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Abstract. Healthcare systems currently store a large amount of clinical
data, mostly unstructured textual information, such as electronic health
records (EHRs). Manually extracting valuable information from these
documents is costly for healthcare professionals. For example, when a
patient first arrives at an oncology clinical analysis unit, clinical staff
must extract information about the type of neoplasm in order to assign
the appropriate clinical specialist. Automating this task is equivalent to
text classification in natural language processing (NLP). In this study, we
have attempted to extract the neoplasm type by processing Spanish clini-
cal documents. A private corpus of 23, 704 real clinical cases has been pro-
cessed to extract the three most common types of neoplasms in the Span-
ish territory: breast, lung and colorectal neoplasms. We have developed
methodologies based on state-of-the-art text classification task, strategies
based on machine learning and bag-of-words, based on embedding mod-
els in a supervised task, and based on bidirectional recurrent neural net-
works with convolutional layers (C-BiRNN). The results obtained show
that the application of NLP methods is extremely helpful in performing
the task of neoplasm type extraction. In particular, the 2-BiGRU model
with convolutional layer and pre-trained fastText embedding obtained
the best performance, with a macro-average, more representative than
the micro-average due to the unbalanced data, of 0.981 for precision,
0.984 for recall and 0.982 for F1-score.

Keywords: Text Classification · Natural Language Processing ·
Electronic Health Records · Neoplasm cancer · Spanish

1 Introduction

Public healthcare systems face numerous challenges, including their sustainabil-
ity, variability in healthcare practice and the need to improve the patient expe-
rience, among others. Evidence-based medicine is based on clinical research and
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its main tool, randomized clinical trials (RCTs). However, nowadays health out-
comes research also includes the collection, compilation and analysis of data
generated outside RCTs, in what is known as real-world data (RWD), which
in recent years has acquired a growing and renewed interest beyond the clas-
sic observational, naturalistic or pragmatic studies, which suffer from significant
biases. The widespread, systematic, exhaustive, high quality and transparent
collection of data by clinicians in electronic health records, whether these are
conventional databases or, more commonly, electronic health records (EHR).
Their transformation into useful information of value to the clinician provides a
body of knowledge known as Real-World Evidence.

However, the gradual adoption of the EHRs as a key component of healthcare
systems raises a number of issues, some of which remain unresolved. EHRs store
information of a heterogeneous nature in a variety of formats, including open
text documents, such as clinical notes or radiology reports, that contain infor-
mation related to diagnoses, treatments, or clinical procedures [27]. However,
the unstructured nature of these open text fields makes the task of automati-
cally extracting relevant concepts from them particularly difficult, and manual
concept extraction is non-reusable, time-consuming and costly [18].

Focusing on a specific medical area, a recurrent problem in oncology clinical
analysis units regarding the preparation of the first visit report is the lack of time
of the clinical staff to complete the information in the structured fields corre-
sponding to the type of neoplasm, location, histology, etc. This makes subsequent
access to the information and exploitation of the results extremely difficult. In
other words, the information exists, but it is in text format (not structured)
within the EHR information and is not stored in a specific electronic field. The
automatic neoplasm type extraction of the text corresponding to the patient’s
EHR is a key task, allowing the oncology analysis unit to immediately refer the
patient to the appropriate specialist.

This process eventually becomes a text classification task. Text classification
is a classic problem in natural language processing (NLP). This task is defined as
the assignment of text units to one or more categories according to the content
and semantics present in the text. These text units can be sentences, questions,
paragraphs and, as will be addressed in this study, documents. Text classification
is commonly used in marketing, human resources and social analysis tasks such
as sentiment analysis (products, companies, online and social media) or news
categorisation. Text classification has also proved useful in natural language
understanding tasks such as question answering (QA).

Due to the attention this task has received and the increasing amount of tex-
tual data, NLP techniques have been applied to the automatic classification of
free-text clinical reports in recent years. Approaches to text classification can be
divided into three categories: rule-based methods, machine learning (ML) meth-
ods and deep learning (DL) methods. The rule-based systems for clinical text
classification rely on a large number of manually constructed patterns or rules
[15,19]. However, since rule-based methods are not reproducible, studies have
focused on ML algorithms for this task. ML methods used include decision tree
(DT), naive bayes (NB), support vector machines (SVM) and random forest (RF)
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[6,7,10,26]. Finally, with the increased ability to collect large data sets, DL-based
methods have become the state-of-the-art (SOTA) for various NPL tasks. Archi-
tectures based on convolutional and recurrent neural networks and transform-
ers show impressive results in the text classification task. Models such as long
short-term memory (LSMT) [8] and gated-recurrent-units (GRU) [5], including
variations such as Bidirectional-LSTM (Bi-LSTM) [12] or Convolutional-LSTM
(C-LSTM) [23], and large pre-trained language models with layers of multi-head
self-attention architectures [28], have been applied to numerous clinical text clas-
sification tasks [2,11,14,29,33].

However, most of the existing studies in the specific literature refer only to
texts in English, due to the scarce availability of linguistic corpora annotated
with clinical coding information in other languages. Since Spanish is the second
most spoken language in the world in terms of number of native speakers [30],
there is a need to apply medical NLP methodologies focused on this language.
For this text classification task, we have access to the Galén system [22,27], a
repository of 60, 000 real-world clinical EHRs. The use of this clinical linguis-
tic corpus allows us to obtain reliable information on frequently used words in
oncology, as well as grammatical and contextual information in this specific field.
Furthermore, the availability of the neoplasm annotations in Gálen for super-
vised learning allows us to serve as an artificial intelligence laboratory on cancer
for the development of NLP models, deploying them in national or international
hospitals in Spanish where the neoplasm annotations are not available.

Considering all the above aspects, in this work we propose to advance in the
application of NLP models for the automatic extraction of neoplasm type from
EHR written in Spanish. The classification algorithms assign to each document
the probability of belonging to one of the three most common neoplasms in the
Galén information system, as a representation of the Spanish region of Málaga:
breast, colorectal and lung; or to another type of neoplasm. ML and DL models
studied herein represent SOTA in text classification tasks [13,32], such as RNNs
used in conjunction with CNN and embedding models. However, to the best
of our knowledge, this is the first study that examines the application of NLP
models to the problem of extracting information about the neoplasm suffered by
a patient using real-world medical texts in Spanish.

2 Materials

This section describes the corpus used to perform the text classification task.
The automatic classification of clinical texts requires a prior manual analysis
of the documents for their collection and correct labelling. In this sense, the
research team was able to obtain quality-assured information in a simpler way
thanks to the availability of Galén system [22,27], an integrated software system
in oncology centres in the province of Málaga, Spain. The Galén system collects
the EHRs of more than 60, 000 oncology patients from the Hospital Regional
Universitario and the Hospital Universitario Virgen de la Victoria in Málaga,
Spain, with information completed both in real time and by dedicated staff.



Clinical Text Classification in Cancer RWD in Spanish 485

A corpus of EHRs containing an associated neoplasm and containing more than
500 words was selected from the information available in the database, for a total
of 23, 704 documents. Each document includes the demographic information, first
visit and all information from the remaining episodes (consultation, emergency
visit or comments).

After selecting the corpus for the text classification task, the neoplasm labels
were processed to group them into breast, lung, colorectal and other neoplasms.
The category “other” includes documents on head/neck, liver, prostate, uterus,
non-Hodgkin’s lymphoma, thyroid, stomach/esophagus and other neoplasms.
The selected documents were tokenized, making several decisions to reduce the
size of the vocabulary and maximise the inference of contextual relationships.
The tokenization was case-insensitive and easily recognisable expressions were
replaced by special tokens. In addition, authorised experts obfuscated the docu-
ments to maintain anonymity of the real-world EHR for processing. The obfus-
cation was a bijective transformation of the characters with the additional aim
of not losing the properties of n-grams in embedding models.

Table 1 shows the distribution of the neoplasms present in the selected cor-
pus. For the different training, validation and test sets, the columns show the
absolute number (abs) of documents for each neoplasms considered and their rel-
ative frequency (rel). The majority of neoplasms in the Galén corpus represent
the category other (41.9%), although they are not individually sufficiently rep-
resentative. The most common neoplasm in the corpus is breast cancer (27.4%),
while lung and colorectal neoplasms are in the minority but well represented in
relation to the rest. In addition, an almost perfect stratification is observed in
the training/validation/testing division for the correct evaluation of NLP exper-
imental results.

Table 1. Number and percentage of documents per neoplasm in each corpus subset:
training, validation and test.

Neoplasm Train Validation Test

abs rel abs rel abs rel

Breast 5266 .2743 576 .2699 649 .2738

Lung 2731 .1422 302 .1415 338 .1426

Colorectal 3149 .1640 354 .1659 388 .1637

Other 8054 .4195 902 .4227 995 .4198

Total 19200 2134 2370

In order to obtain more information about the selected documents and to
fine-tune the hyperparameters of the NLP models, an analysis of the text length
was performed. Length is measured by the number of tokens present in the text
after removing common separators and punctuation marks that do not provide
context. Figure 1 shows the number of documents per number of tokens when
100%, 95%, 90% and 75% of the corpus documents are selected. It is observed
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Fig. 1. Distribution of the number of documents by number of tokens when 100%,
95%, 90% and 75% of the corpus documents are considered.

Fig. 2. Distribution of the number of documents by number of tokens for each neoplasm
(breast, lung, colorectal, other) when 95% of the corpus documents are considered.

that the maximum number of tokens present in a document is over 40, 000, but
most documents have less than 10, 000 tokens. This is more noticeable when 95%
and 90% of the documents are selected. 95% of the documents have less than
7, 000 tokens, while 90% have less than 5, 000 tokens. Finally, 75% have less than
3, 000 tokens, but this clearly implies a lower performance of the NLP models
by omitting too large a number of tokens.

When analysing the number of tokens per document belonging to each of
the neoplasm classes, 95% of the selected documents is the optimal percentage.
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Figure 2 shows these results for breast, lung, colorectal and other neoplasms.
There is a clear difference between the number of maximum tokens present in
breast and lung neoplasm documents compared to the rest. The 95% of lung
documents have less than 10, 000 tokens with an average of 3, 259.93 tokens,
while breast documents are drastically shorter, with less than 5, 000 tokens with
an average of 1, 820.69. Both colorectal neoplasm and other neoplasm documents
have a number of tokens less than 7, 000 with an average of 2, 767.51 and 2, 545.71
tokens respectively. Because of these differences, and to ensure that the models
are not biased in their choice of neoplasm identified in the EHR solely by the
number of tokens present, the hyperparameter fine-tuning with respect to the
number of features were set between 5, 000 and 7, 000 tokens.

3 Methods

This section presents the distinct NLP methodologies developed in this study to
tackle the neoplasm type extraction from real-world EHRs in Spanish. The NPL
methodologies addressed include ML models, such as NB, SVM and XGBoost;
embedding models used in a supervised task; and DL recurrent models, used in
conjunction with CNNs and embedding models, such as Word2Vec or fastText.

3.1 Bag-of-Words and Machine Learning Supervised Methods

ML algorithms have been widely used for text processing. However, these meth-
ods cannot deal directly with raw text/symbol sequences of variable length, but
with numerical feature vectors of fixed size. For this reason, it is necessary to
perform a pre-processing of the data for its treatment. Bag-of-Words (BoW)
[31] is the most commonly used method for this purpose. BoW transforms doc-
uments into a reduced and simplified representation based on criteria such as
word frequency, ignoring the order of words and context. BoW creates a dictio-
nary as large as all the different words present in the corpus or limited to the
most important or frequent. This dictionary, also known as the vocabulary, is
used to vectorise the document, so that the vocabulary is represented as a vector
in which each feature is a word stored in it, and its value depends on whether
this word occurs in the text and on the criterion chosen.

Count vector and tf-idf are the most common criteria. Count vector is the
simplest criterion, where each value associated with a token/word is the number
of occurrences of that token, also called term frequency (tf), in the text unit.
Term frequency - inverse document frequency (tf-idf) is the combination of tf and
inverse document frequency (idf) [25]. The idf assigns a higher weight to words
with high or low frequency terms in the document. Thus, the tf-idf value increases
in proportion to the number of times a word/token occurs in the document, but
is offset by the frequency of the word in the document collection, which reduces
the effect of implicitly common words in the corpus.

Once the documents have been vectorised with BoW using the tf-idf criterion,
we applied the ML models. The most common ML models considered for this



488 F. J. Moreno-Barea et al.

task are NB, SVM, DTs and RF. On one hand, NB classifiers are known for being
simple but efficient algorithms. NB classifiers make the naive assumption that
all features belonging to the same class are independent and contribute equally
to the categorisation result. This assumption is generally not true in real-world
situations. NB then calculates the conditional probability of each class, given a
set of features, using Bayes’ theorem. On the other hand, SVMs aim to obtain a
hyperplane that performs a partitioning of the data. For this purpose, SVM maps
the input points onto a higher dimensional feature space, so that the decision
boundary maximises the margin between the different classes, thereby clustering
them. Prediction involves classifying a sample according to the closest cluster.

Finally, RF and DTs were used with eXtreme Gradient Boosting
(XGBoost) [4]. XGBoost is a supervised learning method based on DTs and
improves on other methods such as RF and Gradient Boosting by using multiple
optimisation methods. Like RF, XGBoost uses ensembles of DTs, but differs in
using an additive strategy. In this way, each DT is trained by taking into account
the residuals, the difference between the predicted value and the observed value,
obtained from the previous DT and optimised using regularisation, pruning and
parallel learning methods. Each subsequent DT learns from the previous trees
and is not given the same weight. In the prediction process, the model output
class is calculated by adding the output of each tree multiplied by a learning
rate to the initial prediction. The Python package scikit-learn [20] was used to
implement the ML and BoW methods.

3.2 Word Embedding and Recurrent Neural Models

The development of more complex models in recent years, has led to the intro-
duction of new methods, such as word embedding, which incorporate concepts
such as similarity of words and part-of-speech tagging. Word embedding is a
learning technique where each word or phrase in the vocabulary is mapped to
an N-dimensional vector of real numbers. Word2Vec (W2V) and fastText are two
of the most commonly used methods for translating n-grams into understandable
input for RNNs models.

W2V model is based on maximum likelihood and conditional probabilities,
which can be seen as the probability of a word given some of the surrounding
words in the corpus. The distance between two words is very close if they can
substitute each other given the context. The general training of a W2V model
considers a fixed window to observe a word and the rest around the word within
the sentence to obtain a context. Within W2V there are two variations, the
continuous Bag-of-Words (CBOW) [16] and the skip-gram [17]. The CBOW
model assumes that a word is generated as a function of the words surrounding
it in the text sequence. That is, the model considers the conditional probability
of generating a core word based on the context words present in the window.
Thus, each word in the dictionary has two vectors, one when it is used as a centre
word and one when it is used as a context word. The vector associated with the
context word is generally used as a representation of the document tokens in
the CBOW model. The skip-gram model is similar to the CBOW model, but
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assumes that a core word can be used to generate the surrounding words in
a text sequence. In contrast to CBOW, in skip-gram the core word is usually
used as the representation of a word in the transformation of the text unit. It is
important to note that both skip-gram and CBOW are self-supervised models,
since the supervision comes from untagged data.

The use of n-grams is the main difference between fastText [3] and W2V.
FastText operates at a granular level, where words are represented by the sum
of the vectors of n-gram frames, whereas Word2Vec only learns vectors for whole
words found in the training corpus. This model can produce better vector repre-
sentations for rare and out-of-vocabulary words because it takes into account the
shared parameters of subwords among words with similar structures. The fast-
Text model can also be applied as a reliable text classification algorithm [9]. For
this purpose, the structure of the model consists of a hidden layer and an output
layer and is quite similar to that of CBOW. The fastText input consists of a
sentence with embedded n-gram features averaged as a feature representation of
the text. Since the number of n-grams is greater than the number of words, it is
impossible to store them all. FastText divides all n-grams into buckets using the
hashing track approach, so that they can share an embedding vector. The input
layer is summed with the hidden layer, averaged and multiplied by a weight
matrix. To produce the output of the model, the hidden layer is then multiplied
by another matrix of weights. In order to apply the fastText and W2V methods
as embedding models, the Python package gensim [21] was used.

The input stream processed by the embedding is comprehensible to RNNs,
which are DL networks specially designed with interconnected units that form
an internal memory to deal with problems of temporal structure. RNNs include
the GRU [5] and the LSTM [8] networks. The main difference between the two
networks is the number and functionality of their internal units. GRU consists of
two gates: a reset gate, which determines the amount of past knowledge trans-
ferred to the current state; and an update gate, which determines the amount
of new information added to the current state. LSTM network consists of three
gates: the input gate, which derives the values used to modify the memory; the
forget gate, which derives the features to discard; and the output gate, which
determines the output based on the input and block memory.

In order to learn the future and past context of the input sequences, both
recurrent networks can be structured to form a bidirectional model [12]. This
model consists of two layers of recurrent units, GRU or LSTM. To learn the
past context, one layer processes the forward sequence based on the current
input and the state of the previous hidden unit. To learn the future context,
the other layer processes the backward sequence based on the current input and
the state of the subsequent hidden unit. The outputs of both recurrent layers
are concatenated to feed the other network layers. The model implemented in
this study includes a dense layer with ReLU activation function at the output of
the recurrent bidirectional layer and a final dense layer with softmax activation
function to infer the neoplasm assigned to the document. In addition, to further
sensitise the network to the context of the sequence, two bidirectional recurrent
layers (2-BiLSTM or 2-BiGRU) can be coupled.



490 F. J. Moreno-Barea et al.

Embedding
Layer

BiLSTM
Layer

Input 
Sequence

...

L1

L2

L3

Ln

L4

L1

L2

L3

Ln

L4

C
on

vo
lu

tio
na

l 1
D

M
ax

 P
oo

lin
g 

1D

658 ...  2521   69   401   06   3   716   14   32

Em
be

dd
in

g

Convolutional
Layer

D
en

se
 R

eL
U

D
ro

po
ut

D
en

se
 S

of
tm

ax

Dense
Layers

Pr
ed

ic
te

d 
N

eo
pl

as
m

Output

1.22 0.31 0.73 ... 1.46

0.83 0.04 0.93 ... 0.82

0.76 1.04 1.28 ... 0.01

0.89 1.92 0.72 ... 0.95

0.16 1.52 0.63 ... 1.61

1.22 0.31 1.73 ... 0.28

0.06 1.09 0.47 ... 0.43

0.63 0.04 1.72 ... 1.02

0.11 1.01 0.55 ... 0.74

1.08 1.32 0.02 ... 0.93

Fig. 3. The CNN + BiLSTM model structure for the text classification system.

In addition, it is possible to add a convolutional layer at the top of these
recurrent models [23]. The purpose of this layer is to capture sequence informa-
tion and reduce input dimensionality in order to feed the recurrent layers. The
window of the convolution layer moves across the text representation to extract
features, generating sequences that capture the syntax and semantics of the text.
The diagram of a BiLSTM model with a convolutional layer and an embedding
layer (C-BiRNN) is shown in Fig. 3. The initial sequence is processed by a tok-
enizer and an embedding model, transforming it into a sequence of tokens with
word index values. This input sequence is fed to the embedding, which can be
pre-trained or not, to obtain the word vectors that feed the 1D convolutional
layer, including a max-pooling. The sequence is fed to the bidirectional recurrent
layer and the result is concatenated to feed a dense layer with dropout. Finally,
the output layer infers the neoplasm associated with the sequence. Tensorflow
[1] package was used to implement these models.

4 Experiments

The experiments performed and the evaluation metrics used in this study are
presented in this section. For the experiments, a stratified division of the data
into training, validation and test sets is carried out with the data already pre-
processed. Table 1 in Sect. 2 describes the result of this division, the number of
documents in each set and the corresponding number of neoplasms. In view of the
division of data, NLP methods (including BoW, W2V and fastText) are trained
using the training set. The validation set is used in a hyperparameter fine-tuning
process to achieve maximum classification performance, while the final prediction
is performed on the test set. Thus, complete independence is maintained between
training, parameter selection and the final prediction performance.
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The metrics precision, recall and F1-score were used to evaluate the clinical
text classification methods studied. The evaluation metrics are calculated using
the true positive (TP), false positive (FP) and false negative (FN) values of the
confusion matrix. The precision metric indicates the ratio of correctly predicted
documents belonging to a neoplasm to the total number of positively predicted
documents. Meanwhile, recall, also known as sensitivity or true positive rate
(TPR), is the ratio of correctly predicted documents belonging to a neoplasm
to the total number of documents of the actual neoplasm. Equation 1 formally
defines the calculation of both metrics. The F1 score is the harmonic mean of
precision and sensitivity (Eq. 2) and provides a reliable measure of the prediction
performance achieved in problems where sensitivity is important.

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(1)

F1-score = 2 · precision · recall
precision + recall

=
2TP

2TP + FP + FN
(2)

In addition, considering that we are studying a multi-class problem, the
micro- and macro-average were considered [24]. Once the evaluation metrics were
defined, the micro-average was calculated by summing the individual TP, FP and
FN provided by the prediction for the different classes, and then calculating the
precision, recall and F1-measure metrics. In contrast, the macro-average simply
performs the average of each of the computed metrics. Since the neoplasm types
present in Galén’s corpus are slightly unbalanced, the macro-average evaluation
is given greater weight.

5 Results

The experimentation process proposed above was followed, and Table 2 shows
the neoplasm classification results, precision, recall and F1-score values achieved
in macro-average (ovr-average) and micro-average evaluation. The best values
achieved are shown in bold, while the second best values are shown in italics. Two
main conclusion can be drawn from the results described in Table 2. On the one
hand, according to the F1-score metric, the methods based on the application
of BoW and ML used in this work obtain, on average, a lower performance. The
SVM method is the only one that outperforms the others, surpassing the perfor-
mance obtained with some RNNs. SVM obtains a micro- and macro-average F1-
score of 0.9814 and 0.9788, respectively. On the other hand, RNN-based models
with convolutional layers and fastText embedding outperform the other methods
in extraction of neoplasm type. It is important to note that the same architec-
tures outperform their versions with W2V embedding, and that RNNs with GRU
units outperform LSTM units. Among all the methods, the best performance is
achieved by the 2-BiGRU model when a pre-trained CBOW fastText embedding
model is applied, obtaining a micro- and macro-average F1-score of 0.9840 and
0.9821, respectively.
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Table 2. Micro- and Macro-averaged metrics computed on test set. For each evaluation
strategy, precision (P), recall (R) and F1-score (F1) metrics are computed.

Model micro macro

P R F1 P R F1

Naive Bayes .9683 .9654 .9668 .9618 .9652 .9634

SVM .9814 .9814 .9814 .9768 .9808 .9788

XGBoost (DT) .9561 .9561 .9561 .9530 .9512 .9520

XGBoost (RF) .9776 .9776 .9776 .9751 .9749 .9750

fastText .9814 .9793 .9804 .9790 .9772 .9781

W2V + C-BiLSTM .9780 .9776 .9778 .9746 .9761 .9753

W2V + C-2-BiLSTM .9768 .9759 .9764 .9737 .9717 .9727

W2V + C-BiGRU .9823 .9819 .9821 .9805 .9778 .9791

W2V + C-2-BiGRU .9789 .9789 .9789 .9767 .9760 .9763

FT + C-BiLSTM .9827 .9823 .9825 .9791 .9812 .9801

FT + C-2-BiLSTM .9840 .9831 .9835 .9837 .9788 .9812

FT + C-BiGRU .9848 .9831 .9840 .9837 .9797 .9817

FT + C-2-BiGRU .9844 .9835 .9840 .9806 .9838 .9821

Overall, the results in Table 2 do not show a clear effectiveness of obtaining
the context of the sequences compared to the other methodologies in text classi-
fication. There are two possible reasons for the observed high performance of ML
methods with BoW, which do not capture context. One could be the inference
of the neoplasm presented in the document by key clinical concepts that are
different for each neoplasm, such as the mention of a specific diagnostic test, for
example a mammogram in the case of breast neoplasms. This is to be expected
and is perfectly acceptable. However, another reason for this behaviour could be
the inference of neoplasms by the presence of non-clinical concepts, such as the
attending oncology specialist or the medical centre mentioned in the history. The
inference based on the presence of these concepts is not desired, as the use of
these pre-trained models in medical centres in other regions could lead to errors.

Table 3. Metrics for each neoplasm obtained by the convolutional 2-Bidirectional GRU
with fastText embedding (FT + C-2-BiGRU) system on the test set.

Neoplasm P R F1 Support

Breast .9954 .9969 .9962 649

Lung .9622 .9793 .9707 338

Colorectal .9769 .9820 .9794 388

Other .9878 .9769 .9823 995

micro-avg .9844 .9835 .9840 2370

macro-avg .9806 .9838 .9821 2370
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With the aim of conducting a thorough analysis of the performance of the
convolutional 2-Bidirectional GRU model with pre-trained fastText embedding
(FT + C-2-BiGRU), which achieves the best neoplasm extraction results, Table 3
shows the metrics obtained for each of the neoplasms considered separately. The
number of texts associated with each neoplasm in the test set is also shown, for
a better evaluation of the obtained metrics. The C-2-BiGRU model performs
particularly well in the classification of breast neoplasms, with an F1-score of
0.9962 and a recall of 0.9969. As the support value shows, this is the most
common independent neoplasm in the Galén corpus (649 documents), which
explains the higher performance. For lung and colorectal neoplasms, the results
obtained are acceptable, especially for recall, where they outperform precision
with values of 0.9793 and 0.9820 respectively. Apart from the F1-score, recall is
the most important metric in diagnostic support systems. Taking into account
that the category of other neoplasms includes neoplasms that may be related
to the previous ones, especially lung and colorectal (e.g. due to the diagnostic
tools and the regions of the body in which they are performed), this category
performs slightly better, with a value of 0.9823 F1-score.
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Fig. 4. Confusion matrix obtained with FT + C-2-BiGRU method on the test set.

Finally, Fig. 4 shows the confusion matrix obtained by the C-2-BiGRU model
with fastText on the test set. As we can see from the matrix, the number of
misclassifications for this particular complex text classification task is low. The
total number of misclassified documents is 38 out of 2370 documents, giving an
accuracy of 0.984.
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6 Conclusions

In this paper we have addressed the problem of the extraction of neoplasm type
from real-world clinical documents in Spanish. For this purpose, we have elabo-
rated a corpus of 23, 704 medical cases annotated with the neoplasm presented
by the patient, obtained from Galén [22]. The performance of ML and BoW-
methods and RNN-based models applied to the text classification task has been
analysed. The results obtained show that, on the one hand, BoW-based methods
achieve similar results to those that consider the context of the sequences. This is
probably caused by two factors: the presence of clinical concepts related to neo-
plasms, such as mammography and breast cancer, or the presence of non-clinical
concepts, such as the names of clinical specialists who treat certain neoplasms.
As the corpus was obtained from a small group of oncology centres, further
analysis is needed to refute this second idea. On the other hand, bidirectional
RNNs with a convolutional layer and pre-trained fastText embedding outper-
form the others methodologies for neoplasm type extraction. Among these RNN-
based systems, the best performance is obtained by the C-2-BiGRU model with
fastText, with macro-averaged precision, recall and F1-score of 0.9806, 0.9838
and 0.9821, respectively. In terms of neoplasm types, the neoplasms best classi-
fied by the C-2-BiGRU model with fastText are breast neoplasms, followed by
other neoplasms (includes head/neck, non-Hodgkin’s lymphoma, thyroid, stom-
ach/esophagus and other), colorectal and lung neoplasms.

In future work, we will investigate the extraction of the type of neoplasm
from the selected Galén corpus, but without obfuscation. In order to preserve
the privacy of the data, we will perform a de-identification process, where private
concepts (names, identifiers, medical centres, locations, etc.) will be randomly
replaced by others, so that the context is preserved, but avoiding that NLP
models learn from non-clinical concepts. Finally, an attempt will be made to
validate the developed methodology on external real-world corpora from other
Spanish medical centres, given the promising results of this work.
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