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A B S T R A C T   

Computationally replicating the behaviour of the cerebral cortex to perform the control tasks of daily life in a 
human being is a challenge today. First, it is necessary to know the structure and connections between the el
ements of the neural network that perform movement control. Next, a mathematical neural model that 
adequately resembles biological neurons has to be developed. Finally, a suitable learning model that allows 
adapting neural network response to changing conditions in the environment is also required. Spiking Neural 
Networks (SNN) are currently the closest approximation to biological neural networks. SNNs make use of 
temporal spike trains to deal with inputs and outputs, thus allowing a faster and more complex computation. In 
this paper, a controller based on an SNN is proposed to perform the control of an anti-lock braking system (ABS) 
in vehicles. To this end, two neural networks are used to regulate the braking force. The first one is devoted to 
estimating the optimal slip while the second one is in charge of setting the optimal braking pressure. The latter 
resembles biological reflex arcs to ensure stability during operation. This neural structure is used to control the 
fast regulation cycles that occur during ABS operation. Furthermore, an algorithm has been developed to train 
the network while driving. On-line learning is proposed to update the response of the controller. Hence, to cope 
with real conditions, a control algorithm based on neural networks that learn by making use of neural plasticity, 
similar to what occurs in biological systems, has been implemented. Neural connections are modulated using 
Spike-Timing-Dependent Plasticity (STDP) by means of a supervised learning structure using the slip error as 
input. Road-type detection has been included in the same neural structure. To validate and to evaluate the 
performance of the proposed algorithm, simulations as well as experiments in a real vehicle were carried out. The 
algorithm proved to be able to adapt to changes in adhesion conditions rapidly. This way, the capability of 
spiking neural networks to perform the full control logic of the ABS has been verified.   

1. Introduction 

System control by biologically-based neural networks that mimic 
real neurons is an issue that is just beginning to be explored. Biological 
neural systems are capable of performing motion control effectively and 
robustly. Consequently, biologically-based control structures have also 
been proposed to control real systems. The versatility and adaptability of 
control systems in animals or humans represent an opportunity for the 
development of new advanced control algorithms. However, the opti
mization of their performance is still a challenge. In the automobile 
field, one of the control systems that has received the most research and 

development has been the Anti-lock Brake System (ABS). ABS has 
proven its effectiveness in emergency situations by reducing the braking 
distance and maintaining the vehicle’s maneuverability [1]. Therefore, 
algorithms that manage braking pressure during deceleration are a 
continuous source of study. 

ABS control strategies are mainly divided into two different ap
proaches. In the first case, there are systems that perform braking con
trol by taking into account the wheel angular speed and the 
deceleration. Both input parameters are obtained from wheel speed 
sensors. In the second case, braking pressure is regulated as a function of 
the wheel slip [2]. The latter have better behavior than controls based on 
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wheel deceleration, but, in addition to wheel speed, they also require the 
estimation of vehicle speed. Furthermore, for optimal performance, the 
knowledge of the adhesion characteristics of the road is also necessary to 
define a reference slip. There are also combined strategies to control 
braking pressure from wheel deceleration, slip and road type. Therefore, 
one of the main problems to be tackled is the optimization of the control 
algorithm for all possible adhesion conditions between the tire and the 
contact surface: asphalt, wet asphalt, gravel, snow, or ice. Furthermore, 
controller performance is also influenced by the nonlinear generation of 
forces between the tire and the road [3]. The controller design is 
consequently complex as it must be able to adapt to all the uncertainties 
that may be encountered. In addition, unlike other vehicle control al
gorithms, time is even more critical in ABS systems since the locking of a 
tire occurs in 200–300 ms. 

Most control algorithms [24] are tuned in a prior phase to their final 
implementation. Control logics are mainly developed using: industrial 
proportional-integral-derivative controller (PID), rule-based controller 
[5], the fuzzy logic controller (FLC) [67] sliding mode controller (SMC) 
[8] and neural control networks [9]. All of them are tuned by simulation 
or real tests, usually maintaining their structure fixed during normal 
operation. Offline-trained and fine-tuned algorithm combined with 
experimental tests may initially appear to be a preferable option due to 
its lower computational cost. However, the inherent variability and 
uncertainty of the tire dynamics can result in an inadequate response in 
the presence of unknown conditions. In contrast, the proposed algorithm 
can improve its performance by learning from experience in real-time. 
Consequently, their optimal performance in all conditions, namely 
those not taken into account during the training phase, is not warranted. 
These conditions might include: sudden changes in adhesion conditions, 
driver ability or a poor braking system condition. 

To avoid this, the adaptation of the controller during operation using 
a model predictive controller (MPC) [10] with reinforcement learning, 
provides a better response to the uncertainties encountered in a real 
vehicle. However, it requires a high computational cost as it demands 
the execution of a real-time model of the vehicle and tires. Other authors 
[11] propose the use of a neural network-based Q-learning scheme. To 
this end, two classical neural networks are programmed to optimize the 
response of the ABS controller. In this approach, it is not necessary to 
know the system to be controlled, but pairs of training data are needed 
to perform the learning of the neural networks. Although this work 
shows the adaptation of the controller to changes in the reference slip, a 
high computational cost is required. In [12], a data-driven control ar
chitecture is used in which two controllers are utilized, an inner one that 
learns from input/output measurement and an outer one, based on a 
harmonic model predictive controller (HMPC), that provides the 
optimal slip. Like the previous ones, this control strategy is computa
tionally costly. 

In this paper, a new different scheme is presented. Thus, a bio- 
inspired neural structure [13] that allows control adaptation with a 
low computational cost is described. Despite being a simple neural 
network, the adaptation of controller behavior during normal operation 
is achieved by resorting to on-line learning and neural plasticity. To 
make use of the neural plasticity observed in biological systems, a neural 
model capable of reproducing these phenomena has to be developed. 
For this reason, Spiking Neural Networks, defined as the third genera
tion [14] after artificial neural networks (ANN), have been employed for 
modeling the neural plasticity. 

SNNs are employed to emulate neural structures and achieve bio- 
inspired ABS control. The simplicity of biological online learning en
ables the algorithm to be embedded in commercial vehicle control 
hardware, demonstrating its performance compared to other proposals 
that require custom hardware or extensive offline learning periods. 
SNNs [1516] reproduce neuronal activity based on electrical spikes by 
means of differential equations that model the generation of these 
spikes. To this end, the encoding and decoding of the variables of the 
system using sensory and motor neurons is required [1718]. The 

mathematical model of the SNN is more complex compared to those 
used for ANN [19]. Consequently, the number of neurons of the network 
must be reduced to meet real time requirements imposed by braking 
dynamics. Since the number of neurons is small, to minimize compu
tational costs, a high firing frequency (>10 Hz) is needed in order to 
properly preserve information during encoding and decoding processes 
[20]. Alternatively, some authors suggest running the neural model on 
neuro-morphic hardware [21], but this makes its implementation in a 
passenger vehicle challenging. 

The modeling of neuronal plasticity reproduces the change of 
strength in the connections between neurons, called synapses [22]. 
Hebbian learning [23] is used to define the plasticity between the pre- 
and post-synaptic activity. To modulate this learning, Spike Timing 
Dependent Plasticity (STDP) [24] regulates the relationship between 
spikes in the pre- and post-synaptic neurons as a function of time. 
Depending on the difference in firing time between neurons, a long-term 
depression (LTD) or long-term potentiation (LTP) is produced, which 
decreases or increases neuronal activity respectively. There are three 
possible STDP rules in literature [25]: Hebbian, Anti-Hebbian and All- 
LTD/LTP. Each one resembles different LTD/LTP behavior depending 
on timing. To regulate the learning rate, external modulation of the 
STDP [26], using dopamine according to the performance of the global 
neural network, is proposed. Furthermore, according to how dopamine 
is delivered, three types of learning are defined [2728]: supervised [29], 
unsupervised and reinforced. 

This paper proposes using supervised learning [30] to modulate the 
training of the neural control algorithm of the ABS system of a four- 
wheel vehicle. This process is carried out by means of a bioinspired 
baseline control structure and by resorting to active learning [3132]. 
Whereas passive learning uses pretraining structures, which remain 
fixed during normal operation of the system, active learning modifies 
the neural connections during operation, thus enhancing controller 
performance in all conditions. 

As previously mentioned, brake system performance greatly depends 
on surface detection during braking processes to determine the adhesion 
conditions. To cope with this fact, the proposed neural structure is 
responsible for two challenging tasks: classification and control. To this 
end, the neural structure is composed of two different networks. First, a 
classification network provides the optimal slip value from vehicle 
variables obtained through an Extended Kalman Filter (EKF). Next, a 
control network based on a bio-inspired structure that resorts to equi
librium point (EP) control determines the optimal brake pressure [33]. 
Consequently, a robust neural controller capable of learning during its 
operation is proposed. 

Experimentation tests using a sensorized vehicle were carried out to 
evaluate algorithm implementation and performance in a real 
embedded control system. 

The main contributions of this work are summarized as follows:  

• Development and implementation of an SNN-based controller that 
performs road classification and brake pressure regulation for anti- 
lock braking systems. The controller is able to estimate road condi
tions to continuously provide the most appropriate braking pressure.  

• A new bio-inspired control structure based on the equilibrium point 
hypothesis. This structure mimics the connections established in the 
vestibular-ocular reflex (VOR).  

• An on-line learning approach using supervised learning via STDP 
modulation. The weights of the neural network connections are 
modified in real time to optimally adapt to braking conditions. This 
feature is a novelty in ABS controls and makes them more dynamic 
and flexible to environmental changes.  

• A robust control logic that imitates biological systems validated 
through real experimentation in a vehicle. 

The paper is organized as follows. In Section 2, the vehicle model and 
parameter estimation are introduced. The Spiking Neural Network and 
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learning method are presented in Section 3. Classification and control 
networks are defined in Sections 4 and 5 respectively. Simulation results 
and a discussion of the proposed ABS algorithm performance are 
included in Section 6, which is followed by the experimentation in 
Section 7. Finally, conclusions are drawn in Section 8. 

2. Vehicle model and parameter estimation 

The classification and control performance of the proposed structure 
greatly depends on adequate modelling and estimation of the required 
input parameters. In this work, state-of-the-art robust simulation and 
estimation techniques have been adapted and implemented to be used 
with the developed neural network controller. 

A three-degree-of-freedom (3 DOF) model is used to simulate the 
longitudinal behavior of a four-wheeled vehicle while braking. The 
lateral and yaw DOF are added to replicate asymmetric braking of the 
wheels of each side. The dynamics of the vehicle body include both 
longitudinal and lateral forces. 

This work focuses on the whole braking process. Therefore, the 
braking system and the generation of forces in the tire are modeled 
separately. The control scheme (Fig. 1) is composed of estimation and 
neural detection and control algorithms that will be described in the 
following sections. The nomenclature subsequently used is defined in 
Table 1. 

2.1. Body model 

Three differential equations are used to model the three degrees of 
freedom describing the motion of the vehicle. These three degrees of 
freedom are sufficient since only longitudinal and lateral vehicle 
movement during straight braking is considered. Yaw is also included to 
replicate situations where the adhesion conditions of the wheels of each 
side of the vehicle are asymmetric. In addition, it is also used to evaluate 
the correct behavior of the control algorithm as a deficient performance 
can cause the vehicle to rotate during longitudinal braking. Therefore, 
the forces imposed by the tire and the drag define the longitudinal (1), 
lateral (2) and yaw (3) motion. 

ẍ = ẏθ̇+
Fxfl + Fxfr + Fxrl + Fxrr + Fdx

m
(1)  

ÿ = − ẋθ̇+
Fyfl + Fyfr + Fyrl + Fyrr + Fdy

m
(2)  

θ̇ =
a
(
Fyfl + Fyfr

)

Izz
−
− b

(
Fyrl + Fyrr

)

Izz
+

0.5w
(
Fxfl − Fxfr + Fxrl − Fxrr

)

Izz
+

Mdz

Izz

(3) 

For simplicity, the influence of the suspension system of the vehicle is 
not considered in the equations. Therefore, vertical loads on the front 
axle (4) and rear axle (5) acting on each wheel individually are obtained 
from the equilibrium of forces (6–9). 

Fzf =
bmg −

(
ẍ − ẏθ̇

)
mh + hFdx − Mdy

a + b
(4)  

Fzr =
amg −

(
ẍ − ẏθ̇

)
mh + hFdx + Mdy

a + b
(5)  

Fzfl = Fzf +(mh
(

ÿ + ẋθ̇
)
+ hFdy − Mdx)

2
w

(6)  

Fzfr = Fzf − Fzfl (7)  

Fzrl = Fzr +(mh
(

ÿ + ẋθ̇
)
+ hFdy − Mdx)

2
w

(8)  

Fzrr = Fzr − Fzrl (9) 

Additionally, the angular acceleration (Ω̇) of each wheel is described 
using equation (10), with i={fl,fr,rl,rr}. 

Ω̇i =
Tbi − Fxir

Iw
(10)  

2.2. Tire model 

Tire longitudinal forces are obtained using the slip ratio (κi) and the 
vertical forces on each wheel (Fzi). For proper modelling, it should be 
considered that the generation of forces is not instantaneous [2] but it 
has a delayed response, so its behavior is modeled using Eq. (11). 

σ dκi

dt
+ |ẋ|κi = rΩi − ẋ (11) 

Where (σ), is the longitudinal relaxation length of the tire. Four pa
rameters {Bx, Cx, Dx, Ex} have been defined to determine tire behavior. 
These, in combination with the vertical load and slip ratio, provide the 
longitudinal load (Fxi) experienced by the tire according to Eq. (12). 

Fxi = FziDxsin(Cxarctan{Bxκi − Ex[Bxκi − arctan(Bxκi) ]}) (12) 
Fig. 1. Vehicle control scheme.  

Table 1 
Nomenclature.  

Symbol Description Symbol Description 

x Longitudinal displacement 
(CoG) 

Fx Longitudinal force 

y Lateral displacement (CoG) Fy Lateral force 
θ Yaw angle Fz Vertical force 
fl Front-Left Fzn Nominal vertical force 
fr Front-Right Fd Drag force 
rl Rear-Left Md Drag moment 
rr Rear-Right Tb Brake torque 
m Vehicle mass Ω Tire angular speed 
r Tire radius σ Relaxation length 
h CoG height Cy Cornering stiffness 
a CoG distance of front wheels Np Number of pads 
b CoG distance of rear wheels µpad Disc-Pad friction 

coefficient 
w Vehicle width Db Disc brake diameter 
Iw Wheel inertia Rm Mean brake radius  
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The ratio between the longitudinal and the vertical loads defines the 
longitudinal friction coefficient μxi = Fxi/Fzi. This friction coefficient has 
a maximum (μxi = Dx) at a given slip value, called optimum or reference 
slip value (κ*

i ). Therefore, the braking algorithm aims to keep the slip 
ratio as close to its optimal value as possible for improved performance. 

Lateral forces on the tire (Fyi) are determined using a linear model as 
a function of the slip angles (αi), the lateral friction coefficient (μyi =

Fyi/Fzi) and the vertical load, according to eq. (13). At this stage, a non- 
linear lateral tire model is not required since system performance will be 
evaluated in longitudinal tests, in which the slip angle is close to zero 
with minimum influence on the generation of lateral forces. 

Fyi = − Cyαiμyi
Fzi

2
(13)  

2.3. Brake model 

To reduce the speed of the vehicle, a braking torque is applied on the 
wheels via the brake discs. A hydraulic system provides the required 
pressure (P) on the brake pads, pushing them against the disc and thus 
generating the frictional forces that create the braking torque on the 
wheels (Tb), according to Eq. (14). 

Tb =
μpadPπD2

bRmNp

4
(14) 

The relationship between the pressure demanded by the control 
system and the actual pressure and the pressure on the brake pads is 
modeled using a transfer function (15). This includes the dynamics of 
the control acting on the pump as well as the fluid inside the brake line. 
This function has been experimentally identified by comparing the 
target pressure required from the actuator and the actual pressure. 

H(s) =
− 47s + 2354

s2 + 29s + 2385
(15)  

2.4. Extended Kalman filter (EKF) 

All input variables to the SNN network cannot be directly measured 
in a real vehicle. To cope with this fact, the use of an EKF estimator is 
proposed. The slip ratio (κi = 1 − (Ωi • r/ẋ) as well as the friction coef
ficient (μxi = Fxi/Fzi) are required to control the braking of the tire. 
Therefore, these two variables are estimated by the EKF algorithm using 
the speed (ẋ) and forces (Fxi,Fzi), which are included in the state vector 
(xk) (16), and the measured wheel angular speed Ω. Measured (jk) (17) 
and system control variables (uk) (18) are defined to obtain the actual 
value (k) of the state vector. 

xk = [ẋ, Tbi,Fxi,Fzi]
T (16)  

jk =
[
ẍ, ÿ, θ̇, Ω̇i

]T
(17)  

uk = [Tbi]
T (18) 

Measured variables are obtained from an inertial measurement unit 
(IMU) located at the center of gravity of the vehicle and the speed 
sensors installed on each wheel. 

The time evolution of the state vector and measured variables is 
obtained from (19) and (20). A predicted state is calculated for each time 
step using function (ϕ) according to Eq. (21). Each state evolution is 
characterized as a random walk (ẋk− 1,Fxik− 1 ), a control variable (Tbik) and 
by using the vertical model (Fzik) Eqs. (6) to (9). Similarly, function (h) is 
calculated (22) to predict measurements. However, in the case of mea
surement (ẍk, ÿk, θ̇k,Ω̇ik ), the evolution is determined as a function of the 
body (1–3) and wheel (10) equations. Process noise (ωk) and observa
tions (vk) are added to achieve a better estimation. 

xk = ϕ(xk− 1, uk)+ωk (19)  

jk = h(xk)+ vk (20)  

ϕ(xk− 1,uk) =

[

ẋk− 1, Tbik,Fxik− 1 ,Fzik

]

(21)  

h(xk) =

[

ẍk, ÿk, θ̇k, Ω̇ik

]

(22) 

Hence, covariance matrices Qk and Rk associated to noises ωk and vk 

respectively have to be appropriately tuned. The prediction and update 
method used by the Kalman filter [34] also require the evaluation of the 
Jacobians for function (ϕ) and (h). An optimization process based on 
genetic algorithms has been adopted to set the covariance values. In this 
process, data from braking conditions like those of the experiment have 
been simulated. 

To properly control longitudinal tire braking once the slip and 
adhesion levels are known, it is necessary to have the optimal level for 
each surface. This work proposes using a SNN to determine the type of 
road at any given moment. For this purpose, the same type of neural 
network, as defined in Section 3, will be used. 

3. Spiking neural network 

The main novelty of this work is the development of an algorithm 
based on Spiking Neural Networks capable of performing classification 
and control tasks. Furthermore, its performance can be improved during 
normal operation with a proposed on-line learning approach. Conse
quently, first, neuron and synapse models are outlined in detail in this 
section along with the STDP learning algorithm. Next, classification and 
control networks will be described in sections 4 and 5 respectively. 

Spiking Neural Networks reproduce the behavior and learning of 
biological systems more accurately than Artificial Neural Network 
neurons. These networks resort to differential equations in the neural 
model to transfer the information, which is temporarily encoded. 
Therefore, encoding and decoding processes of the variables are 
required to interact with the neural network, thus resulting in different 
types of neurons. Therefore, three types of neurons are defined: sensory 
neurons, interneuron and motor neurons. 

The biological components of a neuron are the dendrite, nucleus, and 
axon. Information reaches the neuron through the dendrite in the form 
of a current. This travels to the nucleus where, if a threshold level is 
exceeded, the neuron generates a spike. These spikes are transmitted 
through the axon to its terminals, which are connected to the following 
neuron. This neuronal connection between a dendrite and the axon 
terminals is called synapse. To generate the spikes, a coding process is 
carried out in the sensory neurons, where the information obtained is 
codified into a train of spikes. In contrast, to transform the information 
into an action, a decoding process is required in the motor neurons. 
Next, the mathematical modelling of these processes is presented. All in 
all, these neurons are composed of a nucleus connected to dendrites, 
axons, coding and decoding, depending on their function (Fig. 2). 

Fig. 2. Neuron configuration.  
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3.1. Coding 

Encoding is responsible for converting an input variable (in) into an 
intensity value (I) for m neurons. To this end, a Gaussian bell (25) 
associated with each input neuron (i) is used. This regulates the amount 
of input current to each neuron, being spread over the entire input space 
linearly according to (23) and (24), where Imin and Imax are the minimum 
and maximum input current respectively (see Table 2). Gaussian bells 
are uniformly distributed according to partitioning factor (β), mean 
value (μi) and width (σ) over the entire input space [35]. 

σ = β
Imax − Imin

m − 2
(23)  

μi = Imin +(i − 1)
σ
β

(24)  

I = Imaxe
− (in− μi)

2

2σ2 (25)  

3.2. Neuron model 

The neuron model proposed by Izhikevich [15] is used in this work 
due to its low computational cost and good biological representation. 
Thanks to its greater number of advanced neuro-computational features, 
the Izhikevich’s model [36] facilitates the exploration of other more 
complex biological structures in future research related to this work. 
While other simpler models, such as Leaky Integrate-and-Fire (LIF), may 
offer a lower computational cost, Izhikevich’s neuron model makes it 
possible for future research to incorporate advanced features such as 
spike latency and accommodation into the brake control system. 

It consists of two differential Eq. (29) that model the membrane 
potential (v) and recovery (u) of the neuron. 
⎧
⎪⎪⎨

⎪⎪⎩

dv
dt

= 0.94v2 + 5v + 140 − u + I

du
dt

= a(bv − u)
(29)  

Ifv ≥ 30mVthen
{

v←c
u←u + d (30) 

Thus, when the potential exceeds a threshold level, a spike is pro
duced. Additionally, the neuron must be reset according to equation 
(30). Hence, the input current value is converted into electrical pulses. 
Parameters a, b, c and d define the firing response of the neuron. To 
minimize distortion and increase firing frequency, values {0.1, 0.2, − 65, 
2} have been used, which gives a fast spiking (FS) response. 

3.3. Synapse model 

The synapse model reproduces the connection between two neurons, 
from the axon to the dendrites (Fig. 2, interneuron). The release of 
neurotransmitters as well as their reception are modeled. The release of 
neurotransmitters (ε) from the axon is modeled using a first-order 

function (31) with a time constant (τs). This response emulates the 
neurotransmitter concentration in the synapse after the occurrence of a 
firing, making use of the time that has elapsed since the last spike (Δt =
t-ti). 

On the other hand, the neurotransmitter reception after the response 
(ε) of all the connected neurons generates an input current (I) which 
depends on the strength of each synapse (wij). The current generated is 
the sum of all connections with the presynaptic neuron, according to 
equation (32). Where i and j represent the presynaptic and postsynaptic 
neurons respectively. 

dε(Δt)
dt

= −
ε(Δt)

τs
+ δ(Δt) (31)  

I =
∑

wijεi (32)  

3.4. Decoding 

The neuron output response (ε) must be transformed into an output 
variable (y) (Fig. 2, motor neuron). As in coding, the same partitioning 
factor and width are used for linear decoding (28), according to Eqs. (26) 
and (27). A gain is thus associated with each neuron of the output layer, 
giving the sum of all the neurons as a result, like Heinemanńs size 
principle [37]. 

σ = β
Imax − Imin

m − 1
(26)  

μi = Imin +(i − 1)
σ
β

(27)  

y =
∑m

i=1
εiμ(i) (28)  

3.5. Learning algorithm 

The output of the SNN control algorithm is directly linked with the 
strength of the synapses between the neurons. Consequently, the 
response of the algorithm can be optimized for specific braking condi
tions if the synapses are adequately modified. The proposed learning 
algorithm is responsible for this adaptation strategy. The learning 
structure used is based on on-line learning as it allows online training 
when a large error is made. Time-dependent plasticity (STDP) is used for 
this purpose in combination with the error made by the neural network 
at a given time (error(t)). 

STDP models neuronal plasticity [25] as a function of the difference 
in firing time (τ) between the presynaptic (pre) and postsynaptic (post) 
neurons (33). Thus, learning can be Hebbian, Ćells that fire together, 
wire together,́ Anti-Hebbian, All-LTP or All-LTD. It depends on how 
long-term potentiation (LTP) and long-term depression (LTD) are 
defined according to the temporal difference. 

τ = tpost − tpre (33) 

Table 2 
Neural Network Parameters.  

Symbol Description Value 

mSN Number of sensory neurons 64 = 32(μ) + 32(κ)
mIN Number of interneurons 64 = 32(W1→W2) + 32(W2→W)

mMN Number of motor neurons 32(P*)

[a,b, c,d] Neuron model parameters [0.02, − 0.1, − 55,6]
τS Synapse time constant 1 ms 
β Partitioning factor 2 
[Imaxmin Input current range [0,388]
τC Eligibility time constant 10 ms 
τD Dopamine time constant 20 ms 
Δt Time interval 1 ms  Fig. 3. STDP rules.  
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Hebbian learning (Fig. 3) (34) takes place when a low firing fre
quency is involved [38], which is related to the memorization process. 
Accordingly, it will be used in the learning performed by the classifi
cation neural network. On the contrary, ALL-LTP learning (35) is natu
rally found in brain areas with a high firing frequency, which is 
associated with motor control [39]. Consequently, this learning strategy 
is preferred during the on-line learning phase of the control network. 

STDP(τ) = sign(τ)e−
|τ|

τSTDP (34)  

STDP(τ) = e−
|τ|

τSTDP (35) 

The learning process involves adapting the weights of the neural 
connections progressively to reduce the error (equation (39)). This 
learning depends on eligibility (C), dopamine release (D) and a learning 
factor (μl). The latter has been added to control the learning rate to 
adjust it for each particular case. Eligibility (C) tries to keep the post
synaptic and presynaptic pulses synchronized, as it can be seen in dif
ferential equation (36), which includes a delay as a function of the time 
constant (τC). If the difference between tpost and tpre is close to zero, the 
STDP function increases or decreases the weights up to their maximum 
possible values (see Fig. 3). In contrast, dopamine (D) depends on a 
reinforcement signal that triggers its release with a time delay deter
mined by the time constant (τD) Eq. (37). The combination of these two 
gives rise to the synaptic strength (S) Eq. (38) which defines the learning 
rule used to modify the synapse, following the scheme of Fig. 4. In this 
case, this reinforcement signal is error (t), whose value is related to the 
response of the neural control. Furthermore, as our ABS control scheme 
is composed of two neural networks, one for road type classification and 
one for braking pressure control, error (t) depends on the performance of 
both networks, as it will be described in the following sections. 

dC
dt

= −
C
τC

+ STDP(τ)δ(t − tpre/post) (36)  

dD
dt

= −
D
τD

+ error(t) (37)  

dS
dt

= CÂ⋅D (38)  

wij(t) = wij(t − Δt)+ μldS (39)  

4. Classification network 

As mentioned above, the ABS system proposed in this work is 
composed of two neural networks. The first one, the classification neural 
network, is responsible for providing the optimal slip value of the road 
where the vehicle is circulating. To this end, the neural network resorts 
to data obtained from the EKF estimator. Thus, this network has the 
estimated wheel slip (κ) and friction coefficient (Fx/Fz0) as inputs and 
the optimal slip as output. Next, once the input parameters are known, 
the network recognizes which type of road it belongs to (Fig. 5) and 

determines the optimal slip. 
For the neural network to be able to identify the features associated 

with each surface, the use of interneurons conforming the so-called 
hidden layers is required. Depending on the complexity of the surface 
to be recognized, or if the input variable encodes a lot of information, for 
example from a camera image [42], a different number of hidden layers 
can be used. In this approach, due to the previous estimation of the EKF 
[34], the problem is simplified since each pair of data (μκ) is associated 
to a particular road type with the exception of some of them that overlap 
for low slip levels. Although this is reflected in the results obtained by 
the network, they are not considered disadvantageous since braking 
control requires slip generation during its normal operation. Taking all 
this into account, it was decided to use a structure with a single hidden 
layer (Fig. 6) consisting of 20 sensory neurons (10 per input), 15 in
terneurons and 10 motor neurons. Each motor neuron is associated with 
a slip level so that the one with the highest activation is the one that 
establishes the optimal slip level. 

The learning has been performed off-line, i.e., using data obtained 
from the tire model presented in sub-section 2.2 with different param
eters {Bx, Cx, Dx, Ex}. Therefore, weight matrices W1 and W2 that define 
the strength of the connections are modified with a training data set (μxi,

κi,κ*
i ) by applying the STDP learning algorithm with Hebbian rule, both 

detailed in the previous section. To obtain the reinforcement signal that 
triggers learning in the neural network, error(t) = κ*

i − κ*
iSNN 

is proposed. 
This error is defined as the difference between the optimal slip (κ*

i ), 
which is obtained from tire models on different roads and with different 
slip levels (κi) and friction coefficient (μxi) and the optimal slip provided 
by the neural network (κ*

iSNN). Thus, when the error is high, dopamine 
release will be activated (equation 37) and the synaptic connections that 
are most synchronized at that instant will be updated (equation 36). 
These synchronized connections are the ones that affect output of the 
neural network (κ*

iSNN) to a greater extent. Therefore, it is necessary to 
adapt their weights to reduce the error made. 

Fig. 7 shows an example of the learning process of the classification 
network. A.tir file is utilized to define the training and validation 
dataset. This file is an industry-standard providing the parameters 
required to describe the behavior of the tire according to Equation 12. 
To obtain the dataset the road condition (μxi) is modified each 200 ms 
randomly from low to high adherence. During this period, for each grip 
condition (μxi), the slip (κi) is linearly varied from 0 (pure rolling) to 1 
(tire lock). Then, for each combination of (μxi, κi), a corresponding 
optimal slip (κ*

i ) is calculated using the parameters from the.tir file and 
Equation 12. 

At first, it can be observed how the errors made by the classification 
neural network are high. As there is no prior knowledge about the 
connections of W1 and W2, the weights of the connections are randomly 
initialized with a normal distribution. Consequently, the performance of 
the network is poor. Next, as the learning process evolves, the neural 

Fig. 4. Learning scheme.  

Fig. 5. Tire data for different road conditions.  
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network yields more appropriate values of the optimal slip progres
sively. After 75 iterations, the network is already capable of providing a 
reliable value for the optimal slip. In this off-line learning process, we 
proceeded to teach the neural network with different road types, which 
have different reference slips (κ*), using the slip (κ) and the friction 
coefficient (μx) as inputs. When the slip is very low or close to zero, the 
neural network cannot provide an accurate value since it does not have 
enough information due to the fact that the adhesion curves are over
lapped (see Fig. 5). For this reason, peaks can be observed in the output 
of the network, as seen in Iter #75. This fact does not imply an instability 
of the ABS control system since the brake pressure will always be 
increased when the slip value is close to zero. This will be made possible 
by the configuration of the control neural network, as it will be 
described in the next section. 

5. Control network 

The neural network controller is responsible for determining a 
pressure setpoint (P*) in order to minimize braking distance without 
losing control of the vehicle. For this purpose, a wheel slip control (WSC) 
is used [43]. This WSC needs to be aware of both the slip level (κ) and the 
optimal value (κ*

SNN). These variables are provided by the EKF and the 
classification neural network respectively. The proposed structure 
(Fig. 8) shows the internal structure of the control neural network. 

A structure similar to those found in the neural pathways of reflexes, 
called reflex arcs [44], is used to establish the initial neural connections. 
These reflex arcs define the relationships between sensory neurons and 
motor neurons, either directly or through an interneuron [45]. Ac
cording to previous work [40], it is proposed to use a control structure 
extracted from the vestibular-ocular reflex (VOR) arcs [41]. This struc
ture generates the control action by means of two motor neurons that 
react antagonistically. Together they maintain the equilibrium at the 
required operating point as proposed by the equilibrium point hypoth
esis (EPH). 

To replicate this antagonistic behavior by means of excitatory and 
inhibitory connections, neuronal pathways are proposed according to 

Fig. 9. On one hand, if the slip is higher than the optimal slip level 
(κ*

SNN− κ < 0), the pressure in the brake system is reduced. On the other 
hand, if the slip is lower than the optimal one (κ*

SNN− κ > 0), the pressure 
is increased. 

As shown in Fig. 9, for a surface with an optimum slip (κ*
SNN), the 

output of the controller, i.e. the pressure (P*) in the brake system, de
pends on the current slip value (κ). For low slip values (κ = + ), i.e. 
below the optimum value, the network connections will boost (P* = +

+ ) and inhibit (P* = + ), thus providing a high value of braking 
pressure (a-low slip). When both slips have a similar value neither of the 
paths is boosted so the applied pressure will be intermediate (b-optimal 
slip). On the other hand, when the slip value is high (κ = + + ), the 
neurons applying a reduced value of pressure (P* = + ) are excited and 
(P* = + + ) inhibited, thus reducing braking pressure (c-high slip). 
This ensures the stability of the controller as long as the learning algo
rithm does not change the inhibitory and excitatory relationships, thus 
only modifying its synaptic strength. 

Since the output of the classifier is one of the inputs of the controller, 
the overall structure is simplified according to Fig. 10. Network pa
rameters are defined in Table 2. Since the classification network was 
trained off-line, the algorithm running in real time performs the on-line 
learning exclusively for the neural connections of the controller. For this 
purpose, STDP learning is used with an All-LTP type rule making use of 
the error defined by error(t) = (κ*

SNN − κ). Therefore, weight matrices 
W1 and W2 are not modified in real time. They have already been 
optimized off-line as explained in the previous section. On the other 
hand, weight matrix W is updated in real time and by means of the error 
signal. This error represents the difference between the optimal slip 
(κ*

SNN) and the real slip (κ), as shown in Fig. 10. Consequently, the pro
posed strategy allows the ABS control system to learn online, thus 
modifying its connections in real time to improve its performance. 

6. Simulations 

To demonstrate the effectiveness of the controller, simulations have 

Fig. 6. Classification network structure.  

Fig. 7. STDP learning over time.  Fig. 8. Controller structure.  
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been carried out to reproduce emergency braking, including variations 
in the level of adhesion. Initially, the structure of the network is defined 
with a prefix value of synaptic strength (W) based on bio-inspired neural 
connections. The learning algorithm is then in charge of increasing or 
decreasing the strength to minimize the slip error made. This reduces the 
braking distance and ensures maneuverability, avoiding wheel locking, 
which allows for maintaining steering capacity as the lateral friction 
remains available. 

The learning capability of the network is evaluated by means of 
simulations in which the transition between two roads with different 
levels of adhesion (Dx1 = 1, Dx2 = 0.4) is reproduced. Simulations start 
with a braking process on a road with a high friction coefficient 

(μx = Dx = 1). Next, when the speed reaches 60 km/h, the surface is 
changed to a road with a low friction coefficient (μx = Dx = 0.4). Table 3 
shows the vehicle parameters used in these simulations. 

The classification network has been previously trained to detect both 
surfaces properly. Therefore, these simulations aim to demonstrate the 
stability of the learning process by integrating the EKF estimator and the 
SNN classifier in conjunction with the SNN controller. It takes a total of 
20 iterations for the algorithm to converge to a state with a minimal 
dopamine level, achieving a reduced braking distance, as shown in 
Fig. 11. As shown in Fig. 11, thanks to the learning process, the neural 
ABS controller reduces the braking distance around 30 m after only 20 
iterations. 

Both Fig. 12 and Fig. 13 show the velocities and brake torque 
respectively in three iterations of the learning process. In iteration 1 it 
can be seen that the response of the network is not sufficient to generate 
the necessary slip, so braking is not optimal. Nevertheless, it is observed 
how, during the transition between high and low adhesion, the algo
rithm adapts quickly. This is something that occurs throughout the 
learning process, showing its robustness when a sudden change in 
adhesion is applied. Iteration 10 shows a response with a higher slip 
than at the beginning of the learning process. However, the front and the 
rear wheels behave differently as the algorithm has not managed to 
adapt to the load transfer yet. Despite the reduction in braking distance, 
the error is still high, so learning must continue. 

Finally, in iteration 20, the error is low, as shown by the reduction in 
the associated value of dopamine (p). Furthermore, it is observed that 
the front and rear wheel speeds experience a similar slip level, which 
results in the finalization of the learning process. 

Previous simulations have demonstrated the ability of the proposed 
ABS to learn on-line. However, the stability, robustness and performance 
of the controller have to be demonstrated. As indicated in [2], the 
classical stability theory to validate such complex designs is extremely 
difficult to apply. Traditional approaches can only prove closed-loop 
stability of the system model used in the analysis, but not in the real 
plant. Robustness and performance can be evaluated by performing 
simulations and real testing in different conditions and comparing ob
tained results to those provided by a state-of-the-art competitor. To this 
end, simulations have been conducted to reproduce the main tests 
required during the homologation process of the braking system of a 
vehicle according to guidelines given by the United Nations in Regula
tion 13 (E/ECE/- TRANS/505/Rev.1/Add.12/Rev.8. 3. Regulation No. 
13). All these combinations of tests as well as the incorporation of sys
tem constraints ensure the stability of the controller and the vehicle 
during the braking process. Sensor noise was added in all simulations to 
reproduce real conditions. Performance indexes were obtained and 
compared to those achieved by a competitor to evaluate the ABS per
formance. Finally, real tests were carried out to evaluate learning 

Fig. 9. Reflex arc-based synapse connections (left) and pressure states for different slip ratios (right).  

Fig. 10. Classification and control network.  

Table 3 
Vehicle Simulation Parameters.  

Parameter Value Unit 

Weight 863 kg 
Wheelbase 2.6 m 
Track width 1.6 m 
Wheel radius 0.344 m 
Wheel + Hub Motor Inertia 2.33 Kg m2 

Center of gravity (CoG) (Front axis) [0.0, − 1.4,0.5] m 
Frontal Area 3 m2 

Drag coefficient 0.4 – 
Tire corner stiffness 11e3 N/rad 
Lateral relaxation length (σy) 0.2 m 
Longitudinal stiffness factor (Bx) 9 – 
Longitudinal shape factor (Cx) 2 – 
Longitudinal peak factor (Dx) 1–0.4 – 
Longitudinal curvature factor (Ex) 0.8 – 
Longitudinal relaxation length (σx) 0.025 m 
Disc-pad friction coefficient 0.5 – 
Piston bore 25e-3 m2 

Mean brake disc radius 0.133 m 
Number of pads 6 –  
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ability, robustness and performance. 
First, a high number of simulations were conducted in steady and 

transient conditions at different speeds and in various surfaces. For 
comparison purposes, it is necessary to have an objective way to quan
tify the performance on the different cases evaluated. To this end, three 
key performance indicators (KPIs) were calculated for the steady case 
simulations: ABS Index of Performance (ABSIP), Integral Pitch Variation 
(IPV) and Integral Pitch Variation (IPV). Similarly, three different KPIs 
were used for transient cases: Mean Deceleration (MDj), Peak to Peak 
(PTPj), and Maximum yaw rate (MYRj). In addition to the KPIs, for the 
sake of comparison, a reference control algorithm was used. Thus, an 
algorithm based on threshold slip control (THR) was employed [46]. 
THR controllers are widely used in ABS applications due to their good 
performance and easy control, being widely used in passenger vehicles. 
They are created from practical experience and intensive simulation 
studies. They have good performance but require fine-tuning through 
extensive testing. The stability and robustness assessment of THR is done 
through experiments on the target vehicle. Three control actions of 
brake pressure are usually defined: apply, release, and hold brake 
pressure. 

The response of the THR controller has been experimentally fine- 
tuned to achieve the shortest braking distance on the tested surfaces. 
This fine-tuning process involves setting the angular deceleration limits 
of the wheel and defining the appropriate slip limits. The final setting for 
THR control was the following: a slip switching threshold of 0.2. 

Minimum and maximum acceleration limits were 4 m/s2 and 30 m/s2 

respectively. Finally, a deceleration limit − 60 m/s2 was set. 
The main goal of this work is to show that an algorithm with a pre- 

defined neural structure can improve its behavior without becoming 
unstable, providing improved results compared to a well-known braking 
control algorithm. This makes a clear difference to other advanced 
control algorithms since this proposal does not require a previous offline 
training process in several situations. 

KPIs [2] are used to evaluate the performance between controllers. 
There is a large number of indicators depending on each variable to be 
evaluated and its impact on safety, maneuverability, comfort, durability, 
and so on. In this case, only the KPIs necessary during an emergency 
have been used, leaving out those related to comfort or durability of the 
actuators since, in an emergency, the priority is to maximize grip while 
maintaining maneuverability. The KPIs are divided into steady-state and 
transient, both of which will be used to analyze the response of the 
proposed controller compared to skid and the threshold-based control
lers in both situations. 

6.1. Steady-State 

6.1.1. ABS Index of performance (ABSIP) 
It compares the braking distance obtained by the controller with and 

without ABS (locking the tire) (37). Thus, the overall effectiveness of the 
controller is obtained. 

Fig. 11. Distance (left) and Dopamine (right) level under the supervised learning process during simulated emergency braking.  

Fig. 12. Vehicle and wheel speeds under the supervised learning process during simulated emergency braking.  

Fig. 13. Braking torques under the supervised learning process during simulated emergency braking.  
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ABSIP =
dABS

dSKID
(37)  

6.1.2. Peak to Peak PTP (PTP) 
It measures the agility of the response of the controller. For this 

purpose, the difference between the maximum (max) and optimum (opt) 
angular speed during the first cycle is calculated. The value for each 
wheel is obtained according to (38). 

PTP =
Ωmax − Ωopt

Ωmax
(38)  

6.1.3. Integral Pitch variation (IPV) 
Yaw variation (39) does not affect the braking distance directly. 

However, it limits the driver’s ability to estimate distances since the 
human brain makes greater errors in estimation in the presence of 
excessive yaw, which leads to danger. 

IPV =

∫ tf

ti
|θ|dt (39) 

Table 4 shows the results for the two studied algorithms. It shows 
both emergency braking on constant surfaces and transitions. This list of 
conditions has been extracted from Regulation 13 (E/ECE/-TRANS/ 
505/Rev.1/Add.12/Rev.8. 3. Regulation No. 13). Consequently, it is 
possible to assess the stability, performance and robustness [2]. 

The proposed SNN-based algorithm provides better results according 
to performance indicator ABSIP and PTP. For ABSIP only in extremely 
low grip (Dx = 0.3) situations does the THR algorithm perform better. 
This is due to the constant level of grip for low levels of adherence. 
Therefore, the influence of the slip level in the braking distance is low. 
However, the SNN controller maintains a low slip rate which, despite the 
higher braking distance, preserves the maneuverability of the vehicle 
during braking. Regarding PTP, the proposed algorithm obtains less 
variation, improving the maneuverability of the vehicle. This is a key 
factor in low-adherence situations, e.g., on ice, where maintaining 
control of the vehicle is a priority. Therefore, it can be concluded that 
the SNN algorithm is the one that offers the best compromise between 
braking distance and maneuverability. The last KPI gives information 
about yaw (IPV), resulting in favorable behavior for both THR and SNN. 
Therefore, it is not required for experimentation. 

6.2. Transient 

The three transitions performed are assessed, also using the KPIs 

associated with the transient response during the jump. 

6.2.1. Mean deceleration (MDj) 
The average deceleration obtained during transition is calculated. 

The deceleration is measured between the start of the jump and one 
second after it occurs according to Eq. (40). 

MDjump =

∫ ti,j+1

ti,j
axdt (40)  

6.2.2. Peak to peak (PTPj) 
The same calculation as in equation (38) is done in this case for the 

first cycle after the jump. 

6.2.3. Maximum yaw rate (MYRj) 
The maximum yaw rate is used to quantify the lateral during the 

jump (41). This is because a sudden change in adhesion can generate the 
yaw of the vehicle although this situation does not usually occur as both 
wheels on each side of the vehicle experience the change in grip at the 
same time. 

MYRjump = max
[
θ̇
]f ,jump

i,jump
(32) 

The results obtained for the transitions show better performance of 
the proposed SNN-based controller (Table 5). This is due to its ability to 
adapt to change while the one based on threshold control cannot adapt 
to change. Hence, during the transition, it obtains worse deceleration 
and deviation values. As in steady-state, the value obtained associated 
with the yaw is reduced, so vehicle stability is maintained without large 
yaw changes in both cases. 

From previous simulations, it can be concluded that the proposed 
algorithm is safe, robust and stable. Furthermore, performance is satis
factory, providing improved KPIS compared to its competitor. 

7. Experimentation 

In order to validate the simulations performed, real tests with an 
instrumented vehicle were carried out. The performance of the proposed 
algorithm was validated using the Research Concept Vehicle Model E 
(RCV-E), an over-actuated by-wire electric vehicle designed by the In
tegrated Transport Research Lab at the KTH Royal Institute of Tech
nology (Fig. 14). This made it possible to implement the developed 
algorithm using SIMULINK by flashing it onto the dSPACE hardware 
that controls all the actuators and handles and all the signals on the RCV- 
E. 

The braking system used consists of a hydraulic pump from the 
manufacturer Nissin used in the CBR1000RR from 2008 to 2014. This 
pump is capable of delivering up to 120 bars of pressure through the use 
of a master cylinder actuated by a DC motor and a lead screw. This al
lows performing a brake-by-wire system according to the scheme shown 
in Fig. 14, where each wheel of the vehicle is equipped with an inde
pendent system. 

The control loop in our implementation has an execution time of 10 
ms, with the algorithm runtime being less than 1 ms, as implemented on 
a 900 MHz dSPACE. This neural controller not only enables real-time 

Table 4 
Steady State KPIs.  

Dx Initial 
Speed 

ABSIP 
THR 

ABSIP 
SNN 

PTP 
THR 

PTP 
SNN 

IPV 
THR 

IPV 
SNN 

1 130 
km/h 

89,5% 82,5% 0,20 0,03 0,15 0,12 

0.7 90 km/ 
h 

87,5% 87,4% 0,33 0,11 0,02 0,06 

0.3 40 km/ 
h 

87,4% 98,1% 0,50 0,03 0,01 0,02 

1.1 → 0.58 
(@100 
km/h) 

120 
km/h 

92,6% 90,4% 0,21 0,18 0,03 0,08 

0.8 → 0.3 
(@40 
km/h) 

50 km/ 
h 

91,3% 90,5% 0,59 0,43 0,01 0,04 

0.3 → 0.8 
(@55 
km/h) 

70 km/ 
h 

85,3% 86,4% 0,27 0,05 0,02 0,04 

0.7 
(Rough) 

70 km/ 
h 

97,7% 94,0% 0,48 0,28 0,03 0,02 

0.3 
(Rough) 

40 km/ 
h 

95,3% 103,9% 0,70 0,22 0,01 0,01  

Table 5 
Transient KPIs.  

Dx MDj 
THR 

MDj 
SNN 

PTPj 
THR 

PTPj 
SNN 

MYRj 
THR 

MYRj 
SNN 

1.1 → 
0.58 

0,56 0,59 0,21 0,18 0,007 0,028 

0.8 → 
0.3 

0,24 0,25 0,59 0,43 0,001 0,001 

0.3 → 
0.8 

0,63 0,68 0,27 0,05 0,000 0,000  
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execution but also allows for the emulation of firing frequencies between 
300 and 400 Hz. By minimizing latency, the controller’s response time is 
significantly improved. A maximum time of 10 ms to meet the real-time 
requirements imposes a similar control loop period as other approaches 
[12]. However, these implementations can last hours to perform offline 
learning. In contrast, our solution not only meets real-time requirements 
but also uses less computational cost compared to similar controllers. 
For example, in [11], an MPC requires between 3 and 5 ms on similar 
hardware. While other controllers like eMPC have lower execution times 
(0.1 ms), incorporating online learning becomes challenging. 

This scheme also includes a pressure sensor to close the control loop, 
enabling the control algorithm to set a target pressure that the pump 
manages to maintain by means of a PI controller. The pump is connected 
to the brake caliper driving the hydraulic fluid into a total of 6 pistons 
that transmit force to the pads in contact with the brake disc. This allows 
the pressure generated by the pump to be converted into braking torque 
by friction. 

The validation is focused on the control algorithm, which is the main 
contribution of this work. Tests were carried out at 25 km/h since the 
vehicle is limited to that speed by design. Tests were performed on high 
grip surface, low grip surface, and transition between both. Each test 
consisted of multiple iterations of consecutive emergency braking. Tests 
were conducted on the Arlanda Drive Lab test track 1 in Stockholm. This 
track has a test area with two road surfaces with extreme grip levels 
(Fig. 15). One of them is high-performance asphalt with high-water 
absorption and optimal grip (High). The other one is a painted surface 
with low water evacuation that simulates low adherence conditions 
(Low). 

To characterize these surfaces, a braking operation was performed by 
locking the wheels to measure the average deceleration obtained using 
the IMU installed in the vehicle, obtaining an approximate value of 
adhesion with Dx = 0.9 and Dx = 0.6 for a high and low adhesion con
dition respectively. These values would allow obtaining the optimal slip 

levels using the tire model presented before. 
To evaluate the on-line learning capability of the SNN-based ABS in 

real conditions, the weights of connections of the neural network were 
initially selected at the beginning of the test according to EPH to warrant 
stable behavior. 

As expected, in the first test, the algorithm showed a non-optimal 
performance. Nevertheless, as consecutive tests were performed, the 
network modified the weights by modulating the applied pressure as 
observed in simulations carried out in the previous section. 

The first tests were carried out on a high-adhesion surface, in which 
it was observed how deceleration increased considerably as experi
mentation proceeded (Iteration 1 → Iteration 3 → Iteration 5). Figs. 16 
and 17 show the velocity profile during braking in simulation and 
experimentation phases respectively. It can be seen that a similar 
braking time for the same number of iterations was obtained in both 
cases. Although in real tests the speeds of the real vehicle oscillated more 
than of the simulated vehicle, this effect can be attributed to the tire 
model used, since only 4 parameters {Bx, Cx, Dx, Ex} were used to model 
the real behavior of the tire. Even so, the controller demonstrates its 
adaptability by showing a similar response and by correctly controlling 
the slip level (Fig. 18 and Fig. 19). Similar to the braking torque evo
lution observed in previous simulations (Fig. 13), the experimental 
braking pressure (Fig. 20) also increases in each iteration until it 
stabilizes. 

It should be noted that the learning factor (μl) used for experimen
tation is higher than for simulation, so only 5 iterations were needed to 
obtain a value close to the optimal one. This allows for performing fewer 
trials although it slightly penalizes the response obtained. The learning 
algorithm modifies the weights of the network to optimize braking, 
giving place to a higher deceleration. It has to be remarked that the 
variation of the weights occurs over a preset structure based on reflex 
arcs. Consequently, the controller will not become unstable. Thanks to 
the bio-inspired structure, learning can be performed on-line by means 
of on-line learning, avoiding wheel locking while searching for the 
optimal braking level. This highlights the importance of the prefixed 
neural structure that provides the necessary robustness. 

Figs. 21 and 22 show the results of a surface transition from low to 
high at mid-brake. As it can be observed, the algorithm performs tran
sition without large oscillations, reducing the braking distance as pre
viously presented in the simulations. 

Table 6 shows a summary of the results. A comparison has been made 
between the proposed algorithm based on SNN and a threshold control- 
based one for high and low surfaces. The results obtained indicate that 
the proposed algorithm obtains a better deceleration in all situations. 
The difference is even greater than in simulation since the threshold 
control algorithm is not able to adjust to real behavior. This is due to the 
low speed (6 m/s) of the test, making control even harder as adhesion 
increases. 

Fig. 14. Research concept vehicle model E (RCV-E) (Left) and electro-hydraulic proportional brake system (right).  

Fig. 15. DriveLab: Arlanda test track 1 (Road Transition).  
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8. Conclusions 

This work has tackled a novel approach to establishing a new strat
egy of vehicular control inspired by biological systems that increases 
safety in emergency braking scenarios. The biological-like control has 
been performed by means of an SNN endowed with on-line learning 
capability based on STDP modulation. Thus, it has been possible to 
replicate the natural ability to adapt to external disturbances or changes 
in system dynamics that biological systems have. 

A slip control algorithm based on Spiking Neural Networks has been 
proposed. This control is able to adapt to varying conditions of tire-road 
contact dynamics. The combination of classification and control in a 
single neural structure demonstrates the capability of performing full 
neural control using the proposed neuron model. Results obtained in 
simulations and experimentations proved the effectiveness of the pro
posed algorithm compared to a state-of-the art controller widely used in 
ABS of passenger vehicles. Furthermore, the ability of the neural struc
ture to learn and adapt to unknown conditions during simulation and 

Fig. 16. Vehicle speeds under on-line learning process (Simulation).  

Fig. 17. Vehicle speeds under the on-line learning process (Experimentation).  

Fig. 18. Longitudinal slip under the on-line learning process (Simulation).  

Fig. 19. Longitudinal slip under the on-line learning process (Experimentation).  
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testing is remarkable. 
Real tests verified the effective performance of the control algorithm. 

Future research will be focused on experimental validation of the EKF 
and combined neural control response. This task requires a large number 
of road scenarios and types of vehicles. Similarly, the robustness of the 
controller will be further improved, taking into account variations in 

system parameters, such as brake system components or tires. On the 
whole, the integration of the EKF estimation process in the same neural 
control and classification network would represent an end-to-end neural 
process. Therefore, this is the next challenge to be developed in vehic
ular control with SNN. 

Control algorithms such as torque vectoring, brake blending, sta
bility control, or steer-by-wire use a similar structure and would benefit 
from the work presented. Other high-level control algorithms such as 
advanced driver assistance systems (ADAS) or those needed for a self- 
driving car are clear targets for an extension of the proposed algorithm. 
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