
Computers & Security 129 (2023) 103180

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

A survey on the (in)security of trusted execution environments

Antonio Muñoz

∗, Ruben Ríos , Rodrigo Román , Javier López

Network, Information and Computer Security (NICS) Lab, University of Malaga, Spain

a r t i c l e i n f o

Article history:

Received 16 November 2022

Revised 4 February 2023

Accepted 9 March 2023

Available online 14 March 2023

Keywords:

Computer security

Secure hardware

Trusted execution environments

Hardware attacks

Software attacks

Side-channel attacks

a b s t r a c t

As the number of security and privacy attacks continue to grow around the world, there is an ever in-

creasing need to protect our personal devices. As a matter of fact, more and more manufactures are

relying on Trusted Execution Environments (TEEs) to shield their devices. In particular, ARM TrustZone

(TZ) is being widely used in numerous embedded devices, especially smartphones, and this technology is

the basis for secure solutions both in industry and academia. However, as shown in this paper, TEE is not

bullet-proof and it has been successfully attacked numerous times and in very different ways. To raise

awareness among potential stakeholders interested in this technology, this paper provides an extensive

analysis and categorization of existing vulnerabilities in TEEs and highlights the design flaws that led to

them. The presented vulnerabilities, which are not only extracted from existing literature but also from

publicly available exploits and databases, are accompanied by some effective countermeasures to reduce

the likelihood of new attacks. The paper ends with some appealing challenges and open issues.

© 2023 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

g

o

d

s

f

e

h

s

e

a

T

i

o

o

d

t

p

t

r

i

i

o

o

q

b

f

a

s

v

s

p

2

t

T

t

d

d

t

a

h

0

. Introduction

Nowadays, a wide range of mechanisms are emerging to miti-

ate current and future security threats associated with the devel-

pment of an ever increasing number of heterogeneous computing

evices. Computing platforms are continuously evolving, running

ophisticated operating systems and hosting countless applications

rom possibly untrustworthy vendors. In these highly complex

nvironments, the risk of a security breach is extremely high and

ence the need for execution environments capable of isolating

ecurity-sensitive applications. The inclusion of secure execution

nvironments enables them hosting a wide variety of applications

nd protecting the integrity of their own internal state.

Among these mechanisms, a relevant choice is the use of

rusted Execution Environments (TEE), which are hardware-

solated areas in microprocessors that enable the secure execution

f applications thereby assuring the confidentiality and integrity

f data and code. In fact, in the definition of the TEE stan-

ard (Ekberg et al., 2012) it appears as an isolated environment

hat coexists and cooperates with the operating system. The main

urpose of this isolation is to provide security to the whole sys-

em. TEE technology is certainly a trend in modern platforms, due
∗ Corresponding author.

E-mail addresses: amunoz@lcc.uma.es (A. Muñoz), ruben@lcc.uma.es (R. Ríos),

oman@lcc.uma.es (R. Román), jlm@lcc.uma.es (J. López) .

p

d

A

r

d

ttps://doi.org/10.1016/j.cose.2023.103180

167-4048/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article
n part to the adoption of smartphones as our primary platform of

nteraction with other devices.

ARM’s TrustZone design stands out among the various system-

n-chip (SoC) isolation solutions. TrustZone (TZ) is the collection

f hardware mechanisms that enable TEEs to implement the re-

uired isolation from the main operating environment. TEEs have

een considered as secure elements and as such have been used

or protecting sensitive applications in a number of verticals, such

s cyber-physical systems (CPS) (Pinto et al., 2017) or embedded

ystems (Janjua et al., 2019). Nevertheless, some recently found

ulnerabilities and attacks on different TEE implementations,

hould make us re-examine existing assumptions on the security

rovisions of TEEs.

There are various works, such as (Komaromy, 2018; Lipp et al.,

016; Machiry et al., 2017; Rosenberg, 2014; Tang et al., 2017),

hat provide a nice perspective on the situation of security in

EE. In addition, other works provide additional analyses on

his subject. For example, Sabt et al. (2015) describe the fun-

amental properties of TEE and provide a comparative study of

ifferent TEEs based on ARM TZ, but this work does not analyze

heir impact nor discuss the main reasons that may lead to

ttacks. Other examples, such as Arfaoui et al. (2014) , provide a

erspective according to GlobalPlatform (GlobalPlatform) stan-

ards, in terms of security, with various TEE technologies, and

sokan et al. (2014) present a comprehensive review of the cur-

ent role of trusted computing technology in the field of mobile

evices.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2023.103180
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103180&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:amunoz@lcc.uma.es
mailto:ruben@lcc.uma.es
mailto:roman@lcc.uma.es
mailto:jlm@lcc.uma.es
https://doi.org/10.1016/j.cose.2023.103180
http://creativecommons.org/licenses/by/4.0/

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

s

t

i

h

p

p

i

o

p

i

T

H

s

M

l

l

T

f

a

d

a

o

r

a

l

I

a

c

2

2

v

i

e

d

s

w

s

d

u

b

a

o

i

t

p

p

p

l

w

a

A

o

m

s

t

w

m

t

s

t

c

a

g

v

T

q

b

n

l

e

c

N

s

s

w

a

i

A

a

i

p

c

t

Z

h

r

2

b

i

d

a

T

l

2 https://globalplatform.org/ .
3 Some authors refers to realms instead of worlds, both terms are the same con-

cept along this paper.
Our approach differs from the aforementioned papers in the

ense that our study focuses on classifying existing vulnerabili-

ies and identifying their impact on the different TZ-based TEE

mplementations. For this purpose, various devices in the market

ave been taken as a reference. Note that there have been other

apers that analyze such issues, but only partially. For exam-

le, Santos et al. (2014) provide a taxonomy of vulnerabilities

n commercial TEE, but without delving into the particularities

f the attacks. Another example is Cerdeira et al. (2020) , which

rovide an analysis of the security vulnerabilities found, until then,

n those commercial TEE implementations based on TrustZone.

heir paper was limited to the analysis of Qualcomm

1 , Trustonic,

uawei, Nvidia (Corporation, 2015) and Linaro OP-TEE Brand TEE

ystems. Finally, other works, such as Busch et al. (2020) and

eng et al. (2018) also provide a thorough critical review, although

imited to Huawei’s TEE and Android vulnerabilities, respectively.

This paper includes an exhaustive analysis of the security

imitations and associated countermeasures of TrustZone-based

EEs. More specifically, the main contributions of this paper are as

ollows:

1. An extensive review and analysis of the state of the art of TZ se-

curity extensions, including TEE implementations and their fea-

tures.

2. A comprehensive categorization of existing vulnerabilities and

attacks against TEE implementations.

3. A detailed analysis of existing countermeasures for the de-

scribed attacks and vulnerabilities.

4. A discussion on open challenges and recommendations for fu-

ture implementations of secure TEEs.

The rest of the paper is organized as follows: Section 2 provides

 relevant background on TEE including the evolution of the stan-

ardization, a description of its main capabilities and applications,

nd some implementation details. Section 3 presents a novel tax-

nomy of TEE attacks that will guide the exposition throughout the

est of the paper. Software-based attacks are detailed in Section 4 ,

rchitectural attacks in Section 5 . Side-channel attacks are ana-

yzed separately in Section 6 and micro-architectural attacks in 7 .

n Section 8 a series of existing countermeasures are compiled and

nalyzed. Finally, open challenges are discussed in Section 9 , and

onclusions and future works are presented in Section 10 .

. Background

.1. The evolution of trusted execution environments

Software security mechanisms are not sufficient to counter ad-

anced attacks in many real-world situations. In such cases, build-

ng secure solutions requires the involvement of secure hardware

lements. Doubtlessly, the need for secure elements boosted the

evelopment of the TPM (Trusted Platform Module), whose first ver-

ion dates from 2003 and was followed by TPM 2.0 (TCG, 2013),

hich appeared several years later, in 2012. However, both of these

tandards have been considered unsuitable for mobile computing

evices for various reasons, such as limitations derived from the

se of batteries, the computational restrictions imposed by mo-

ile devices or the increased price implied by the integration of

 TPM chip, which in some cases can represent a high percentage

f the device’s hardware budget. In this line, the Trusted Comput-

ng Group (TCG) (TCG, 2013) defined in 2007 the specifications of

he Mobile Trusted Module (MTM) (Ekberg et al., 2007), which ap-

ears as an branch of TPM v1.2 with changes to adapt it to mobile
1 Qualcomm Product Security. Available: https://www.qualcomm.com/company/

roductsecurity/securityadvisories .

t

p

2

latforms. Nevertheless, as a consequence of the physical resource

imitation of mobile devices, but MTM implementation was never

idely adopted. Later TPM Mobile (McGill, 2013) was proposed as

n attempt to adapt the TPM 2.0 specification to mobile devices.

lthough that specification was designed to cover implementation

n a wide range of mobile devices, TPM Mobile was only imple-

ented in a small number of devices due to the lack of trust in a

oftware-based solution. There have been alternative implementa-

ions of a mobile TPM, such as simTPM (Chakraborty et al., 2019),

hich relies on the SIM card available in mobile platforms to avoid

ost of mobile TPM and MTM issues without the need for addi-

ional hardware. Notwithstanding, the main disadvantage with this

olution was that the SIMs were not tamper-proof resistant, unlike

he TPM chip, and therefore cannot be considered as a reliable se-

ure element.

As a consequence of these issues, GlobalPlatform

2 , a non-profit

ssociation, defined specifications for secure chip technologies,

athering the fundamental security requirements of mobile de-

ices and describing the ideal security guard for mobile devices.

his specification, known as Trusted Execution Environment (TEE),

uickly gained traction on the market – to the point that a num-

er of companies that were initially reluctant to the initiative fi-

ally joined. TEE architecture proposed by GlobalPlatform high-

ighting the separation of worlds 3 as the most relevant design nov-

lty. Nokia and Trusted Logic were the first in the long list of

ompanies that joined, followed by other companies such as ARM,

VIDIA (Corporation, 2015), AMD, ST, Qualcom, Ericsson and Sam-

ung, which are now fully involved in the development of the TEE

pecifications. As of today, TEE is a well-defined security element,

hose technical specifications not only define the architecture but

lso the services available for the applications running on top of

t 4 . GlobalPlatform initially focused on TEE standardization (System

rchitecture specifications and client API interface). Later, Glob-

lPlatform released a specification for the Secure OS, including the

nternal API and TEE applications.

The main goal of the TEE is to guarantee the secure execution of

rograms 5 For this purpose, TEE isolation capability enables a se-

ure area for handling sensitive data, thus eliminating the need to

rust the software running in the device. In particular, ARM Trust-

one (Pinto and Santos, 2019), which is the most extended trusted

ardware TEE systems rely on, defines two protection domains or

ealms: the Secure World (SW) and the Normal World (NW).

.2. TEE capabilities and applications

The TEE design enables to implement security-sensitive services

y taking advantage of its assurance and secure storage functional-

ties necessary to preserve both the confidentiality and integrity of

ata and code. In current implementations, the decision to deny or

llow the installation of a new service in the TEE is made by the

EE developer playing the role of a central authority.

Among the different capabilities offered by the TEE, we high-

ight the following:

• Isolated execution: This functionality allows the separated exe-

cution of applications, some of them in a secure environment

and others in a normal environment. It is highly recommended

that isolation is achieved by means of hardware mechanisms

in order to prevent this mechanism from being controlled from
4 http://globalplatform.org/specificationsdevice.asp .
5 Henceforth, we use indistinguishably the terms trustlets and trusted applica-

ions (TAs) to software executed in the TEE as secure programs, applications or

rocesses.

https://www.qualcomm.com/company/productsecurity/securityadvisories
https://globalplatform.org/
http://globalplatform.org/specificationsdevice.asp

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

Fig. 1. Relationship between the Secure World and the Normal World.

a

a

(

i

2

T

2

a

s

a

2

e

a

2

t

d

n

p

e

s

c

a

r

f

m

i

Fig. 2. TEE Worlds in Qualcomm TEE. Communication between wolds is mediated

by a priviledged OS daemon by SMC calls.

t

s

p

m

n

q

t

u

b

d

a

o

t

f

I

w

a

w

l

m

i

c

a

k

C

r

t

a

b

a

p

r

a

6 ARM Trusted Firmware. (n.d.). (ARM & Linaro) Retrieved from https://www.

trustedfirmware.org/ .
the non-secure world. Isolated execution can be considered as

the primary purpose of a TEE.

• Secure Storage: The TEE provides Trusted Storage of data and

keys. Trusted storage is tied to a particular TEE and device. This

prevents any attacker from accessing and modifying the stored

data unless they have the appropriate permissions.

• Platform Integrity: Secure boot ensures both the integrity and

authenticity of the platform. It allows the trusted OS execution

environment to be instantiated from a trusted root within the

TEE. The process uses assets linked to the TEE and isolated from

the normal OS. Besides, according to the TEE description, the

TEE is protected against some physical attacks. However, note

that attacks breaking the IC package are beyond the scope of

TEE protection.

Based on the above core capabilities, existing TEEs, such

s TrustZone, can build a large variety of functionalities and

pplications. Some examples are secure credentials generation

 Elenkov, 2013), secure key storage (Android Keystore, dmver-

ty) (Cooijmans et al., 2014), secure boot (Dietrich and Winter,

009; Ge et al., 2014), kernel integrity verification, (e.g., Samsung’s

IMA Azab et al. (2014)), trusted peripherals and sensors (Liu et al.,

012), mobile payments using emulation of secure elements (Pirker

nd Slamanig, 2012; Pirker et al., 2012), digital content protection

ystems (Ahmad et al., 2013; Tögl et al., 2013), services to manage

nd issue online tickets (Hussin et al., 20 05; 20 06; Tamrakar et al.,

011), cloud storage access authentication mechanisms (Ekberg

t al., 2012; Shin et al., 2012), security of IoT devices (González

nd Bonnet, 2013; Guan et al., 2017), and many more.

.3. Trusted execution environment & ARM TrustZone architecture

As mentioned above, ARM TrustZone is a particular implemen-

ation of TEE that enables the isolation of CPU state, memory, I/O

ata, etc. It is built around the concept of protection domains,

amely the SW and NW, as aforementioned. This system-wide ap-

roach assign two virtual cores (in the SW and NW respectively) to

ach physical processor, together with the mechanism to securely

witch between both realms (cf. Qualcomm TEE in Fig. 2). In most

ases, a security-oriented OS is deployed on the TEE, which oper-

tes and hosts a number of trusted applications (TAs).

The separation between worlds is articulated by different inter-

upts, I/O hardware, memory views, etc. while prioritizing requests

rom the SW. This process is orchestrated by means of the monitor

ode mechanism , which plays the role of the gatekeeper by switch-

ng between realms (Sabt et al., 2015).
3

The secure monitor call (SMC) is the component in charge of ac-

ually implementing the monitor mode mechanism. SMC requests

witching between worlds (secure and normal). Besides, the SMC

rovides an API within system calls (syscalls) for inter-realms com-

unications. For example, whenever a process running in the NW

eeds any service provided by a TA, a run state transfer is re-

uested from the NW to the SW kernel (Holding, 2009).

Memory sharing between realms is articulated with two func-

ions SMC_T YPE_FAST and SMC_T YPE_YIELD

6 . SMC_T YPE_YIELD is

sed for the allocation of a memory area belonging to the NW to

e shared with SW, which is particularly useful when high-volume

ata transfers are involved and in the case of synchronous trusted

pplications are needed (e.g., video streaming protection). On the

ther hand, SMC_TYPE_FAST enables a mechanism for fast informa-

ion exchange. It relies on the use of registers with up to a total of

our variables to perform data transfers between the two realms.

In Fig. 2 , the Exception Level (EL) realms separation is depicted.

n this line, N-EL1 means Exception level 1 in non-secure world

hile S-EL0 is Exception level 0 in secure world. The grey shaded

rea corresponds to the components that implement the secure

orld execution. Whereas the blue boxes are components that be-

ong to the non-secure world.

Other components, such as the TZASC and TZMA , are used for

emory management SRAM and DRAM respectively – as depicted

n Fig. 3 . These implement protection schemes for the static on-

hip and for the dynamic off-chip memory. As such, they prevent

ttempts to access memory within a memory controller by the TZ

ernel from the normal global environment. In such a case, the

PU aborts and reacts according to the configured specification, i.e.

ebooting the device due to a violation (Holding, 2009).

We notice how TrustZone architecture does not define the way

o implement TAs accesses with TrustZone services. Indeed, there

re TZ-based implementations with different service definitions,

ut all sharing the common architecture described.

Access properties are another aspect related to memory man-

gement articulated through memory page permissions. For exam-

le, those memory regions with write capability are filled up at

untime, and therefore must be located in a modifiable memory

rea. On the other hand, as in the case with code pages, which

https://www.trustedfirmware.org/

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

Fig. 3. Architecture on TZ-assisted SoC.

o

fi

a

m

i

a

t

o

d

t

f

b

t

f

p

F

t

f

A

n

s

c

c

2

a

s

T

i

s

h

a

e

e

T

t

w

w

T

u

s

h

s

t

p

p

t

p

a

T

s

S

a

2

e

t

o

c

t

(

o

p

f

t

n

o

l

nly have read and execute permissions, they may not be modi-

ed in any way. The Domain Access Control Register (DACR) mech-

nism is in charge of restricting the access of TEE applications to

emory regions of other trusted applications. This is implemented

n the Memory Management Unit , or MMU. Certain bits (linked to

 given memory region) are checked by MMU in the DACR regis-

er to specific access properties. In addition, the MMU is in charge

f enabling read and write access to the memory allocated to that

omain.

Bus management connectivity is articulated using the APB and

he AXI components. AXI is the bus interface implementation

or the main system at the chip level. APB implements a low-

andwidth single peripheral bus interface. This interconnection be-

ween AXI and APB is implemented with a bridge. Among the dif-

erent capabilities offered by the AXI interface is the separation of

eripherals into realms, allowing both reliable and unreliable ones.

or this purpose, it makes use of an extended signaling system

ogether with a flag bit (NS-bit). There is no similar mechanism

or the APB bus so the security is managed by the aforementioned

XI-to-APB bridge (Holding, 2009).

We have so far focused on describing the most relevant compo-

ents to facilitate the understanding of the attacks and flaws pre-

ented in the following sections. A full description of the ARM ar-

hitecture is beyond the scope of this paper, but interested readers

an refer to (Ngabonziza et al., 2016) for further details on it.

.4. TEE implementations

At present there are many different implementations of TEEs,

nd in the literature it is possible to find different criteria to clas-

ify them. The taxonomy presented in Fig. 4 focuses on how the

EE is implemented. On the one hand, there are implementations

n which the TEE is implemented with software, such as Over-

hadow, OpenTEE, OPTEE, etc. On the other hand, there are various

ardware implementations of TEE, including Intel SGX, Qualcomm,

nd others. Another parameter that is used to classify the differ-

nt implementations is the level of privilege with which they are

xecuted, i.e. if we are dealing with a privileged or non-privileged
4
EE. Non-privileged TEEs support multiple deployments, allowing

o include a new functionality by simply adding new instances

ithout extending the system trusted computing base – which

ould increase the attack surface of the system. Most of these

EEs make use of a secure monitor from the design stage (which is

sually software-based) or by taking direct advantage of hardware-

upported secure enclaves (SGX, TPM, AMD-SEV, etc.). On the other

and, priviledged TEEs, in most cases, have access to all system re-

ources.

Table 2 provides a classification of existing TEE implemen-

ations according to the taxonomy introduced in the previous

aragraph – that is, hardware vs software implementations and

rivileged vs non-privileged implementations. Note, however, that

here are two distinct groups of implementations among the

rivileged TEE hardware-based implementations. Firstly, there

re commercial solutions (Trusty (Google) , QSEE (Beniamini) ,

rustonic (Felton) , etc.) and secondly, academic or open source

olutions (OPTEE (Brand) , Kinibi (Lapid and Wool, 2018),

afeG (Takei et al., 2009), etc.). In addition, we propose TPM

s an alternative for Trusted Execution Environments.

.5. Implementation details of qualcomm’s secure execution

nvironment

It is common practice for NW applications to require interac-

ion with others running in SW. KeyStore is the process in charge

f managing cryptographic keys in Android, which requires direct

ommunication with the KeyMaster . This is a trusted application

hat provides key secure management using TrustZone capabilities

e.g., secure storage, isolation, etc.). Yet we have to consider that,

n the basis of QSEE, user-mode applications are not allowed to

erform SMC calls to enter the SW. This limitation is due to the

act that kernel-space privileges are required. In order to overcome

his limitation, the Linux kernel driver QSEECOM – QSEE Commu-

icator – allows user-space processes to access several TZ-based

perations, such as those related to the communication with the

oaded TAs or the actual loading of the TAs in the SW.

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

Fig. 4. TEE Implementation Classification.

Table 1

Definitions.

Acronym Definition Acronym Definition

AES Advanced Encryption Standard PXN Privileged execute never

ALSR Address Space Layout Randomization QSEE Qualcomm Secure Execution Environment

AMBA Advanced Microcontroller Bus Architecture QSEECOM QSEE Communicator

APB Advanced Peripheral Bus REE Rich Execution Environment

AXI Advanced Extensible Interface ROM Read Only Memory

BTB Branch Target Buffer RO-IoT Reboot Oriented IoT

CCNT Cycle Counter Register ROP Return Oriented Programming

CLI Command Line Interface SC Stack Cookies

CPS Cyberphysical Systems SCA Side Channel Attack

CRT Chinese Remainder Theorem SCM Secure Channel Manager

DACR Domain Access Control Register SCP Secure Channel Protocol

DCISW Data Cache line Invalidate by Set/Way SCTRL System Control Register

DDR Double Data Rate SGX Software Guard Extensions

DFA Deterministic Finite Automata SHA Secure Hashing Algorithm

DoS Denial of Service SMC Secure Monitor Call

DVFS Dynamic Voltage and Frequency Scaling SMMU System Memory Management Unit

EMFI Electromagnetic Fault Injection SoC System on a Chip

FDE Full Disk Encryption SVC Service Message

FIFO First In First Out SVE System Vulnerability & Effectiveness

FIQ Fast Interrupt Query SW Secure World

FPGA Field-Programmable Gate Array Syscall System Call

GP Guard Page TA Trusted Application or Trustlet

IoT Internet of Things TCB Trusted Computing Base

I/O data Input/Output data TCG Trusted Computing Group

IP Intellectual Property TCI Trustlet Connector Interface

IRQ Interrupt request TEE Trusted Execution Environment

L1 Level One TEEv TEE Virtualized

L2 Level Two TLC Trustlet Connector

MTM Mobile Trusted Module TLV Type Length Value

NW Normal World TPM Trusted Platform Module

MMU Memory Management Unit TZ TrustZone

MPU Memory Protection Unit TZASC TZ Address Space Controller

ObC On Board Credential TZMA TZ Memory Adapter

OEM Original Equipment Manufacturer UART Universal Asynchronous Receiver/Transmitter

OTA Over The Air UUID Universal Unique Identifier

OP-TEE Open Portable TEE UXN Unprivileged Execute never

OS Operating System VBAR Vector Base Address Register

OU Organizational Unit XP Execution Protection

PLL Phase-Locked Loop XPU External Protection Unit

5

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

Table 2

TEE Implementations.

Non Privileged TEE Privileged TEE

Commercial Open/Academic

Hardware

TEE

SecureBlue + (Boivie and Williams, 2012) Google Trusty Google Linaro OPTEE Brand

Sanctum(Costan et al., 2016) Qualcomm QSEE(Qualcomm, 2018) ARMithril(Shah et al., 2012)

AMD-SEV(AMD, 2021) Trustonic t-base Felton GenodeTEE(Feske, 2015)

OSP(Cho et al., 2016) Samsung TZ-RKP(Azab et al., 2014) Microsoft TLR(Santos et al., 2014)

TrustICE(Sun et al., 2015b) Aurora Lammens Case(Zhang et al., 2016a)

Sanctuary(Brasser et al., 2019) Sierraware SierraWare TrustOPT(Sun et al., 2015a)

Intel SGX(Intel, 2014) Solacia SecuriTEE Solacia SafeG(Takei et al., 2009)

Haven(Baumann et al., 2015) ∗ mTower(Drozdovskyi and Moliavko, 2019) VimoExpress(Oh et al., 2012)

SCONE ∗(Arnautov et al., 2016) T6 TrustKernel Kinibi_M(Trustonic, 2017)

Graphene-SGX ∗(Tsai et al., 2017) ObC (Kostiainen et al., 2009) [deprecated] Andix OS(Fitzek et al., 2015)

Panoply ∗(Shinde et al., 2017)

Software

TEE

Overshadow(Chen et al., 2008)

Virtual Ghost(Criswell et al., 2014) Nested Kernel(Dautenhahn et al., 2015)

Inktag(Hofmann et al., 2013) OpenTEE(McGillion et al., 2015)

Flicker(McCune et al., 2008) MicroTEE(Ji et al., 2019)

TrustVisor(McCune et al., 2010) SoftTEE(Lee and Park, 2020)

Multizone(Pinto and Garlati, 2020) Trustshadow(Guan et al., 2017)

Utango(Oliveira et al., 2021) Kinibi(Lapid and Wool, 2018)

Sego(Kwon et al., 2016) SKEE(Azab et al., 2016)

SICE(Azab et al., 2011)

n

b

e

n

a

a

e

w

f

T

t

p

i

p

t

s

S

c

t

i

o

s

a

t

s

c

a

c

f

t

t

U

v

r

n

m

s

t

p

a

m

m

w

k

d

a

o

p

b

t

Q

i

n

t

X

n

a

c

3

For the implementation of Secure Monitor calls from the ker-

el space an interface was included in the driver. This interface

etween QSEECOM and the SW is known as SCM , which is consid-

red the widest attack surface of the TEE since is one of a small

umber of communication channels between the outside world

nd the SW. Therefore, a limited number of processes are allowed

ccess to QSEECOM for the sake of security. As such, Beniamini’s

t al. Beniamini implementation limits the number of processes

hich can access the QSEECON from the normal world to only

our:

• SurfaceFlinger (running with “system” user-ID): This is a sys-

tem service in charge of the composition of the application and

system surfaces, for which a shared buffer is enabled.

• DrmServer (running with “drm” user-ID): This element is in

charge of managing digital rights.

• MediaServer (running with “media” user-ID): This element is in

charge of handling multimedia services.

• KeyStore (running with “keystore” user-ID): This element is in

charge of creating, storing and managing cryptographic keys.

Note that vulnerable processes should not have access to the

EE because if the vulnerability is exploited by an attacker, the at-

acker could gain access to any application running in the SW by-

assing the Linux kernel filter on the process. A known weak point

s the language in which trusted applications are written. Most ap-

lications use the C language instead of safe languages that poten-

ially decrease the possibility of vulnerabilities.

The TrustZone fast and yield commands used for memory

haring are implemented by Qualcomm

7 using two functions:

MC_T YPE_YIELD and SMC_T YPE_FAST . The first one allocates a

ommon memory area for communications between worlds. When

his function is called a memory record is populated. The record

ncludes the maximum buffer size, the buffer headers, as well as

ffsets of the data to be sent and received. The second is used to

tart a short-term communication where the data to be exchanged

re relatively small. Either function can be used to issue an SMC or

o call a service.

As previously mentioned, the first defense mechanism in this

ituations is the DACR provided by ARM, which prohibits altering
7 Qualcomm Product Security. Retrieved from: https://www.qualcomm.com/

ompany/product-security .

o

i

o

6
ny of the TZ kernel pages. Some recent TrustZone-enabled Qual-

omm System on a Chip (SoC) integrate an additional mechanism

or memory access control. This hardware-based Memory Protec-

ion Unit (MPU) are pre-configured to mark as write-protected cer-

ain memory regions predefined by the manufacturer.

In Qualcomm these MPU units are called External Protection

nits (XPUs). Among the tasks carried out by the XPUs is pre-

ening access from the NW to the SW and to the memory areas

estricted by the manufacturer. As an example, the XPU mecha-

ism is used to allocate TrustZone kernel code into write-protected

emory areas, which are checked during the secure boot of the

ystem to ensure that it has not been altered.

One sensitive aspect is how to load trusted applications and

heir revocations when Qualcomm secure booting actually takes

lace. In this line, regular Executable and Linking Format (ELF) files

re signed by Qualcomm. These files attach a single hash table seg-

ent, which is a signature blob with the hashes of each ELF seg-

ent, along with the certificate chain. Verification of the signature

ith the concatenated blob of hashes is performed with the public

ey of the attestation certificate (the last one in the chain). Vali-

ation is performed by comparing the hash of the root certificate

nd the Root Key Hash stored on the device. It is stored in the ROM

f the device and integrated in the SoC.

We now briefly describe how the chain of trust workflow is im-

lemented. The procedure begins with the issuance of a hardware-

ound key for the validation of the certificates. Later, these cer-

ificates can be used to validate the binary signature. In addition,

ualcomm includes additional Organizational Unit (OU) fields with

nformation necessary for security enhancement in the binary sig-

atures.

Note that since TEEs are considered entities with high privileges

he Normal World has no inherent mechanisms, not even DACR or

PUs, to protect against unauthorized memory accesses and ma-

ipulations from the Secure World. Therefore, it is trivial gaining

ccess to the NW kernel for an attacker in case a TEE becomes

ompromised, even if no vulnerabilities were present in it.

. Taxonomy of attacks

Although TEE has been designed to provide advanced means

f secure code execution that traditional operating systems do not

mplement, they can still be attacked. Here we describe the taxon-

my of attacks that will be used throughout the rest of the article.

https://www.qualcomm.com/company/product-security

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

Fig. 5. Taxonomy of Attacks to TEE Implementations.

I

e

4

c

s

T

e

m

b

v

s

m

b

i

t

e

4

i

g

4

e

P

t

t

c

l

e

m

N

l

t

a

g

t

k

A

h

o

a

e

o

t

c

t

b

e

i

a

w

t

t

t

i

S

p

n addition, Fig. 5 provides a summary of every specific attack for

ach category.

• Software-based attacks (Section 4) are dedicated to exploit dif-

ferent elements of software stack, including operating system

and the applications running on it.

• Architectural attacks (Section 5) exploit fundamental design

flaws in the hardware architecture of the system, rather than

software bugs.

• Side-Channel attacks (Section 6) are focused on the transmis-

sion of data between the Normal and Secure Worlds by modu-

lating the behaviour of some system elements, such as execu-

tion times or power consumption.

• Micro-architectural attacks (Section 7) are a particular type of

attack that focuses on micro architecture elements such as ex-

ploiting the cache or Branch Target Buffer (BTB).

. Software-based attacks

Programming errors cause functional inconsistencies, which

an lead to bugs in the memory protection mechanisms, in the

ecurity mechanisms themselves, or in peripherals configuration.

hese bugs can appear randomly during the system execution,

ither during its validation with the trusted kernel, the secure

onitor, the boot loader, or the applications themselves. Such

ugs can be exploited through various means (e.g. parameter

alidation, buffer overflows) for various purposes – from revealing

ensitive information to exploiting the kernel. In this section, the

ost representative TEE vulnerabilities caused by implementation

ugs are described. Since each implementation has particularities

n its architecture, which directly affect the way Trusted Applica-

ions (TAs) interact, we describe some of the most relevant cases

xemplified in concrete implementations.

.1. Kernel attacks

This section describes direct attacks on the system kernel. This

ncludes privilege escalation attacks, kernel exploits and a new

eneration of rootkits.
7
.1.1. Trustzone privilege escalation

Qualcomm’s implementation, known as QSEE, is used in sev-

ral smartphones – such as Pixel, LG, Xiaomi, Sony, HTC, One-

lus, and Samsung, among other devices. Due to its importance,

here are various software-based attacks that specifically targets

he Qualcomm implementation. One of such attacks focuses on ac-

essing the protected memory of QSEE through escalation of privi-

eges (Beniamini (2015b) , Beniamini,Beniamini , Beniamini (2016a)).

Fig. 6 shows the first three-stepped (Beniamini, 2015b) privilege

scalation attack. Firstly, the attacker exploits a vulnerable imple-

entation of the MediaServer Android application. This runs in the

W with zero permissions. Still, MediaServer was granted privi-

ege for accessing the QSEECOM driver for communications with

he TEE and therefore with the WineDive TA. Subsequently, the

ttacker could exploit a vulnerability in the QSEECOM driver and

ain control of the kernel through the MediaServer. We highlight

hat this driver runs in NW context. Henceforth, the attacker with

ernel privileges in the NW can make direct SMC calls to the SW.

s a consequence, the attacker can manage to execute the code of

is choice in the context of a TA. Moreover, since by making use

f the SMC syscalls the privileged kernel applications have direct

ccess to the TEE, the attacker can now execute various privilege

scalation attacks to run shellcode within the TrustZone kernel.

Now, we will explain what additional steps need to be executed

nce an attacker gains control of QSEECOM. At this point, the at-

acker can execute SCM calls to write a zero DWORD in any spe-

ific memory address, in an operation known as ‘zero-write primi-

ive’. This can be used to disable the mechanism used for checking

ounds on all memory addresses passed to the SW. Once this op-

ration is disabled, the attacker can exploit other SCM calls creat-

ng different primitives. For example, once the control mechanisms

re invalidated, the attacker can use the SMC calls to transform

hat was a ‘zero-w primitive’ to an arbitrary ‘w-r primitive’. Once

he attacker has achieved write permissions, he still has to iden-

ify those memory regions where to host his own shellcode, so as

o bypass the TZ kernel pages protection mechanism. Since priv-

leged kernel applications have direct TEE access, making use of

MC syscalls enables an important attack vector that may result in

rivilege escalation attacks.

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

Fig. 6. Three Stepped Privilege Escalation Attack.

M

c

t

i

t

t

s

e

u

4

t

T

T

n

o

t

a

T

Q

a

o

i

c

t

(

f

e

d

t

t

t

t

c

n

s

t

d

t

e

v

c

h

s

e

t

i

s

t

s

t

c

t

e

s

e

t

c

p

t

f

O

t

k

m

t

t

s

a

4

a

t

s

t

a

d

w

m

M

o

h

d

t

t

t

m

4

c

i

4

t

t

8 Address space layout randomization (ASLR) is a computer security technique

used for preventing memory corruption vulnerabilities exploitation.
The Domain Access Control Register (DACR) register from ARM

MU is responsible for protecting the TrustZone memory by

ontrolling accesses to it. However, by making use of the arbi-

rary write primitives already described, it is possible to mod-

fy the value of the DACR and thus enable reading and writing

he memory regions controlled by the mechanism. By doing so,

he attacker can now insert his shellcode in memory areas re-

erved for execution within the kernel. Moreover, since these ar-

as are never used by the kernel, any modification in them goes

nnoticed.

.1.2. Kernel exploit in TrustZone

This exploit describes how it is possible to take control of

he operating system kernel through a series of chained exploits.

his opens the door for the attacker to gain privileges to the

rustZone kernel. An example of this exploit is provided by Be-

iamini et al. (Beniamini,Beniamini), which describes how a series

f chained exploits provide an alternative way to the previous at-

ack. These chain of exploits take advantage of buffer overflows

nd vulnerable syscalls to ultimately execute arbitrary code with

rustZone kernel privileges.

The attack starts once the attacker has gained control of the

SEECOM driver, located in the NW. Now, the trusted Widevine

pplication (located on the SW) can be exploited by causing buffer

verflows, using a disused function called PRDiagVerifyProvision-

ng() . Once the buffer overflow is achieved, any code within the

ontext of the trusted application can be executed. Still, although

he attacker can make use of a Return-Oriented Programming

ROP) chain to execute his code, the application’s executable code

ragments are inserted as read-only. For this reason, the code ex-

cution must be split into two parts, where any part of code that

oes not require QSEE privileges will have to be executed within

he Normal World.

At this point, access to the TEE is allowed indirectly through

he use of certain (privileged) applications as intermediaries – and

hese, in turn, can then establish communication with the TEE

hrough the driver. Even so, the attacker is restricted to running

ode in the QSEE user space, since he is not yet granted TZ ker-

el privileges. However, the attacker can exploit vulnerabilities in

yscalls API provided by the TZ kernel.

The SVC instruction allows applications to call the syscalls of

he TZ. This instruction is handled using the Vector Base Ad-

ress Register (VBAR). Whenever a syscall is performed, control of

he code and the execution flow passes to the NW kernel. How-

ver, the TZ only performs very basic validity checks on the pro-

ided input buffers: all arguments provided in legitimate appli-

ation syscalls are accepted as valid. Therefore, once the attacker

as identified a vulnerable syscall that allows him to overwrite any

yscall handling function pointer, he can use the WideVine TAs to

xploit the TZ kernel and modify the syscall handling functions. All

hat remains to be done is to identify a suitable memory area for

nserting the shellcode. Despite of TA code segments can be con-

idered write-protected due to the DACR mechanism, but in fact

hese segments are still susceptible to be overwritten with the de-

cribed syscall bug.
8
Thereafter, as a consequence of disabling the DACR mechanism,

he attacker can insert his shellcode anywhere in the application

ode. Likewise, he may also use mutated syscall control functions

o execute his shellcode within the context of the TZ kernel and

xecute any arbitrary code. Note that classical security measures

uch as ASLR

8 could prevent common code execution and privilege

scalation attacks, but they are not implemented in this context.

Precisely, Project Zero (Beniamini, 2017) provided an analysis on

he implementation of such security measures in TEEs. They con-

lude that Qualcomm and Kinibi, the leading exponents of TEE im-

lementations, only implement very few security mechanisms. In

he case of Kinibi, it does not offer any type of ASLR mechanisms,

orcing all applications to be loaded at a fixed memory address.

n the other hand, Qualcomm’s TEEs only offer a weak implemen-

ation of ASLR. Therefore, the security boundary between the TZ

ernel and applications is very fragile, at least in concrete imple-

entations like QSEE. In fact, when the attacker manages to enter

he Secure World and takes over an application, the communica-

ion channel between TZ kernel and application is constructed in

uch a way that no input validation mechanism is implemented,

nd it is trivial for the attacker to compromise the kernel.

.1.3. Next generation rootkits

A series of rootkits considered to be new generation rootkits

re included in this section, as they take advantage of several of

he weaknesses already described and even others yet to be de-

cribed related to architecture, side-channel or micro-architecture

o explore weaknesses in the system.

Roth (2013) shows weaknesses in TEE combined with a specific

rchitecture. They also describe how these weaknesses allow the

evelopment of rootkits such that they can control the system in a

ay that goes unnoticed. Since the SW has privileged access to the

emory, it also has the ability to modify the NW kernel structures.

oreover, it can also block the NW from accessing its own mem-

ry. In particular, what Roth provided was several mechanisms to

ide the visibility of the code running in the SW, thus complicating

etection. Some of these rootkits exploit flaws in the TEE architec-

ure itself to exploit vulnerabilities as described in Section 5 , but

hese rootkits are software and although they also make use of at-

acks from other categories, they are eminently software for the

ost part and are therefore included here.

.2. Attacks using system calls

This section includes attacks that make use of the set of system

alls. Particular attacks such as TrustNone or hijacking attacks are

ncluded.

.2.1. Syscall hijacking

Certain attacks focus on executing various syscall hijackings in

he context of the TEE in order to gain access to protected informa-

ion. Along these lines, Beniamini (2016a) describe an attack that

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

Fig. 7. Three attacks Overview.

c

t

t

v

S

a

i

t

d

b

d

p

o

m

T

K

T

c

T

t

c

n

t

u

i

t

i

a

T

g

t

i

c

p

i

B

t

c

r

T

g

a

t

t

t

c

s

t

t

fi

w

t

t

d

c

F

c

Q

w

K

m

w

s

b

b

t

e

o

m

w

t

T

s

an extract any key residing in TEE, as with the full disk encryp-

ion (FDE) key. This allows the attacker who successfully perpe-

rates the attack to decrypt any encrypted disk on the android de-

ice. This attack makes use of the different exploits described in

ections 4.1.1 and 4.1.2 . For the sake of clarity, an overview of such

ttacks, including a description of how they are chained together,

s shown in Fig. 7 .

It essentially chains the previously mentioned exploits up to

he point where the attacker has gained control of the QSEECOM

river and has exploited the vulnerable WideVine TA. However,

ecause of the aforementioned XPU protection, QSEE applications

o not have access to the memory of other QSEE applications. In

articular, the Widevine TA cannot access the Keymaster mem-

ry. Still, every QSEE application has access to TZ kernel code seg-

ents as long as they are executed in the context of the kernel.

he Widevine TA can execute the shellcode and thus access the

eymaster memory once the shellcode is hosted in the TZ Kernel.

herefore, the ultimate goal of the attacker is to insert the shell-

ode within the TZ Kernel and execute it through the Widevine TA.

he shellcode will then access the Keymaster memory and extract

he FDE Key.

In order to succeed in inserting the shellcode in the TZ kernel

ode segments, it is necessary to bypass various security mecha-

isms. The first mechanism to bypass is the DACR memory protec-

ion mechanism. The MMU manages access to any memory region,

sing bits of the DACR register. However, there is a piece of code

nside the TZ core that can change the value of DACR, known as

he DACR modifying gadget. If the attacker calls the DACR modify-

ng gadget to set all bits to 1, then all memory regions are then en-

bled and available to perform read and write operations on them.

he first goal of the attacker is to execute this DACR modifying

adget.

In order to execute this gadget, the attacker can take advan-

age of the design of the system call table. System calls are used

ndirectly using a system call table. Although this table cannot be

hanged, as it is protected by the memory protection unit (XPU)

ointers, the reference to this table is not protected: it must reside

n a modifiable memory region, because it is only filled at runtime.

ecause of this, the attacker can execute a sycall hijacking attack:

he attacker stores in memory a fake system table with one system
9
all pointing to the DACR modifying gadget, and then modify the

eference to the system call table so it points to the malicious one.

his way, once the (modified) syscall is called, the DACR modifier

adget will be invoked instead – modifying the DACR register to

llow write and read access.

The second security mechanism that needs to be bypassed is

he memory protection unit (XPU), which prevents access to pro-

ected areas from unprivileged code. The issue here is that the at-

acker can execute code in the kernel context, yet the source of the

ode is in the trusted WideVine application – and is therefore con-

idered unprivileged. The attacker then must find a way to insert

he malicious code in the TZ kernel and to invoke it.

The attacker first needs to implements a script in order to iden-

ify unprotected code regions in the TrustZone kernel. This allows

nding a “cave” to host the final shellcode of the exploit, which

ill be considered as priviledge code and will bypass the XPU pro-

ection mechanism. Once the script successfully finds a “cave” and

he shellcode that extracts the encryption key from the memory

isk is inserted, a final step remains: how to execute such shell-

ode. In order to do so, another system call hijacking is needed.

or example, the attacker can overwrite the qsee-hmac() system

all. As a result, when the qsee-hmac() is called from the malicious

SEE application, instead of the intended function the shellcode

ill be executed. This allows the FDE key to be extracted from the

eyMaster application and then written to the shared buffer.

The cause of this attack is that disk encryption is not imple-

ented with a hardware-based key. The key is generated by soft-

are and stored inside the TZ kernel memory. Since the key re-

ides within the software, once the TZ kernel is exposed, it can

e easily extracted. Therefore, the disk encryption system offered

y Android becomes resistant to attacks of different kinds such as

hose of the TZ kernel security or TA’s own keymaster. Any flaw in

ither of them can potentially leak the FDE master key.

In addition to the ability of applications to map physical mem-

ry, there is another attack gap arising from TEE’s debugging

echanisms. What privilege escalation attacks are and how they

ork has already been described in Section 4.1.1 . Making use of

his type of attack, Shen (2015) implements an attack on Huawei’s

EE. It exploits a syscall that allows any application to perform a

tack dump in a memory area belonging to the NW. This becomes

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

Fig. 8. Kinibi Architecture.

t

t

4

S

s

i

t

l

c

r

i

c

a

i

m

u

m

t

4

a

c

K

a

a

t

n

w

v

“

t

i

d

4

c

s

m

W

K

a

w

c

v

T

k

c

t

T

c

t

a

t

t

t

r

a

u

s

w

m

m

A

p

b

s

(

t

a

(

o

c

t

E

“

o

fl

b

p

i

H

i

t

r

e

t

T

w

i

b

s

a

t

i

b

he attacker aware of the physical address space of the GlobalTask

o have enough information to successfully implement the attack.

.2.2. Trustnone

Communication with the TZ kernel is facilitated through the

MC instruction, as aforementioned. This allows the NW to use

ystem calls that are exported by the TZ kernel, for which an API

s provided in the Android/Linux kernel.

XPU units protect those on-chip and off-chip memory regions

hat contain the TZ kernel. These are configured by the first boot

oaders. This allows only certain runtime environments to access

ertain memory areas.

Beaupre (2015) describes that a number of TZ vulnerabilities are

elated to system calls. With special emphasis on those that do not

mplement any validation, or do not do it properly. More specifi-

ally, in the user input, at this point the attacker could safely write

s many zeros as desired in a memory area, thus bypassing the

mplemented security mechanisms obtaining read and write per-

issions in the TZ kernel context.

The attack is particularly relevant because it affects all devices

sing the Snapdragon 805 SoC and thus the QSEE. In his experi-

ent, Beaupre used the exploit to unlock the bootloader of a Mo-

orola Snapdragon 805 9

.2.3. Attacks on HTC QSEE extensions

Beyond the vulnerabilities that can be found on QSEE, there are

lso vulnerabilities that affect certain QSEE extensions from spe-

ific manufacturers. For example, in Keltner and Holmes (2014) ,

eltner et al. describe the implementation of a new attack against

 version of Qualcomm’s QSEE used and extended by HTC. To cre-

te this attack, they reverse-engineered that specific implementa-

ion/version of QSEE, which proved highly successful in finding a

umber of vulnerabilities in the code added by the HTC extensions.

Examples of such vulnerabilities include i) flaws in the zero-

rite primitive in certain address range allowing to circum-

ent all memory operations security checks, and ii) flaws in the

tzbsp_oem_memcpy” function, which give the attacker full con-

rol of all the memory. As a consequence of all the weaknesses, it

s easier for the attacker to securely extract data and modify vali-

ation mechanisms in memory regions.

.2.4. Implementation bugs

The previous sections have focused on the QSEE TEE by Qual-

omm. Yet this is not the only vulnerable implementation of the

tandard: other vulnerabilties have also appeared in other imple-

entations of the TrustZone technology, such as Kinibi (Lapid and

ool, 2018) from Trustonic.

One important work in this area is proposed by

omaromy (2018) that described certain important vulnerabilities

ffecting the Trustonic implementation. These six vulnerabilities

ere caused by software bugs, and most of them are located in

omponents that manage inter-realms communications.

Before describing these vulnerabilities, it is important to pro-

ide a very brief introduction on the Trustonic architecture.

rustonic (cf. Fig. 8)includes an application connector or gate-
9 https://www.qualcomm.com/products/snapdragon- processors- 805 .

i

i

10
eeper known as TLC (trustlet connector) that enables communi-

ation to pass through to the Kinibi device. An interface is offered

o NW by TLC that can be accessed through UNIX domain sockets.

hese domain sockets make use of MAC/DACs schemes for access

ontrol and only certain applications, such as tlc_server , have access

o them. In addition, sanity checks are performed on TEE requests,

nd are further protected through SELinux.

Komaromy (2018) found a way to circumvent this access con-

rol by disassembling the tlc_driver binary. It was found that al-

hough almost all commands implemented a process for checking

he caller’s permissions, there was one command that, for some

eason, did not have this security check implemented. This vulner-

bility, Vuln 0 , allowed an arbitrary user-space application to make

se of the handler and initiate a session to a TA and subsequently

end any commands at will to it.

One of such trusted applications (TA or trustlet) is ESECOMM,

hich is used for secure payment transactions. ESECOMM imple-

ents the “SCP03 Global Platform Secure Channel Protocol”, where

essages are sent encoded in TLV (Type-Length-Value) format via

PDUs (Application Protocol Data Units). The trusted application

erforms certain parsing ckecks on the TLV-enconded messages

ut does not control whether the maximum number of TLVs to

tore for each structure is exceeded. This may result in overflow

 Vuln 1) attacks, which opens up the range of possible attacks since

hese structures are allocated on both the heap and the stack. In

ddition, the TLV parser does not properly check the input buffer

allocating TLVs) length – the only check performed is whether the

ffset remains unchanged until the end of the buffer, it does not

heck that it is less than it. Therefore, this allows an attacker to

rivially read out of bounds (Vuln 2).

However, these are not the only vulnerabilities that affect the

SECOMM trustlet. There is another stack buffer overflow in the

parse_ca_cert() ” function. Again, no check is made on the length

f the TLV input value, so it is possible that another buffer over-

ow may occur. Although the size of TLVs is restricted to 0x400

ytes, since the size of the input buffer is limited to 32 bytes, the

roposed restriction is not sufficient to prevent the attack (Vuln 3).

There is another function, “parse_scp_param() ”, with a sim-

lar vulnerability. This function is used to parse the Diffie-

ellman Diffie and Hellman (1976) parameters used for establish-

ng a secure channel between Kinibi and the secure element. As in

he previous case, the function parses and checks most of the pa-

ameters but there is one parameter that is not fully checked, thus

nabling another overflow (Vuln 4) attack.

Finally, the fifth vulnerability (Vuln 5) is a memory corrup-

ion vulnerability that requires the user to have root privileges.

he main problem lies in the common buffer shared by that both

orlds, NW and SW. In this buffer, known as TCI, there is a flaw

n the way memory offsets are specified. In particular, within the

uffer there is a file (envelope_len) with the offset where the re-

ponse begins. The tlc_driver is in charge of setting this field, but

ny other trusted application can also do it. As a result, if an at-

acker is able to become root, he would be able to arbitrarily mod-

fy this field and thus specify whatever write offset he wishes, even

eyond the buffer bounds.

While we have focused on vulnerabilities that affect the Kib-

ni implementation, that does not mean that there are no flaws

n other TrustZone implementations. For example, in Keltner and

https://www.qualcomm.com/products/snapdragon-processors-805

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

H

a

S

R

n

i

4

s

2

i

S

v

a

s

T

t

c

(

a

c

f

o

t

a

l

4

w

t

v

t

B

t

m

e

t

S

i

i

m

t

t

b

t

5

a

t

t

o

5

d

(

5

w

w

i

o

m

a

c

t

t

b

c

m

5

t

t

s

O

e

t

t

s

m

t

p

d

a

b

t

e

a

T

s

S

s

t

O

M

a

f

T

o

o

f

w

e

5

a

p

a

5

s

v

r

olmes (2014) , the authors describe the procedure to read

nd write operations on arbitrary memory locations within the

W using the failed memory validation mechanism. Similarly,

osenberg (2014) observed a faulty SMC memory check mecha-

ism. This flaw enables an attacker with kernel privileges to write

nto the SW.

.2.5. Unlocking bootloader attacks

There are other TrustZone attacks that target the bootloader of

martphones, such as the attacks described by Rosenberg (2013,

014) . In the first paper, Rosenberg describes a write vulnerabil-

ty in Motorola smartphones. This vulnerability affected a specific

MC call whose role was to allow the kernel in the NW to obtain

alues stored on the memory side of the safe world. However, an

ttacker can abuse this SMC call to overwrite the memory in the

ecure region – in particular, the flag responsible for granting the

rustZone kernel permission to blow Qfuses. As a result, the at-

acker can blow Qfuses through another SMC call, in order to indi-

ate that the bootloader is unlocked. This way, an unsigned image

e.g. a tampered Android firmware) can be loaded.

In the second paper, Rosenberg (2014) identifies a new vulner-

ble SMC function. The function, known as qsee_is_ns_memory() ,

hecks whether a certain memory range belongs to the SW. This

unction involves an uncontrolled primitive write based on an

verflow. This vulnerability enables a chain of attacks that gives

he attacker the possibility of circumventing all validation checks

nd execute any code in safe memory region, unlocking the boot-

oader in the process.

.2.6. ROM Extraction attack

There are other attacks, such as Basse (2016) by Basse et al.,

hose goal is to bypass the TrustZone authentication mechanisms

o extract the boot image (BootROM) from a device. In ARM de-

ices, an UART interface is available in the device to give access

o a root shell and a high-level debug message interface. Still, the

ootROM image is stored in a secure memory area within the SoC

o prevent unauthorised access or changes. To bypass the security

easure two conditions must be met: i) the MMU tables must be

xtended to include the BootROM address (thus allowing access to

his partition), and ii) the user needs kernel privileges.

Although an attacker can exploit existing overflow errors in the

MC interface to gain kernel privileges, the access to the memory

s limited due to the authentication routine that protects the MMU

mages. However, in some cases, this authentication routine is a

ere hash function. Therefore, an attacker can update the MMU

able to include the BootROM, recalculate the hash of the MMU

able, and write both values in the device. A custom SMC can then

e executed, which will access the BootROM partition through the

ampered MMU table.

. Architectural attacks

This section presents the main security issues arising from the

rchitecture of today’s TEE systems. We distinguish between at-

acks made possible by the elements of the architecture dedicated

o the isolation between worlds (SW vs NW) and attacks on mem-

ry protection mechanisms.

.1. Isolation focused attacks

Attacks on inter-world isolation include (a) memory exposure

ue to physical memory mapping in the NW by applications, and

b) information leakage due to TEE debugging mechanisms.
11
.1.1. Memory exposure

Certain TAs require an efficient shared memory mechanism

ith the ability to exchange large volumes of data between worlds,

hich has led to security holes in some TEE implementations.

Beniamini Beniamini (2016b) describes how an attacker, start-

ng with only TA privileges running in the NW, can get full control

f the kernel, which is due to the fact that Qualcomm’s TEE imple-

entation allows an arbitrary application to allocate an arbitrary

rea of the Normal World. For this, it is only necessary to use a

all to the SW, which in turn allows the attacker to take control of

he operating system. This would enable him to sweep through all

he physical addresses of the kernel, manipulate it and introduce

ackdoors.

Fortunately this is not the case for all implementations. In the

ase of Trustonic TEE, TAs cannot read from or write to physical

emory.

.1.2. BOOMERANG attack

Boomerang attacks Wagner (1999) exploit flaws that appear in

he design of the communication between realms. This type of at-

ack is made possible by the fact that the trusted OS has no re-

trictions on the memory addresses it can access and the normal

S has no way of checking if the entity performing this action is

ntitled to do so. The attack starts with an application or user in

he NW passing an unauthorized memory address to a SW call. If

he address is not filtered out due to the lack of standard memory

anitation mechanisms, the attacker could read and/or write that

emory, as detailed in Section 7.1 .

Fig. 9 shows an overview of the attack. The attacker’s goal is

o send a privileged address to the application (4). For this pur-

ose, and in order to circumvent the sanitation process, a filled

ata structure is transferred – which among other things contains

n address pointer without annotating it. There are three possi-

le ways to transfer the data to the existing mode: (1a) by using

he Daemon TEE in charge of pointer sanitation with background

xecution, (1b) by taking advantage of an API that is used by the

pplication, and (1c) by using a library for the aforementioned API.

he NW OS kernel makes a call to the SMC with the purpose of

witching worlds and transferring the filled data structure to the

W (2). Once the data structure is in the SW OS, a check is made to

ee if the pointers actually point to memory areas from the SW. As

he pointer comes from the NW, it passes the test and the trusted

S passes the structure to the TA (3) without any further checks.

Based on how an attacker bypasses pointer sanitation,

achiry et al. (2017) successfully attacked a wide variety of TEE

rchitectures. Using a static analysis tool, they were able to per-

orm analysis of several TEE implementations (QSEE, Kinibi, OP-

EE (Brand) , SierraTEE (SierraWare) , and Huawei) and applications

n them, searching for BOOMERANG vulnerabilities. The results

f the study revealed several vulnerabilities in the analyzed plat-

orms, which affected a very high number of mobile devices. This

ork has enabled TEE vendors to implement specific fixes in their

nvironments.

.2. TEE Wide attack surface

Attacks to memory protection mechanisms include certain bugs

ppearing in software drivers (executed in kernel space), others ap-

earing in the interfaces shared among different TEE components

nd broad interfaces.

.2.1. Kernel contains driver execution

Most systems require software drivers to communicate with

pecific hardware. Some TEE drivers are meant to interact with de-

ices that handle sensitive (e.g. a biometric sensor) and for that

eason they are executed in the TEE kernel. Therefore, an attacker

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

Fig. 9. An attacker bypasses pointer sanitation by hiding it inside the structure to send to applications.

c

i

T

o

5

k

c

w

s

k

T

t

n

t

v

s

i

o

5

o

o

o

d

b

f

p

c

e

n

i

Q

6

i

s

t

m

c

s

t

t

a

e

p

(

a

c

c

a

l

o

i

r

S

V

V

a

s

A

l

p

6

e

a

ould exploit any error in these drivers in order to access the priv-

leged area of the system. In fact, some implementations like OP-

EE Brand and Snapdragon (Rosenberg, 2014) allow the execution

f all the code labelled as privileged within the kernel.

.2.2. Downgrade attack

Trusted applications are signed using the TEE trusted public

ey. If the application passes the verification, the system will ac-

ept it and execute it. This is exploited by downgrade attacks,

hich consist of loading old buggy binaries to take control of the

ystem. Chen et al. (2017) demonstrated the effectiveness of this

ind of attack.

Nowadays, in order to prevent such attacks, the majority of

EEs implementations include some kind of mechanism to control

he application versioning. However, Beniamini (2017) analysed a

umber of applications and their respective updates and realized

hat all shared the same version number.

Application developers are therefore urged to make use of the

ersion control mechanisms provided by the TEE vendors. This

hows that even when protection mechanisms are in place it is

mportant to make use of them or they are rendered useless thus

pening the door to attacks.

.2.3. Broad interfaces to attack

Opening secure system has always been tricky and danger-

us. In order to extend functionalities the number of interfaces

ffered by TEE is growing and this has led to the development

f several exploits. For example, the exploit on the TZ linux

river (Beniamini, 2015a) in Android. Trusted applications are also

eing provided with more functionality, which is also sensitive

rom a security point of view.

TEEs should allow developers to minimise the Trusted Com-

uting Base (TCB) of their applications to maintain a proper se-

urity/efficiency balance: the larger the size of the TCB, the more

rror-prone implementations are (Cerdeira et al., 2020). It is worth

oting that the size of the TCB varies considerably for TEE each

mplementation, ranging from 97KB for Tegra’s TEE to 1.62MB for

ualcomm’s.
12
. Side-Channel Attacks

As mentioned above, memory protection mechanisms in TEE

mplementations are rather weak or lacking. In this section we

how how exploiting these mechanisms lead to side-channel at-

acks (SCA). An SCA is an attack that exploits certain types of infor-

ation such as power consumption data to leak information about

ryptographic material and operations.

Fault-injection is a particular kind of side-channel attack con-

isting on inducing physical- or software-based faults (also referred

o as glitches) in a computation to expose secret information. Due

o their relevance, we focus on this type of attacks. This type of

ttacks include the application of high voltages, temperatures or

lectromagnetic (EM) pulses in order to expose electronic com-

onents to unexpected conditions. Electromagnetic fault injection

EMFI) attacks Maistri et al. (2014) are probably the most relevant

nd difficult to protect from. These attacks have provided very suc-

essful results when implemented on a huge number of commer-

ially available integrated circuits.

Some of the most relevant fault-injection attacks are known

s Dynamic Voltage and Frequency Scaling (DVFS), which al-

ow the software to regulate device voltage and frequency based

f each CPU execution thread. This makes it possible to mod-

fy and monitor the power consumed since this value is di-

ectly related to both factors (frequency and operating voltage).

ome of them, namely CLKscrew Tang et al. (2017) , Plunder-

olt Murdock et al. (2020b) , Platypus attack Lipp et al. (2021) and

oltJockey Qiu et al. (2019a) are based on producing dynamic volt-

ge and frequency scaling, where power traces can be collected by

oftware and there is no need to physically access the device itself.

dditionally, Rowhammer Lipp (2016) and BADFET Cui and Hous-

ey (2017) are attacks based on the application of electromagnetic

ulses.

.1. CLKscrew

CLKscrew takes advantage of a feature available in mod-

rn devices that enables software control of both CPU voltage

nd frequency for the primary purpose of power administration.

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

Fig. 10. CLKscrew fault injection Attack.

T

o

c

l

i

u

b

C

c

i

t

b

d

o

a

I

l

a

c

b

(

i

e

w

w

i

t

l

s

t

g

v

r

k

i

c

l

f

t

t

g

f

C

c

o

i

u

i

v

fi

h

t

p

C

g

6

c

g

t

o

i

t

t

o

t

c

i

t

U

fl

ang et al. (2017) show a successful implementation of the attack

n an ARM device, namely the Nexus 6 smartphone. This attack

onsists of inducing failures in certain operations by causing calcu-

ation errors in the CPU, allowing the attacker to obtain essential

nformation to deduce secret keys from an ARM TrustZone.

To cause erroneous behaviour, the attacker can overclock and

ndervolt the CPU, thereby exceeding the CPU fault induction

oundaries. There are no protection mechanisms to prevent the

PU from being able to operate at faulty frequency and voltage

ombinations. Also, since hardware regulators 10 have their operat-

ng range precisely at the TEE separation, this opens the possibility

hat the attack can occur even in the same SW execution.

Once frequency-voltage combinations of faulty behaviour have

een identified, the attacker makes use of a manipulated kernel

river that manages to link the victim’s thread to a particular kind

f kernel, leaving the rest of kernels to other applications. This

voids the threat of possible collateral damage during the attack.

n addition, interrupts are disabled during fault injection, which al-

ows circumventing any possible context switching.

A representation of the attack is depicted in Figure 10 . The

ttack requires some preparation: it starts with clearing out any

ache residue, since in the following phases of the attack a cache-

ased profile is used to signal the start of the victim’s execution

step 1). Then, the attacker monitors the victim’s code execution by

nspecting certain execution points, called “Timing Anchor” point,

specially in the instant prior to the execution of the target code

here the fault is to be injected (steps 2-3). There are some cases

here the accuracy of the Timing Anchor is not good enough, thus

t is necessary to achieve a more precise synchronization of the at-

ack. To fine-tune the accuracy, the attacking thread remains in a

oop for a period of time, after which it will proceed to the next

tep of the process (step 4). Note that a distinguishing feature of

his attack is that the frequency of the victim’s CPU kernel under-

oes changes while the attack is taking place, raising the frequency

alue to a specified one and over a specified period – and then

estoring normal conditions (steps 5-6).

Using this attack technique, it was possible to unveil the secret

ey of a previously manipulated implementation of AES executed

n the Secure World. The implementation consisted of a simple de-

ryption tool that received encrypted messages as input and re-
10 Hardware can include voltage/frequency regulators, which contain a phase-

ocked loop (PLL) circuit that generates a synchronous and adjustable clock signal

or the digital components.

d

c

s

c

c

13
urned the plaintext, decrypted with a stored secret key. The at-

acker was able to unveil the AES secret key by inducing various

litches during the AES decryption phase and applying differential

ault analysis (DFA) attack.

The authors also showed a second type of attacks on TZ with

LKscrew, which they call self-signed application loading . In this

ase, CLKscrew can be used to modify the RSA signature chain

f firmware images in TZ, which is the method used for verify-

ng their authenticity. Firmware images to be updated contain the

pdated code, a signature of the firmware’s hash to maintain its

ntegrity, and a certificate chain. During the upgrade process, a

erification of the signature is performed on the hash of the new

rmware to be uploaded, together with a secret key linked to the

ardware (this key is stored in the Secure World). Using CLKscrew,

he authors are able to crack the signature process to force it to

roduce a hash that is identical to the hash of a different firmware.

onsequently, the verification mechanism accepts to install an ille-

itimate firmware as if it were correctly signed by a trusted entity.

.2. PlunderVolt

Plundervolt Murdock et al. (2020b) relies on the inducing

hanges to the voltage received by the processor, causing the pro-

ram to change its intended execution path. Pundervolt exploits

he lack of a stable power supply voltage.

Plundervolt circumvents the protection limits of the TEE mem-

ry encryption engine by abusing an undocumented voltage scal-

ng interface, which allows privileged software adversaries to lower

he tension and cause predictable failures in the SW. With this

echnique, the theft of secrets is achieved, even in the presence

f memory encryption technology.

For instance, Plundervolt can break the integrity and (indirectly)

he confidentiality of Intel SGX Murdock et al. (2020a) . Indeed, as a

onsequence of Plundervolt it is possible to break the processorüs

nstruction set specification, making it possible to successfully at-

ack bug-free code, tested code and even formally verified code.

nlike other Intel SGX attacks, which abused architectural design

aws to break the confidentiality of enclave secrets, the authors

emonstrated that even the integrity of seemingly secure enclave

omputations can no longer be trusted. The authors in addition to

ucceeding in breaking cryptographic code show how Plundervolt

an be used to induce memory safety vulnerabilities into bug-free

ode.

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

6

n

P

T

i

c

i

H

i

t

t

t

t

o

t

d

a

6

v

e

i

t

a

C

s

b

o

d

u

D

Q

b

d

w

t

p

t

i

6

s

g

D

t

c

a

p

p

t

n

a

e

t

6

a

s

c

a

s

n

m

i

t

p

T

t

w

O

b

t

a

m

7

m

c

T

B

7

d

c

t

s

i

e

f

e

s

t

i

c

f

a

e

b

c

t

k

p

i

a

s

i

m

r

a

t

e

.3. Platypus Attack

Platypus Lipp et al. (2021) is based on exploiting the mecha-

ism of accessing the interface of Intel’s RAPL - Running Average

ower Limit, which reveals information about power consumption.

he weakness lies in that any user of the system can access this

nterface.

Platypus shows that by performing a statistical study with a

ertain number of evaluated data, it is possible to appreciate and

dentify variations in energy consumption. By assigning different

amming weights to what is loaded into memory, different code

nstructions can be identified. This makes it possible to monitor

he control flow of applications, which is very valuable to a poten-

ial attacker.

Using Platypus, an attacker has also the ability to deduce sensi-

ive information such as secret keys. The authors show how a po-

ential attacker, who starts from an unprivileged state, is capable of

btaining AES new instructions (AES-NI) keys from Intel SGX and

he Linux kernel, infer secret instruction streams, break the ran-

omisation of the kernel address space layout (KASLR) and finally

chieve the establishment of a time-independent covert channel.

.4. VoltJockey

VoltJockey Qiu et al. (2019a) is an attack based on dynamic

oltage and frequency scaling (DVFS). This attack differs from oth-

rs (e.g. CLKscrew) in that it performs manipulations on voltages

nstead of frequencies. This allows the generation of failures in

he target hardware. VoltJockey is notable for being more stealthy

nd therefore more difficult to avoid than similar attacks such as

LKscrew. Some authors Qiu et al. (2019a) ; Qui et al. (2020) have

hown how TrustZone’s AES key and RSA-based authentication can

e cracked on an Android smartphone using VoltJockey. This is one

f the most effective attacks for obtaining protected TrustZone cre-

entials.

VoltJockey is an attack on TrustZone based on hardware flaws

sing software-controlled voltage manipulation. It exploits the

VFS voltage management vulnerability. In Qiu et al. (2019a) ;

ui et al. (2020) the authors implement VoltJockey on an ARM-

ased Krait multicore processor, whose core frequencies can be

ifferent but the processor voltage is controlled by a shared hard-

are regulator. The Trust-Zone protected AES key is achieved and

hus guide the RSA-based signature verification to obtain the target

laintexts. An implementation of VoltJockey was used to break In-

el SGX in Qiu et al. (2019b) and in an advance scaling based fault

njection Qiu et al. (2020) .

.5. Rowhammer

The Rowhammer attack Lipp (2016) exploits the particular de-

ign of some modern DRAM memory in which memory cells are

etting closer and closer. This complicates isolation and makes

RAM cell capacitors sensitive to electrical interference thus po-

entially leading to memory corruption. As such, the repeated ac-

ess to a row of memory can cause bit flipping (shifts from 0 to 1

nd vice versa) in adjacent rows.

Consequently, Rowhammer takes advantage of this isolation

roblem to affect the RAM rows storing TrustZone data, even by-

assing the NS bit protection mechanism. The authors of the at-

ack, from Carnegie Mellon University and Intel, tested this phe-

omenon on Intel and AMD systems using a program that gener-

tes multiple accesses to DRAM memory. They managed to cause

rrors in most of the DRAM modules tested (110 out of 129) from

hree major manufacturers.
14
.6. BADFET

In recent years, electromagnetic fault injection (EMFI) attacks

re becoming a major threat. This is as a consequence of the mas-

ive increase in CPU speed and the reduction of the size of the

omponents, which hinders other types of injection attacks.

BADFET Cui and Housley (2017) is based on second-order EMFI

ttacks, which do not target the CPU but other components of the

ystem. In fact, this attack can be applied to any arbitrary compo-

ent (such as memory, buses, controllers, etc.) that the processor

akes use of during sensitive operations. This approach can signif-

cantly reduce the temporal and spatial resolution requirements of

he hardware needed for EMFI injection.

The attack consists of two steps. During startup, BADFET ap-

lies electromagnetic radiation on the system’s RAM memory.

hese memory-induced failures trigger a condition that exposes

he uBoot’s debugging Command Line Interface (CLI) to attackers,

hich enables to switch between the Normal and Secure worlds.

nce the CLI is available, during the second step, a buffer overflow-

ased vulnerability is exploited in the SW. This allows attackers

o obtain write, execute and read privileges and, as a result, the

ttacker achieves a new CLI that is capable to fully execute com-

ands in the SW.

. Micro-architectural attacks

The last category of this taxonomy include attacks targeting

icro-architectural elements. This section summarizes the attacks

onsidered as micro-architectural as they have been applied to

EEs. These attacks focus on micro-architectural details as caches,

ranch Target Buffer (BTB) unit, etc.

.1. Cache timing attacks

As previously mentioned when the architecture of the TZ was

escribed, cache memory is shared between SW/NW. Since the se-

ure parts of the cache are not accessible from the NW, bidding for

he use of the cache lines does not take place, and therefore a sub-

tantial improvement in system performance is achieved. However,

nformation leakage through caches is an open avenue for attack-

rs. These attacks are usually performed by extracting hardware in-

ormation such as timing computations, cache access attempts and

ven the sound released while the computation is taking place.

In a cache timing attack , an adversary is capable of inferring

ecrets from the secure world by monitoring accesses made by

he victim in a shared memory. Generally speaking, a cache tim-

ng attack has two phases – timing and correlation, and is typi-

ally used for leaking cryptographic keys or another sensitive in-

ormation. During the timing phase, the attacker sends raw data to

 specific (cryptographic) function to measure the time spent on

ach encryption. The total execution time can be highly affected

y the number of cache hits and misses produced during the exe-

ution. Once the attacker gathers enough measurements, he is able

o match the entries with the execution times, and thus infer the

ey. These methods rely on active cache manipulation designed to

roduce data with a higher level of entropy, which in turn results

n a fairly smaller data set to perform the attack.

Next, we elaborate on how this type of attack affects TZ with

n specific example. The ARM chip is built in such a way that a

hared CPU cache is used to improve the performance of data and

nstructions processing in the SW and NW. This cache integrates a

echanism, known as the TZ NS-bit, dedicated to ensuring sepa-

ation between the two worlds. Included in this separation are the

ccess rights for the resources available in each world. The opera-

ion of this mechanism is simple: the bit is used to tag each cache

ntry, such that if any NW process attempts to access a SW entry a

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

m

a

i

e

s

r

i

I

p

t

c

t

s

s

q

m

C

t

s

c

L

s

B

i

a

t

p

a

t

t

A

p

l

T

t

t

t

o

g

c

t

c

o

s

7

t

i

F

m

t

b

a

q

7

o

t

t

e

w

a

a

7

t

c

i

p

o

p

p

t

t

A

R

a

v

F

v

i

t

m

r

o

c

f

p

m

t

7

a

b

t

t

c

t

l

i

a

u

i

c

7

b

r

t

a

i

i

e

t

e

b

v

i

i

iss occurs (Kim et al., 2012). Although this cache tagging mech-

nism may appear to be secure, recent works have revealed that

ts design present several flaws that can be exploited using differ-

nt strategies (Gras et al., 2017; Irazoqui et al., 2015; 2016). Still, a

uccessful implementation of this attack is not trivial among other

easons because the attacker must be able to manipulate the cache

n order to monitor the victim’s process.

Götzfried et al. (2017) showed a cache-timing attack affecting

ntel SGX enclave (Intel, 2014). The authors demonstrated that, in

ractice, SGX cannot resist its designated attacker model (i.e. at-

ackers gaining root access to the system) when dealing with side-

hannels. In fact, during the experiments the authors realized that

he side-channel attack surface increases significantly in the SGX

cenario. This is because without SGX some capabilities are re-

tricted to the kernel. In the presence of Intel SGX the attacker ac-

uire new capabilities, such as the possibility to operate the power

anagement control (PMC).

This type of attacks have also been tested against ARM based

PUs. Weiß et al. (2012) present the implementation of an at-

ack against a virtualized ARM system. Based on the conclu-

ions of this work, Spreitzer and Plos (2013) studied the appli-

ation of this timing attack on different Android smartphones.

ater, these authors Spreitzer and Gérard (2014) achieved sub-

tantial improvements in the results by reducing the key space.

ogdanov et al. (2010) presented another attack against AES table

mplementations based on the exploitation of collisions. They used

n ARM9 microprocessor for this purpose.

The use of branch predictor is another way to implement cache-

iming attacks on TrustZone. In the latest processor designs, a com-

onent called the branch target buffer unit (BTB) is included. This

llows the storage of target addresses obtained from the compu-

ation of the forking instructions performed, with subsequent re-

rieval when the instructions are predicted (Takahashi et al., 2018).

s a consequence of BTB being shared between both worlds, it is

ossible to perform attacks such as Prime+Probe (explained be-

ow) to reveal data. The process starts with a priming of the BTB.

he victim process is then allowed to start, which will be evict

he attacker’s BTB entries. Once the attacker acquires control of

he execution, he initiates the associated branches in order to de-

ect prediction errors. A relevant aspect in the internal operation

f the BTB is related to byte granularity rather than cache line

ranularity. This enables a new attack vector by significantly in-

reasing the spatial resolution of the probing mechanisms. Using

his approach, it is possible to retrieve a private key directly from

ertain hardware-backed keystores Ryan (2019b) . Some examples

f memory-based attacks using different techniques are briefly de-

cribed below.

.1.1. Prime+Probe

The Prime+Probe attack (Osvik et al., 2006) begins with the at-

acker filling the cache with data. Subsequently, the attacker mon-

tors how the cache changes while the victim process is running.

rom the changes detected in the cache, the attacker infers infor-

ation about the victim’s operation and behavior.

From the attacker’s perspective, the main advantage of this

echnique is that there is no need to carry a shared memory map

etween attacker and victim. This results in a very suitable mech-

nism for attacking the SW with very few additional resources re-

uired.

.1.2. Evict+Time

This attack (Osvik et al., 2006) is based on the execution time

f the victim process. The process is run and then all cache entries

hat have been used by it are deleted (evicted), in such a way that

he execution time is modified in the next execution. The differ-

nces between execution times are then analyzed and correlated
15
ith all cache changes so as to extract useful information. For ex-

mple, this type of attack can be launched against a cryptographic

lgorithm, say AES, to expose the cryptographic material.

.1.3. Flush(Evict)+Reload

Yarom and Falkner (2014) describe the Flush(Evict)+Reload

echnique. Flush + Reload works based on an abuse of shared

ode/data by making use of the clflush cache flush instruction. It

s necessary that victim and attacker physically share at least one

age of data. This is possible since shared libraries are normally

nly loaded once physically into memory. Instead, different ap-

lications access the same data (physically) since the page tables

oint to the same physical address. The process is as follows, when

he attacker uses the clflush command with an address pointing to

his shared data, it is completely flushed from the cache hierarchy.

s the data is shared, the attacker can hit on this data in the cache.

epeatedly the attacker empties the shared data with the victims

s Fig. 11 depicts, then the attacker remains on standby until the

ictim executes, at which time it performs the reload of the data.

rom this moment on, if the attacker gets a cache miss, i.e. the

ictim has not accessed the data, and therefore has not returned

t to the cache. On the other hand, if he gets a cache hit, that is,

he victim did. In this way, the attacker can distinguish hits from

isses because the memory access time is very different.

The potential of this attack lies in the fact that the attacker can

each a very high level of knowledge of the cached data. As mem-

ry is slower than the processor, this fact produces bottlenecks. Re-

ently used lines are stored in the cache, which improves the per-

ormance. Since Multi-processors Systems-on-Chip (MPSoCs) com-

onents can directly access the hardware information, like com-

unication infrastructure or physical addresses, the Flush+Reload

echnique on MPSoCs is prone to be implemented in these settings.

.1.4. Flush+Flush

The Flush+Flush mechanism (Gruss et al., 2016b) could be seen

s a variation of the Flush+Reload attack implemented in reverse. It

egins in a similar way to the one described above: by emptying

he cache lines that are shared. Immediately afterwards, the vic-

im program can be executed. The attacker then performs another

ache flush while calculating the time taken to perform this flush.

The idea behind this attack is that the time spent in flushing

he cache can change depending on the cache lines that have been

oaded while the victim was running. This allows the attacker to

nfer certain information from the victim’s process. Although this

ttack is more complex, this technique has the advantage of going

nnoticed more often than previously described ones. The reason

s that many attack detection mechanisms rely on the presence of

ache misses to identify possible attacks.

.1.5. Wei ́ Attack

Weiß et al. (2012) demonstrate that cache timing attacks can

ypass virtualization barriers. The experiment made use of replay-

esistant authentication by performing all encryption operations in

he secure world. The attack targets the authentication scheme,

nd for this purpose a reduction in the key space is pursued until

t can be effectively implemented by brute force.

This attack is structured in two phases: offline and online. Dur-

ng the offline stage, the attacker gathers multiple encryption op-

rations using a known, all-zero key. In the other phase, the at-

acker’s goal is to capture the key that is unknown to him. Once

nough synchronization data has been collected, the correlation

etween the two sets is established, thus obtaining the possible

alues of each byte of the key. To find the values, a calculation

s performed based on a probability threshold. The mechanism is

nitiated by inserting a value in the list, which contains those pos-

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

Fig. 11. Flush+Reload attack workflow.

s

a

b

c

e

s

t

w

p

d

t

m

A

s

A

a

n

m

b

7

t

p

T

2

i

c

T

a

C

c

h

a

i

n

u

l

f

u

c

p

t

c

l

t

p

a

7

i

7

d

a

o

p

t

a

ible values of the key, just at the instant when a byte of the key

ppears with a probability higher than the established threshold.

This work was developed in 2012 when the TEEs were just

eginning to get standardized by GlobalPlatform and deployed in

onsumer devices. For this reason, rather than on a TEE, Weiß

t al. (2012) present an implementation of the attack on virtualized

ystems. Although this attack was not implemented in TEE, the au-

hors showed that cross-isolation attacks are effective, given both

orlds share CPU and cache. This particular implementation was

erformed on a Beagleboard

11 , which is basically an ARM-based

evelopment board that integrates an L4 microkernel – which is

he virtualization layer. During the experiment, they took measure-

ents of the time spent on each encryption operation using the

RM CCNT register, as well as the total count of CPU clock cycles

ince the last restart. They took different im plementations of the

ES to study the weaknesses that appear in general computation

nd concluded that, to a greater or lesser extent, they were all vul-

erable. Two years later, Weiß et al. (2014) reproduced the experi-

ent – but this time in a multi-core environment on a development

oard.

.1.6. ARMageddon

Lipp et al. (2016) describe the implementation of a cache-

iming attack, called ARMageddon, that uses only unprivileged ap-

lications and target Android devices based on ARM architectures.

o understand the attack we first need to be aware that ARM level

 caches are not inclusive for the most part. This implies that it

s not possible to guarantee that there are entries in lower-level

ache shared by the CPU cores thus hindering cross-core attacks .

his is because the last shared cache level is the only way for an

ttacker to access and modify data from other cores.

The attack is implemented on modern devices employing multi-

PU based designs, namely ARM devices with non-inclusive L2
11 http://beagleboard.org/ .

i

T

16
aches (the last-level ones). A new exploitation of cache co-

erency protocols and transfers between L1 and L2 is presented,

chieving an workaround to the difficulty of last-level cache non-

nclusiveness. As mentioned above, devices with multiple CPUs do

ot share a common cache between them. However, the protocols

sed to retrieve line cache entries coming from different CPUs fol-

ow coherence rules that allow exploiting certain attacks more ef-

ectively. Among the different policies, we find LRU (least-recently

sed) implemented by Intel or a pseudo-LRU variant by ARM pro-

essors.

As ARM CPUs make use of a pseudo-random cache replacement

olicy, this makes it difficult for the attacker to predict which line

o replace. This technique lowers overall attack performance be-

ause it reduces the effects of erroneous prediction of replaced

ines. In this work, the authors present results of the implemen-

ation of ARMageddon on three different devices, each one with

articular strategies for accurate unprivileged cache timing in the

ttacks.

.2. Separation barrier

These are focused on exploiting the separation barrier and since

t is a micro-architectural element, they belong to this category.

.2.1. Prime and count

The Prime and Count technique Cho et al. (2018) aims to re-

uce the noise caused by TZ’s own inter-world switching mech-

nism and the pseudo-random cache replacement policies. On its

wn it cannot be used to snoop into the secure world, however, it

rovides a proof of the existence of a side channel that can be es-

ablished between both NW and SW. This attack has been used as

 precursor of more complex attacks such as privilege escalation.

The technique is implemented with a sender in charge of writ-

ng data to the cache to signal a message to a receiver process.

here are two strategies for implementing this attack depending

http://beagleboard.org/

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

o

t

a

i

c

t

i

t

b

m

p

t

i

C

i

p

i

n

t

7

t

t

t

t

a

c

t

v

t

p

a

s

a

t

t

P

t

t

t

t

d

f

b

i

a

l

t

7

p

m

t

n

s

a

c

a

j

S

l

d

d

i

c

s

i

t

K

a

p

t

b

s

t

j

b

i

e

f

e

t

b

I

t

p

a

a

i

l

t

r

s

v

s

d

c

F

o

s

t

t

w

2

S

2

t

t

o

c

o

e

f

a

l

h

p

n whether they are applied to single-core or multi-core architec-

ures. The difference lies mainly in the cache level to which it is

pplied, as the L1 cache is available to each CPU core, without be-

ng shared by other cores. Unlike the L2 cache which, being larger,

an be shared among all the cores.

In the first phase of the single-core attack , the receiver primes

he L1 cache filling it entirely. Then, the sender application, which

s running in the SW, then takes control and writes new data to

he L1 cache for signaling the message. Finally, control is switched

ack to the NW which can learn how many cache lines have been

odified by the sender. After each sender - receiver interactions a

iece of the message is covertly transmitted.

In the case of a multi-core attack , the difference is that during

he first stage both L1 and L2 caches are primed and therefore

nvalidated. Meanwhile, the sender only writes to the L2 cache.

learly, this attack is more difficult to implement because the L2

s a global cache that can be accessed by applications executed in

arallel by other cores. Nevertheless, messages can be encoded tak-

ng into account the accesses made by other process and eliminate

oise that may appear in the channel by introducing error correc-

ion codes.

.2.2. TruSpy

The TruSpy technique Zhang et al. (2016b) could be considered

he first proof-of-concept of “cross world” attacks. A cross-world at-

ack can be defined as one capable of breaking the isolation be-

ween the normal and secure worlds. The authors present two

ypes cross-world attacks, one of which requires kernel privileges

nd is easier to implement, and the other one which can be suc-

essful even with user-space privileges alone, but is more difficult

o execute.

In the privileged attack, the adversary has access to both the

irtual-to-physical memory mapping and the Performance Moni-

or Unit (PMU), which offers statistics on the operations of the

rocessor and memory. This allows him to perform cache priming

nd cache probing with ease. The other attack only requires user-

pace privileges, but is more difficult to execute because it lacks

ccess to the previously mentioned resources. Memory sharing be-

ween the attacker and victim processes is not a requirement for

he implementation of either attack, since they are based on the

rime+Probe technique.

The attack has five stages, as it is shown in Fig. 12 . In step 1,

he attacker finds memory addresses for cache priming, if the vir-

ual address space is mapped to the cache sets. Once identified,

he attacker performs the priming of the cache (step 2). The vic-

im process then takes control and changes the state of the cache

uring its execution (step 3). Finally, the attacker probes the cache

or cache misses (step 4) thereby identifying the lines that have

een modified by the victim. The difference between both states

s stored, and returns to the second step to keep iterating – until

 sufficient amount of data is recorded. Finally, in step 5, the col-

ected data is analyzed in order to reveal secret information from

he victim running in the secure world.

.3. Speculative execution attacks

Speculative attacks exploit a feature present in most modern

rocessors, called speculative execution, to leak confidential infor-

ation. In speculative execution, the CPU attempts to anticipate

he processing of certain future instructions, which may or may

ot be necessary, to optimize code execution. In case these in-

tructions are eventually not necessary, the changes are reversed

nd the results ignored. However, not all changes are reverted (e.g.

ache changes) and leave traces that can reveal sensitive data to

ttackers. Since speculative attacks are mainly focused on fault in-
17
ection and cache timing techniques, they have been included in

ection 7 .

This category of attacks has become increasingly prevalent

ately and they can hinder the isolation guarantees of TEEs in

ifferent im plementations. Some im portant exam ples are Melt-

own (Lipp et al., 2018) and Spectre (Kocher et al., 2019). The basic

dea behind Spectre and its different variants is to trick the pro-

essor into speculatively executing sequences of instructions that

hould not have been executed under normal circumstances. By

nfluencing which instructions are speculatively executed, sensi-

ive information is leaked from the victim’s memory address space.

ocher et al. (2019) demonstrate the feasibility of Spectre attacks

cross security domains from both unprivileged native code and

ortable JavaScript code.

A variant of Spectre for Intel SGX is known as Sgxpec-

re Chen et al. (2019a) . Sgxpectre bases its attack on misusing the

ranch prediction unit (BPU) to cause the victim to run certain

ecret leakage instructions. BPU are certain hardware components

hat collaborate in the prediction of conditional branches, indirect

umps and calls, and function returns. To do so, the attacker must

e able to induce speculative access of unwanted data by deviat-

ng the execution branch (within the same kernel) beforehand. This

nables the possible execution of malicious code on another thread

rom the main domain – it could even be the same thread – if the

xecution of the domain itself can be interrupted and the BPU con-

aminated.

Meltdown Lipp et al. (2020) is a software-based attack that can

e considered the precursor to the attacks included in Section 7.4 .

t exploits out-of-order execution (a type of speculative execution)

o allow an unprivileged adversary to read the memory of other

rocesses or virtual machines, which may include personal data

nd passwords. Meltdown does not require the adversary to exploit

ny existing vulnerability in the software and is operating system

ndependent.

Meltdown consists of three steps. In the first step, the attack

oads the contents of a memory location (inaccessible to the at-

acker) into a CPU register. This will eventually cause an unautho-

ized access exception rolling back the execution. In the second

tep, the attacker defines a sequence of instructions, by taking ad-

antage of out of order execution, that are capable of accessing the

ecret data loaded into the register. Before the register is cleared

ue to the exception, this transient instruction sequence will en-

ode the secret into the micro-architectural cache state using the

lush+Reload technique, although it would also be possible to use

ther similar techniques. In the last step, the attacker recovers the

ecret data from the cache state. By repeatedly performing these

hree steps over different memory locations, the attacker can re-

rieve the entire physical memory.

These attacks have been successfully implemented in the most

idespread TEE implementations such as Intel SGX (Brasser et al.,

017; Götzfried et al., 2017; Intel, 2014; Moghimi et al., 2017;

chwarz et al., 2017) and ARM TZ (Lipp et al., 2016; Zhang et al.,

016b).

In addition to Meltdown and Spectre there are other attacks

hat can be considered speculative. These include the exploita-

ion of the lack of prediction of conditional forks, the poisoning

f direct forks, as well as other combinations. Instruction timing

an also be exploited, since instructions whose timing depends on

perand values can leak information about operands without nec-

ssarily involving caches. The efficacy of this type of attacks to in-

er private information (data, operations) has been proven, as well

s the ability to circumvent the barriers imposed by address space

ayout randomization (ASLR) (Gras et al., 2017; Gruss et al., 2016a).

Finally, another interesting attack vector is due to the in-

erent leakage caused by latency differences between cache in-

uts and outputs. This allows to infer keystroke behavior (Gruss

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

Fig. 12. TruSpy attack workflow. Based on Zhang et al. (2016b) .

e

M

e

7

t

s

m

f

s

p

2

a

7

t

t

t

v

o

p

(

a

t

c

u

7

a

s

s

b

t

a

e

t

t

a

D

2

i

d

i

a

p

r

I

b

t

p

b

t

t

t

l

t

T

r

n

c

d

o

v

12 The paper primarily focuses on (Line) Fill Buffers, but other buffers can be used

such as load ports and store buffers.
t al., 2016b; 2015), and even both symmetric AES (Bonneau and

ironov, 2006; Irazoqui et al., 2015) and asymmetric RSA (Liu

t al., 2015; Zhang et al., 2012) keys.

.4. Out-of-order execution attacks

Out-of-order execution is a subtype of speculative execution

hat allows instructions to be executed as long as the necessary re-

ources to do so are available, even if they do not follow the nor-

al sequence of code execution. Out-of-order attacks exploit the

act that the memory used for the execution of these transient in-

tructions can be accessed by other processes before being freed.

Foreshadow (Weisse et al., 2018), Micro-architectural Data Sam-

ling (Minkin et al., 2019; Schwarz et al., 2019; Van Schaik et al.,

019) and Load Value Injection (LVI) (Van Bulck et al., 2020) are

ttacks that belong to this category.

.4.1. Foreshadow attack

Until the publication of Foreshadow (Van Bulck et al., 2018), In-

el SGX was thought to be resistant to speculative execution at-

acks. However, Foreshadow demonstrated it was possible to read

he memory protected by SGX and even extract the machine’s pri-

ate attestation key.

Intel analyzed Foreshadow in an attempt to prevent the cause

f the attack and they realized that two additional attacks were

ossible. These attacks, which are referred to as Foreshadow-NG

next generation) Weisse et al. (2018) , allow an adversary to read

ny information contained in the L1 cache. This includes informa-

ion from other virtual machines running on cloud infrastructures.

Moreover, Foreshadow-NG might be able to bypass some of the

ountermeasures that were created to prevent other types of spec-

lative attacks, such as Meltdown and Spectre.

.4.2. Micro-architectural data sampling attack

Micro-architectural Data Sampling (MDS) vulnerabilities allow

dversaries to exfiltrate data from different CPU internal buffers,

uch as the Store Buffer and the (Line) Fill Buffer. They are called

ampling attacks because the adversary retrieves data being used

y another process but has no control over the memory positions

he victim is accessing. This is similar to sniffing CPU buffers.
18
Using this type of attacks, various researchers were able to

ccess the memory of Intel SGX (Minkin et al., 2019; Schwarz

t al., 2019; Van Schaik et al., 2019). In addition, some au-

hors (Ragab et al., 2021) showed that, despite existing mitiga-

ions against speculative execution attacks, existing CPUs are in-

dequately protected and sensitive data can still be leaked.

Notable attacks within this category are the Rogue In-Flight

ata Load (RIDL) (Van Schaik et al., 2019), Fallout (Canella et al.,

019a) and ZombieLoad (Schwarz et al., 2019), which are described

n more detail below.

Rogue In-Flight Data Load RIDL (Van Schaik et al., 2019) can leak

ata from a victim process even if that process is not speculat-

ng (e.g., due to Spectre mitigations) and requires no control over

ddress translation data structures. Attackers running arbitrary un-

rivileged code manage to leak information across arbitrary secu-

ity boundaries (JavaScript sandbox, process, kernel, VM, SGX, etc.).

n short, RIDL allows the attacker to listen in on all communication

etween CPU components.

As with other attacks in this category, it originates from op-

imizations that cause the CPU to serve speculative loads. In this

aper, authors present several exploits that allow data leakage

y the following steps. First, the victim code loads/stores data,

he CPU performs the load/store through internal buffers 12 . Next,

he attacker performs a load and the processor uses data from

he buffers speculatively. Finally, it makes use of the speculatively

oaded data in the buffer to extract the secret value.

Fallout Fallout (Canella et al., 2019a) takes advantage of the in-

ernal Store Buffer, which is used to track pending store operations.

his attack allows programs with no special privileges to read data

ecently written by the kernel, as well as to de-randomize the Ker-

el Address Space Layout Randomization (KASLR).

When a code writes a value to memory, before getting ex-

lusive access to the address, the processor maps the virtual ad-

ress of the destination to a physical address. However, instead

f waiting for the computation to finish, the processor inserts the

alue and the address into the Store buffer and continues the

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

e

d

v

F

a

s

o

c

e

t

d

M

T

c

w

p

t

d

T

s

7

j

d

d

B

a

s

t

a

r

v

t

a

c

c

t

t

t

8

b

f

t

p

8

s

o

t

i

s

i

a

a

m

e

i

a

M

e

i

c

g

w

Z

e

R

t

c

t

i

a

b

t

q

g

u

T

m

i

m

d

t

b

a

T

2

a

a

f

b

a

w

a

o

F

c

m

e

p

l

a

I

c

d

a

T

i

m

8

i

xecution of the program. The Store buffer then resolves the ad-

ress and stores the data. The processor must control that obsolete

alues are not loaded, which is the purpose of the Write Transient

orwarding (W TF) instruction optimization. W TF marks the load

s faulty and forwards the partially matched store value, which

hould not be forwarded. This behavior is exploited by Fallout to

btain the value that WTF sends. As in other cases, it uses a side

hannel (Flush+Reload) to exfilter the value.

ZombieLoad ZombieLoad (Schwarz et al., 2019) is a transient ex-

cution attack that takes advantage of the Fill Buffer present in In-

el CPUs. This buffer, which is used during load instructions, retain

ata from memory load requests until new ones overwrite them.

oreover, it is shared among the logical cores of a physical CPU.

herefore, a malicious thread running on a logical core could ac-

ess the data of another thread running on a different logical core

ithin the same physical CPU, even if the threads belong to com-

letely different applications.

Under certain conditions, typically a faulty load operation due

o erroneous data, speculative execution allows to obtain other

ata not related to the load memory address from the Fill Buffer.

hese data can be finally extracted by some sort of side channel,

uch as those provided by the cache subsystem.

.4.3. Load value injection attack

Bulck et al. (Van Bulck et al., 2020) present the Load Value In-

ection (LVI) attack, which is based on the injection of erroneous

ata into the memory of a victim’s program. Once the application

etects in-memory data is incorrect, the execution is rolled back.

efore the mistake is detected, during this short period of time, an

ttacker can access the data from the victim, which may include

ensitive information from Intel SGX. A limitation of LVI attacks is

hat the adversary cannot always control certain conditions, such

s when a failure occurs, as they take place in the victim’s envi-

onment.

Unfortunately, LVI is much more difficult to mitigate than pre-

ious attacks as it requires compilation patches that insert instruc-

ions to limit speculative execution after every potentially vulner-

ble instruction. This impedes the processor to optimize its exe-

ution (i.e., the pipeline is serialized) resulting in a significant de-

rease of Intel SGX computation performance – up to nearly 20

imes slower.

Although the proof-of-concept implementation of the attack

argets Intel SGX, the authors argue that LVI attacks are not unique

o this enclave but the necessary conditions are harder to be met.

. Countermeasures

A number of attacks for different TEE implementations have

een described so far. To complete the picture, we also review dif-

erent countermeasures that have appeared in recent years. Since

hese countermeasures have appeared as a response to attacks, we

resent them following the proposed taxonomy.

.1. Countermeasures to software-based attacks

First, we describe the most relevant countermeasures against

oftware-based attacks to mitigate or reduce certain security issues

f TEE components and applications.

TEE master key extraction is possible because the disk encryp-

ion is based on a software key derived from information stored

nside the TrustZone kernel memory. Since the key is inside the

oftware, attackers can extract this key. A countermeasure for this

s the use of a secure element with hardware-bound key function-

lity, such as TPM.

Regarding validation failures, most commercial TEE systems

re written in C, which does not provide memory protection
19
echanisms. As a result, developers introduce memory violation

rrors, which in turn cause validation failures. As a solution to this,

n certain TEE systems such as TLR (Santos et al., 2011) applications

re interpreted with.NET managed code – similar to a Java Virtual

achine (JVM). Even if this introduces an extra overhead in the ex-

cution of the applications, this approach can be of great help, as

t provides certain tools (e.g. run-time memory checks and rubbish

ollection) that reduce the risk of validation failures.

Other approaches follow the idea of using secure pro-

ramming languages for developing sensitive components that

ill be deployed in TrustZone ecosystems. Among them, Rust-

one (Evenchick, 2018) can be highlighted. RustZone provides an

xtension of OP-TEE that enables developing applications using the

ust programming language. This language provides memory and

hread safety, which help to avoid validation errors and some con-

urrency errors responsible for application software crashes.

Implementation errors caused by a lack of consistency be-

ween the expected requirements of a software component and

ts actual implementation are often encountered. Techniques such

s model checking, symbolic execution and formal methods can

e very useful to avoid these mismatches, and are very effec-

ive in ensuring that an implementation meets the proposed re-

uirements. Although the application of these methodologies is

enerally not trivial, significant progress has been made in the

se of formal verification techniques to analyze the robustness of

EE components. There are very interesting proposals such as Ko-

odo (Ferraiuolo et al., 2017), which consists of a monitor that

mplements the Intel SGX enclaves specification, and the memory

anager known as MIPE (Chang et al., 2017).

On the other hand, there are different tools for malware

etection . This is important to consider, as many attacks that

arget TEEs are deployed as malware. Among such tools, Andru-

is (Weichselbaum et al., 2014) combines static and dynamic

nalysis techniques using unsupervised learning (with clustering).

ools like DroidClone (Alam et al., 2016; Alam and Sogukpinar,

020) exposes similar code segments (“code clones”) in a very

ccurate manner for the detection of malware variants, while other

pproaches, such as DIFT (Andriatsimandefitra and Tong, 2015),

ocus on monitoring the information flow for malware detection

y tracking selected data during the application execution. There

re other lighter alternatives such as ThinAV (Jarabek et al., 2012),

hich combines a low footprint on an Android device with the

bility to leverage various anti-malware services in the cloud.

There are other software-based countermeasures that focuses

n recognition and detection using machine learning techniques.

or example, in (Soviany et al., 2018) the authors describe a whole

rypto-mining detection and recognition methodology based on

achine learning. Another approach, based on a structured het-

rogeneous information network (HIN), known as Hindroid, is

resented by Hou et al. (2017) . Authors integrate several machine

earning-based tasks with some optimisations that are performed

t various processing stages, including the multi-core approach.

n addition, techniques such as DroidDream (Kim et al., 2016)

an be used for malware family identification, based on malware

etection work with dynamic analysis on real devices.

Finally, there are other solutions that pursue to empower the

pplications themselves such as PrOS (Kwon et al., 2019) and

EEv (Li et al., 2019), which provide a minimalist hypervisor

mplementation on the SW. This allows applications to work on

ultiple guest OSs in a secure and isolated way.

.2. Architecture-based countermeasures

In this section some of the countermeasures already proposed

n the literature against architecture-based or micro-architectural

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

a

g

t

t

t

c

w

t

s

e

t

i

b

b

c

i

m

m

c

c

a

T

o

a

O

T

o

t

a

s

c

w

c

g

w

v

w

T

m

i

a

m

t

c

t

m

u

p

r

p

n

m

s

K

N

t

i

P

o

a

t

t

t

f

e

t

c

D

t

t

f

i

m

h

s

p

v

T

a

i

t

b

I

l

w

w

w

t

n

c

t

a

a

r

l

c

n

a

s

t

v

g

C

c

w

Z

t

c

e

t

c

l

p

a

c

p

s

T

p

u

d

m

S

ttacks are presented. These countermeasures are presented to-

ether, because in many cases they are shared.

Isolation between worlds is a source of different security

hreats. Several mechanisms have emerged that aim to overcome

he existing limitations in the main TEE. Examples of such limi-

ations are the absence or weakness in authentication when ac-

essing TEE resources from the NW and shared memory which as

e have argued is potentially insecure for data exchange within

he channel. A technique commonly used to reduce the attack

urface is known as multi-isolated environments . They are differ-

nt from traditional sandboxes and are particularly useful for pro-

ecting TEE systems from a wide variety of attacks. They make

t possible to contain the scope of damage that can be caused

y a security breach by increasing the granularity of isolation

etween different TEE components. They also allow limiting the

ode that can be executed, which directly reduces the possibil-

ty of privilege escalation attacks. This technique has been imple-

ented in different ways. Some focus on the creation of compart-

ents of the NW itself, with a strong isolation, in which appli-

ations would be assigned. Others focus on protecting the appli-

ations, with approaches such as Sanctuary (Brasser et al., 2019)

nd TrustICE (Sun et al., 2015b) leveraging different features of

ZASC. There are mechanisms that explore the implementation

f environment isolation with hardware virtualization extensions

vailable in NW (NS-EL2) such as PrivateZone (Jang et al., 2016),

SP (Cho et al., 2016), and vTZ (Hua et al., 2017).

As seen in this paper, some architectural attacks occur because

As in Trustonic TEE cannot physically read/write to physical mem-

ry – this task is performed by specific driver TAs . If an applica-

ion needs to make use of shared memory, it will have to issue

 request to the controller. Samsung’s TZ, known as TIMA, uses a

imilar approach, where only the application controller can allo-

ate physical memory – thus mitigating risk. TIMA makes use of a

hitelist that limits the applications that can query the application

ontroller. Although this mechanism provides additional security

uarantees, it is still not sufficient: the attacker could target the

hitelisted applications to successfully compromise the system.

Some implementations aim to mitigate this potential source of

ulnerabilities using an architectural design based on microkernel ,

hich restricts the execution of drivers to the SW user space only.

his approach is being integrated into NVIDIA and Trustonic imple-

entations. Other companies, such as Huawei, focus on introduc-

ng a new task to control the TEE lifecycle. To do this, it creates

 TEE with certain privileges, which it calls GlobalTask. Another

easure is the inclusion of a single non-secure port to perform

he centralized connection of all memory-mapped non-sensitive IP

ores. This allows their operation to be controlled by memory pro-

ection mechanisms such as SMMU (Marchand et al., 2017). Other

easures focus on preventing the misuse of hardware voltage reg-

lators, which is solved by applying specific hardware and software

erformance limiters via drivers Tang et al. (2017) .

SeCReT (Jang et al., 2015) provides a session key for applications

unning in the NW to encrypt messages. In more detail, SeCReT

roposes a number of input and output mode changes to the ker-

el, including the elimination of the memory key during kernel

ode execution, pursuing the protection of the NW kernel ses-

ion key – which is untrusted. In the case of TFence (Jang and

ang, 2018), a non-fully privileged process (a shielded part of the

W application process) communicates directly with the TEE, fur-

her eradicating this kernel dependency. There are alternatives that

mplement exclusive shared memory such as TTEEv, Sanctuary and

rivateZone. The latter allows communication, but without mem-

ry sharing, since it implements it by means of data copies. There

re other alternatives that avoid BOOMERAN attacks by sanitizing

he Machiry et al. pointers. In fact, Machiry et al. were in contact

hroughout the process with the TEE suppliers themselves, with
20
he ultimate goal of being able to develop the relevant corrections

or their environments.

COLONY (Xia et al., 2021) proposes a new architecture in which

ach instance of the design (“COLONY”) has grants to access only

he necessary system-level semantics . This approach relies on a se-

ure monitor to implement isolation and capability management.

espite the advantages provided by this approach, which assumes

hat hardware components are completely reliable, the protec-

ion provided is not sufficient – as demonstrated in Section 6 . In

act, a compromised “COLONY” can attack the caller by return-

ng a malicious value (Checkoway and Shacham, 2013). Further-

ore, COLONY does not take into account side-channel attacks,

ardware-based attacks and DoS attacks.

Other solutions use particular techniques such as Key-

tone (Lee et al., 2020), which aims at isolating memory with a

rogrammable layer below untrusted components. Keystone pro-

ides protection to the TEE against some attacks (Mapping, Syscall

ampering and Side-channel), as well as protection to the host OS

gainst TEE attacks. It also provides protection to the secure mon-

tor, since the entire memory of the secure monitor is isolated and

herefore not reachable for all TEEs. In fact, it is not even accesi-

le for OS hosts. EnclaveDom (Melara et al., 2019), implemented in

ntel SGX, is a system that provides a separation of privileges for

arger TEE applications. The enclave is divided by memory regions

hich are labeled, and establishes a set of access rules per region

ith some granularity of the individual functions in the enclave.

Sanctuary (Brasser et al., 2019) proposes an extension of TZ

ith the use of user-space enclaves . This approach is designed

o provide hardware-enforced bidirectional isolation, without the

eed to trust or veto the code of authors called Sanctuary Appli-

ations (SAs), since a malicious SA should not be more privileged

han normal user space applications. Through bus identity filtering

nd some additional architectural changes, Sanctuary achieves par-

llel isolation of individual CPU cores. This allows sensitive code to

un without affecting the user experience and with fairly negligible

atency in benchmarks.

Many of the existing weaknesses in memory protection of TEEs

an be addressed by mechanisms in major operating systems. Still,

ote that some commercial TEEs provide stronger security mech-

nisms, either by implementing measures against specific attacks

uch as cold boot attacks , or by integrating tools to provide addi-

ional protection such as memory encryption (e.g. Intel SGX pro-

ides memory encryption , yet TrustZone does not provide inte-

rated support for it on the chip itself). Other solutions, such as

aSE (Zhang et al., 2016b), allow applications to run from the

ache, thus ensuring that their state remains properly encrypted

hen writing back to main memory. Also, Ginseng (Yun and

hong, 2019) performs variable protection by tagging the applica-

ion programmer as “sensitive”. Therefore, its information is en-

rypted at runtime while stored at the CPU registers, thus no un-

ncrypted data will be stored in memory.

Regarding the integrity of the TEE, commercial TEEs have at-

empted to address this weakness by making use of a secure boot

onfidence to preserve TEE image integrity. Nevertheless, we high-

ight that only with this mechanism it is not possible for an ap-

lication client to verify the identity and integrity of both the

pplication binaries and the TEE. For this reason, some of the

ommercial implementations of TEEs provide certain extra trust

rimitives. The use of techniques such as remote attestation and

ealed storage can be useful in providing such assurances. Thus,

LR (Santos et al., 2011) includes a sealed storage mechanism to

rotect data from each other by linking them to specific hash val-

es in the TEE-App software stack. Komodo (Ferraiuolo et al., 2017)

escribes the implementations of the sealed key storage and re-

ote attestation security protocols, as it appeared in the original

GX enclave specification.

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

p

w

e

s

2

p

d

T

w

r

I

t

T

8

8

t

i

v

n

p

c

s

I

t

e

r

S

t

a

a

b

i

h

8

G

G

m

a

t

t

u

i

i

n

i

S

t

Q

t

o

t

O

p

a

L

u

8

p

o

o

n

s

b

r

t

t

l

t

m

C

t

s

t

p

(

O

G

H

n

M

D

t

p

o

b

9

t

m

t

s

m

d

e

e

d

p

t

t

c

t

s

T

t

A

t

k

t

o

t

h

b

s

t

Other strategies include pre-venting the cache side channels

erformed by implementing cryptographic algorithms in soft-

are (Guanciale et al., 2016; Lipp et al., 2016; Ryan, 2019a; Zhang

t al., 2016b) or in specific hardware (e.g., as is the case with

pecific instructions in ARM such as AESD and AESE) (Lipp et al.,

016) to prevent information leaks in operations. Besides, im-

lementing a reduction of the attack surface by seeking the re-

uction of the Trusted Computing Base (TCB) (Ying et al., 2019).

ruz et al. present as a novelty a proposal based on the use of

hat they call the delegation model. This model is based on the

euse of almost the entire OS user interface stack in the NW.

n this way, they manage to protect the user interface only as a

wo-dimensional surface, and manage to reduce the size of the

CB considerably.

.3. Memory protection mechanisms

.3.1. Lack of address space layout randomisation

Whether due to the lack of Address space layout randomisa-

ion (ALSR) implementations, or the poor implementation of exist-

ng ones, the fact is that this is an architectural flaw shared by the

ast majority of existing TEEs.

Implementations such as OP-TEE Brand , NVIDIA and Huawei do

ot provide any ALSR mechanism. In Qualcomm’s case, an ASLR is

rovided for all applications, but only makes use of a small physi-

al memory area where the application code is loaded, so that in a

mall space (about 100MB) all applications are sequentially hosted.

t is desirable to achieve high entropy to avoid failures, although in

he case of Qualcomm TEE its ALSR is 9 bits, a number that is not

nough to provide high entropy.

Despite ASLR, the attacker can be able to figure out where to

ead and where to write, so other mechanisms are needed. In

ection 7.1.6 , the insertion of noise while taking measurements of

he cache during the attack is described. Other strategies, such

s (Lipp et al., 2020), focus on disabling the path predictor if an

ttempt to exploit the path predictor occurs, and compare the la-

els of all routes again. Still, so far there is no documented ev-

dence that AMD processors support such advanced strategies in

ardware, or even that there is any OS interface for this purpose.

.3.2. Other memory protection mechanisms

Current OSs integrate memory protection mechanisms such as

uard pages (GP), Stack Cookies (SC) or Execution protection (XP).

Ps are used to define the boundaries of the mutable data seg-

ents for each process. In other words, it defines the stack, heap

nd global data in order to avoid a potential attacker from trying

o perform an attack based on an overflow of one segment with

he aim of corrupting another and resulting in a failure. SC are

nique values used for stack smashing detection to allow abort-

ng a running program. Finally, XP delimits certain memory areas

n which programs cannot execute. However, this type of mecha-

ism has repeatedly proven to be insufficient. In fact, not all OS

ntegrate these mechanisms. In the case of Trustonic TEE, it has no

C, and it allocates memory to both the global and the stack from

he application data segment without putting GP between them.

ualcomm implements SC with random pointer size, yet GP pro-

ection mechanisms are not integrated. The ARM implementation

f XP makes use of a bit (WXN) of the SCTLR register. This is used

o mark write-capable memory regions as “Execute Never” (XN).

ther approaches make use of the GP XN attribute (in those im-

lementations that have it) in order to allocate unpriviledge (UXN)

nd priviledge (PXN) XN, such as NVIDIA (Corporation, 2015) and

inaro Brand implementations that provide both kernel space and

ser space.
21
.3.3. Speculative attacks protection

We consider the case of Spectre (Koruyeh et al., 2020) to be of

articular relevance. Firstly, because of the impact it has had. Sec-

ndly because, unlike the attacks that have been carried out based

n side channels, Spectre highlights the relevance of covert chan-

els, which have often been forgotten. There are two countermeas-

ures to prevent exploitation of Spectre-PHT: memory fences after

ranches (Canella et al., 2019b), or constraining the index to a valid

ange using a bitmask (Canella et al., 2019b; Zhang et al., 2022).

The countermeasure KAISER (Lipp et al., 2020), developed ini-

ially to prevent side-channel attacks targeting KASLR, inadver-

ently protects against Meltdown. KAISER prevents Meltdown to a

arge extent, thus it is highly recommended to deploy KAISER. In-

el (Canella et al., 2019a) has proposed certain hardware counter-

easures it built into its latest processors Coffee Lake Refresh i9

PUs to prevent Meltdown. While they certainly make it difficult

o implement these attacks they open the door for other attacks

uch as Fallout.

Still, there are certain countermeasures that manage to mitigate

he impact of the attack to a certain extent. These are focused on

artitioning, as proposed Lych et al. in 1992 Lynch et al. (1992) ,

 Liedtke et al., 1997) in 1997 and Shi et al. (2011) 2011.

thers are based on flushing, as Osvik et al. (2006) and

uanciale et al. (2016) proposed in 2016 and 2013 respectively.

owever, we should be aware that state partitioning in the ker-

el will only be possible with additional hardware support as

aña and Muñoz described in 2006 (Maña and Muñoz, 2006) and

ominster et al. in 2012 (Domnitser et al., 2012).

Hyperrace (Chen et al., 2019b) is an alternative designed to de-

ect speculative execution attacks. The authors of this paper pro-

ose a mitigation scheme that requires the support of an untrusted

perating system. In fact, this alternative design is certainly capa-

le of verifying the behaviour of the operating system.

. Open challenges

This section outlines some research challenges and open ques-

ions that have to be resolved in order to reach an overall improve-

ent of the security of TEE architectures and specific implementa-

ions.

One major challenge in the development of secure TEE-based

olutions is the protection of shared resources between the nor-

al and the secure world. Although some mechanisms have been

evised to protect shared resources (e.g., the NS bit), these are not

fficient against some attacks. A particularly serious threat is the

xploitation of side channels, which could be applied to transfer

ata between worlds, or to leak sensitive TA data. Therefore, it is

aramount to investigate novel mechanisms capable of diminishing

his threat while allowing third-party applications to make use of

he security mechanisms included and offered by TEE. In fact, side-

hannel attacks, especially speculative attacks, are currently a hot

opic of research due to the drastic consequences of recent attacks.

The use of dedicated hardware is also important for solving

ome of the limitations or complementing the functionalities of

EEs. Dedicated hardware can be used to improve the levels of en-

ropy achieved by current implementations (e.g., QSEE has a 9-bit

SLR with low entropy) but it can also help to preserve the in-

egrity and confidentiality of sensitive data, such as cryptographic

eys from side-channel attacks. However, the integration of TPM-

ype secure elements has some limitations. Not only the addition

f new hardware implies increased cost but also applications need

o be prepared to use it correctly. A possible alternative to secure

ardware in the protection of side-channels is to restrict the num-

er of applications that are allowed to access to the secure world

imultaneously but this would limit the performance of the sys-

em. Therefore, an important challenge to solve is to find a technol-

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

o

o

a

s

s

t

I

a

n

i

(

s

a

fi

t

v

p

O

i

h

u

i

t

u

i

s

t

c

o

s

f

m

e

c

t

p

b

Q

t

v

d

t

s

n

d

fi

I

g

N

A

n

t

f

o

t

c

t

c

t

i

m

m

m

a

l

p

n

k

c

s

s

1

a

p

t

m

a

T

(

t

i

d

o

a

p

b

a

d

m

l

m

a

c

o

n

D

c

i

C

o

i

r

D

A

i

(

2

gy with the security of TPM but with the functionality and cost

f TEE.

In the absence of any message protection mechanism in TZ, any

ttacker with privileges to make direct use of the kernel could is-

ue any custom SMC and fuzz the form. This would allow him to

uccessfully implement a man-in-the-middle (MitM) attack with

he aim of discovering flaws in the TEE and then exploiting them.

n addition, other sorts of attacks, for example denial-of-service

ttacks, can also be successfully implemented. In fact, at least in

one of the existing TEE implementations, there is no message val-

dation mechanism. In fact, even the Universal Unique Identifier

UUID) is susceptible to replication and could be overridden as a

ecurity measure. This implies that the TEE has no choice but to

ct without certainty, making use of information from the unveri-

ed message. For all these reasons, we consider that it is essential

o elaborate more in-depth studies on the possible integration of

alidation mechanisms.

The lack of sufficient validation mechanisms in exiting TEE im-

lementations is another open problem that needs to be tackled.

n the one hand, no TEE solution implements message validation

n terms of authentication and integrity. This implies that the TEE

as no choice but to act without certainty with information from

nverified messages. This would allow, for example, to successfully

mplement a denial of service attack or a man-in-the-middle at-

ack. It could be argued that the UUID of the message could be

sed to verify the legitimacy of function calls but since the UUID

s part of the SMC it is susceptible to replication and/or imper-

onation. On the other hand, there is an insufficient validation of

he parameters passed to functions. In fact, this is one of the main

auses of several of the software-based attacks presented in previ-

us sections. To prevent them, it is necessary to devise more robust

anitation mechanisms to the parameters received by functions be-

ore they are used.

A typical problem of many security systems that also affects

ost TEE implementations is that they are obscured systems. Most

xisting implementation designs are closed and the result is ar-

hitectures that are not analyzed by security experts prior to

heir widespread adoption. This security-by-obscurity approach has

roven to be wrong on many occasions. Although this trend may

e changing with the recent release of the specification of the

ualcomm TEE secure boot procedure, as well as the TA authen-

ication, we are still far from open designs and architectures.

As the IoT matures and the number of interconnected de-

ices continue to grow it is vitally important to protect these

evices, which may be part of critical systems. We envision

hat some of the IoT devices in these systems will incorporate

ome kind of TEE technology for improved security at a cost

ot as high as that imposed by other hardware solutions. In-

eed, some manufactures already provide solutions that can be

tted into some IoT devices such as Infineon’s OPTIGA Trust X

nfineon , Microchip Technology’s ATECC608A Inc , Maxim Inte-

rated’s MAXQ106 Integrated , Trusted Objects’ TO136 Objects ,

XP Semiconductors’ proposals SE050 (Semiconductors, 2021) and

71CH (Semiconductors, 2018). Therefore, the research commu-

ity should investigate how to take advantage of these solutions

o establish trust relationships between devices, how these are af-

ected by the integration of different TEE implementations, and so

n.

In general, there is an urgent need for security frameworks

hat allow security experts to assess TEE implementations and the

ode running in them. In fact, the code to be executed inside

he TEE is prone to contain vulnerabilities, which can be used to

ompose attack vectors to corrupt the TEE, compromising the en-

ire system. Security frameworks should help to analyze and ver-

fy the security of the code, the appropriateness of the protection

echanisms among trusted environments, in addition to providing
22
ethods for monitoring and detecting compromised TEEs and

echanisms for recovering from attacks.

Recall that any application has access to all the resources that

 trusted application has. Therefore, an attacker could modify the

egitimate OS kernel of a device by exploiting the memory map-

ing and writing capabilities of the SW and, as a result, the ker-

el would be infected even if there is no vulnerability in the NW

ernel itself. For example, neither QSEE or TrustonIC provide a se-

urity mechanism that enables the separation of different memory

egments and controls possible heap overflows between different

egments.

0. Conclusion

TEE development have been a very prolific field of research

nd innovation in the last few years. Undoubtedly, this technology

rovides an improved level of protection during the execution of

hird-party applications. However, evidence has shown that it has

any shortcomings in terms of security.

Throughout this paper, we have presented and analyzed

 vast myriad of attacks that can be launched against TEE.

hese include software-based attacks, side-channel attacks and

micro-)architectural attacks. Although some of these attacks are

heoretical, many of them can be realized and have been exploited

n practice. What is worse, countermeasures have only been

eveloped for some of them.

In general, we can state that despite the widespread adoption

f these technologies, especially in the mobile sector, this is still

n immature technology yet with much potential. Much of their

roblems are due to the fact that their architecture is software-

ased, resulting in faulty implementations and poor protection

gainst hardware-based attacks. Combining this technology with

edicated secure hardware to complement its security features

ay be the way forward.

TrustZone, and the various implementations of TEEs that uti-

ize it, are seen as the optimal security providing mechanism in

obile devices, and it is used to provide a vast array of integrity

nd confidentiality functionalities to the platform. Nevertheless,

ryptographic primitives capable of providing the appropriate root

f trust to the persistent sealing and attestation mechanisms are

ot included.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Antonio Muñoz: Conceptualization, Methodology, Writing –

riginal draft. Ruben Ríos: Conceptualization, Methodology, Writ-

ng – review & editing. Rodrigo Román: Methodology, Writing –

eview & editing. Javier López: Supervision.

ata availability

No data was used for the research described in the article.

cknowledgements

This work has been partially supported by the Spanish Min-

stry of Science and Innovation through the SecureEDGE project

PID2019-110565RB-I00), and by the by the Andalusian FEDER

014–2020 Program through the SAVE project (PY18-3724).

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

R

A

A

A

A

A

A

A

A

A

A

A

B

B

B
B

B

B

B

B

B

B
B

B

B

B

B
B

B

B

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

D

D

D

D

D

E

E

E

E

F

F

F
F

G

G

G

eferences

hmad, Z., Francis, L., Ahmed, T., Lobodzinski, C., Audsin, D., Jiang, P., 2013. Enhanc-

ing the security of mobile applications by using tee and (u) sim. In: 2013 IEEE

10th International Conference on Ubiquitous Intelligence and Computing and
2013 IEEE 10th International Conference on Autonomic and Trusted Computing.

IEEE, pp. 575–582 .
lam, S., Riley, R., Sogukpinar, I., Carkaci, N., 2016. Droidclone: Detecting android

malware variants by exposing code clones. In: 2016 Sixth International Confer-
ence on Digital Information and Communication Technology and its Applica-

tions (DICTAP). IEEE, pp. 79–84 .

lam, S., Sogukpinar, I., 2020. Droidclone: attack of the android malware clones-a
step towards stopping them. Computer Science and Information Systems (00) .

35–35
MD, 2021. Secure encrypted virtualization (sev). Accessed on 08.11.2022. https://

developer.amd.com/sev/ .
ndriatsimandefitra, R., Tong, V.V.T., 2015. Detection and identification of android

malware based on information flow monitoring. In: 2015 IEEE 2nd international
conference on cyber security and cloud computing. IEEE, pp. 200–203 .

rfaoui, G., Gharout, S., Traoré, J., 2014. Trusted execution environments: A look un-

der the hood. In: 2014 2nd IEEE International Conference on Mobile Cloud Com-
puting, Services, and Engineering. IEEE, pp. 259–266 .

rnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind, J., Muthuku-
maran, D., O’keeffe, D., Stillwell, M.L., et al., 2016. SCONE: Secure linux contain-

ers with intel SGX. In: 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pp. 689–703 .

sokan, N., Ekberg, J.-E., Kostiainen, K., Rajan, A., Rozas, C., Sadeghi, A.-R., Schulz, S.,

Wachsmann, C., 2014. Mobile trusted computing. Proc. IEEE 102 (8), 1189–1206 .
zab, A.M., Ning, P., Shah, J., Chen, Q., Bhutkar, R., Ganesh, G., Ma, J., Shen, W., 2014.

Hypervision across worlds: real-time kernel protection from the arm trustzone
secure world. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security, pp. 90–102 .
zab, A.M., Ning, P., Zhang, X., 2011. Sice: a hardware-level strongly isolated com-

puting environment for x86 multi-core platforms. In: Proceedings of the 18th

ACM Conference on Computer and Communications Security, pp. 375–388 .
zab, A.M., Swidowski, K., Bhutkar, R., Ma, J., Shen, W., Wang, R., Ning, P., 2016.

Skee: A lightweight secure kernel-level execution environment for arm. In:
NDSS, Vol. 16, pp. 21–24 .

asse, F., 2016. Amlogic s905 sytem on chip: bypassing the (not so) secure boot
to dump the bootrom. Accessed on 27.07.2021. https://fredericb.info/2016/10/

amlogic- s905- soc- bypassing- not- so.html .

aumann, A., Peinado, M., Hunt, G., 2015. Shielding applications from an untrusted
cloud with haven. ACM Transactions on Computer Systems (TOCS) 33 (3), 1–26 .

eaupre, S., 2015. Trustnone.
eniamini, G., a. Exploring qualcomm’s secure execution environment. http://

bits- please.blogspot.gr/2016/04/exploring- qualcomms- secure- execution.html .
eniamini, G., b. Qsee privilege escalation vulnerability and exploit (cve-

2015-6639), may 2016. URL https://bits-please.blogspot.com/2016/05/

qsee- privilege- escalation- vulnerability.html 64.
eniamini, G., c. Trustzone kernel privilege escalation (cve-2016-2431), 2016 5.

https://bits- please.blogspot.com/2016/06/trustzone- kernel- privilege- escalation.
html .

eniamini, G., 2015a. Android linux kernel privilege escalation vulnerability and ex-
ploit (cve-2014-4322).

eniamini, G., 2015b. Full trustzone exploit for msm8974. URL http://bits-please.

blogspot.co.il/2015/08/full- trustzone- exploit- for- msm8974.html .
eniamini, G., 2016a. Extracting qualcomm’s keymaster keysbreaking an-

droid full disk encryption. https://bits-please.blogspot.com/2016/06/
extracting- qualcomms- keymaster-keys.html .

eniamini, G., 2016b. War of the worlds-hijacking the linux kernel from qsee.
eniamini, G., 2017. Trust issues: Exploiting trustzone tees. Ac-

cessed on 27.07.2021. https://googleprojectzero.blogspot.com/2017/07/
trust- issues- exploiting- trustzone- tees.html .

ogdanov, A., Eisenbarth, T., Paar, C., Wienecke, M., 2010. Differential cache-collision

timing attacks on aes with applications to embedded cpus. In: Cryptographers’
Track at the RSA Conference. Springer, pp. 235–251 .

oivie, R., Williams, P., 2012. Secureblue++: cpu support for secure execution. IBM,
IBM Research Division, RC25287 (WAT1205-070) 1–9 .

onneau, J., Mironov, I., 2006. Cache-collision timing attacks against aes. In: Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems. Springer,

pp. 201–215 .

rand, P.,. Op-tee. Accessed on 08.11.2022. https://github.com/OP-TEE .
rasser, F., Gens, D., Jauernig, P., Sadeghi, A.-R., Stapf, E., 2019. Sanctuary: Arming

trustzone with user-space enclaves. NDSS .
rasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.-R., 2017.

Software grand exposure:SGX cache attacks are practical. 11th USENIX Work-
shop on Offensive Technologies (WOOT 17) .

usch, M., Westphal, J., Mueller, T., 2020. Unearthing the trustedcore: A critical re-

view on huawei’s trusted execution environment. 14th USENIX Workshop on
Offensive Technologies (WOOT 20) .

anella, C., Genkin, D., Giner, L., Gruss, D., Lipp, M., Minkin, M., Moghimi, D.,
Piessens, F., Schwarz, M., Sunar, B., et al., 2019. Fallout: leaking data on melt-

down-resistant cpus. In: Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pp. 769–784 .

anella, C., Van Bulck, J., Schwarz, M., Lipp, M., Von Berg, B., Ortner, P., Piessens, F.,

Evtyushkin, D., Gruss, D., 2019. A systematic evaluation of transient execution
23
attacks and defenses. In: 28th USENIX Security Symposium (USENIX Security
19), pp. 249–266 .

erdeira, D., Santos, N., Fonseca, P., Pinto, S., 2020. SOK: understanding the pre-
vailing security vulnerabilities in trustzone-assisted tee systems. In: 2020 IEEE

Symposium on Security and Privacy (SP). IEEE, pp. 1416–1432 .
hakraborty, D., Hanzlik, L., Bugiel, S., 2019. SIMPTM: User-centric TPM for mo-

bile devices. In: 28th USENIX Security Symposium (USENIX Security 19),
pp. 533–550 .

hang, R., Jiang, L., Chen, W., Xiang, Y., Cheng, Y., Alelaiwi, A., 2017. Mipe: a prac-

tical memory integrity protection method in a trusted execution environment.
Cluster Comput 20 (2), 1075–1087 .

heckoway, S., Shacham, H., 2013. Iago attacks: why the system call api is a bad
untrusted rpc interface. ACM SIGARCH Computer Architecture News 41 (1),

253–264 .
hen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., Lai, T.H., 2019. Sgxpectre: Stealing intel

secrets from SGX enclaves via speculative execution. In: 2019 IEEE European

Symposium on Security and Privacy (EuroS&P). IEEE, pp. 142–157 .
hen, G., Li, M., Zhang, F., Zhang, Y., 2019. Defeating speculative-execution attacks

on sgx with hyperrace. In: 2019 IEEE Conference on Dependable and Secure
Computing (DSC). IEEE, pp. 1–8 .

hen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A., Boneh, D.,
Dwoskin, J., Ports, D.R., 2008. Overshadow: a virtualization-based approach to

retrofitting protection in commodity operating systems. ACM SIGOPS Operating

Systems Review 42 (2), 2–13 .
hen, Y., Zhang, Y., Wang, Z., Wei, T., 2017. Downgrade attack on trustzone.

Arxiv: 1707.05082
ho, H., Zhang, P., Kim, D., Park, J., Lee, C.-H., Zhao, Z., Doupé, A., Ahn, G.-J.,

2018. Prime+ count: novel cross-world covert channels on arm trustzone. In:
Proceedings of the 34th Annual Computer Security Applications Conference,

pp. 441–452 .

ho, Y., Shin, J., Kwon, D., Ham, M., Kim, Y., Paek, Y., 2016. Hardware-assisted on-de-
mand hypervisor activation for efficient security critical code execution on mo-

bile devices. In: 2016 USENIX Annual Technical Conference (USENIX ATC 16),
pp. 565–578 .

ooijmans, T., de Ruiter, J., Poll, E., 2014. Analysis of secure key storage solutions on
android. In: Proceedings of the 4th ACM Workshop on Security and Privacy in

Smartphones & Mobile Devices, pp. 11–20 .

orporation, N., 2015. Tlk repository. Accessed on 27.07.2021. http://nv-tegra.nvidia.
com/gitweb/?p=3rdparty/otepartner/tlk.git .

ostan, V., Lebedev, I., Devadas, S., 2016. Sanctum: Minimal hardware extensions for
strong software isolation. In: 25th USENIX Security Symposium (USENIX Secu-

rity 16), pp. 857–874 .
riswell, J., Dautenhahn, N., Adve, V., 2014. Virtual ghost: protecting applications

from hostile operating systems. ACM SIGARCH Computer Architecture News 42

(1), 81–96 .
ui, A., Housley, R., 2017. BADFET: defeating modern secure boot using second-order

pulsed electromagnetic fault injection. 11th USENIX Workshop on Offensive
Technologies (WOOT 17) .

autenhahn, N., Kasampalis, T., Dietz, W., Criswell, J., Adve, V., 2015. Nested kernel:
an operating system architecture for intra-kernel privilege separation. In: Pro-

ceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 191–206 .

ietrich, K., Winter, J., 2009. Implementation aspects of mobile and embed-

ded trusted computing. In: International Conference on Trusted Computing.
Springer, pp. 29–44 .

iffie, W., Hellman, M., 1976. New directions in cryptography. IEEE Trans. Inf. Theory
22 (6), 644–654 .

omnitser, L., Jaleel, A., Loew, J., Abu-Ghazaleh, N., Ponomarev, D., 2012. Non-mo-
nopolizable caches: low-complexity mitigation of cache side channel attacks.

ACM Transactions on Architecture and Code Optimization (TACO) 8 (4), 1–21 .

rozdovskyi, T.A., Moliavko, O.S., 2019. Mtower: trusted execution environment for
MCU-based devices. Journal of Open Source Software 4 (40), 1494 .

kberg, J.-E., Afanasyeva, A., Asokan, N., 2012. Authenticated encryption primitives
for size-constrained trusted computing. In: International Conference on Trust

and Trustworthy Computing. Springer, pp. 1–18 .
kberg, J.-E., et al., 2007. Mobile trusted module (MTM)–an introduction.

lenkov, N., 2013. Credential storage enhancements in android 4.3. URL-nelenkov.

blogspot. co. uk/2013/08/credential-storage-enhancements-android-43. html .
venchick, E., 2018. Rustzone: Writing trusted applications in rust.

elton, D.,. Trustonic, trusted executed environment(tee). Accessed on 08.11.2022.
https://www.trustonic.com/technology/trusted- execution- environment .

erraiuolo, A., Baumann, A., Hawblitzel, C., Parno, B., 2017. Komodo: Using verifica-
tion to disentangle secure-enclave hardware from software. In: Proceedings of

the 26th Symposium on Operating Systems Principles, pp. 287–305 .

eske, N., 2015. Genode operating system framework.
itzek, A., Achleitner, F., Winter, J., Hein, D., 2015. The andix research os - arm

trustzone meets industrial control systems security. In: 2015 IEEE 13th Inter-
national Conference on Industrial Informatics (INDIN), pp. 88–93. doi: 10.1109/

INDIN.2015.7281715 .
e, X., Vijayakumar, H., Jaeger, T., 2014. Sprobes: Enforcing kernel code integrity on

the trustzone architecture. arXiv: 1410.7747

lobalPlatform,. Globalplatform specifications. Accessed on 27.09.2022. http://www.
globalplatform.org/ .

onzález, J., Bonnet, P., 2013. Towards an open framework leveraging a trusted exe-
cution environment. In: International Symposium on Cyberspace Safety and Se-

curity. Springer, pp. 458–467 .

http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0001
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0002
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0003
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0003
https://developer.amd.com/sev/
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0004
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0005
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0006
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0007
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0008
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0009
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0010
https://fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0011
http://bits-please.blogspot.gr/2016/04/exploring-qualcomms-secure-execution.html
https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
http://bits-please.blogspot.co.il/2015/08/full-trustzone-exploit-for-msm8974.html
https://bits-please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0012
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0013
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0014
https://github.com/OP-TEE
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0015
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0016
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0017
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0018
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0019
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0019
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0020
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0021
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0022
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0023
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0024
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0025
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0026
http://arxiv.org/abs/1707.05082
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0027
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0028
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0029
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/otepartner/tlk.git
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0030
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0031
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0032
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0033
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0034
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0035
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0036
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0037
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0038
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0039
https://www.trustonic.com/technology/trusted-execution-environment
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0040
https://doi.org/10.1109/INDIN.2015.7281715
http://arxiv.org/abs/1410.7747
http://www.globalplatform.org/
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0042

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

G

G

G

G

G

G

G

G

G

H

H

H

H

H

H

I

I

I

I

I

I

J

J

J

J

J

J

K

K

K

K

K

K

K

K

K

L

L

L

L

L

L

L
L

L

L

L

L

L

L

M

M

M

M

M

M

M

oogle,. Google. (n.d.). trusty tee. Accessed on 08.11.2022. https://source.android.
com/security/trusty/index.html .

ötzfried, J., Eckert, M., Schinzel, S., Müller, T., 2017. Cache attacks on intel sgx. In:
Proceedings of the 10th European Workshop on Systems Security, pp. 1–6 .

ötzfried, J., Eckert, M., Schinzel, S., Müller, T., 2017. Cache attacks on intel sgx.
In: Proceedings of the 10th European Workshop on Systems Security. Asso-

ciation for Computing Machinery, New York, NY, USA doi: 10.1145/3065913.
3065915 .

ras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C., 2017. Aslr on the line: Practical

cache attacks on the mmu. In: NDSS, Vol. 17, p. 26 .
russ, D., Maurice, C., Fogh, A., Lipp, M., Mangard, S., 2016. Prefetch side-chan-

nel attacks: Bypassing SMAP and kernel ASLR. In: Proceedings of the 2016
ACM SIGSAC conference on computer and communications security, pp. 368–

379 .
russ, D., Maurice, C., Wagner, K., Mangard, S., 2016. Flush+ flush: a fast and stealthy

cache attack. In: International Conference on Detection of Intrusions and Mal-

ware, and Vulnerability Assessment. Springer, pp. 279–299 .
russ, D., Spreitzer, R., Mangard, S., 2015. Cache template attacks: Automating

attacks on inclusive last-level caches. In: 24th USENIX Security Symposium

(USENIX Security 15), pp. 897–912 .

uan, L., Liu, P., Xing, X., Ge, X., Zhang, S., Yu, M., Jaeger, T., 2017. Trustshadow: Se-
cure execution of unmodified applications with arm trustzone. In: Proceedings

of the 15th Annual International Conference on Mobile Systems, Applications,

and Services, pp. 488–501 .
uanciale, R., Nemati, H., Baumann, C., Dam, M., 2016. Cache storage channels:

Alias-driven attacks and verified countermeasures. In: 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, pp. 38–55 .

ofmann, O.S., Kim, S., Dunn, A.M., Lee, M.Z., Witchel, E., 2013. Inktag: Secure ap-
plications on an untrusted operating system. In: Proceedings of the eighteenth

international conference on Architectural support for programming languages

and operating systems, pp. 265–278 .
olding, A., 2009. Arm security technology: Building a secure system us-

ing trustzone technology. http://infocenter.arm.com/help/topic/com.arm.doc.
prd29- genc- 009492c/PRD29- GENC- 009492C _ trustzone _ security _ whitepaper.

pdf .
ou, S., Ye, Y., Song, Y., Abdulhayoglu, M., 2017. Hindroid: an intelligent android

malware detection system based on structured heterogeneous information net-

work. In: Proceedings of the 23rd ACM SIGKDD International conference on
knowledge discovery and data mining, pp. 1507–1515 .

ua, Z., Gu, J., Xia, Y., Chen, H., Zang, B., Guan, H., 2017. VTZ: Virtualizing ARM
trustzone. In: 26th USENIX Security Symposium (USENIX Security 17), pp. 541–

556 .
ussin, W.H.W., Coulton, P., Edwards, R., 2005. Mobile ticketing system employ-

ing trustzone technology. In: International Conference on Mobile Business

(ICMB’05). IEEE, pp. 651–654 .
ussin, W.H.W., Edwards, R., Coulton, P., 2006. E-pass using DRM in symbian v8

os and trustzone: Securing vital data on mobile devices. In: 2006 International
Conference on Mobile Business. IEEE . 14–14

nc, M. T.,. Atecc608a, secure element to secure authentication. Accessed on
27.10.2022. https://www.microchip.com/en-us/product/ATECC608A .

nfineon, T.,. Optigatmtrust x sls 32aia. Accessed on 08.11.2022. https:
//www.infineon.com/cms/en/product/security- smart- card- solutions/

optiga-embedded-security-solutions/optiga-trust/optiga-trust-x-sls-32aia .

ntegrated, M.,. Maxq1061, deep cover cryptographic controller for embedded de-
vices. Accessed on 27.07.2021 https://www.maximintegrated.com/en/products/

microcontrollers/MAXQ1061.html .
ntel, 2014. Intel software guard extensions programming reference. Accessed

on 08.11.2022 https://software.intel.com/sites/default/files/managed/48/88/
329298-002.pdf .

razoqui, G., Eisenbarth, T., Sunar, B., 2015. S$a: A shared cache attack that works

across cores and defies VM sandboxing–and its application to aes. In: 2015 IEEE
Symposium on Security and Privacy. IEEE, pp. 591–604 .

razoqui, G., Eisenbarth, T., Sunar, B., 2016. Cross processor cache attacks. In: Pro-
ceedings of the 11th ACM on Asia conference on computer and communications

security, pp. 353–364 .
ang, J., Choi, C., Lee, J., Kwak, N., Lee, S., Choi, Y., Kang, B.B., 2016. Privatezone:

providing a private execution environment using arm trustzone. IEEE Trans De-

pendable Secure Comput 15 (5), 797–810 .
ang, J., Kang, B.B., 2018. Retrofitting the partially privileged mode for tee com-

munication channel protection. IEEE Trans Dependable Secure Comput 17 (5),
10 0 0–1014 .

ang, J.S., Kong, S., Kim, M., Kim, D., Kang, B.B., 2015. Secret: Secure channel between
rich execution environment and trusted execution environment. NDSS .

anjua, H., Ammar, M., Crispo, B., Hughes, D., 2019. Towards a standards-compli-

ant pure-software trusted execution environment for resource-constrained em-
bedded devices. In: Proceedings of the 4th Workshop on System Software for

Trusted Execution, pp. 1–6 .
arabek, C., Barrera, D., Aycock, J., 2012. Thinav: Truly lightweight mobile

cloud-based anti-malware. In: Proceedings of the 28th Annual Computer Secu-
rity Applications Conference, pp. 209–218 .

i, D., Zhang, Q., Zhao, S., Shi, Z., Guan, Y., 2019. Microtee: designing tee os

based on the microkernel architecture. In: 2019 18th IEEE International Confer-
ence On Trust, Security And Privacy In Computing And Communications/13th

IEEE International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE). IEEE, pp. 26–33 .

eltner, N., Holmes, C., 2014. Here be dragons: Vulnerabilities in trustzone.
24
im, Y., Lee, J., Mai, T.X., Paek, Y., 2012. Improving performance of nested loops
on reconfigurable array processors. ACM Transactions on Architecture and Code

Optimization (TACO) 8 (4), 1–23 .
im, Y., Liszka, K.J., Chan, C.-C., 2016. Using droiddream android malware behavior

for identification of other android malware families. In: Proceedings of the In-
ternational Conference on Security and Management (SAM). The Steering Com-

mittee of The World Congress in Computer Science, Computer, p. 286 .
ocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M.,

Mangard, S., Prescher, T., et al., 2019. Spectre attacks: Exploiting speculative ex-

ecution. In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE, pp. 1–
19 .

omaromy, D., 2018. Unbox your phone part iAccessed on 08.11.2022 https://
medium.com/taszksec/unbox- your- phone- part- i- 331bbf44c30c .

oruyeh, E.M., Shirazi, S.H.A., Khasawneh, K.N., Song, C., Abu-Ghazaleh, N., 2020.
Speccfi: Mitigating spectre attacks using cfi informed speculation. In: 2020 IEEE

Symposium on Security and Privacy (SP). IEEE, pp. 39–53 .

ostiainen, K., Ekberg, J.-E., Asokan, N., Rantala, A., 2009. On-board credentials with
open provisioning. In: Proceedings of the 4th International Symposium on In-

formation, Computer, and Communications Security, pp. 104–115 .
won, D., Seo, J., Cho, Y., Lee, B., Paek, Y., 2019. Pros: light-weight privatized se cure

oses in arm trustzone. IEEE Trans. Mob. Comput. 19 (6), 1434–1447 .
won, Y., Dunn, A.M., Lee, M.Z., Hofmann, O.S., Xu, Y., Witchel, E., 2016. Sego: per-

vasive trusted metadata for efficiently verified untrusted system services. ACM

SIGARCH Computer Architecture News 44 (2), 277–290 .
ammens, L.,. Code aurora forum security bulletin. Accessed on 27.10.2022 https:

//www.codeaurora.org/security-bulletin .
apid, B., Wool, A., 2018. Navigating the samsung trustzone and cache-attacks on

the keymaster trustlet. In: European Symposium on Research in Computer Se-
curity. Springer, pp. 175–196 .

ee, D., Kohlbrenner, D., Shinde, S., Asanovi ́c, K., Song, D., 2020. Keystone: An open

framework for architecting trusted execution environments. In: Proceedings of
the Fifteenth European Conference on Computer Systems, pp. 1–16 .

ee, U., Park, C., 2020. Softee: software-based trusted execution environment for
user applications. IEEE Access 8, 121874–121888 .

i, W., Xia, Y., Lu, L., Chen, H., Zang, B., 2019. Teev: virtualizing trusted exe-
cution environments on mobile platforms. In: Proceedings of the 15th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,

pp. 2–16 .
iedtke, J., Hartig, H., Hohmuth, M., 1997. Os-controlled cache predictability for real–

time systems. In: Proceedings Third IEEE Real-Time Technology and Applications
Symposium. IEEE, pp. 213–224 .

ipp, M., 2016. Cache attacks and rowhammer on arm.
ipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S., 2016. Armageddon: cache

attacks on mobile devices. In: 25th USENIX Security Symposium (USENIX Secu-

rity 16), pp. 549–564 .
ipp, M., Haži ́c, V., Schwarz, M., Perais, A., Maurice, C., Gruss, D., 2020. Take a way:

Exploring the security implications of amd’s cache way predictors. In: Proceed-
ings of the 15th ACM Asia Conference on Computer and Communications Secu-

rity, pp. 813–825 .
ipp, M., Kogler, A., Oswald, D., Schwarz, M., Easdon, C., Canella, C., Gruss, D., 2021.

Platypus: Software-based power side-channel attacks on x86. IEEE Symposium

on Security and Privacy (SP) .

ipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J., Mangard, S.,

Kocher, P., Genkin, D., et al., 2018. Meltdown: Reading kernel memory from

user space. In: 27th USENIX Security Symposium (USENIX Security 18), pp. 973–

990 .
iu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B., 2015. Last-level cache side-channel

attacks are practical. In: 2015 IEEE symposium on security and privacy. IEEE,
pp. 605–622 .

iu, H., Saroiu, S., Wolman, A., Raj, H., 2012. Software abstractions for trusted sen-

sors. In: Proceedings of the 10th International Conference on Mobile Systems,
Applications, and Services, pp. 365–378 .

ynch, W.L., Bray, B.K., Flynn, M.J., 1992. The effect of page allocation on caches.
ACM SIGMICRO Newsletter 23 (1–2), 222–225 .

achiry, A., Gustafson, E., Spensky, C., Salls, C., Stephens, N., Wang, R., Bianchi, A.,
Choe, Y.R., Kruegel, C., Vigna, G., 2017. Boomerang: Exploiting the semantic gap

in trusted execution environments. NDSS .

aistri, P., Leveugle, R., Bossuet, L., Aubert, A., Fischer, V., Robisson, B., Moro, N.,
Maurine, P., Dutertre, J.-M., Lisart, M., 2014. Electromagnetic analysis and fault

injection onto secure circuits. In: 2014 22nd International Conference on Very
Large Scale Integration (VLSI-SoC). IEEE, pp. 1–6 .

aña, A., Muñoz, A., 2006. Protected computing vs. trusted computing. In: 2006 1st
International Conference on Communication Systems Software & Middleware.

IEEE, pp. 1–7 .

archand, C., Aubert, A., Bossuet, L., et al., 2017. On the security evaluation of the
arm trustzone extension in a heterogeneous soc. In: 2017 30th IEEE Interna-

tional System-on-Chip Conference (SOCC). IEEE, pp. 108–113 .
cCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A., 2010. Trustvisor:

Efficient tcb reduction and attestation. In: 2010 IEEE Symposium on Security
and Privacy. IEEE, pp. 143–158 .

cCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H., 2008. Flicker: An ex-

ecution infrastructure for tcb minimization. In: Proceedings of the 3rd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2008, pp. 315–

328 .
cGill, K.N., 2013. Trusted mobile devices: requirements for a mobile trusted plat-

form module. Johns Hopkins APL Tech Dig 32 (2), 544–554 .

https://source.android.com/security/trusty/index.html
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0043
https://doi.org/10.1145/3065913.penalty -@M 3065915
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0045
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0047
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0048
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0049
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0050
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0051
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0052
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0053
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0054
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0055
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0055
https://www.microchip.com/en-us/product/ATECC608A
https://www.infineon.com/cms/en/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-trust/optiga-trust-x-sls-32aia
https://www.maximintegrated.com/en/products/microcontrollers/MAXQ1061.html
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0056
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0057
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0058
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0059
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0060
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0061
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0062
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0063
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0064
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0065
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0066
https://medium.com/taszksec/unbox-your-phone-part-i-331bbf44c30c
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0067
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0068
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0069
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0070
https://www.codeaurora.org/security-bulletin
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0071
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0072
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0073
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0074
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0075
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0076
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0077
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0078
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0079
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0080
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0081
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0082
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0083
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0084
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0085
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0086
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0087
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0088
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0089

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

M

M

M

M

M

M

M

N

O

O

O

O

P

P

P

P

P

Q

Q

Q

Q

Q

R

R
R

R

R

R

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

T
T

T

V

V

V

W

W

W
cGillion, B., Dettenborn, T., Nyman, T., Asokan, N., 2015. Open-tee–an open virtual
trusted execution environment. In: 2015 IEEE Trustcom/BigDataSE/ISPA, Vol. 1.

IEEE, pp. 400–407 .
elara, M. S., Freedman, M. J., Bowman, M., 2019. Enclavedom: privilege separation

for large-tcb applications in trusted execution environments. Arxiv: 1907.13245
eng, H., Thing, V.L., Cheng, Y., Dai, Z., Zhang, L., 2018. A survey of android exploits

in the wild. Computers & Security 76, 71–91 .
inkin, M., Moghimi, D., Lipp, M., Schwarz, M., Van Bulck, J., Genkin, D., Gruss, D.,

Piessens, F., Sunar, B., Yarom, Y., 2019. Fallout: Reading kernel writes from user

space. Arxiv: 1905.12701
oghimi, A., Irazoqui, G., Eisenbarth, T., 2017. Cachezoom: How sgx amplifies the

power of cache attacks. In: International Conference on Cryptographic Hardware
and Embedded Systems. Springer, pp. 69–90 .

urdock, K., Oswald, D., Garcia, F.D., Van Bulck, J., Gruss, D., Piessens, F., 2020. Plun-
dervolt: software-based fault injection attacks against intel sgx. In: 2020 IEEE

Symposium on Security and Privacy (SP). IEEE, pp. 1466–1482 .

urdock, K., Oswald, D., Garcia, F.D., Van Bulck, J., Piessens, F., Gruss, D., 2020. Plun-
dervolt: how a little bit of undervolting can create a lot of trouble. IEEE Security

& Privacy 18 (5), 28–37 .
gabonziza, B., Martin, D., Bailey, A., Cho, H., Martin, S., 2016. Trustzone explained:

architectural features and use cases. In: 2016 IEEE 2nd International Conference
on Collaboration and Internet Computing (CIC). IEEE, pp. 445–451 .

bjects, T.,. To136 secure element. Accessed on 27.07.2021 https://www.

trusted-objects.com/webtest/index.php?page=en- TO136- secure- element .
h, S.-C., Koh, K., Kim, C.-Y., Kim, K., Kim, S., 2012. Acceleration of dual os virtualiza-

tion in embedded systems. In: 2012 7th International Conference on Computing
and Convergence Technology (ICCCT). IEEE, pp. 1098–1101 .

liveira, D., Gomes, T., Pinto, S., 2021. uTango: an open-source tee for the internet
of things. Arxiv: 2102.03625

svik, D.A., Shamir, A., Tromer, E., 2006. Cache attacks and countermeasures: the

case of aes. In: Cryptographers’ track at the RSA conference. Springer, pp. 1–
20 .

into, S., Garlati, C., 2020. Multi zone security for arm cortex-m devices. In: Proc.
Embedded World Conf. .

into, S., Gomes, T., Pereira, J., Cabral, J., Tavares, A., 2017. Iioteed: an enhanced,
trusted execution environment for industrial iot edge devices. IEEE Internet

Comput 21 (1), 40–47 .

into, S., Santos, N., 2019. Demystifying arm trustzone: a comprehensive survey.
ACM Computing Surveys (CSUR) 51 (6), 1–36 .

irker, M., Slamanig, D., 2012. A framework for privacy-preserving mobile payment
on security enhanced arm trustzone platforms. In: 2012 IEEE 11th International

Conference on Trust, Security and Privacy in Computing and Communications.
IEEE, pp. 1155–1160 .

irker, M., Slamanig, D., Winter, J., 2012. Practical privacy preserving cloud resource–

payment for constrained clients. In: International Symposium on Privacy En-
hancing Technologies Symposium. Springer, pp. 201–220 .

iu, P., Wang, D., Lyu, Y., Qu, G., 2019. Voltjockey: Breaching trustzone by software–
controlled voltage manipulation over multi-core frequencies. In: Proceedings of

the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pp. 195–209 .

iu, P., Wang, D., Lyu, Y., Qu, G., 2019. Voltjockey: breaking SGX by software-con-
trolled voltage-induced hardware faults. In: 2019 Asian Hardware Oriented Se-

curity and Trust Symposium (AsianHOST). IEEE, pp. 1–6 .

iu, P., Wang, D., Lyu, Y., Tian, R., Wang, C., Qu, G., 2020. Voltjockey: a new dynamic
voltage scaling-based fault injection attack on intel sgx. IEEE Trans. Comput.

Aided Des. Integr. Circuits Syst. 40 (6), 1130–1143 .
ualcomm, 2018. Qualcomm product security - security advisories. https://www.

qualcomm.com/company/product-security/security-advisories .
ui, P., Wang, D., Lyu, Y., Qu, G., 2020. Voltjockey: abusing the processor voltage

to break arm trustzone. GetMobile: Mobile Computing and Communications 24

(2), 30–33 .
agab, H., Milburn, A., Razavi, K., Bos, H., Giuffrida, C., 2021. Crosstalk: Speculative

data leaks across cores are real. IEEE Symposium on Security and Privacy. Insti-
tute of Electrical and Electronics Engineers Inc. .

osenberg, D., 2013. Unlocking the motorola bootloader. Azimuth Security Blog .
osenberg, D., 2014. Reflections on trusting trustzone. BlackHat USA .

oth, T., 2013. Next generation mobile rootkits. Hack in Paris .

yan, K., 2019. Hardware-backed heist: Extracting ecdsa keys from qualcomm’s
trustzone. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer

and Communications Security, pp. 181–194 .
yan, K., 2019. Return of the hidden number problem. IACR Transactions on Cryp-

tographic Hardware and Embedded Systems 146–168 .
abt, M., Achemlal, M., Bouabdallah, A., 2015. Trusted execution environment: what

it is, and what it is not. In: 2015 IEEE Trustcom BigDataSE ISPA, Vol. 1. IEEE,

pp. 57–64 .
antos, N., Raj, H., Saroiu, S., Wolman, A., 2011. Trusted language runtime (tlr) en-

abling trusted applications on smartphones. In: Proceedings of the 12th Work-
shop on Mobile Computing Systems and Applications, pp. 21–26 .

antos, N., Raj, H., Saroiu, S., Wolman, A., 2014. Using arm trustzone to build a
trusted language runtime for mobile applications. In: Proceedings of the 19th

International Conference on Architectural Support for Programming Languages

and Operating Systems, pp. 67–80 .
chwarz, M., Lipp, M., Moghimi, D., Van Bulck, J., Stecklina, J., Prescher, T., Gruss, D.,

2019. Zombieload: Cross-privilege-boundary data sampling. In: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security,

pp. 753–768 .
25
chwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S., 2017. Malware guard
extension: Using sgx to conceal cache attacks. In: International Conference on

Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
pp. 3–24 .

emiconductors, N., 2018. A71ch, plug & trust secure element. Accessed on
27.09.2022 https://www.nxp.com/docs/en/data- sheet/A71CH- SDS.pdf .

emiconductors, N., 2021. Se050 plug & trust secure element. Accessed on
08.11.2022 https://www.nxp.com/docs/en/data- sheet/SE050- DATASHEET.pdf .

hah, J. H., et al., 2012. Armithril: A secure os leveraging arm’s trustzone technology.

hen, D., 2015. ”attacking your trusted core exploiting trustzone on android”.
Accessed on 08.11.2022 https://www.blackhat.com/docs/us-15/materials/

us- 15- Shen- Attacking- Your- Trusted- Core- Exploiting- Trustzone- On- Android.
pdf .

hi, J., Song, X., Chen, H., Zang, B., 2011. Limiting cache-based side-channel in multi-
-tenant cloud using dynamic page coloring. In: 2011 IEEE/IFIP 41st International

Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE,

pp. 194–199 .
hin, J., Kim, Y., Park, W., Park, C., 2012. Dfcloud: a tpm-based secure data ac-

cess control method of cloud storage in mobile devices. In: 4th IEEE Inter-
national Conference on Cloud Computing Technology and Science Proceedings.

IEEE, pp. 551–556 .
hinde, S., Le Tien, D., Tople, S., Saxena, P., 2017. Panoply: Low-tcb linux applications

with sgx enclaves. NDSS .

ierraWare,. Sierratee for arm trustzone. Accessed on 08.11.2022 https://www.
sierraware.com/open-source-ARM-TrustZone.html .

olacia,. Securitee. Accessed on 27.07.2021 http://www.sola-cia.com/en/securiTee/
product.asp .

oviany, S., Scheianu, A., Suciu, G., Vulpe, A., Fratu, O., Istrate, C., 2018. Android
malware detection and crypto-mining recognition methodology with machine

learning. In: 2018 IEEE 16th International Conference on Embedded and Ubiq-

uitous Computing (EUC). IEEE, pp. 14–21 .
preitzer, R., Gérard, B., 2014. Towards more practical time-driven cache attacks.

In: IFIP International Workshop on Information Security Theory and Practice.
Springer, pp. 24–39 .

preitzer, R., Plos, T., 2013. On the applicability of time-driven cache attacks on mo-
bile devices (extended version).

un, H., Sun, K., Wang, Y., Jing, J., 2015. Trustotp: Transforming smartphones

into secure one-time password tokens. In: Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, pp. 976–

988 .
un, H., Sun, K., Wang, Y., Jing, J., Wang, H., 2015. Trustice: Hardware-assisted

isolated computing environments on mobile devices. In: 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE,

pp. 367–378 .

akahashi, A., Tibouchi, M., Abe, M., 2018. New bleichenbacher records: practical
fault attacks on qdsa signatures. IACR Cryptol. ePrint Arch. 2018, 396 .

akei, C., Takada, H., Yamamoto, M., Honda, S., 2009. Integrated software platform

for automotive systems. In: 2009 International SoC Design Conference (ISOCC).

IEEE, pp. 377–379 .
amrakar, S., Ekberg, J.-E., Asokan, N., 2011. Identity verification schemes for public

transport ticketing with nfc phones. In: Proceedings of the Sixth ACM Workshop
on Scalable Trusted Computing, pp. 37–48 .

ang, A., Sethumadhavan, S., Stolfo, S., 2017. CLKSCREW: exposing the perils of

security-oblivious energy management. In: 26th USENIX Security Symposium

(USENIX Security 17), pp. 1057–1074 .

CG, 2013. Tpm 2.0 mobile trusted module use cases. Accessed on 08.11.2022 https:
//trustedcomputinggroup.org/resource/mobile- trusted- module- 2- 0- use- cases/ .

ögl, R., Winter, J., Pirker, M., 2013. A path towards ubiquitous protection of media.
In: Proceedings Workshop on Web Applications and Secure Hardware, ser. CEUR

Workshop Proceedings, Vol. 1011. Citeseer, pp. 32–38 .

rustKernel,. T6. Accessed on 27.07.2021 https://www.trustkernel.com/ .
rustonic, 2017. Not just droning on! the rise of kinibi-m. https://www.trustonic.

com/news/blog/not- just- droning- rise- kinibi- m/ .
sai, C.-C., Porter, D.E., Vij, M., 2017. Graphene-sgx: A practical library OS for un-

modified applications on SGX. In: 2017 USENIX Annual Technical Conference
(USENIATC 17), pp. 645–658 .

an Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Silber-

stein, M., Wenisch, T.F., Yarom, Y., Strackx, R., 2018. Foreshadow: Extracting the
keys to the intel SGX kingdom with transient out-of-order execution. In: 27th

USENIX Security Symposium (USENIX Security 18), pp. 991–1008 .
an Bulck, J., Moghimi, D., Schwarz, M., Lippi, M., Minkin, M., Genkin, D., Yarom, Y.,

Sunar, B., Gruss, D., Piessens, F., 2020. Lvi: Hijacking transient execution through
microarchitectural load value injection. In: 2020 IEEE Symposium on Security

and Privacy (SP). IEEE, pp. 54–72 .

an Schaik, S., Milburn, A., Österlund, S., Frigo, P., Maisuradze, G., Razavi, K., Bos, H.,
Giuffrida, C., 2019. Ridl: rogue in-flight data load. In: 2019 IEEE Symposium on

Security and Privacy (SP). IEEE, pp. 88–105 .
agner, D., 1999. The boomerang attack. In: International Workshop on Fast Soft-

ware Encryption. Springer, pp. 156–170 .
eichselbaum, L., Neugschwandtner, M., Lindorfer, M., Fratantonio, Y., Van Der

Veen, V., Platzer, C., 2014. Andrubis: android malware under the magnify-

ing glass. Vienna University of Technology, Tech. Rep. TR-ISECLAB-0414-001 1–
10 .

eiß, M., Heinz, B., Stumpf, F., 2012. A cache timing attack on AES in virtualization
environments. In: International Conference on Financial Cryptography and Data

Security. Springer, pp. 314–328 .

http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0090
http://arxiv.org/abs/1907.13245
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0091
http://arxiv.org/abs/1905.12701
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0092
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0093
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0094
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0095
https://www.trusted-objects.com/webtest/index.php?page=en-TO136-secure-element
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0096
http://arxiv.org/abs/2102.03625
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0097
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0098
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0099
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0100
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0101
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0102
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0103
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0104
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0105
https://www.qualcomm.com/company/product-security/security-advisories
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0106
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0107
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0108
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0109
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0110
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0111
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0112
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0113
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0114
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0115
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0116
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0117
https://www.nxp.com/docs/en/data-sheet/A71CH-SDS.pdf
https://www.nxp.com/docs/en/data-sheet/SE050-DATASHEET.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android.pdf
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0118
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0119
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0120
https://www.sierraware.com/open-source-ARM-TrustZone.html
http://www.sola-cia.com/en/securiTee/product.asp
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0121
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0122
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0123
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0124
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0125
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0126
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0127
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0128
https://trustedcomputinggroup.org/resource/mobile-trusted-module-2-0-use-cases/
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0129
https://www.trustkernel.com/
https://www.trustonic.com/news/blog/not-just-droning-rise-kinibi-m/
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0130
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0131
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0132
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0133
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0134
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0135
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0136

A. Muñoz, R. Ríos, R. Román et al. Computers & Security 129 (2023) 103180

W

W

X

Y

Y

Y

Z

Z

Z

Z

eiß, M., Weggenmann, B., August, M., Sigl, G., 2014. On cache timing attacks con-
sidering multi-core aspects in virtualized embedded systems. In: International

Conference on Trusted Systems. Springer, pp. 151–167 .
eisse, O., Van Bulck, J., Minkin, M., Genkin, D., Kasikci, B., Piessens, F., Silberstein,

M., Strackx, R., Wenisch, T. F., Yarom, Y., 2018. Foreshadow-ng: Breaking the vir-
tual memory abstraction with transient out-of-order execution.

ia, Y., Hua, Z., Yu, Y., Gu, J., Chen, H., Zang, B., Guan, H., 2021. Colony: a privileged
trusted execution environment with extensibility. IEEE Trans. Comput .

arom, Y., Falkner, K., 2014. Flush+ reload: A high resolution, low noise, l3 cache

side-channel attack. In: 23rd USENIX Security Symposium (USENIX Security 14),
pp. 719–732 .

ing, K., Thavai, P., Du, W., 2019. Truz-view: Developing trustzone user interface for
mobile os using delegation integration model. In: Proceedings of the Ninth ACM

Conference on Data and Application Security and Privacy, pp. 1–12 .
un, M.H., Zhong, L., 2019. Ginseng: Keeping secrets in registers when you distrust

the operating system. NDSS .

hang, N., Sun, K., Lou, W., Hou, Y.T., 2016. Case: Cache-assisted secure execution
on arm processors. In: 2016 IEEE Symposium on Security and Privacy (SP). IEEE,

pp. 72–90 .
hang, N., Sun, K., Shands, D., Lou, W., Hou, Y.T., 2016. Truspy: cache side-channel

information leakage from the secure world on arm devices. IACR Cryptol. ePrint
Arch. 2016, 980 .

hang, Y., Juels, A., Reiter, M.K., Ristenpart, T., 2012. Cross-Vm side channels and

their use to extract private keys. In: Proceedings of the 2012 ACM Conference
on Computer and Communications Security, pp. 305–316 .

hang, Z., Barthe, G., Chuengsatiansup, C., Schwabe, P., Yarom, Y., 2022. Breaking and
fixing speculative load hardening. Cryptology ePrint Archive .

Antonio Muñoz is an assistant professor at the Univer-
sity of Malaga, where he obtained his Ph.D. and M.Sc.

degrees in computer engineering and computer science,
respectively, in 2010 and 2005. He holds his Ph.D. an

MSc degree in Computer Science and a Postgraduate Mas-
ter degree in Software Engineer and Artificial Intelligence,

both of them from the University of Malaga. His princi-
pal research interests are in the area of Agent technology,

Digital Content Protection, Cryptographic Hardware based

Systems, Security Patterns and Security Engineering.
26
Ruben Rios is assistant professor at the University of

Malaga, Spain. He received the Ph.D. degree in Computer
Science in 2014. His main research activities are centred

on the design and development of solutions for the pro-
tection of digital privacy and anonymity in scenarios with

resource-constrained devices. Dr. Rios was awarded the

FPU fellowship from the Spanish Ministry of Education
and received the prize to the most outstanding Ph.D. the-

sis in the University of Malaga. He is also one of the au-
thors of the book ǣLocation Privacy in Wireless Sensor

Networks ǥ from CR Press.

Rodrigo Roman is an assistant professor at the University

of Malaga, where he obtained his Ph.D. and M.Sc. degrees
in computer engineering and computer science, respec-

tively, in 2008 and 2003. Previously, he worked for the In-

stitute of Infocomm Research (I2R) in Singapore in the ar-
eas of sensor network security and cloud security. Work-

ing to make security simple and usable, his research is
fo- cused on the development of protection mechanisms

for the Internet of Things and related paradigms, such as
cloud computing and fog computing.

Javier Lopez is a full professor and head of the Net- work,
Information and Computer Security (NICS) Lab at the Uni-

versity of Malaga, Malaga, 29071, Spain. His research ac-
tivities are mainly focused on network security, security

protocols, and critical information infrastructures, leading

a number of national and international research projects
in those areas. He is Senior Member of IEEE.

http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0137
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0138
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0139
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0140
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0141
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0142
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0143
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0144
http://refhub.elsevier.com/S0167-4048(23)00090-1/sbref0145

	A survey on the (in)security of trusted execution environments
	1 Introduction
	2 Background
	2.1 The evolution of trusted execution environments
	2.2 TEE capabilities and applications
	2.3 Trusted execution environment & ARM TrustZone architecture
	2.4 TEE implementations
	2.5 Implementation details of qualcomm’s secure execution environment

	3 Taxonomy of attacks
	4 Software-based attacks
	4.1 Kernel attacks
	4.1.1 Trustzone privilege escalation
	4.1.2 Kernel exploit in TrustZone
	4.1.3 Next generation rootkits

	4.2 Attacks using system calls
	4.2.1 Syscall hijacking
	4.2.2 Trustnone
	4.2.3 Attacks on HTC QSEE extensions
	4.2.4 Implementation bugs
	4.2.5 Unlocking bootloader attacks
	4.2.6 ROM Extraction attack

	5 Architectural attacks
	5.1 Isolation focused attacks
	5.1.1 Memory exposure
	5.1.2 BOOMERANG attack

	5.2 TEE Wide attack surface
	5.2.1 Kernel contains driver execution
	5.2.2 Downgrade attack
	5.2.3 Broad interfaces to attack

	6 Side-Channel Attacks
	6.1 CLKscrew
	6.2 PlunderVolt
	6.3 Platypus Attack
	6.4 VoltJockey
	6.5 Rowhammer
	6.6 BADFET

	7 Micro-architectural attacks
	7.1 Cache timing attacks
	7.1.1 Prime+Probe
	7.1.2 Evict+Time
	7.1.3 Flush(Evict)+Reload
	7.1.4 Flush+Flush
	7.1.5 Weiʹ Attack
	7.1.6 ARMageddon

	7.2 Separation barrier
	7.2.1 Prime and count
	7.2.2 TruSpy

	7.3 Speculative execution attacks
	7.4 Out-of-order execution attacks
	7.4.1 Foreshadow attack
	7.4.2 Micro-architectural data sampling attack
	7.4.3 Load value injection attack

	8 Countermeasures
	8.1 Countermeasures to software-based attacks
	8.2 Architecture-based countermeasures
	8.3 Memory protection mechanisms
	8.3.1 Lack of address space layout randomisation
	8.3.2 Other memory protection mechanisms
	8.3.3 Speculative attacks protection

	9 Open challenges
	10 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	References

