7: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑙𝑎𝑏𝑒𝑙 ← 𝑚𝑜𝑑𝑒𝑙.predict(𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑_𝑖𝑚𝑎𝑔𝑒).index(𝑦ℎ𝑎𝑡_𝑚𝑎𝑥
8: if (fitness(𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑_𝑖𝑚𝑎𝑔𝑒) > 𝑡𝑒𝑚𝑝) and (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑙𝑎𝑏𝑒𝑙 =

𝑟𝑒𝑎𝑙_𝑙𝑎𝑏𝑒𝑙) then
9: 𝑡𝑒𝑚𝑝 ← fitness(𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑_𝑖𝑚𝑎𝑔𝑒)

10: 𝑣 ← sum(𝑧[𝑖])
11: end if
12: end for
13: if 𝑣∕ℎ ≤ 0.5 then
14: 𝜑 ← 0.5
15: else if 0.5 < 𝑣∕ℎ < 1 then
16: 𝜑 ← 𝑣∕ℎ
17: else
18: 𝜑 ← 0.9
19: end if
20: Return 𝜑
5

4.2. Genetic algorithms

This section shows how multiple GAs are executed consecutively
to generate respective multiple images with informative sections from
the input image. Each execution is based on a different number of
superpixels. As stated in Section 4.1, the chromosomes are binary, and
the sparsity of chromosomes is calculated based on 𝜑. Our experiments
show that executing 5 GAs with 10, 15, 20, 25, and 100 superpixels is
an appropriate approach, which leads to satisfactory results. This aspect
is shown by the Buffer array in Fig. 1. The Buffer.size is set to 5, and
the buffer elements are set to 10, 15, 20, 25, and 100 accordingly. The
sparsity of chromosomes specified in Section 4.1 is appropriate when
the number of superpixels is not very large. As such, this section starts
by updating the sparsity calculated from Section 4.1 so that even if
𝑣∕ℎ is less than one, but the number of superpixels equals 100, 𝜑 is
updated to 0.9. The general parameters of EGAE are shown in Table 1
as well. Phase 2 then continues by generating an initial population
(𝑃𝑜𝑝) of size nPop as well as fitness calculation of the members of
𝑃𝑜𝑝 based on Eq. (3). Then, 𝑃𝑜𝑝 members are sorted, and the best
solution is identified. EGAE repeats selection, cross-over, and mutation
until stopping criteria occur. First, EGAE selects the best parents for
applying cross-over and then applies bit string mutation to generate
𝑃𝑜𝑝𝑐 and 𝑃𝑜𝑝𝑚 populations respectively as stated in Fig. 1. For this
purpose, EGAE uses Roulette Wheel Selection (RWS) in Algorithm 3 so
that the probability measure of each solution (𝑃𝑖) is calculated using
Boltzmann distribution with a selection pressure of 𝜃 and fitness of
each solution (𝑓𝑖) as shown in Eq. (5) before applying RWS. WorstFit in
Eq. (5) makes 𝜃 independent of the fitness function. Selection pressure
ranges in [0,∞) so that zero gives the same chance to all solutions and
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Table 1
General parameters of GAs.

GA parameters # of superpixels

10 15 20 25 100

nPop 5 10 15 15 35
Pc 0.9
Pm 0.4
Size of Popc 2 * round (Pc * nPop/2)
Size of Popm round (Pm * nPop)
Cross-over Single-point
Mutation Bit string
Selection Roulette wheel
Maximum number of iterations 150
Stopping criteria 10 consecutive iterations without fitness improvement

or reaching the maximum number of iterations
O

a

∞ assigns the entire chance to the best solution as stated in Eq. (6).
EGAE selects the selection pressure 𝜃 so that Eq. (7) holds in which

is the set of half-best solutions. Based on the experiments, GAs with
reater number of superpixels in EGAE have smaller selection pressures.

𝑖 =
𝑒−𝜃(

1
𝑓𝑖
1

𝑊 𝑜𝑟𝑠𝑡𝐹 𝑖𝑡
)

∑

𝑗 𝑒−𝜃(
1
𝑓𝑗
)

(5)

where

𝑃𝑖 ∝ −𝜃( 1
𝑓𝑖

),
∑

𝑖
𝑃𝑖 = 1

⎧

⎪

⎨

⎪

⎩

𝜃 = 0, 𝑃𝑖 =
1

𝑛𝑃𝑜𝑝∀𝑖

𝜃 → ∞,

{

𝑃𝑖 = 1, 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
𝑃𝑖 = 0, 𝑜𝑡ℎ𝑒𝑟𝑠

(6)

∑

𝑖∈𝐻
𝑃𝑖 = 0.8 (7)

Algorithm 3 RWS
Input: 𝑃
utput: 𝑖

1: 𝑟 ∼ U(0, 1)
2: 𝐶𝑖 ←

∑𝑖
𝑗∈1 𝑃𝑗

3: 𝑖 ← min {𝑗 | 𝑟 ≤ 𝐶𝑗}
4: Return 𝑖

Algorithms 4 and 5 show single-point cross-over and mutation,
espectively. Even though in Algorithm 5, one gene of the chromosome
s flipped, if the number of superpixels is greater than 25, 3 genes of the
hromosome are flipped in implementation to improve exploration. In
ontrast to single-point cross-over that uses RWS, selection in bit string
utation is random. After mutation, 𝑃𝑜𝑝, 𝑃𝑜𝑝𝑐 , and 𝑃𝑜𝑝𝑚, are merged,

sorted based on the calculated fitness from Eq. (3), and truncated to the
size of 𝑛𝑃𝑜𝑝. As such, the best solution in 𝑃𝑜𝑝 is the answer of the first
generation in GA. Finally, if stopping criteria occur, EGAE will record
the best solution as the explainable image with the most informative
superpixels of the input image for a given GA.

4.3. Ensemble of GAs

The final phase of EGAE is ensembling the results (images) of the
GAs from phase 2. EGAE shows two images to explain the model:
consensus voting and majority voting. Consensus voting refers to the
intersection of images, a rigorous approach to explaining the prediction
model. Majority voting has a lenient approach so that the resulting
image contains the pixels that appeared in most images.
6

Algorithm 4 Single-point cross-over
Input: 𝑥1, 𝑥2
utput: 𝑦1, 𝑦2

1: 𝑛𝑉 𝑎𝑟 ← length(𝑥1)
2: 𝑐 ← randint(1, 𝑛𝑉 𝑎𝑟 − 1)
3: 𝑦1 ← 𝑥1 [0, 𝑐] + 𝑥2 [𝑐 ∶]
4: 𝑦2 ← 𝑥2 [0, 𝑐] + 𝑥1 [𝑐 ∶]
5: Return 𝑦1, 𝑦2

Algorithm 5 Bit string mutation
Input: 𝑥
Output: 𝑦
1: 𝑛𝑉 𝑎𝑟 ← length(𝑥)
2: 𝑗 ← randint(1, 𝑛𝑉 𝑎𝑟)
3: 𝑦 ← 𝑥
4: 𝑦[𝑗] ← 1 − 𝑥[𝑗]
5: Return 𝑦

In some minority cases, consensus voting may lose interpretability
to achieve high accuracy. This is where majority voting could be
used to assure the interpretability of the explanation. Consensus voting
and majority voting ensure the accuracy and interpretability of the
results simultaneously. It should be noted that the intersection of all
images could be an empty image indicating one or some of the images
spot distinct sections of the input image that corrupt the intersection.
This has many reasons, such as an inappropriately great number of
segmentations for an image with a wide area of explanability. As such,
these segmentations could generate many global optima for EGAE so
that GA may detect a distinct superpixel as an explainable lesion in
each run. This also implicitly reveals that the GA with inappropriate
segmentation should be discarded. Therefore, it is initially investi-
gated whether to discard one or some images for voting. Algorithm
6 generally detects and discards redundant images within a loop and
sends valid images to Algorithm 7 for applying voting strategies to
generate respective explanations. In this research, EGAE incorporates
5 GAs and, thus, generates 5 images as the input of Algorithm 6
(t=5). Algorithm 7 checks whether an identical pixel (𝑖, 𝑗) is active in
ll (𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑣𝑜𝑡𝑖𝑛𝑔_𝑖𝑚𝑎𝑔𝑒) or majority (𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑖𝑛𝑔_𝑖𝑚𝑎𝑔𝑒) of valid

images in 𝑙𝑖𝑠𝑡_𝑜𝑓 _𝑣𝑎𝑙𝑖𝑑_𝑖𝑚𝑎𝑔𝑒𝑠 in lines 7–13.
Algorithm 6 Detection of redundant images
Input: 𝑖𝑚𝑎𝑔𝑒1, 𝑖𝑚𝑎𝑔𝑒2, ..., 𝑖𝑚𝑎𝑔𝑒𝑡
Output: 𝐶𝑉 , 𝑀𝑉
1: 𝑡𝑒𝑚𝑝_𝑙𝑖𝑠𝑡_𝑜𝑓 _𝑖𝑚𝑎𝑔𝑒𝑠[1, ..., 𝑡] ← [ 𝑖𝑚𝑎𝑔𝑒1, 𝑖𝑚𝑎𝑔𝑒2, ..., 𝑖𝑚𝑎𝑔𝑒𝑡]
2: while intersection of 𝑡𝑒𝑚𝑝_𝑙𝑖𝑠𝑡_𝑜𝑓 _𝑖𝑚𝑎𝑔𝑒𝑠 = ∅ do
3: 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑖𝑚𝑎𝑔𝑒𝑠 ← Images which cause intersection to fail
4: end while
5: 𝑙𝑖𝑠𝑡_𝑜𝑓 _𝑣𝑎𝑙𝑖𝑑_𝑖𝑚𝑎𝑔𝑒𝑠 ← Remove 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑖𝑚𝑎𝑔𝑒𝑠 from

𝑡𝑒𝑚𝑝_𝑙𝑖𝑠𝑡_𝑜𝑓 _𝑖𝑚𝑎𝑔𝑒𝑠
6: (𝐶𝑉 , 𝑀𝑉 ) ← voting(𝑙𝑖𝑠𝑡_𝑜𝑓 _𝑣𝑎𝑙𝑖𝑑_𝑖𝑚𝑎𝑔𝑒𝑠)
7: Return 𝐶𝑉 , 𝑀𝑉
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Algorithm 7 The voting function to calculate CV and MV
Input: 𝑙𝑖𝑠𝑡_𝑜𝑓 _𝑣𝑎𝑙𝑖𝑑_𝑖𝑚𝑎𝑔𝑒𝑠
utput: 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑣𝑜𝑡𝑖𝑛𝑔_𝑖𝑚𝑎𝑔𝑒, 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑖𝑛𝑔_𝑖𝑚𝑎𝑔𝑒

1: 𝑛𝑜_𝑖𝑚𝑔 ← length(𝑙𝑖𝑠𝑡_𝑜𝑓 _𝑣𝑎𝑙𝑖𝑑_𝑖𝑚𝑎𝑔𝑒𝑠)
2: [𝑛, 𝑚] ← dimension(images in 𝑙𝑖𝑠𝑡_𝑜𝑓 _𝑣𝑎𝑙𝑖𝑑_𝑖𝑚𝑎𝑔𝑒𝑠)
3: 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑣𝑜𝑡𝑖𝑛𝑔_𝑖𝑚𝑎𝑔𝑒(𝑛, 𝑚) ← zeros(𝑛, 𝑚)
4: 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑖𝑛𝑔_𝑖𝑚𝑎𝑔𝑒(𝑛, 𝑚) ← zeros(𝑛, 𝑚)
5: for 𝑖 ← 1 to 𝑛 do
6: for 𝑗 ← 1 to 𝑚 do
7: 𝑡𝑒𝑚𝑝_𝑝𝑖𝑥𝑒𝑙𝑠 ← Select pixels in position(𝑖, 𝑗) from

𝑙𝑖𝑠𝑡_𝑜𝑓 _𝑣𝑎𝑙𝑖𝑑_𝑖𝑚𝑎𝑔𝑒𝑠(1, ..., 𝑛𝑜_𝑖𝑚𝑔)
8: 𝑛𝑜_𝑎𝑐𝑡𝑖𝑣𝑒_𝑝𝑖𝑥𝑒𝑙𝑠 ← Calculate number of active pixels

in position(𝑖, 𝑗) in 𝑡𝑒𝑚𝑝_𝑝𝑖𝑥𝑒𝑙𝑠
9: if all pixels in 𝑡𝑒𝑚𝑝_𝑝𝑖𝑥𝑒𝑙𝑠 are active then

10: 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑣𝑜𝑡𝑖𝑛𝑔_𝑖𝑚𝑎𝑔𝑒(𝑖, 𝑗) ← Highlight the pixel in
position(𝑖, 𝑗)

11: else if 𝑛𝑜_𝑎𝑐𝑡𝑖𝑣𝑒_𝑝𝑖𝑥𝑒𝑙𝑠 > ⌊

𝑛𝑜_𝑖𝑚𝑔
2 ⌋ then

2: 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑖𝑛𝑔_𝑖𝑚𝑎𝑔𝑒(𝑖, 𝑗) ← Highlight the pixel in
position(𝑖, 𝑗)

3: end if
4: end for
5: end for
6: Return 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑣𝑜𝑡𝑖𝑛𝑔_𝑖𝑚𝑎𝑔𝑒, 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑖𝑛𝑔_𝑖𝑚𝑎𝑔𝑒

5. Experimental results

This section initially provides relevant information about the dataset
under study, the predictive deep learning model, its architecture,
and the experimental setups, including hardware/software used in
Section 5.1 followed by the metrics to evaluate the explanation in
Section 5.2. Then, the results and respective discussions are illustrated
and explained in Sections 5.3 and 5.4, respectively.

5.1. Data description

The melanoma detection dataset is available in Kaggle repository2

as a classification dataset. The dataset consists of one cancerous label
(melanoma) with 374 samples. Likewise, it has two non-cancerous
labels including 254 seborrheic-keratosis , and 1372 nevus.

So, we get a total of 2000 images showing an imbalance. Thus,
oversampling the minority classes is used to balance the training data.
It is worth mentioning that neither undersampling the majority class
nor a simultaneous mixture of oversampling the minority classes and
undersampling the majority class was not as effective as oversam-
pling the minority class in resulting in better outcomes. Furthermore,
data augmentation techniques, including rescaling, rotating, width-
shift, height-shift, and horizontal-flip are applied to training and val-
idation data (recalling that oversampling is solely done for training
data and test data do not need to be neither balanced nor augmented
as unseen data). After balancing, the distribution of each class in
the training data equals 1372 and the entire training data contains
4116 observations. Afterwards, the pre-trained ResNet50 convolutional
Deep Learning model is reused in a customized model with a test
accuracy of 0.73 (the best achieved). The best weights are saved as
a separate file for reusability [7]. Table 2 shows the characteristics
of the melanoma dataset before and after balancing the training data.
Fig. 2, illustrates the images that are used for the evaluation of EGAE.
The selected images in Fig. 2 represent EGAE well and understandably
(both for clinicians and computer scientists). Hence, this paper focuses
on eight images for experimental analysis from test data that could
better represent the outputs calculated by EGAE. The prediction model

2 In URL https://www.kaggle.com/datasets/wanderdust/skin-lesion-
nalysis-toward-melanoma-detection
7

Table 2
Specification of melanoma detection dataset.

Data Total
Observations

Melanoma Seborrheic-
keratosis

Nevus

Train before balancing 2000 374 254 1372
Train after balancing 4116 1372 1372 1372
Validation 150 30 42 78
Test 600 117 90 393

correctly classified the label for the selected test images with accuracy
of almost 100%. The images in Fig. 2 also have scale, hair, and blue
sign as possible noises. All the experiments have been conducted in
a virtualization environment on a private, high-performance cluster
computing platform. This infrastructure is located at the Ada Byron
Research Center at the University of Málaga (Spain). It comprises
several IBM hosting racks for storage, virtualisation units, server com-
pounds, and backup services. Our virtualization platform is hosted in
this computational environment. Concretely, this platform is made up
of a CPU with Intel(R) Xeon(R) Gold 6130 @ 2.10 GHz, maximum
2 TB of HDD, maximum 64 GB of RAM, and Ubuntu 20.04.3 LTS
(GNU/Linux 5.4.0-1049-kvm x86 64). All simulations of EGAE are
coded and executed in Python 3.93 software environment. EGAE uses
the Simple Linear Iterative Clustering (SLIC) segmentation algorithm.
Likewise, LIME uses the default parameters in the Python LIME library
except for the segmentation function, which is set to SLIC for having a
fair comparison with EGAE.

5.2. Measurement criteria

The Number of Function Evaluations (NFE) and error of explanation
are the criteria used for performance analysis. Most of the research
in XAI evaluates the accuracy of the explanation empirically. How-
ever, this paper proposes a numerical approach to explain the error
of calculation. As such, the measurement criteria are introduced as
follows:

Number of Function Evaluations (NFE): The NFE refers to the
number of times the fitness function in an evolutionary algorithm (GA
in this paper) is called, which explicitly shows the number of images
EGAE uses for explanation. The NFE is a fair metric more reliable than
the CPU time, particularly when different algorithms under different
implementations are compared. In other words, the number of images
the explainer uses for explanation is fairer as a measurement criterion
instead of the execution time spent. The general formula of NFE for
evolutionary algorithms is shown in Eq. (8) in which 𝐼 is the number
of solutions in the initial population and 𝑂 is the total number of off-
springs generated in each iteration. Eq. (9) is a particular case of Eq. (8)
used in this paper. The NFE in EGAE is calculated while execution,
however, the number of images required by LIME for evaluation is
manually allocated prior to execution.

𝑁𝐹𝐸 = 𝐼 + [𝑂 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠] (8)

𝑁𝐹𝐸 = 𝑃𝑜𝑝 + [(𝑃𝑜𝑝𝑐 + 𝑃𝑜𝑝𝑚) × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠] (9)

Explanation error: The good explanation should necessarily emulate
nd unveil the classifiers’ decision-making procedure. Moreover, it
hould sufficiently meet the clinicians’ diagnosis. Thus, the clinicians
rom Hospital Regional Universitario de Malaga were asked to spec-
fy the informative sections from lesions that mainly contribute to
he diagnosis (𝑎𝑐𝑡𝑢𝑎𝑙_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛). This information is used to calcu-

late the distance from the result of EGAE (𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛) in
Eq. (10) using Euclidean distance. The best case is obviously when
the 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 conforms 𝑎𝑐𝑡𝑢𝑎𝑙_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 so that the error

3 In URL https://www.python.org/downloads/release/python-390/

https://www.kaggle.com/datasets/wanderdust/skin-lesion-analysis-toward-melanoma-detection
https://www.kaggle.com/datasets/wanderdust/skin-lesion-analysis-toward-melanoma-detection
https://www.python.org/downloads/release/python-390/
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Fig. 2. Illustrations of selected test data for evaluation of EGAE.
in Eq. (10) equals zero. Nonetheless, the worst case differs image
by image. Thus, the normalized error was calculated to transform
the error values into [0,1] for all images using Eq. (11). The less
the 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑒𝑟𝑟𝑜𝑟 in Eq. (11) is, the more accurate the explana-
tion is. The delineations of clinicians are also illustrated using SLIC
segmentation algorithm in Fig. 3.

𝑒𝑟𝑟𝑜𝑟 = Euclidean dist(𝑎𝑐𝑡𝑢𝑎𝑙_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛− 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛) (10)

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑒𝑟𝑟𝑜𝑟 = 𝑒𝑟𝑟𝑜𝑟 − 𝑚𝑖𝑛_𝑒𝑟𝑟𝑜𝑟
𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 − 𝑚𝑖𝑛_𝑒𝑟𝑟𝑜𝑟 = 𝑒𝑟𝑟𝑜𝑟

𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 (11)

5.3. Performance analysis

Fig. 4 shows the results of Consensus Voting (CV) and Majority
Voting (MV) for images of Fig. 2 in 3 consecutive runs. The illustrations
in Fig. 4 show that EGAE generally converges into the informative
lesions of the figures in Fig. 2. The intuitive investigation in Fig. 4 also
reveals that MV does not typically discard the informative lesion in all
images. However, it contains more non-informative sections than CV,
which affects the accuracy of the explanation accordingly. In contrast,
8

CV tends to discard more features of the images and may discard the
informative sections of the image as a side effect in the minority of
cases. Fig. 4 also illustrates the reproducibility of the results in 3 consec-
utive runs. EGAE does not guarantee the reproducibility of the results
(like LIME and many other existing model-agnostic explainers). This
issue has three main reasons. First, the essence of EGAE is optimization
with genetic algorithms, and evolutionary algorithms do not guarantee
complete reproducibility, especially in case of EGAE, which is based
on multiple GAs. Second, the inputs of EGAE are multiple segmented
images, but the results (CV and MV) are based on pixels, making it
harder for the results to be completely reproducible. Third, due to
using multiple GAs with different levels of segmentation, unexpected
situations could happen, such as having multiple global optima in one
of the GAs. This will directly affect the reproducibility of CV and,
subsequently, MV. Even though EGAE is not completely reproducible,
illustrations in Fig. 4 show that it has a high degree of reproducibility
(with either of CV or MV, depending on the image). For example, the
reproducibility of MV is better than CV in images 2 and 3. As another
example, it is also intuitively evident that CV is more reproducible than
MV in image 1. Moreover, based on the methodology illustrated in



Computers in Biology and Medicine 155 (2023) 106613H. Nematzadeh et al.
Fig. 3. Delineations of the clinician generated by SLIC segmentation algorithm.
Fig. 1, the images that corrupt consensus voting (images that cause
consensus voting to be an empty image) are identified for discarding
at the beginning of phase 3.

Fig. 5 shows the average number of images (in 5 consecutive runs)
contributing to voting for each image in Fig. 2. This figure also shows
that the least number of images contributing to voting is for image 3,
with an average value of 3.8. Likewise, the average images contributing
to voting for all images in Fig. 2 are 4.78, which reveals that EGAE
does not aggressively discard images. Fig. 6 shows the NFE of EGAE in
5 consecutive runs and the average NFE for each image. Generally, the
NFE in GA increases as the number of superpixels in the input image
increases. As such, the GAs with 100 and 10 superpixels in the input
image have the greatest and smallest NFE. Fig. 6 illustrates that EGAE
has an average NFE of less than almost 6000 in the majority of the
images. The minimum average NFE is for image 3, and the maximum
average NFE is recorded for image 6. The average NFE in Fig. 6 shows
that EGAE uses considerably few images for explanation. Recalling that
EGAE includes 5 GAs with a search space of 210 + 215 + 220 + 225 +
2100 number of images, the average NFE recorded in Fig. 6 is indeed
insignificant compared with the search space. This confirms the usage
of an evolutionary algorithm in explanation.
9

This paper’s main inspiration is to automate the explanation by
eliminating the intervention of the user to determine the number of
superpixels in the input image (It is now decided by experts manually
with a segmentation algorithm in LIME) and the number of top features
(It is now specified by experts intuitively with the 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 param-
eter in LIME). Although Fig. 4 shows that EGAE does not discard the
informative lesion of the images, the information in Table 3 and Fig. 7
specify to what extent the explanation of Fig. 4 is close to the clinician
delineation compared with LIME. Table 3 investigates the accuracy
of explanation using Eq. (11). For this reason, LIME is executed five
times with 10, 15, 20, 25, and 100 superpixels in the input image.
The 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 parameter in LIME library, which shows the size of
the neighborhood to learn the linear model is set to 50, 1000, 2000,
2000 when the input image is segmentized into 10, 15, 20, and 25
superpixels respectively. However, the parameter 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is set
to the average NFE calculated in Fig. 6 for LIME, when the input
image is segmentized to 100 superpixels (to have a fair comparison
between LIME and EGAE). Then, for each case, the group of superpixels
that LIME identifies positively to contribute to the prediction are kept,
and the rest of the superpixels are discarded. Next, the normalized



Computers in Biology and Medicine 155 (2023) 106613

10

H. Nematzadeh et al.

Fig. 4. The results of EGAE in three runs.

Fig. 5. Average images contribute to voting.
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Fig. 6. The NFEs of EGAE on test data.
euclidean distance of the 𝑎𝑐𝑡𝑢𝑎𝑙_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 delineated by clinicians
against 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 by LIME is calculated. Likewise, the same
has been done for EGAE results.

Table 3 shows that both Consensus Voting (CV) and Majority Voting
(MV) are very close to 𝑎𝑐𝑡𝑢𝑎𝑙_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 in comparison with LIME
considering that CV is slightly better than MV. This confirms that LIME
keeps too many insignificant superpixels, which EGAE discards. Fig. 7
investigates the accuracy of explanations in another way. In this case,
the clinician intervenes to determine the number of segmentations in
the input image. This solution gradually increases the top features
(starting from 1) until all sections of the 𝑎𝑐𝑡𝑢𝑎𝑙_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛 are seen.
In other words, the clinician repeatedly adds to the top features (the
𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 parameter in LIME library) until the set of top features
can completely cover the delineated area specified by the clinician.
Finding the best segmentations of the input image and the number
of top features within that segmentation is time-consuming. However,
EGAE with CV strategy slightly outperforms LIME even by manual
determination of the parameters (number of superpixels in the input
image and 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) in images 1, 2, 3, and 6. Additionally, CV has
also acceptable results for the rest of the images. Moreover, it is evident
that CV has better accuracy of explanation in comparison with MV in all
cases in Fig. 7, which is also clearly discussed in Table 3 and intuitively
proved in Fig. 4. The results of MV are not good for images 4 and 7 but
still acceptable in other images. The information in Fig. 7 shows that
11
automatic EGAE not only has a good accuracy of explanation but also
sometimes outperforms LIME even with the manual determination of
parameters, particularly with CV based on Eq. (11).

Fig. 8 shows the performance graph of EGAE, which starts from
the initial population at iteration 0 (the first generation that is cre-
ated randomly) and continues by applying selection, cross-over, and
mutation starting from generation 1 until convergence. Fig. 8 confirms
the maximum number of 150 iterations is enough for convergence,
as the number of iterations rarely increases 100 for an input image
with 100 segmentations. Likewise, as the number of superpixels in the
input image increases from 10 to 100, fitness improvements increase
accordingly. Fig. 8 also shows how fitness continuously and smoothly
increases through iterations, particularly when the number of superpix-
els equals 100. This, in turn, implicitly confirms the use of optimization
and GA in the explanation.

Fig. 9 clearly shows the effect of determining the sparsity of chro-
mosomes (𝜑) in the first phase of EGAE. As a particular case, Fig. 9
illustrates the comparison of 𝜑 = 0.9 against 𝜑 = 0.5 (random assign-
ment of 0 and 1 to genes) while the number of superpixels in the input
image equals 100. The idea is that when the number of segmentations
in the input image is large (100, for example) and 𝜑 = 0.5, half of
the superpixels in the input image would be active. The problem is
that these active superpixels may not cover the informative area of
the image. Thus, the initial population may contain trivial solutions



Computers in Biology and Medicine 155 (2023) 106613H. Nematzadeh et al.
Table 3
Normalized explanation error of LIME in 5 cases compared with automatic EGAE.

Image id LIME
100

LIME
25

LIME
20

LIME
15

LIME
10

EGAE with
Consensus Voting

EGAE with
Majority Voting

1 0.77 0.74 0.74 0.68 0.60 0.06 0.25
2 0.75 0.80 0.84 0.76 0.82 0.10 0.16
3 0.67 0.64 0.51 0.66 0.48 0.12 0.15
4 0.75 0.80 0.75 0.77 0.79 0.21 0.42
5 0.71 0.67 0.76 0.74 0.68 0.20 0.41
6 0.79 0.74 0.70 0.68 0.78 0.33 0.46
7 0.71 0.71 0.71 0.79 0.87 0.32 0.57
8 0.70 0.68 0.74 0.74 0.80 0.18 0.48
Fig. 7. Normalized explanation error of LIME (manual investigation to select the best number of superpixels using SLIC segmentation algorithm for the input image and the
number of top features to be seen for that number of superpixels) compared with the automatic EGAE.
that make convergence difficult for GA. Fig. 9 shows the convergence
guarantee with 𝜑 = 0.9 in all images despite the increase in NFE of
images 1, 2, and 3. In contrast, setting 𝜑 = 0.5 may lead to premature
convergence with a solution entirely far from the optimal solution, as
in images 4, 5, and 6. Images 7 and 8 in Fig. 9 also show the cases in
which GA could escape from premature convergence via its operators
with 𝜑 = 0.5. All in all, Fig. 9 shows that in the case of having a large
number of segmentations in the input image (100, for example), 𝜑 = 0.9
guarantees the convergence but may increase the NFE as a side effect
which is not considerable at all.

5.4. Discussions

The discussion section outlines three main characteristics of EGAE.
First, the advantages of EGAE over LIME are itemized. Second, the
12
difference between consensus voting and majority voting is clarified.
Finally, the justification for using GA is stated.

5.4.1. EGAE vs. LIME
Generally, EGAE outperforms LIME in the following criteria:

1. Automation: EGAE has an automatic image segmentation. Mean-
while, LIME needs the intervention of the user to manually
set the number of superpixels in the input image through a
segmentation algorithm and the appropriate number of top
features (𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) to be seen. This is useful because it is
not always straightforward for the expert to specify the number
of superpixels in the input image.

2. Accuracy of explanation: EGAE generally achieves greater ac-
curacy in explaining the prediction class (as experimented with
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Fig. 8. Performance graph of EGAE.
melanoma detection dataset) because of ensembling multiple
GAs (each with a different number of segmentations in the
input image) and the embedded voting strategies. EGAE achieves
acceptable accuracies using considerably fewer images (in com-
parison with the search space), even when the search space is
huge.

3. Fewer hyperparameters to be determined: EGAE does not
use a linear surrogate model as LIME does. Therefore, LIME
needs to determine more parameters in advance. Besides the
number of superpixels in the input image and top features
(discussed in detail in previous sections how EGAE automatically
explains without needing them) distance metric, 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠,
𝑚𝑜𝑑𝑒𝑙_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟, and 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 are among the most im-
portant parameters that EGAE is independent of them. LIME
uses distance metric for calculating the weights of images in
the vicinity of the image that needs explanation. There are well-
known distance metrics to be used and LIME, by default, exploits
the cosine distance metric. EGAE does not need to calculate the
distance metric since it directly emulates the prediction model
via multiple consecutive GAs. The 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 parameter shows
the neighborhood size to learn the linear model in LIME which
the user should specify in advance. In other words, 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠
specifies the number of images LIME needs for evaluation. The
greater 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 yields both a more accurate explanation and
better reproducibility. However, increasing 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 con-
flicts with execution time. The user must compromise between
𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 and execution time to achieve an accurate expla-
nation within a reasonable time. EGAE implicitly calculates
𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 using the Number of Function Evaluations (NFE) in
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GAs during execution. 𝑀𝑜𝑑𝑒𝑙_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 is a regressor that is used
in the explanation provided by LIME. However, EGAE is entirely
independent of 𝑚𝑜𝑑𝑒𝑙_𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 as it uses GA for optimization.
𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 specifies the methodology to select the number
of features required for explanation that the user should specify
in advance for LIME. In contrast, EGAE defines the best features
using its voting strategies. 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑓𝑛 is the segmentation
algorithm used to divide the input image into superpixels. There
are well-known segmentation algorithms, including quick shift,
SLIC, and fenzelswalb. Both EGAE and LIME need to determine
the segmentation algorithm in advance. Unfortunately, even
optimizing these parameters (which may result in higher compu-
tational cost), inconsistencies can still occur in LIME. Although
the expert can also investigate the appropriate number of GAs
in EGAE and the segmentation function of the input image,
experiments reveal that the existing setting works well.

It was mentioned that between execution time and the number of
images evaluated (accessible via NFE in Eq. (9)), the NFE is a fairer
criterion. However, the existing LIME image explainer is almost ten
times faster than EGAE, assuming the execution time as a measurement
criterion. For example, the computational times of EGAE and LIME
for image 1 are 1130 and 110 seconds, respectively, using the same
number of images (We assigned the average NFE of image 1 in Fig. 6
(5172) to the 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 parameter of LIME image explainer with the
input image that is segmented into 100 superpixels) recalling that the
more superpixels the input image has, the more time EGAE spends for
the respective GA. This also holds for the rest of the images. Despite
higher execution time, EGAE offers an explanation with automatic
segmentation of input image, which is worthy.
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Fig. 9. The effect of determination of chromosomes’ sparsity.
5.4.2. Consensus voting vs. majority voting
It is intuitively shown in Fig. 4 and numerically discussed in Table 3

and Fig. 7 that Consensus Voting (CS) generally has better accuracy of
calculated explanation than Majority Voting (MV). However, CV can
be compromised by interpretability and reproducibility in minority of
cases. First, the interpretability of CV can be compromised when it
contains only few pixels. The concept of superpixels will guarantee the
interpretability of the results. It is difficult for the user to interpret CV
with few pixels. In such cases, MV with more pixels could keep EGAE
to remain interpretable. Second, the reproducibility of the results can
be compromised due to getting stuck in local optima by GA initially.
This happens because even by controlling parameters, it is inevitable
for evolutionary algorithms to get stuck in local optima. Likewise, some
anomalies can occur and affect voting. One anomaly scenario is that
segmentizing an image into a certain number of superpixels may gen-
erate many global optima or ridge. Ridge refers to local optima close to
each other. It is difficult for evolutionary algorithms to escape from the
ridge. Additionally, GA could also converge to different global optima
in each run in case of having multiple global optima. Furthermore, such
anomalies do not necessarily happen with larger superpixels, which
shows the inevitability of the problem. In both cases, the reproducibil-
ity of CV and MV could be affected. Thus, it cannot conclude which of
the voting approaches has better reproducibility. For example, Fig. 4
shows better reproducibility of MV in images 2 and 3, recalling that
there is no guarantee to have 100% reproducibility for existing explain-
ers as well. Even in LIME, increasing the 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (which increases
the time accordingly) increases the degree of reproducibility, but there
is no guarantee of reaching complete reproducibility. MV helps EGAE
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to remain both interpretable and with better reproducibility in case of
an anomaly. Meanwhile, the accuracy of explanation in CV generally
outperforms MV.

5.4.3. Why single-objective GA works in EGAE?
This section justifies the usage of GA with its single-objective func-

tion for automatic explanation initially. Then, the process of explana-
tion in EGAE is shown using an illustrative example. The evolutionary
algorithms can be divided into two major groups: those appropriate for
discrete problems and those suitable for solving continuous problems.
Almost the majority of evolutionary algorithms are intrinsically con-
tinuous. However, they can be converted to their respective discrete
versions (Particle Swarm Optimization [30], Whale Optimization Al-
gorithm [31], Gravitational Search Algorithm [32], Harmony Search
Algorithm [33], etc.). In contrast, GA belongs to the category of in-
trinsically discrete solutions. The problem of image-based automatic
model-agnostic explanation can be formulated as a discrete problem
so that each solution can be encoded as a binary string. Thus, GA is
accordingly selected for optimization as a well-known and intrinsically
discrete algorithm. The fitness function of EGAE is defined based on
the accuracy of prediction and the number of active superpixels in
a solution (image), as discussed in Eq. (3) of Section 4.1. Further-
more, there is neither a conflict nor a direct relationship between
prediction accuracy and number of active superpixels. In other words,
the accuracy of prediction does not always grow when the number
of superpixels increases and vice versa. This also confirms that the
problem can be formulated as a single-objective optimization with a
defined fitness function.
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Fig. 10. Mechanism of EGAE for image 1 in a sample run. First row from left to right: The explanations of GAs on image 1 segmentized into 10, 15, 20, 25, and 100 superpixels.
Second row from left to right: The explanations of Consensus Voting and Majority Voting.
-

GAs work by discovering and combining good building blocks
(schema) of the initial population in each iteration. GAs iteratively
identify the good building blocks solely by the fitness function and tend
to improve the schema if possible. As such, GAs guarantee optimization.
Fig. 10 shows the process of EGAE intuitively for image 1 from Fig. 2.
EGAE (with 10, 15, 20, and 25 superpixels) converged into the global
optimum in Fig. 10. However, EGAE converged to a local optimum,
close to the global optimum, with 100 superpixels. The global optimum
is an image that only contains the lesion based on the fitness function.
Finding the global optimum is difficult even for evolutionary algorithms
when the search space is massive. EGAE can sometimes overcome this
problem through its voting strategies. The consensus voting in Fig. 10
discards the irrelevant superpixel. This is obviously another advantage
of EGAE in case of getting stuck in a local optimum in one of the GAs
(recalling that the investigation of phase 3 in EGAE does not recognize
any image that corrupts consensus voting, as shown in Fig. 5).

6. Conclusion

This paper proposes an automatic Ensemble-based Genetic Algo-
rithms Explainer (EGAE), which attempts to improve the existing LIME
image explainer by eliminating the user’s interventions in determining
the number of superpixels in the input image as well as the top features
for the automatic explanation. EGAE has three phases, so that the
sparsity of chromosomes is initially calculated using a heuristic algo-
rithm. Second, multiple GAs are executed consecutively. Thus, in each
GA, images that constitute the initial population have a distinguished
number of superpixels compared to other GAs. The result of each GA
is an image that explains the prediction. Finally, the images from GAs
are ensembled using consensus and majority voting to construct two
images to show simultaneously to the user for an explanation. EGAE
has been tested on melanoma detection dataset, and EGAE has three
advantages over LIME:

1. First, EGAE is automatic and eliminates the user’s intervention in
determining two parameters. These parameters are the number
of superpixels in the input image (it is now specified by the
expert manually through a segmentation algorithm in LIME) and
the number of top features (it is now specified by the expert
intuitively with the 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 parameter in LIME).

2. Second, EGAE generally achieves greater accuracy of explana-
tion than LIME while using very few images for explanation com-
pared with the search space. The reason is that EGAE discards
15
more non-informative sections of the image while concentrating
on the informative parts.

3. Third, EGAE is not surrogate model dependent and thus needs
fewer hyperparameters to be tuned in advance.

In general, EGAE tries to emulate the classifier to unveil the black
box architecture and is close to the users’ decision-making processes
(in this case, clinicians’ point of view for the melanoma detection
dataset). This can be investigated through a new evaluation metric
to calculate the explanation accuracy using the Euclidean distance of
actual explanation delineated by clinicians from the calculated ex-
planation by the explainer. Further investigation on the performance
graph of EGAE confirms the use of GA as an optimization technique
for the automatic explanation. In addition, the effect of determining
the sparsity of chromosomes in proper convergence of GAs is also
discussed. However, the main limitation of EGAE is that even though it
has an acceptable level of reproducibility in some cases, it is a non-
reproducible explainer like most existing explainers, including LIME
and SHAP explainers. Future research will look into testing EGAE on
other datasets, such as plant disease datasets. In addition, it can be
investigated how intelligent segmentation algorithms (such as those
introduced in Section 2.2) could enhance the explanation.
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