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Abstract

We present a fuzzy version of the notion of relational Galois connection between fuzzy transitive directed graphs (fuzzy T-
digraphs) on the specific setting in which the underlying algebra of truth values is a complete Heyting algebra. The components 
of such fuzzy Galois connection are fuzzy relations satisfying certain reasonable properties expressed in terms of the so-called full 
powering. Moreover, we provide a necessary and sufficient condition under which it is possible to construct a right adjoint for a 
given fuzzy relation between a fuzzy T-digraph and an unstructured set.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Since its introduction in 1944 by Ore [1], the abstract mathematical notion of Galois connection has become an 
established concept, and plays a key role in a broad range of directions in mathematics and computer science [2]. 
To illustrate the contemporary interest in Galois connections, we mention but a few very recent studies illustrating 
various new application areas. The purpose of our sample is to illustrate the broadness of this interest, and by no 
means has the intention to be comprehensive or complete. Al-Sihabi et al. [3] introduce a framework for the modular 
design of abstract domains for recursive types and higher-order functions, based on Galois connections and the theory 
of recursive domain equations. Oh and Kim [4] consider the notions of Galois and dual Galois connections to develop 
a topological view of concept lattices in complete residuated lattices. Fernández-Alonso and Magaña [5] study Galois 
connections between the lattices of preradicals of two rings A and B induced by an adjoint pair of functors between 
the categories A-Mod and B-Mod. Madrid et al. [6] propose an alternative definition of approximation operator based 
on closure and interior operators obtained from an isotone Galois connection. Horváth et al. [7] characterize invariance 
groups of sets of Boolean functions as Galois closures of a suitable Galois connection. Ararat and Hamel [8] show that 

* Corresponding author.
E-mail address: ejmunoz@uma.es (E. Muñoz-Velasco).
https://doi.org/10.1016/j.fss.2022.12.012
0165-0114/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.fss.2022.12.012&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.fss.2022.12.012
http://www.elsevier.com/locate/fss
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ejmunoz@uma.es
https://doi.org/10.1016/j.fss.2022.12.012
http://creativecommons.org/licenses/by-nc-nd/4.0/


I.P. Cabrera, P. Cordero, E. Muñoz-Velasco et al. Fuzzy Sets and Systems 463 (2023) 108456
a recently introduced lower cone distribution function, together with the set-valued multivariate quantile, generates 
a Galois connection between a complete lattice of closed convex sets and the real unit interval [0, 1]. Alexandru 
and Ciobanu [9] introduce Galois connections between finitely supported ordered structures, and show properties of 
finitely supported Galois connections between invariant complete lattices.

The above studies have in common that they consider Galois connections between sets with different levels of struc-
turation. One recent research topic along this line is the following problem of constructing Galois connections [10]: 
given a mapping f : A → B between different structures (for instance, the domain A being a lattice and the codomain 
B a plain set), one wants to establish necessary and sufficient conditions under which it is possible to equip B with a 
desired structure and construct a mapping g : B → A such that the couple (f, g) is a Galois connection. It is important 
to note the fact that A and B need not have the same structure rules out the application of Freyd’s adjoint functor 
theorem. In the first paper in this research direction [11], the domain A was considered to be a poset or preposet.

Being closely linked to set theory, it is not surprising that Galois connections have also been introduced in the 
setting of fuzzy set theory. The degrees of freedom that come along with such effort usually result in different levels 
of generality, and this is no different for the notion of fuzzy Galois connection [12–14]. In previous works [15,16] we 
explored the above-mentioned construction problem in various fuzzy settings, satisfactorily extending the problem to 
Galois connections between a fuzzy domain A and fuzzy range B , although still having crisp functions as components, 
hence not obtaining a truly fuzzy notion of Galois connection.

More recently, the approach presented in [17] drew us back to the crisp case by considering Galois connections 
of which the domain and range are just sets endowed with arbitrary relations and whose components are (proper) 
relations, resulting in what we called relational Galois connections. Subsequent studies focused on the cases of the 
domain A having the structure of a transitive digraph [18] or fuzzy transitive digraph [19], studying Galois connections 
whose left and right components are crisp relations satisfying certain reasonable properties expressed in terms of the 
so-called full powering.

In this work, we focus on the specific setting in which the underlying algebra of truth values is a complete Heyting 
algebra, and expound for the first time an adequate notion of fuzzy relational Galois connection between fuzzy tran-
sitive digraphs, with both components now being fuzzy relations. This notion of fuzzy relational Galois connection 
will be shown to inherit most of the interesting equivalent characterizations of the notion of crisp Galois connection 
discussed in detail in [19].

This paper is organized as follows. In Section 2, we both recall and extend the mathematical apparatus adopted in 
this paper. We pay particular attention to the different fuzzy powerings and relationships between them, and their prop-
erties, in particular in the context of singletons and (normal) cliques, thereby considerably extending the knowledge 
on the topic. In Section 3, we introduce the protagonists of this paper: fuzzy relational Galois connections between 
fuzzy transitive digraphs. We provide a characterization in terms of a natural fuzzy Galois condition in the presence 
of an appropriate clique condition. In Section 4, we explore links with other notions, as is commonly done in papers 
on the topic: fuzzy closure relations and fuzzy closure systems. We report on the main endeavour of this research in 
Section 5: we provide necessary and sufficient conditions under which it is possible to build a right adjoint for a given 
fuzzy relation, based on the notion of compatibility of a fuzzy closure system with a fuzzy relation. The approach is 
constructive and is amply illustrated with examples. The final section discusses further paths of research to explore 
along the lines of this paper.

2. Preliminary notions

The framework considered in this work is that of L-fuzzy set theory, where L is a complete Heyting algebra. To 
keep the paper self-contained, we recall the necessary notions and related properties required in the core of this paper.

A complete Heyting algebra is an algebra L = (L, ≤, ⊥, �, →), where (L, ≤) is a complete lattice, ⊥ is the bottom 
element, � is the top element, and the following adjointness property holds for all p, q, r ∈ L:

p ∧ q ≤ r ⇐⇒ p ≤ q → r . (1)

Basic consequences of this property, such as q → � = � and (p ≤ q if and only if p → q = �), will be used 
throughout this paper without explicit mentioning. We will also use the following properties, which hold for all 
p, q, r, s ∈ L:
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(p → q) ∧ (r → s) ≤ (p ∧ r) → (q ∧ s) (2)

p ∧ (p → q) ≤ p ∧ q (3)

p ≤ q =⇒ p → r ≤ p → (r ∧ q) (4)

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) (5)

p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r) (6)

Complete Heyting algebras are complete residuated lattices with the meet operation as product. As a consequence, 
the following properties hold as well:

(p ∧ q) → r = p → (q → r) (7)

(p → q) ∧ (q → r) ≤ (p → r) (8)

(p → q) ≤ (p ∧ r) → (q ∧ r) (9)

p →
∧
i∈I

qi =
∧
i∈I

(p → qi) (10)

p ≤ q =⇒ r ∧ p ≤ r ∧ q (11)

p ≤ q =⇒ r → p ≤ r → q (12)

p ≤ q =⇒ q → r ≤ p → r (13)

for all p, q, r ∈ L and {qi : i ∈ I } ⊆ L.
An L-fuzzy set on a universe A (also called L-fuzzy subset of A) is a mapping X : A → L from A to the algebra 

L of membership degrees, where X(a) denotes the degree to which element a belongs to X.1 A fuzzy set X is said 
to be normal if Core(X) := {a ∈ A : X(a) = �} = ∅, i.e., X(a) = � for some a ∈ A. Any element a ∈ A induces a 
singleton, i.e., a fuzzy set a : A → L defined by a(x) = � if x = a and a(x) = ⊥ otherwise.

An L-fuzzy relation between two universes A and B is a mapping μ : A × B → L, where μ(a, b) denotes the 
degree of relationship between the elements a and b. Given a fuzzy relation μ and an element a ∈ A, the afterset aμ

of a is the fuzzy set aμ : B → L defined by aμ(b) = μ(a, b). A fuzzy relation μ is said to be total if the aftersets aμ

are normal, for all a ∈ A. The range of μ is defined as rng(μ) := ⋃
a∈A Core(aμ). The composition of an L-fuzzy 

relation μ between two universes A and B and an L-fuzzy relation ν between B and a universe C is the L-fuzzy 
relation μ ◦ ν between A and C defined by

μ ◦ ν(a, c) =
∨
b∈B

(μ(a, b) ∧ ν(b, c)) .

An L-fuzzy relation on a universe A is a mapping ρ : A × A → L, and is said to be:

• reflexive if ρ(a, a) = �, for all a ∈ A.
• transitive if ρ(a, b) ∧ ρ(b, c) ≤ ρ(a, c), for all a, b, c ∈ A; or, equivalently, ρ ◦ ρ(a, c) ≤ ρ(a, c), for all a, c ∈ A.

Definition 1. A = 〈A, ρ〉 is said to be a fuzzy T-digraph if ρ is a transitive fuzzy relation on A.

Given a relation R on a set A, it is possible to lift R to the powerset 2A by defining the following powerings, for 
all X, Y ∈ 2A, which correspond to the construction of the Hoare, Smyth and Plotkin powersets, respectively:

X RH Y ⇐⇒ (∀x ∈ X)(∃y ∈ Y)(xRy)

X RS Y ⇐⇒ (∀y ∈ Y)(∃x ∈ X)(xRy)

X R∝ Y ⇐⇒ (∀x ∈ X)(∀y ∈ Y)(xRy) .

The adaptation of these powerings to the present fuzzy framework is explained next [20].

1 For convenience, hereafter, we will always omit the prefix L.
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Definition 2. Consider a fuzzy T-digraph 〈A, ρ〉. We define the Hoare, Smyth and full fuzzy powerings as follows, 
for any X, Y : A → L:

(i) ρH (X, Y) =
∧
x∈A

⎛
⎝X(x) →

∨
y∈A

(Y (y) ∧ ρ(x, y))

⎞
⎠;

(ii) ρS(X, Y) =
∧
y∈A

(
Y(y) →

∨
x∈A

(X(x) ∧ ρ(x, y))

)
;

(iii) ρ∝(X, Y) =
∧
x∈A

∧
y∈A

(X(x) ∧ Y(y) → ρ(x, y)).

In the particular case of singletons in the first argument of the fuzzy powerings, the expressions in the above 
definitions are greatly simplified. Indeed, for all a ∈ A, it holds:

(i) ρH (a, Y) =
∨
y∈A

(Y (y) ∧ ρ(a, y));

(ii) ρS(a, Y) = ρ∝(a, Y) =
∧
y∈A

(Y (y) → ρ(a, y)).

We recall that in the characterisation of relational Galois connections in the crisp case, a key role was played by 
the notion of clique [18]. Not surprisingly, a fuzzy version of this notion will play a similar role here.

Definition 3. Let 〈A, ρ〉 be a fuzzy T-digraph. A fuzzy set X : A → L is called a clique if, for all x, y ∈ A, it holds 
that

X(x) ∧ X(y) ≤ ρ(x, y) ,

or, equivalently, ρ∝(X, X) = �.

The following lemmas list a number of technical results related to the fuzzy powerings. They will be extensively 
used throughout this paper.

Lemma 1. Consider a fuzzy T-digraph 〈A, ρ〉, a fuzzy set X : A → L and a ∈ A.

(i) If X is a normal fuzzy set, then

ρS(a,X) = ρ∝(a,X) ≤ ρH (a,X) .

(ii) If X is a clique, then

ρH (a,X) ≤ ρS(a,X) = ρ∝(a,X) .

(iii) If X is a normal clique and x0 ∈ Core(X), then

ρS(a,X) = ρ∝(a,X) = ρH (a,X) = ρ(a, x0) .

(iv) If X is a normal clique, then ρ∝(X, Y) ≤ ρS(X, Y), for all Y : A → L.

Proof. Let us prove (i). Since X is normal, we can choose x0 ∈ A such that X(x0) = �. Hence, using (3), it follows 
that

X(x0) → ρ(a, x0) = � → ρ(a, x0) = � ∧ (� ∧ ρ(a, x0))

≤ � ∧ ρ(a, x0) = X(x0) ∧ ρ(a, x0) .

This clearly implies
4
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ρS(a,X) = ρ∝(a,X) =
∧
x∈A

(X(x) → ρ(a, x))

≤
∨
x∈A

(X(x) ∧ ρ(a, x)) = ρH (a,X) .

Next, we prove (ii). Since X is a clique and ρ is transitive, it holds for all x, y ∈ A that

X(x) ∧ ρ(a, x) ∧ X(y) ≤ ρ(a, x) ∧ ρ(x, y) ≤ ρ(a, y) .

Using the adjointness property, the latter is equivalent to X(x) ∧ ρ(a, x) ≤ X(y) → ρ(a, y). Hence,

ρH (a,X) =
∨
x∈A

(X(x) ∧ ρ(a, x))

≤
∧
y∈A

(X(y) → ρ(a, y)) = ρS(a,X) = ρ∝(a,X) .

To prove (iii), observe on the one hand that

ρS(a,X) ≤ X(x0) → ρ(a, x0) = � → ρ(a, x0) = ρ(a, x0) .

On the other hand, ρH(a, X) ≥ X(x0) ∧ ρ(a, x0) = ρ(a, x0). Using (i) and (ii), it then follows that

ρH (a,X) = ρS(a,X) = ρ∝(a,X) = ρ(a, x0) .

Finally, let us prove (iv). Consider again x0 such that X(x0) = �. We then have

ρ∝(X,Y ) ≤ ρ∝(x0, Y ) = ρS(x0, Y ) =
∧
w∈A

(
Y(w) → ρ(x0,w)

)
(12)≤

∧
w∈A

(
Y(w) →

∨
z∈A

(X(z) ∧ ρ(z,w)
)) = ρS(X,Y ) . �

The following lemma expresses that the fuzzy powering ρ∝ is close to being a transitive fuzzy relation.

Lemma 2. Consider a fuzzy T-digraph 〈A, ρ〉 and fuzzy sets X, Y, Z : A → L. If Y is normal, then ρ∝(X, Y) ∧
ρ∝(Y, Z) ≤ ρ∝(X, Z).

Proof. The claim follows from the following chain of (in-)equalities:

ρ∝(X,Y ) ∧ ρ∝(Y,Z) =
=

∧
a,b∈A

(
X(a) ∧ Y(b) → ρ(a, b)

) ∧
∧

c,d∈A

(
Y(c) ∧ Z(d) → ρ(c, d)

)
=

∧
a,b,c,d∈A

((
X(a) ∧ Y(b) → ρ(a, b)

) ∧ (
Y(c) ∧ Z(d) → ρ(c, d)

))
(∗)≤

∧
a,b,d∈A

((
X(a) ∧ Y(b) → ρ(a, b)

) ∧ (
Y(b) ∧ Z(d) → ρ(b, d)

))
(2)≤

∧
a,b,d∈A

(X(a) ∧ Y(b) ∧ Z(d) → (ρ(a, b) ∧ ρ(b, d)))

(�)≤
∧

a,d∈A

(X(a) ∧ Z(d) → ρ(a, d)) = ρ∝(X,Z) ,

where (∗) follows considering c = b and (�) by choosing b such that Y(b) = � (given that Y is normal). �
Lemma 3. Consider a fuzzy T-digraph 〈A, ρ〉 and fuzzy sets X, Y : A → L. For all a ∈ A, we have:
5
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(i) ρ∝(X, Y) ∧ X(a) ≤ ρ∝(a, Y);
(ii) ρ∝(X, Y) ∧ Y(a) ≤ ρ∝(X, a);

(iii) If X is a normal clique, then ρ∝(a, Y) ∧ X(a) ≤ ρ∝(X, Y);
(iv) If Y is a normal clique, then ρ∝(X, a) ∧ Y(a) ≤ ρ∝(X, Y).

Proof. (i) We will prove that ρ∝(X, Y) ≤ X(a) → ρ∝(a, Y), which is equivalent to ρ∝(X, Y) ∧ X(a) ≤
ρ∝(a, Y). It holds that

ρ∝(X,Y ) =
∧
x∈A

∧
y∈A

(X(x) ∧ Y(y) → ρ(x, y))

≤
∧
y∈A

(X(a) ∧ Y(y) → ρ(a, y))

(7)=
∧
y∈A

(X(a) → (Y (y) → ρ(a, y)))

(10)= X(a) →
∧
y∈A

(Y (y) → ρ(a, y))

= X(a) → ρ∝(a,Y ) .

(ii) The proof is similar to that of the previous item.
(iii) Since X is normal, we can choose x0 such that X(x0) = � and, hence, X(z) ≤ ρ(x0, z) and X(z) ≤ ρ(z, x0)

for all z ∈ A. It follows, due to Lemma 2 and the equality, ρ∝(x0, a) = ρ(x0, a) that

ρ∝(a,Y ) ∧ X(a) ≤ ρ∝(a,Y ) ∧ ρ(x0, a) ≤ ρ∝(x0, Y )

=
∧
y∈A

(
Y(y) → ρ(x0, y)

)
(9)≤

∧
y∈A

(
X(z) ∧ Y(y) → (X(z) ∧ ρ(x0, y))

)
.

In addition, since X(z) ≤ ρ(z, x0), it holds due to the transitivity of ρ that

X(z) ∧ ρ(x0, y) ≤ ρ(z, x0) ∧ ρ(x0, y) ≤ ρ(z, y) ,

and, hence, using (12), that

ρ∝(a,Y ) ∧ X(a) ≤
∧
z∈A

∧
y∈A

(
X(z) ∧ Y(y) → ρ(z, y)

) = ρ∝(X,Y ) .

(iv) The proof is similar to that of the previous item. �
Corollary 1. Consider a fuzzy T-digraph 〈A, ρ〉 and fuzzy sets X, Y : A → L. If X and Y are normal cliques, then for 
all x0 ∈ Core(X) and y0 ∈ Core(Y ), it holds that

ρ∝(X,Y ) = ρ∝(x0, Y ) = ρ∝(X,y0) = ρ(x0, y0) .

In order to extend the definition of a relational Galois connection to the fuzzy framework considered in this paper, 
we need the notions of antitone and inflationary fuzzy relations between fuzzy T-digraphs. The following definition 
states these notions in terms of the Plotkin fuzzy powering ∝.

Definition 4. Consider two fuzzy T-digraphs 〈A, ρA〉 and 〈B, ρB〉. A fuzzy relation μ : A × B →L is said to be:

• antitone if ρA(a1, a2) ∧ μ(a1, b1) ∧ μ(a2, b2) ≤ ρB(b2, b1), for all a1, a2 ∈ A and b1, b2 ∈ B . Equivalently, 
ρA(a1, a2) ≤ ρB∝(a

μ
, aμ

).
2 1
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• isotone if ρA(a1, a2) ∧ μ(a1, b1) ∧ μ(a2, b2) ≤ ρB(b1, b2), for all a1, a2 ∈ A and b1, b2 ∈ B . Equivalently, 
ρA(a1, a2) ≤ ρB∝(a

μ
1 , aμ

2 ).

Definition 5. Let 〈A, ρ〉 be a fuzzy T-digraph. A fuzzy relation μ : A × A → L is said to be:

• inflationary if μ(a1, a2) ≤ ρ(a1, a2), for all a1, a2 ∈ A. Equivalently, ρ∝(a, aμ) = �.
• idempotent if ρ∝(aμ◦μ, aμ) = � and ρ∝(aμ, aμ◦μ) = �, for all a ∈ A.

3. Fuzzy relational Galois connections between fuzzy T-digraphs

In this section, we introduce the central notion of a fuzzy relational Galois connection as a natural generalization 
of the notion of relational Galois connection to the present fuzzy framework.

Definition 6. Consider two fuzzy T-digraphs2 〈A, ρ〉 and 〈B, ρ〉 and two total fuzzy relations μ : A × B → L and 
ν : B × A → L. We say that the couple (μ, ν) is a fuzzy relational Galois connection if both μ and ν are antitone and 
both μ ◦ ν and ν ◦ μ are inflationary.

In order to evaluate the appropriateness of this definition, we aim for a characterization in terms of a suitable 
generalization of the classical Galois condition.

Definition 7. Consider two fuzzy T-digraphs 〈A, ρ〉 and 〈B, ρ〉 and two total fuzzy relations μ : A × B → L and 
ν : B × A → L. We say that the couple (μ, ν) satisfies the fuzzy Galois condition if the following holds for all 
a1, a2 ∈ A and b1, b2 ∈ B:

(i) ρ(a1, a2) ∧ μ(a1, b1) ∧ ν(b2, a2) ≤ ρ(b2, b1);
(ii) ρ(b2, b1) ∧ μ(a1, b1) ∧ ν(b2, a2) ≤ ρ(a1, a2);

or, equivalently, for all a ∈ A and b ∈ B:

(i) ρH (a, bν) ≤ ρS(b, aμ);
(ii) ρH (b, aμ) ≤ ρS(a, bν).

Note that the conditions in the above definition are related to the compatibility of fuzzy relations studied in [21]. 
We already proved in [22, Theorem 1] that the above fuzzy Galois condition provides a characterization of fuzzy 
relational Galois connections (Definition 6) in the framework of fuzzy preposets. However, this is not the case for 
fuzzy T-digraphs, as the following example illustrates.

Example 1. Consider the fuzzy T-digraphs A = 〈{a1, a2, a3, a4}, ρA〉 and B = 〈{b1, b2, b3}, ρB〉, and the fuzzy rela-
tions μ : A × B → [0, 1] and ν : B × A → [0, 1] defined below:

ρA a1 a2 a3 a4

a1 0.5 1 1 0
a2 0.5 1 1 0
a3 0.5 0.5 1 0
a4 0 0 0 1

ρB b1 b2 b3

b1 1 0 0
b2 0 1 1
b3 0 1 1

μ b1 b2 b3

a1 1 0.5 0
a2 1 0.4 0
a3 1 0.3 0
a4 0 0 1

ν a1 a2 a3 a4

b1 0 0.5 1 0
b2 0 0 0 1
b3 0 0 0 1

It is routine to check that (μ, ν) satisfies the fuzzy Galois condition, although it is not a fuzzy relational Galois 
connection, since μ ◦ ν is not inflationary. Indeed, for instance, (μ ◦ ν)(a1, a4) = 0.5 � ρA(a1, a4) = 0.

2 Formally, we should write 〈A, ρA〉 and 〈B, ρB 〉, but we will often abuse the notation whenever there is no risk of confusion.
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Example 2. Consider Belnap’s diamond as the underlying algebra of truth values B = {⊥, t, f, �}, the fuzzy T-
digraphs A = 〈{a1, a2, a3, a4}, ρA〉 and B = 〈{b1, b2, b3}, ρB〉, and the fuzzy relations μ : A × B → B and ν : B ×
A → B defined below:

ρA a1 a2 a3 a4

a1 t � � ⊥
a2 t � � ⊥
a3 t t � ⊥
a4 ⊥ ⊥ ⊥ �

ρB b1 b2 b3

b1 � ⊥ ⊥
b2 ⊥ � �
b3 ⊥ � �

μ b1 b2 b3

a1 � t ⊥
a2 � f ⊥
a3 � t ⊥
a4 ⊥ ⊥ �

ν a1 a2 a3 a4

b1 ⊥ f � ⊥
b2 ⊥ ⊥ ⊥ �
b3 ⊥ ⊥ ⊥ �

It is routine to check that (μ, ν) satisfies the fuzzy Galois condition, although it is not a fuzzy relational Galois 
connection, since μ ◦ ν is not inflationary. Indeed, for instance, (μ ◦ ν)(a1, a4) = t � ρA(a1, a4) = ⊥.

The following theorem states that the fuzzy Galois condition needs to be complemented by a clique condition in 
order to extend the characterization of fuzzy relational Galois connections to the framework of fuzzy T-digraphs.

Theorem 1. Consider two fuzzy T-digraphs 〈A, ρ〉 and 〈B, ρ〉 and two total fuzzy relations μ : A × B → L and 
ν : B ×A → L. The couple (μ, ν) is a fuzzy relational Galois connection between 〈A, ρ〉 and 〈B, ρ〉 if and only if the 
following conditions hold:

(i) (μ, ν) satisfies the fuzzy Galois condition;
(ii) aμ and bν are cliques, for all a ∈ A, b ∈ B .

Proof. Assume that (μ, ν) is a fuzzy relational Galois connection. Consider a1, a2 ∈ A and b1, b2 ∈ B . Since μ is 
total, we can choose b3 ∈ B such that μ(a2, b3) = �. As μ is antitone and ν ◦ μ is inflationary, we obtain

ρ(a1, a2) ∧ μ(a1, b1) ∧ ν(b2, a2)

= ρ(a1, a2) ∧ μ(a1, b1) ∧ μ(a2, b3) ∧ ν(b2, a2) ∧ μ(a2, b3)

≤ ρ(b2, b3) ∧ ρ(b3, b1) ≤ ρ(b2, b1) .

The proof of the second part of the fuzzy Galois condition is similar.
Let us now prove that aμ is a clique, for all a ∈ A. As μ ◦ ν is inflationary, for all a, x ∈ A and b ∈ B , it holds 

that μ(a, b) ∧ν(b, x) ≤ ρ(a, x), which is equivalent to μ(a, b) ≤ ν(b, x) → ρ(a, x), and, hence, μ(a, b) ≤ ρS(a, bν). 
Now, by Lemma 1(i) and the fuzzy Galois condition, we obtain

μ(a, b) ≤ ρS(a, bν) ≤ ρH (a, bν) ≤ ρS(b, aμ) ,

which implies that aμ is a clique, because μ(a, b) ≤ μ(a, x) → ρ(b, x) is equivalent to μ(a, b) ∧ μ(a, x) ≤ ρ(b, x). 
The proof that bν is a clique, for all b ∈ B , is similar.

Conversely, assume that conditions (i) and (ii) hold. Let us prove first that μ ◦ν is inflationary. Consider a1, a2 ∈ A. 
Since μ is total, we can choose b′ ∈ B such that μ(a1, b′) = �. Using the fact that aμ is a clique and the fuzzy Galois 
condition, we get

(μ ◦ ν)(a1, a2) =
∨
b∈B

(
μ(a1, b) ∧ μ(a1, b

′) ∧ μ(a1, b
′) ∧ ν(b, a2)

)

≤
∨
b∈B

(
ρ(b, b′) ∧ μ(a1, b

′) ∧ ν(b, a2)
)

≤ ρ(a1, a2) ,

which shows that μ ◦ ν is inflationary. The proof that ν ◦ μ is inflationary is similar.
Now, before proving that μ is antitone, we show that, for all a1, a2 ∈ A and b ∈ B , there exists a′ ∈ A such that

ρ(a1, a2) ∧ μ(a2, b) ≤ ρ(a1, a
′) ∧ ν(b, a′) . (14)

To do this, since ν is total, we can choose a′ ∈ A such that ν(b, a′) = �. Now, as μ ◦ ν is inflationary and ρ is 
transitive, we obtain for all b1, b2 ∈ B:
8
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ρ(a1, a2) ∧ μ(a2, b) ≤ ρ(a1, a2) ∧ μ(a2, b) ∧ ν(b, a′) ∧ ν(b, a′)
≤ ρ(a1, a2) ∧ ρ(a2, a

′) ∧ ν(b, a′)
≤ ρ(a1, a

′) ∧ ν(b, a′) .

Using this inequality and the fuzzy Galois condition, we obtain

ρ(a1, a2) ∧ μ(a1, b1) ∧ μ(a2, b2) ≤ ρ(a1, a
′) ∧ μ(a1, b1) ∧ ν(b2, a

′)
≤ ρ(b2, b1) ,

which shows that μ is antitone. The proof that ν is antitone is similar. �
As a consequence of this theorem, given a fuzzy relational Galois connection (μ, ν), we have that the aftersets aμ

and bν are normal cliques for all a ∈ A and b ∈ B . Hence, taking into account Lemma 1, we have that ρS(a, bν) =
ρ∝(a, bν) = ρH (a, bν). As a result, the inequalities in the definition of the fuzzy Galois condition reduce to equalities, 
as is expressed in the following corollary.

Corollary 2. Consider two fuzzy T-digraphs 〈A, ρ〉 and 〈B, ρ〉 and two total fuzzy relations μ : A × B → L and 
ν : B ×A → L. The couple (μ, ν) is a fuzzy relational Galois connection between 〈A, ρ〉 and 〈B, ρ〉 if and only if the 
following conditions hold, for all a ∈ A, b ∈ B:

(i) ρ∝(a, bν) = ρ∝(b, aμ);
(ii) aμ and bν are cliques.

The clique condition arising in the characterization of fuzzy relational Galois connections in terms of the fuzzy 
Galois connection is noteworthy: the aftersets of both components (i.e., the fuzzy relations) need to be normal cliques. 
These conditions can be related to the work of Demirci [23] on fuzzy functions: the clique condition corresponds to 
the fuzzy relations being partial fuzzy functions, while the normality (the fuzzy relations being total) further restricts 
the partial fuzzy functions to being perfect. Hence, this characterization catapults us back to a functional framework.

4. Fuzzy closure relations

In this section, within the proposed framework of fuzzy relational Galois connections, we explore the counterpart 
of the classical relationship between Galois connections and closure relations as well as the interplay between closure 
relations and closure systems.

4.1. Fuzzy relational Galois connections and fuzzy closure relations

To start, let us introduce the notion of fuzzy closure relation.

Definition 8. Consider a fuzzy T-digraph 〈A, ρ〉. A fuzzy relation κ : A × A → L is called a fuzzy closure relation on 
A if it is total, isotone, inflationary and idempotent.

Remark 1. Note that the idempotence (as in Definition 5) of a fuzzy closure relation κ is equivalent to demand that 
ρ∝(aκ◦κ , aκ) = �, for all a ∈ A.

In the characterizing Theorem 1, we already saw that the aftersets of the components of a fuzzy relational Galois 
connection are cliques. The following result shows that also the aftersets of fuzzy closure relations are cliques.

Lemma 4. Consider a fuzzy T-digraph 〈A, ρ〉 and a fuzzy closure relation κ : A × A → L on A. For all a ∈ A, we 
have:

(i) aκ and aκ◦κ are cliques;
9
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(ii) aκ(x) ≤ ρ∝(xκ , x) for all x ∈ A.

Proof. Since κ is total, we can choose y0 ∈ Core(aκ) and z ∈ Core(yκ
0 ) such that z ∈ Core(aκ◦κ). First, since κ is 

idempotent, for all x, y ∈ A, we have

aκ(x) ∧ aκ◦κ(y) ≤ ρ(x, y) ∧ ρ(y, x) .

We then obtain that aκ is a clique because

aκ(x) ∧ aκ(y) = aκ(x) ∧ aκ◦κ(z) ∧ aκ◦κ(z) ∧ aκ(y)

≤ ρ(x, z) ∧ ρ(z, y) ≤ ρ(x, y) .

On the other hand, we obtain that aκ◦κ is a clique because

aκ◦κ(x) ∧ aκ◦κ(y) = aκ◦κ(x) ∧ aκ(y0) ∧ aκ(y0) ∧ aκ◦κ(y)

≤ ρ(x, y0) ∧ ρ(y0, y) ≤ ρ(x, y) .

Second, the idempotence of κ implies that

aκ(x) ∧ xκ(z) ∧ aκ(y) ≤ aκ◦κ(z) ∧ aκ(y) ≤ ρ(z, y) ∧ ρ(y, z) .

We then obtain

aκ(x) ∧ xκ(z) ∧ aκ(y0) ≤ aκ(x) ∧ xκ(z) ≤ ρ(z, y0) .

On the other hand, since aκ is a clique, we can also write

aκ(x) ∧ xκ(z) ∧ aκ(y0) ≤ aκ(x) ∧ aκ(y0) ≤ ρ(y0, x) .

Combining the above, and recalling y0 ∈ Core(aκ), we have

aκ(x) ∧ xκ(z) ≤ ρ(z, y0) ∧ ρ(y0, x) ≤ ρ(z, x) ,

consequently, aκ(x) ≤ ρ∝(xκ, x). �
The main result in this subsection is that the compositions of the components of a fuzzy relational fuzzy Galois 

connection effectively yield fuzzy closure relations. To that end, we need the following lemma.

Lemma 5. If (μ, ν) is a fuzzy relational Galois connection between two fuzzy T-digraphs 〈A, ρ〉 and 〈B, ρ〉, then for 
all a ∈ A the following chain of equalities holds:

ρ∝(aμ, aμ◦ν◦μ) = � = ρ∝(aμ◦ν◦μ,aμ) .

Proof. First of all, we note that the first inequality ρ∝(aμ, aμ◦ν◦μ) = � is equivalent to the inequality aμ(z) ∧
aμ◦ν◦μ(w) ≤ ρ(z, w), for all z, w ∈ B . In order to prove this inequality, we consider the following facts:

(a) Since ν ◦ μ is inflationary, we have ρ∝(y, yν◦μ) = �, for all y ∈ B , or, equivalently, yν◦μ(w) ≤ ρ(y, w), for 
all y, w ∈ B .

(b) Since aμ is a clique, we have ρ∝(aμ, aμ) = �, or, equivalently, aμ(z) ∧ aμ(y) ≤ ρ(z, y) for all y, z ∈ B .

From these two inequalities, we obtain for all y ∈ B:

aμ(z) ∧ aμ(y) ∧ yν◦μ(w) ≤ ρ(z, y) ∧ ρ(y,w) ≤ ρ(z,w) ,

and thus∨
y∈B

(
aμ(z) ∧ aμ(y) ∧ yν◦μ(w)

)
≤ ρ(z,w) .

By distributivity, we obtain for all z, w ∈ B:
10
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aμ(z) ∧
∨
y∈B

(
aμ(y) ∧ yν◦μ(w)

)
= aμ(z) ∧ aμ◦ν◦μ(w) ≤ ρ(z,w) .

Similarly, the second equality ρ∝(aμ◦ν◦μ, aμ) = � is equivalent to the inequality aμ◦ν◦μ(z) ∧ aμ(w) ≤ ρ(z, w), 
for all z, w ∈ B . In order to prove this inequality, we consider the following facts:

(a) Since μ ◦ ν is inflationary, we have ρ∝(a, aμ◦ν) = �, or, equivalently, aμ◦ν(x) ≤ ρ(a, x), for all x ∈ A.
(b) Since μ is antitone, for all x ∈ A and all z, w ∈ B , we have

ρ(a, x) ≤ ρ∝(xμ, aμ) ≤ xμ(z) ∧ aμ(w) → ρ(z,w) .

From the above inequalities, we obtain for all z, w ∈ B:

aμ◦ν(x) ≤ xμ(z) ∧ aμ(w) → ρ(z,w) ,

which is equivalent to

aμ◦ν(x) ∧ xμ(z) ≤ aμ(w) → ρ(z,w) .

Since the latter holds for all x ∈ A, we have

aμ◦ν◦μ(z) =
∨
x∈A

(
aμ◦ν(x) ∧ xμ(z)

)
≤ aμ(w) → ρ(z,w) ,

or, equivalently, aμ◦ν◦μ(z) ∧ aμ(w) ≤ ρ(z, w). �
Proposition 1. Consider two fuzzy T-digraphs 〈A, ρ〉 and 〈B, ρ〉, and two total fuzzy relations μ : A × B → L and 
ν : B × A → L. If (μ, ν) is a fuzzy relational Galois connection between 〈A, ρ〉 and 〈B, ρ〉, then μ ◦ ν is a fuzzy 
closure relation on A and ν ◦ μ is a fuzzy closure relation on B .

Proof. We only give the proof that μ ◦ ν is a fuzzy closure relation on A, the other proof being similar. It is straight-
forward that μ ◦ ν is total. By definition of a fuzzy relational Galois connection, it holds that μ ◦ ν is inflationary. Let 
us now prove that ρ(a1, a2) ≤ ρ∝(a

μ◦ν
1 , aμ◦ν

2 ), i.e., μ ◦ ν is isotone. Successively using that μ and ν are antitone, we 
obtain for all y1, y2 ∈ B:

ρ(a1, a2) ∧ a
μ
2 (y1) ∧ a

μ
1 (y2) ≤ ρ(y1, y2)

≤ ρ∝(yν
2 , yν

1 )

=
∧

x1,x2∈A

(
yν

2 (x1) ∧ yν
1 (x2) → ρ(x1, x2)

)
.

In particular, for all x1, x2 ∈ A, we obtain

ρ(a1, a2) ∧ a
μ
2 (y1) ∧ a

μ
1 (y2) ≤ yν

2 (x1) ∧ yν
1 (x2) → ρ(x1, x2) .

The adjointness property leads to:

ρ(a1, a2) ∧ a
μ
2 (y1) ∧ a

μ
1 (y2) ∧ yν

2 (x1) ∧ yν
1 (x2) ≤ ρ(x1, x2) ,

and hence

ρ(a1, a2) ∧
∨

y1∈B

(
a

μ
2 (y1) ∧ yν

1 (x2)
) ∧

∨
y2∈B

(
a

μ
1 (y2) ∧ yν

2 (x1)
) ≤ ρ(x1, x2) .

Using the definition of fuzzy relational composition, we obtain

ρ(a1, a2) ∧ a
μ◦ν
1 (x1) ∧ a

μ◦ν
2 (x2) ≤ ρ(x1, x2) ,

which gives isotonicity.
Finally, in order to prove idempotence, it suffices to show that aμ◦ν◦μ◦ν(x1) ∧ aμ◦ν(x2) ≤ ρ(x1, x2). Lemma 5 and 

the fact that ν is antitone lead to
11
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aμ(y1) ∧ aμ◦ν◦μ(y2) ≤ ρ(y1, y2)

≤ ρ∝(yν
2 , yν

1 )

=
∧

x1,x2∈A

(
yν

2 (x1) ∧ yν
1 (x2) → ρ(x1, x2)

)
.

Hence, for all x1, x2 ∈ A, we have

aμ(y1) ∧ aμ◦ν◦μ(y2) ≤ yν
2 (x1) ∧ yν

1 (x2) → ρ(x1, x2) ,

which is equivalent to

aμ(y1) ∧ aμ◦ν◦μ(y2) ∧ yν
2 (x1) ∧ yν

1 (x2) ≤ ρ(x1, x2) .

Taking the supremum over y1, y2, we obtain

aμ◦ν◦μ◦ν(x1) ∧ aμ◦ν(x2) ≤ ρ(x1, x2) . �
4.2. Fuzzy closure relations and fuzzy closure systems

In order to generalize the construction of fuzzy closure systems to the framework of fuzzy T-digraphs, we need an 
appropriate notion of fuzzy minimum. The following definition, inspired by [24], turns out to do the job.

Definition 9. Given a fuzzy T-digraph 〈A, ρ〉 and a fuzzy set X : A → L. The minimum of X is the fuzzy set 
m(X) : A → L defined by m(X)(a) = X(a) ∧ ρ∝(a, X), for all a ∈ A.

First, we prove that m(X) is also a clique. This will turn out to be helpful later on for proving that a fuzzy closure 
system generates a fuzzy closure relation.

Lemma 6. Consider a fuzzy T-digraph 〈A, ρ〉 and a fuzzy set X : A → L. Then m(X) is a clique.

Proof. By definition of m(X), for all w ∈ A, we have

m(X)(a) = X(a) ∧ ρ∝(a,X)

= X(a) ∧
∧
w∈A

(X(w) → ρ(a,w))

≤ X(w) → ρ(a,w) .

The adjointness property then leads to

m(X)(a) ∧ X(w) ≤ ρ(a,w) .

The proof that m(X) is a clique then goes as follows:

m(X)(a1) ∧ m(X)(a2) ≤ m(X)(a1) ∧ X(a2) ≤ ρ(a1, a2) ,

for all a1, a2 ∈ A. �
Next, we introduce the notion of a fuzzy closure system.

Definition 10. Consider a fuzzy T-digraph 〈A, ρ〉. A fuzzy set C : A → L is called a fuzzy closure system if m(aρ ∩C)

is normal, for all a ∈ A.

The following theorem states that a fuzzy closure relation generates a fuzzy closure system.

Theorem 2. Consider a fuzzy T-digraph 〈A, ρ〉 and a fuzzy closure relation κ : A × A → L on A. Then the fuzzy set 
Cκ : A → L defined by Cκ(x) = ρ∝(xκ , x), for all x ∈ A, satisfies aκ(x) ≤ m(aρ ∩Cκ)(x) for all a, x ∈ A. Therefore, 
Cκ is a fuzzy closure system.
12
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Proof. For all a, x ∈ A, since κ is inflationary, we have aκ(x) ≤ ρ(a, x) = aρ(x). By Lemma 4(ii), we also have 
aκ(x) ≤ ρ∝(xκ, x) = Cκ(x). Combined, we obtain aκ(x) ≤ (aρ ∩ Cκ)(x).

For all y ∈ A, since κ is isotone, we have

ρ(a, y) ≤ ρ∝(aκ , yκ) =
∧

x,z∈A

(
aκ(x) ∧ yκ(z) → ρ(x, z)

)
,

which, using the adjointness property, leads to

ρ(a, y) ∧ aκ(x) ∧ yκ(z) ≤ ρ(x, z) .

Moreover, by definition of Cκ and Lemma 3(iii), we have

Cκ(y) ∧ yκ(z) = ρ∝(yκ , y) ∧ yκ(z) ≤ ρ(z, y) ,

and, thus,

ρ(a, y) ∧ aκ(x) ∧ yκ(z) ∧ Cκ(y) ≤ ρ(x, z) ∧ ρ(z, y) ≤ ρ(x, y) .

Again, since yκ is total, we can choose z0 such that yκ(z0) = � and

ρ(a, y) ∧ aκ(x) ∧ Cκ(y) = aκ(x) ∧ (aρ ∩ Cκ)(y) ≤ ρ(x, y) .

As a result, we obtain aκ(x) ≤ ρ∝(x, aρ ∩ Cκ).
Finally, taking into account the results in the two previous paragraphs, we can write

aκ(x) ≤ (aρ ∩ Cκ)(x) ∧ ρ∝(x, aρ ∩ Cκ) = m(aρ ∩ Cκ)(x) .

Since κ is total, it is then immediate that m is a fuzzy closure system. �
The following theorem is somehow a converse of the previous one, in the sense that a fuzzy closure system is 

shown to generate a fuzzy closure relation.

Theorem 3. Consider a fuzzy T-digraph 〈A, ρ〉 and a fuzzy closure system C : A → L. The fuzzy relation κC : A ×
A → L defined by κC(a, x) = aκC (x) = m(aρ ∩ C)(x), for all a, x ∈ A, is a fuzzy closure relation.

Proof. We have to prove that κC is total, inflationary, isotone, and idempotent.

(i) Obviously, κC is total since m(aρ ∩ C) is normal.
(ii) κC is inflationary by definition of m, since aκC (x) = m(aρ ∩ C)(x) ≤ ρ(a, x).
(iii) Using the definition of m and the transitivity of ρ, we get

ρ(a1, a2) ∧ a1
κC (x) ∧ a

κC

2 (y) = ρ(a1, a2) ∧ m(a
ρ
1 ∩ C)(x) ∧ m(a

ρ
2 ∩ C)(y)

= ρ(a1, a2) ∧ (a
ρ
1 ∩ C)(x) ∧ ρ∝(x, a

ρ
1 ∩ C) ∧ m(a

ρ
2 ∩ C)(y)

≤ ρ(a1, a2) ∧ ρ∝(x, a
ρ
1 ∩ C) ∧ ρ(a2, y) ∧ C(y)

≤ ρ∝(x, a
ρ
1 ∩ C) ∧ ρ(a1, y) ∧ C(y)

= ρ∝(x, a
ρ
1 ∩ C) ∧ (a

ρ
1 ∩ C)(y) .

Now, using Lemma 3(ii), we obtain

ρ(a1, a2) ∧ a
κC

1 (x) ∧ a
κC

2 (y) ≤ ρ(x, y) .

Hence, for all x, y ∈ A, it holds that

ρ(a1, a2) ≤ a
κC

1 (x) ∧ a
κC

2 (y) → ρ(x, y) ,

which implies

ρ(a1, a2) ≤ ρ∝(a
κC , a

κC ) .
1 2

13
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(iv) For the idempotence of κC , we need to show that ρ∝(aκC◦κC , aκC ) = �. Since aκC (w) = m(aρ ∩ C)(w) ≤
C(w) and aκC is a clique due to Lemma 6, and using Lemma 3(ii), for all x, y, w ∈ A, we have

aκC (x) ∧ xκC (y) ∧ aκC (w) ≤ aκC (x) ∧ xκC (y) ∧ aκC (w) ∧ C(w)

≤ ρ(x,w) ∧ xκC (y) ∧ C(w)

≤ ρ∝(y, xρ ∩ C) ∧ ρ(x,w) ∧ C(w)

≤ ρ∝(y,w) = ρ(y,w) .

Therefore( ∨
x∈A

(aκC (x) ∧ xκC (y))

)
∧ aκC (w) = aκC◦κC (y) ∧ aκC (w) ≤ ρ(y,w) ,

which is, precisely, ρ∝(aκC◦κC , aκC ) = �. �
5. Construction of the right adjoint

This section constitutes the core contribution of this paper. We provide necessary and sufficient conditions under 
which it is possible to build a right adjoint for a given fuzzy relation. To that end, we first introduce the notion of 
compatibility of a fuzzy closure system with a fuzzy relation μ, more specifically, with its fuzzy kernel relation, 
which is defined below.

Definition 11. Consider a fuzzy T-digraph 〈A, ρ〉, a set B and a fuzzy relation μ : A × B → L. The fuzzy kernel 
relation ≡μ : A × A → L is defined by, for all a1, a2 ∈ A:

(a1 ≡μ a2) =
∨
b∈B

(a
μ
1 (b) ∧ a

μ
2 (b)) .

A fuzzy closure system C : A → L is called compatible with μ if ρ∝(a≡μ, aρ ∩C) = �, for all a ∈ A, or, equivalently, 
for all a1, a2 ∈ A, it holds:∨

b∈B

(a
μ
1 (b) ∧ a

μ
2 (b)) ≤ ρ∝(a1, a

ρ
2 ∩ C) .

The following technical lemma will be used later on in order to prove Proposition 2.

Lemma 7. Consider a fuzzy relational Galois connection (μ, ν) between two fuzzy T-digraphs 〈A, ρ〉 and 〈B, ρ〉. We 
have:

(i) ρ∝(aμ, b) ≤ ρ∝(bν, aμ◦ν), for all a ∈ A, b ∈ B;
(ii) ρ∝(a

μ
1 , aμ

2 ) ≤ ρ∝(a2, a
μ◦ν
1 ), for all a1, a2 ∈ A.

Proof. Let us prove the first inequality. For all x ∈ A and y ∈ B , we have

ρ∝(aμ, b) ∧ bν(x) ∧ aμ◦ν(y) = ρ∝(aμ, b) ∧ bν(x) ∧
( ∨

z∈B

(aμ(z) ∧ zν(y))

)

=
∨
z∈B

(
ρ∝(aμ, b) ∧ bν(x) ∧ aμ(z) ∧ zν(y)

)
.

Using Lemma 3(i) with X = aμ, we obtain∨
z∈B

(
ρ∝(aμ, b) ∧ bν(x) ∧ aμ(z) ∧ zν(y)

) ≤
∨
z∈B

(
ρ(z, b) ∧ bν(x) ∧ zν(y)

)
.

Since ν is antitone, for all x, y ∈ A and z ∈ B it holds that:
14
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ρ(z, b) ≤ ρ∝(bν, zν) =
∧
x∈A

∧
y∈A

(
bν(x) ∧ zν(y) → ρ(x, y)

)
≤ bν(x) ∧ zν(y) → ρ(x, y) .

As a consequence, we have∨
z∈B

(
ρ(z, b) ∧ bν(x) ∧ zν(y)

) ≤ ρ(x, y) .

Hence, ρ∝(aμ, b) ∧ bν(x) ∧ aμ◦ν(y) ≤ ρ(x, y) for all x, y ∈ A, and, using the adjointness property, we obtain

ρ∝(aμ, b) ≤
∧
x∈A

∧
y∈A

(
bν(x) ∧ aν◦μ(y) → ρ(x, y)

) = ρ∝(bν, aμ◦ν) .

Next, we prove the second inequality. Since aμ
1 is normal, we can choose y0 ∈ B such that aμ

1 (y0) = �. Since aμ
1

and aμ
2 are normal cliques, Corollaries 1 and 2 yield

ρ∝(a
μ
1 , a

μ
2 ) = ρ∝(y0, a

μ
2 ) = ρ∝(a2, y

ν
0 ) .

Due to Corollary 1, we also have ρ∝(a
μ
1 , y0) = �. Together with the first inequality proven and Lemma 2, we then 

obtain

ρ∝(a
μ
1 , a

μ
2 ) = ρ∝(a2, y

ν
0 ) ∧ ρ∝(a

μ
1 , y0)

≤ ρ∝(a2, y
ν
0 ) ∧ ρ∝(yν

0 , a
μ◦ν
1 )

≤ ρ∝(a2, a
μ◦ν
1 ) . �

The following proposition provides important information for the construction of the right adjoint.

Proposition 2. Consider a fuzzy relational Galois connection (μ, ν) between two fuzzy T-digraphs 〈A, ρ〉 and 〈B, ρ〉, 
then the fuzzy closure system Cμ◦ν : A → L defined by Cμ◦ν(x) = ρ∝(xμ◦ν, x), for all x ∈ A, is compatible with μ.

Proof. Consider a1, a2 ∈ A. Since ν is antitone, for all x ∈ A and b ∈ B , it holds that

a
μ
1 (b) ∧ a

μ
2 (b) ∧ a

ρ
2 (x) ∧ Cμ◦ν(x)

= a
μ
1 (b) ∧ a

μ
2 (b) ∧ ρ(a2, x) ∧ ρ∝(xμ◦ν, x)

≤ a
μ
1 (b) ∧ a

μ
2 (b) ∧ ρ∝(xμ, a

μ
2 ) ∧ ρ∝(xμ◦ν, x) .

According to Lemma 3(iii), we have aμ
2 (b) ∧ ρ∝(xμ, aμ

2 ) ≤ ρ∝(xμ, b). Hence,

a
μ
1 (b) ∧ a

μ
2 (b) ∧ ρ∝(xμ, a

μ
2 ) ∧ ρ∝(xμ◦ν, x) ≤ a

μ
1 (b) ∧ ρ∝(xμ, b) ∧ ρ∝(xμ◦ν, x) .

Applying Lemma 3(iii) and Lemma 2 (since xμ◦ν is normal), we have aμ
1 (b) ∧ ρ∝(xμ, b) ≤ ρ∝(xμ, aμ

2 ) and thus

a
μ
1 (b) ∧ ρ∝(xμ, b) ∧ ρ∝(xμ◦ν, x) ≤ ρ∝(xμ, a

μ
1 ) ∧ ρ∝(xμ◦ν, x) .

Applying Lemma 7, we obtain

ρ∝(xμ, a
μ
1 ) ∧ ρ∝(xμ◦ν, x) ≤ ρ∝(a1, x

μ◦ν) ∧ ρ∝(xμ◦ν, x) ≤ ρ∝(a1, x) = a
ρ
1 (x) .

Finally, from aμ
1 (b) ∧ a

μ
2 (b) ∧ a

ρ
2 (x) ∧ Cμ◦ν(x) ≤ a

ρ
1 (x), we obtain∨

b∈B

(a
μ
1 (b) ∧ a

μ
2 (b)) ≤

∧
x∈A

(a
ρ
1 (x) ∧ Cμ◦ν(x) → a

ρ
2 (x)) = ρ∝(a2, a

ρ
1 ∩ C) ,

which concludes the proof. �
Before proceeding to prove sufficiency, we need the following technical results in Lemmas 8 and 9.
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Lemma 8. Consider a fuzzy T-digraph 〈A, ρ〉 and a fuzzy set C : A →L. For all a1, a2, a3 ∈ A, it holds that

ρ∝(a1, a2 ∩ C) ∧ ρ∝(a2, a3 ∩ C) ≤ ρ∝(a1, a3 ∩ C) .

Proof. The claim follows from the following chain:

ρ∝(a1, a
ρ
2 ∩ C) ∧ ρ∝(a2, a

ρ
3 ∩ C)

=
∧
x∈A

(
a

ρ
2 (x) ∧ C(x) → a

ρ
1 (x)

) ∧
∧
x∈A

(
a

ρ
3 (x) ∧ C(x) → a

ρ
2 (x)

)
=

∧
x∈A

((
a

ρ
3 (x) ∧ C(x) → a

ρ
2 (x)

) ∧ (
a

ρ
2 (x) ∧ C(x) → a

ρ
1 (x)

))
(9)≤

∧
x∈A

((
a

ρ
3 (x) ∧ C(x) → (a

ρ
2 (x) ∧ C(x))

) ∧ (
a

ρ
2 (x) ∧ C(x) → a

ρ
1 (x)

))
(8)≤

∧
x∈A

(
a

ρ
3 (x) ∧ C(x) → a

ρ
1 (x)

) = ρ∝(a1, a
ρ
3 ∩ C) . �

Lemma 9. Consider a fuzzy T-digraph 〈A, ρ〉, a set B , a fuzzy relation μ : A × B → L and a fuzzy closure system 
C : A → L that is compatible with μ. For all a1, a2, x ∈ A and b ∈ B , we have:

(i) (a1 ≡μ a2) ∧ m(a
ρ
1 ∩ C)(x) ≤ m(a

ρ
2 ∩ C)(x).

(ii) If aμ
1 (b) = �, then aμ

2 (b) ∧ m(a
ρ
1 ∩ C)(x) ≤ m(a

ρ
2 ∩ C)(x).

(iii) If aμ
1 (b) = a

μ
2 (b) = �, then m(a

ρ
1 ∩ C) = m(a

ρ
2 ∩ C).

Proof. We prove the first item, the other two items being immediate consequences of it. For all a1, a2, x ∈ A, since C
is compatible with μ, we have

(a1 ≡μ a2)(x) ≤ ρ∝(a1, a
ρ
2 ∩ C) ∧ ρ∝(a2, a

ρ
1 ∩ C) .

Using the definition of m, we obtain

(a1 ≡μ a2) ∧ m(a
ρ
1 ∩ C)(x) ≤

= ρ∝(a1, a
ρ
2 ∩ C) ∧ ρ∝(a2, a

ρ
1 ∩ C) ∧ (a

ρ
1 ∩ C)(x) ∧ ρ∝(x, a

ρ
1 ∩ C) .

Lemma 8 then implies

ρ∝(x, a
ρ
1 ∩ C) ∧ ρ∝(a1, a

ρ
2 ∩ C) ≤ ρ∝(x, a

ρ
2 ∩ C) ,

and thus

ρ∝(a1, a
ρ
2 ∩ C) ∧ ρ∝(a2, a

ρ
1 ∩ C) ∧ (a

ρ
1 ∩ C)(x) ∧ ρ∝(x, a

ρ
1 ∩ C)

≤ ρ∝(x, a
ρ
2 ∩ C) ∧ (a

ρ
1 ∩ C)(x) ∧ ρ∝(a2, a

ρ
1 ∩ C)

≤ ρ∝(x, a
ρ
2 ∩ C) ∧ (a

ρ
1 ∩ C)(x) ∧ (

(a
ρ
1 ∩ C)(x) → a

ρ
2 (x)

)
= ρ∝(x, a

ρ
2 ∩ C) ∧ (a

ρ
1 ∩ C)(x) ∧ (a

ρ
1 ∩ C)(x) ∧ (

(a
ρ
1 ∩ C)(x) → a

ρ
2 (x)

)
≤ ρ∝(x, a

ρ
2 ∩ C) ∧ (a

ρ
1 ∩ C)(x) ∧ a

ρ
2 (x) ≤ ρ∝(x, a

ρ
2 ∩ C) ∧ C(x) ∧ a

ρ
2 (x)

= m(a
ρ
2 ∩ C)(x) . �

The following proposition states an additional necessary condition.

Proposition 3. If (μ, ν) is a fuzzy relational Galois connection between two fuzzy T-digraphs 〈A, ρ〉 and 〈B, ρ〉, with 
rng(μ) = B , then there exist a crisp function γ : B � rng(μ) → A and a fuzzy closure system C : A → L, such that 
for all a, x ∈ A and b ∈ B � rng(μ), it holds that

aμ(b) ∧ γ (b)κC (x) ≤ aκC◦κC (x) . (15)
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Proof. Since ν is total and rng(μ) = B , we can define γ : B � rng(μ) → A such that bν(γ (b)) = �, for all b ∈
B � rng(μ).

From Propositions 1 and 2, and Theorems 2 and 3, we know that C := Cμ◦ν is a fuzzy closure system that is 
compatible with μ, such that aμ◦ν(x) ≤ aκC (x), for all x ∈ A. Using the latter, the definition of γ and standard 
properties, for all a, x ∈ A and b ∈ B � rng(μ), we get

aκC◦κC (x) =
∨
z∈A

(aκC (z) ∧ zκC (x))

≥ aκC (γ (b)) ∧ γ (b)κC (x)

≥ aμ◦ν(γ (b)) ∧ γ (b)κC (x)

=
⎛
⎝∨

y∈B

(aμ(y) ∧ yν(γ (b))

⎞
⎠ ∧ γ (b)κC (x)

≥ aμ(b) ∧ bν(γ (b)) ∧ γ (b)κC (x)

= aμ(b) ∧ γ (b)κC (x) . �
The following proposition shows that the conditions in Propositions 2 and 3 are also sufficient.

Proposition 4. Consider a fuzzy T-digraph 〈A, ρ〉, a set B , a fuzzy relation μ : A ×B → L and a fuzzy closure system 
C that is compatible with μ. Assume that either rng(μ) = B or there exists a crisp function γ : B � rng(μ) → A that 
satisfies condition (15). Then there exist a transitive fuzzy relation ρ′ on B and a fuzzy relation ν : B × A → L such 
that (μ, ν) is a fuzzy relational Galois connection between the T-digraphs 〈A, ρ〉 and 〈B, ρ′〉.

Proof. First of all, due to the axiom of choice, we can define the mapping ξ : B → A as follows:

ξ(b) =
{

a , if there exists a ∈ A such that aμ(b) = �
γ (b) , otherwise.

Now define ν : B × A → L as

bν = m(ξ(b)ρ ∩ C) = ξ(b)κC

and ρ′ : B × B →L as:

ρ′(b1, b2) = ρ∝(bν
2, bν

1) .

Note that the definition of ν does not depend on the choice of the mapping ξ , thanks to Lemma 9(iii). Moreover, ν is 
total since C is a fuzzy closure system.

Using Lemma 2, we obtain

ρ′(b1, b2) ∧ ρ′(b2, b3) = ρ∝(bν
2, bν

1) ∧ ρ∝(bν
3, bν

2)

≤ ρ∝(bν
3, bν

1) = ρ′(b1, b3) .

In order to prove that (μ, ν) is a fuzzy relational Galois connection, we will use the characterization given in 
Theorem 1. Let us first prove the clique conditions. By definition of ν and Lemma 6, it is clear that bν is a clique, for 
all b ∈ B . In order to prove that aμ is a clique, for all a ∈ A, we first note that by Lemma 9(ii), for all a, x ∈ A and 
b ∈ rng(B), we have

aμ(b) ∧ ξ(b)κC (x) ≤ aκC (x) . (16)

We thus have to consider three cases depending on whether b1 or b2 belong to rng(μ).

(1) Let b1, b2 ∈ rng(μ). Using (16) and the fact that aκC is a clique, we obtain

aμ(b1) ∧ aμ(b2) ∧ ξ(b2)
κC (x) ∧ ξ(b1)

κC (y) ≤ aκC (x) ∧ aκC (y) ≤ ρ(x, y) ,
17
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and, hence,

aμ(b1) ∧ aμ(b2) ≤
∧

x,y∈A

(
ξ(b2)

κC (x) ∧ ξ(b1)
κC (y) → ρ(x, y)

)
= ρ∝(ξ(b2)

κC , ξ(b1)
κC ) = ρ′(b1, b2) .

(2) Let b1 /∈ rng(μ) and b2 ∈ rng(μ). Using (15) and (16), and the fact that κC is idempotent, we obtain

aμ(b1) ∧ aμ(b2) ∧ ξ(b1)
κC (x) ∧ ξ(b2)

κC (y) ≤ aκC◦κC (x) ∧ aκC (y) ≤ ρ(x, y) .

(3) Finally, let b1, b2 /∈ rng(μ). Using (15) and Lemma 4, we obtain

aμ(b1) ∧ aμ(b2) ∧ ξ(b2)
κC (x) ∧ ξ(b1)

κC (y) ≤ aκC◦κC (x) ∧ aκC◦κC (y) ≤ ρ(x, y) .

This indeed proves that aμ is a clique.
Finally, let us prove the fuzzy Galois condition, i.e., ρ∝(a, bν) = ρ′∝(b, aμ), for all a ∈ A and b ∈ B . Since μ is 

total, we can choose y0 such that aμ(y0) = �. We then have

ρ′∝(b, aμ) =
∧
y∈B

(
aμ(y) → ρ′(b, y)

) ≤ ρ′(b, y0) = ρ∝(yν
0 , bν)

(∗)≤ ρS(yν
0 , bν) =

∧
w∈A

(
bν(w) →

∨
z∈A

(yν
0 (z) ∧ ρ(z,w))

)
,

where (∗) follows from Lemma 1(i). Note that aμ(y0) = � implies that yν
0 = ξ(y0)

κC = aκC and thus yν
0 (z) = m(aρ ∩

C)(z) ≤ ρ(a, z). We then continue

ρ′∝(b, aμ) ≤
∧
w∈A

(
bν(w) →

∨
z∈A

(yν
0 (z) ∧ ρ(z,w))

)

≤
∧
w∈A

(
bν(w) →

∨
z∈A

(ρ(a, z) ∧ ρ(z,w))

)

≤
∧
w∈A

(
bν(w) → ρ(a,w)

) = ρ∝(a, bν) .

In order to prove the converse inequality, we first prove that if bν(x0) = �, then xμC

0 (x0) = �. Since bν is a clique, 
we have bν(x0) ≤ ρ(x0, x0). Moreover, since bν = m(ξ(b)ρ ∩ C), we have bν(x0) ≤ C(x0). Hence, we obtain

bν(x0) ≤ (x
ρ
0 ∩ C)(x0) . (17)

On the other hand, it trivially holds that bν(x0) ∧ρ(x0, z) ∧C(z) ≤ ρ(x0, z), or, equivalently, bν(x0) ≤ (x
ρ
0 ∩C)(z) →

ρ(x0, z), for all z ∈ A. Therefore

bν(x0) ≤
∧
z∈A

(
x

ρ
0 ∩ C)(z) → ρ(x0, z)

) = ρ∝(x0, x
ρ
0 ∩ C) . (18)

Now, using bν(x0) = �, (17), (18) and the definition of m(x
ρ
0 ∩ C), we obtain

� = bν(x0) ≤ m(x
ρ
0 ∩ C)(x0) = x

κC

0 (x0) , (19)

and hence xκC

0 (x0) = �.
We are now ready to complete the proof. Since κC is isotone, we obtain using (19)

ρ∝(a, bν) =
∧
x∈A

(
bν(x) → ρ(a, x)

)
≤ ρ(a, x0) ≤ ρ∝(aκC , x

κC )
0

18
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=
∧

z,w∈A

(
aκC (z) ∧ x

κC

0 (w) → ρ(z,w)
)

(�)≤
∧
z∈A

(
aκC (z) → ρ(z, x0)

) = ρ∝(aκC , x0) .

Using Corollary 1 and Lemma 1(iii), we then get

ρ∝(a, bν) ≤ ρ∝(aκC , x0) = ρ∝(aκC , bν) = ρ∝(yν
0 , bν)

= ρ′(b, y0) = ρ′∝(b, aμ) .

This concludes the proof. �
As a consequence of Propositions 2, 3 and 4, we get the following result.

Theorem 4. Consider a fuzzy T-digraph 〈A, ρ〉 and a fuzzy relation μ : A × B → L. Then there exists a transitive 
fuzzy relation ρ′ on B and a fuzzy relation ν : B × A → L such that (μ, ν) is a fuzzy relational Galois connection 
between 〈A, ρ〉 and 〈B, ρ′〉 if and only if there exists a fuzzy closure system C that is compatible with μ and, in case 
rng(μ) = B , there exists a crisp function γ : B � rng(μ) → A that satisfies condition (15).

Note that the theorem above states an existence condition but, indeed, the proof has been constructive and leads to 
a procedure to actually build the right adjoint which is illustrated in the following examples.

Example 3. Consider the Heyting chain H= 〈H, ≤〉 with H = { i
10 | 0 ≤ i ≤ 10, i ∈ N}, the sets A = {a1, a2, a3} and 

B = {b1, b2, b3, b4}, and the fuzzy relations ρ : A × A → H and μ : A × B → H defined below:

ρ a1 a2 a3

a1 1 1 0.8
a2 1 1 0.8
a3 0.8 0.8 1

μ b1 b2 b3 b4

a1 0 0.8 0.8 1
a2 1 0 0.2 0.5
a3 0.5 0.4 1 0.3

Consider also the fuzzy set C = {(a1, 0.5), (a2, 1), (a3, 1)}. It is easy to check that C is a fuzzy closure system that 
is compatible with μ. Moreover, γ : B � rng(μ) → A given by γ (b2) = a1 satisfies condition (15). Theorem 4 then 
ensures that there exist ρ′ : B × B → H and ν : B × A → H such that (μ, ν) is a fuzzy relational Galois connection 
between 〈A, ρ〉 and 〈B, ρ′〉. One possible construction, according to Proposition 4, is given by

ρ′ b1 b2 b3 b4

b1 1 1 0.8 1
b2 1 1 0.8 1
b3 0.8 0.8 1 0.8
b4 1 1 0.8 1

ν a1 a2 a3

b1 0.5 1 0.8
b2 0.5 1 0.8
b3 0.5 0.8 1
b4 0.5 1 0.8

Example 4. Consider Belnap’s diamond as the underlying algebra of truth values B = {⊥, t, f, �}, the sets A =
{a1, a2, a3} and B = {b1, b2, b3, b4}, and the fuzzy relations ρ : A × A → B and μ : A × B →B defined below:

ρ a1 a2 a3

a1 � f f

a2 f f �
a3 f f �

μ b1 b2 b3 b4

a1 f ⊥ � t

a2 � � ⊥ ⊥
a3 t � f ⊥

Consider also the fuzzy set C = {(a1, �), (a2, f ), (a3, �)}. It is easy to check that C is a fuzzy closure system that 
is compatible with μ. Moreover, γ : B � rng(μ) → A given by γ (b4) = a1 satisfies condition (15). Theorem 4 then 
ensures that there exist ρ′ : B × B → B and ν : B × A → B such that (μ, ν) is a fuzzy relational Galois connection 
between 〈A, ρ〉 and 〈B, ρ′〉. One possible construction is given by
19
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ρ′ b1 b2 b3 b4

b1 � � f f

b2 � � f f

b3 f f � �
b4 f f � �

ν a1 a2 a3

b1 f ⊥ �
b2 f ⊥ �
b3 � ⊥ f

b4 � ⊥ f

Example 5. Consider the Heyting chain H= 〈H, ≤〉 with H = {0, 0.5, 1}, the sets A = {a1, a2} and B = {b1, b2, b3}, 
and the fuzzy relations ρ : A × A → H and μ : A × B → H defined below:

ρ a1 a2

a1 1 0
a2 0.5 1

μ b1 b2 b3

a1 0.5 0.5 1
a2 0.5 1 0.5

It is a matter of calculation to check that there is no fuzzy closure system that is compatible with μ and no mapping 
γ : B � rng(μ) → A that satisfies condition (15). Theorem 4 then ensures that there exists no transitive fuzzy relation 
ρ′ : B ×B → H and no fuzzy relation ν : B ×A → H such that (μ, ν) is a fuzzy relational Galois connection between 
〈A, ρ〉 and 〈B, ρ′〉.

Example 6. Consider Belnap’s diamond as the underlying algebra of truth values B = {⊥, t, f, �}, the sets A =
{a1, a2} and B = {b1, b2, b3}, and the fuzzy relations ρ : A × A → B and μ : A × B → B defined below:

ρ a1 a2

a1 � ⊥
a2 t �

μ b1 b2 b3

a1 t f �
a2 t � f

It is a matter of calculation to check that there is no fuzzy closure system that is compatible with μ and no mapping 
γ : B � rng(μ) → A that satisfies condition (15). Theorem 4 then ensures that there exists no transitive fuzzy relation 
ρ′ : B ×B → B and no fuzzy relation ν : B ×A → B such that (μ, ν) is a fuzzy relational Galois connection between 
〈A, ρ〉 and 〈B, ρ′〉.

6. Conclusions and future work

In this paper, we have introduced the notion of fuzzy relational Galois connection between fuzzy T-digraphs in 
case the underlying algebra of truth values is a complete Heyting algebra. Similarly to [17–19], our definition departs 
from one of several standard equivalent definitions in the crisp case, namely, the antitonicity of the components of the 
Galois connection and the inflationarity of their compositions. For this notion of fuzzy relational Galois connection, 
we have characterised the existence of a right adjoint for a given fuzzy relation between a fuzzy T-digraph and an 
unstructured set.

Concerning the particular notion of fuzzy relational Galois connection proposed and investigated here, it is worth 
mentioning that we have studied the minimal properties needed to characterize this notion in terms of a natural Galois 
condition [25]. These properties turn out to be related to the framework of perfect fuzzy functions [23].

In future work, on the one hand, we will further explore the relationship with perfect fuzzy functions somehow 
envisaged in our previous works [16]. On the other hand, it is worth to investigate the possibility of dropping the 
Heyting restriction as general hypothesis for the characterisation of the existence and the construction of the right 
adjoint. It would be also interesting to explore the problem of existence of a right adjoint from the point of view of the 
associated fuzzy topology. Some recent work about the relationship between fuzzy Galois connections and topology 
can be found in [4].
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