
Evaluation of visual parameters to control a visual ERP-

BCI under single-trial classification 

Álvaro Fernández-Rodríguez1[0000-0002-3421-976X], Ricardo Ron-Angevin1[0000-0001-8721-

0585], Francisco Velasco-Álvarez1[0000-0002-5235-5597], Jaime Diaz-Pineda2, Théodore 

Letouzé3[0000-0002-8670-0280] and Jean-Marc André3[0000-0001-9844-4694] 

1 Departamento de Tecnología Electrónica, Instituto Universitario de Investigación en Teleco-

municación de la Universidad de Málaga (TELMA), Universidad de Málaga, 29071 Malaga, 

Spain 
2 Thales Avionics France, Bordeaux, France 

3 Bordeaux University, INP Bordeaux-ENSC, Laboratoire IMS - UMR CNRS 5218, 

33400 Talence, France  

afernandezrguez@uma.es 

rron@uma.es 

fvelasco@dte.uma.es 

jaime.diazpineda@fr.thalesgroup.com 

tletouze@ensc.fr 

jean-marc.andre@ensc.fr 

Abstract. A brain-computer interface (BCIs) based on event-related potentials 

(ERPs) is a technology that provides a communication channel between a device 

and a user through their brain activity. These systems could be used to assist and 

facilitate decision making in applications such as an air traffic controller (ATC). 

Thus, this work attempts to be an approximation to determine whether it is pos-

sible to detect the stimulus through a single presentation of a stimulus (single-

trial classification) and furthermore, to evaluate the effects of the type of stimulus 

to be detected, or not knowing the position of the stimulus appearance in an ERP-

BCI. This experiment has involved six participants in four experimental condi-

tions. Two conditions varied only in the type of stimulus used, faces (a type of 

stimulus that has shown high performance in previous ERP-BCI proposals) ver-

sus radar planes; and two conditions varied in the prior knowledge of where the 

stimulus would appear on the screen (knowing vs. not knowing). The results sug-

gest that the use of single-trial classification could be adequate to correctly detect 

the desired stimulus using and ERP-BCI. In addition, the results reveal no signif-

icant effect on either of the two factors. Therefore, it seems that radar planes may 

be as suitable stimuli as faces and that not knowing the location of the target 

stimulus is not a significant problem, at least in a standard BCI scenario without 

distracting stimuli. Therefore, future studies should consider these findings for 

the design of an ATC using an ERP-BCI for stimulus detection. 

Keywords: Brain-Computer Interface (BCI), Event-Related Potential (ERP), 

Single-Trial Classification, Air Traffic Controller (ATC). 
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1 Introduction 

Brain-computer interfaces (BCIs) use brain activity to create a communication path-

way between a device and a user [1]. The most common method to measure brain ac-

tivity in a BCI is electroencephalography (EEG) [2]. EEG has several advantages such 

as its low cost, non-invasive nature, and good temporal resolution [3]. BCIs have been 

employed in several areas, including clinical and recreational applications [4]. Recent 

research suggests that BCIs could also be useful in decision-making and monitoring 

user states during surveillance tasks in situational awareness contexts [5, 6]. Situational 

awareness refers to the comprehension of environmental conditions and events, consid-

ering their temporal and spatial context, as well as predicting their potential future 

states. A hierarchical framework, proposed by [7], identifies three levels to approach 

SA: (i) perception of current situation elements, (ii) comprehension of the current situ-

ation, and (iii) prediction of future situations. 

Air traffic control (ATC) is a scenario where a trained operator guides planes on the 

ground and through a specific area of regulated airspace. The primary objectives of 

ATC are to prevent collisions, organize air traffic flow, and provide pilots with relevant 

information and support. Therefore, ATC could be a suitable scenario for the use of 

brain-computer interfaces (BCIs) to aid decision-making, where a user needs to be 

aware of different cues and respond accordingly [8–10]. This paper focuses on the ap-

plications of BCIs for ATC, with the aim of enhancing the safety and precision of the 

controlled system. Two types of BCI systems can be distinguished to achieve these 

objectives: passive and active. A passive BCI aims to recognize the user's state during 

task execution, such as their level of tiredness or mental workload [10]. This infor-

mation could be valuable for the system to detect potential errors in detecting critical 

cues for preventing incidents [11, 12]. On the other hand, an active BCI would assist 

with decision-making, such as detecting the appearance of new relevant elements on 

the map. To our knowledge, there is no previous work that has employed an active BCI 

for detecting new elements in the ATC scenario. Hence, this study focuses on active 

BCIs and the first level of the situational awareness framework, i.e., perceiving ele-

ments in the current situation. This involves detecting the appearance of new key ele-

ments—such as new planes on the map—using the user's EEG signal to control the 

system. 

ATC operators are required to attend to planes as visual stimuli on a virtual map, so 

this study uses visual event-related potentials (ERPs) recorded through EEG as the in-

put signal for detection. Visual ERPs refer to potential changes in brain activity that 

occur in response to the presentation of visual stimuli. ERPs are influenced by factors 

such as the type [13], size [14, 15], and luminosity [16] of the stimuli. When designing 

a visual ERP-BCI for an ATC scenario, it's important to consider these factors based 

on previous research. There are some key differences between visual ERP-BCI appli-

cations like wheelchair [17] or virtual keyboard [18] control and ATC. For instance, 

the number of times the target stimulus is presented (only one) and the location of its 

appearance (unknown) are especially relevant in the case of an ATC application. In 

most visual ERP-BCI applications, the target stimuli are displayed multiple times to 

increase the likelihood of accurate selection. However, in applications such as ATC 
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where alert messages are presented, it is crucial that the target stimulus can be recog-

nized just after one presentation. This requires the visual ERP-BCI to operate with sin-

gle-trial classification, where the detection of a target stimulus is identified from a sin-

gle presentation of the stimulus. However, this presents a challenge as ERP-BCIs typi-

cally require multiple stimulus presentations to effectively distinguish the relevant com-

ponents of the EEG signal from the noise, such as muscle artifacts. The noise level 

decreases as more presentations are made, allowing better observation of ERP compo-

nents associated with the presentation of a target stimulus. However, previous ERP-

BCI proposals that focus on using single-trial classification have shown acceptable per-

formance (~80% accuracy [19–21]). However, these previous works employed a dif-

ferent scenario than the one used in an ATC, i.e., they did not address the characteristics 

that could constrain the performance of an ATC, such as the type of visual stimuli to 

be attended, the use of a stimulus-rich map as background, moving planes, or small 

target stimuli like the planes to be detected. Therefore, exploring the use of single-trial 

classification under some specific characteristics presented in an ATC scenario could 

be worthwhile. In visual ERP-BCIs, the best performing stimuli to date are the red faces 

on a white background [22], and they are presented in a specific location that the user 

knows beforehand; however, in an ATC, the used stimulus are planes that appear in an 

unknown location. Therefore, it would be interesting to assess whether the type of stim-

ulus to be attended and not knowing the position of stimulus appearance affects perfor-

mance. 

The objective of this study was to explore the use of single-trial classification and 

the impact of two visual factors on the accuracy of a visual ERP-BCI system in detect-

ing new planes in a situational awareness scenario by an ATC. The utilization of an 

active BCI to aid an ATC is a unique approach; hence, two experiments were carried 

out to explore this approach. The initial experiment aimed to test the single-trial classi-

fication and BCI single-character paradigm (SCP) [23] to analyze the effects of differ-

ent variables. It involved the presentation of two types of stimuli (faces and radar 

planes) and determining the impact of knowing or not knowing the location where the 

target stimulus would appear. 

2 Method 

2.1 Participants 

The study has involved six participants (22.6 ± 1.52 years old, one woman, named P01-

P06). Only P01 and P02 had previous experience in the control of an ERP-BCI. All 

subjects gave their written informed consent on the anonymous use of their EEG data. 

They declared having normal or corrected-to-normal vision. The study was approved 

by the Ethics Committee of the University of Malaga and met the ethical standards of 

the Declaration of Helsinki. 
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2.2 Data acquisition and signal processing 

Signals were recorded through eight active electrodes, namely Fz, Cz, Pz, Oz, P3, P4, 

PO7, and PO8 (10/10 international system). A reference electrode was placed on the 

left mastoid, and a ground electrode was placed at AFz. An acti-CHamp amplifier 

(Brain Products GmbH, Gilching, Germany) was used, with a sample rate of 250 Hz, a 

band-pass filter of 0.1-30 Hz, a notch filter of 50 Hz, and an epoch length of 800 ms. 

The data were collected by BCI2000 [24]. When offline tasks were over, the weights 

of a classifier were calculated from the data of the condition tested through a stepwise 

linear discriminant analysis (SWLDA), using the P300Classifier, a BCI2000 tool. 

These weights were later used to carry out online tasks and to offer feedback to partic-

ipants. 

An HP Envy 15-j100 laptop was used (2.20 GHz, 16 GB, Windows 10), but the 

display was an Acer P224W screen of 46.47 × 31.08 cm (16:10 ratio), connected 

through HDMI, at a resolution of 1680 × 1050 pixels. The refresh rate of the screen 

was 60.014 Hz. 

 

2.3 Experimental conditions 

This experiment aimed to investigate the impact of the type of stimulus used and 

whether the participant was aware of where the stimulus would appear on the perfor-

mance of a visual ERP-BCI. The experiment used the BCI2000 software [24] and em-

ployed the SCP [23] with single-trial classification. The SCP involves presenting each 

stimulus sequentially at a different position on the display, with nine possible locations 

arranged in a 3x3 matrix. The stimuli used in the experiment varied based on the ex-

perimental condition, but they all measured 3.4 × 3.4 cm and were displayed on a black 

background. The user's distance from the screen was approximately 60 cm. The goal 

was to validate the use of an active BCI for detecting a stimulus presented only once in 

a specific position on the screen, which is similar to the case of plane detection for an 

ATC. The following experimental conditions were used: 

C1-faces. The stimuli used were red celebrity faces with a white square background, a 

type of stimuli that has been suggested by recent work as one of the most appropriate 

to obtain high accuracy in the control of a visual ERP-BCI [22]. Both target and non-

target stimuli were presented, and the user knew in advance the exact position of ap-

pearance of the target stimulus. 

C2-planes. It was the same as C1-faces—the presence of target and non-target stimuli 

and the user knew the specific location of the target stimulus—but employed symbols 

similar to those used for planes on radars. 

C3-known. The stimuli were also radar planes and the user knew in advance the exact 

position of the target stimulus. However, the non-target stimuli were not presented, i.e., 

only the target stimulus to be attended by the user appeared on the screen. 

C4-unknown. It was similar to C3-known as it also employed radar plans, and non-

target stimuli were not presented; however, in this condition, the user did not know in 

advance where the target stimulus would appear. 
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Fig. 1. Stimuli and locations used to present them on the screen. The C1-faces condition used 

celebrity faces, while the C2-planes, C3-known, and C4-unknown conditions used stimuli that 

simulated those used on flight radar. Images of celebrity faces have been pixelated for copyright 

reasons. The celebrity faces were (from left to right and from top to bottom): Scarlett Johansson, 

Cristiano Ronaldo, Rihanna, Will Smith, Miley Cyrus, Ariana Grande, Ellen DeGeneres, Donald 

Trump, and George Clooney. 

The present study has had a progressive approach in order to evaluate relevant fac-

tors in the use of an ERP-BCI for the detection of new elements in an ATC scenario. 

For this purpose, different conditions have been evaluated until reaching C4-unknown, 

in which the stimuli were radar planes appearing in an unknown position of the inter-

face, as it would happen in an ATC scenario. Thanks to this progressive approach, in 

addition to the use of single-trial classification, two factors have been evaluated during 

the experiment across the different conditions. Specifically, the aim of these conditions 

was to study the effect of two factors on system performance when detecting the pres-

ence of specific target stimuli in the interface based on the user’s EEG signal. On the 

one hand, comparison between C1-faces and C2-planes allowed evaluating the effect 

of the type of stimulus. On the other hand, comparison between C3-known and C4-

unknown allowed evaluating the effect of knowing in advance the exact location of 

appearance of the target stimulus. 

 

2.4 Procedure 

The participant arrived at the laboratory and received an explanation of the experi-

mental procedure. They provided informed consent, the EEG electrodes and cap were 

placed, and the tasks could begin. The testing involved a design where each participant 

completed all conditions, which included a calibration task to adjust the system and an 

online task where the system aimed to detect specific stimuli. During the online task, 

the user received feedback on their performance based on specific parameters (i.e., the 

weights for the P300Classifier) already calculated after the calibration task. The terms 

used to detail the procedure of the experiments included the following. A run is the 

process to detect a single target stimulus. To complete a run, all the stimuli that com-

pose the interface must be presented. A block is the interval from when the interface is 

started until it stops automatically; it is composed of the different runs made by the 

user. 
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The experiment was divided into two consecutive sessions: a first session with con-

ditions C1-faces and C2-planes, and a second session with conditions C3-known and 

C4-unknown. The order of the conditions of each session was counterbalanced among 

the subjects. The approximate duration of the experiment was 80 minutes from the time 

the participant arrived at the laboratory until the end of the tasks. The four conditions 

used in this experiment had similar timing. Before the start of each block there was a 

waiting time of 1920 ms, after which the different runs began. Moreover, at the begin-

ning of each run (except for C4-unknown), a message was presented in Spanish 

(“Atiende a:” [Focus on:]) for 960 ms, after which the stimulus to be attended to was 

presented for another 960 ms. For C4-unknown, this information was replaced by a 

black background for 1920 ms. Before the first stimulus of the run was presented, all 

conditions included a pause time of 1920 ms. The stimulus duration was 384 ms, and 

the inter-stimulus interval (ISI) was 96 ms, resulting in a stimulus onset asynchrony 

(SOA) of 480 ms. Likewise, in the online task in all conditions, a message was pre-

sented at the end of each run (“Resultado:” [Result:]) for 960 ms, after which the stim-

ulus selected by the system was presented for 960 ms. The attention and result messages 

were accompanied by an auditory cue to facilitate the user’s attention to the task. For 

both the calibration and online tasks, a pause time of 1920 ms was added. The specific 

procedure for the C1-faces and C2-planes conditions was identical, as was the specific 

procedure for C3-known and C4-unknown, so the particularities of each condition in 

this experiment are detailed below. 

C1-faces and C2-planes. The calibration task consisted of three blocks of six runs 

of 55 s each (Figure 2). In each block, the following stimuli were selected from left to 

right: for the first block, the three stimuli in rows 1 and 2; for the second block, the 

stimuli in rows 2 and 3; and for the third block, the stimuli in rows 1 and 3. Each block 

of the calibration task had a duration of 55 s. The online task consisted of presenting as 

target stimuli all stimuli of the interface in row-major order, that is, nine runs in one 

block, which had a duration of 111 s. (E01 and E02 performed 18 runs instead of 9). 
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Fig. 2. Procedure and timing used in conditions C1-faces and C2-planes. Specifically, the figure 

shows the execution of the first run of the C1-faces condition during the online task. ISI stands 

for inter-stimulus interval. 

C3-known and C4-unknown. The calibration task consisted of 16 blocks of one 

run, resulting in a duration of 11 s per block (Figure 3). The online task used five blocks 

of one selection, with a duration of 14 s per block (E01 and E02 performed 10 blocks 

of one selection). For both tasks, the target stimulus order to be attended to was ran-

domly selected with replacement. 
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Fig. 3. The procedure and timing used in conditions C3-known and C4-unknown. Specifically, 

the figure shows the execution of the first selection of the C3-known condition during the online 

task. Due to the small size of the stimulus in the figure, compared with when it was presented on 

the screen during the experiment, the stimulus has been marked with a red circle here. ISI stands 

for inter-stimulus interval. 

2.5 Evaluation 

In all conditions, the classifier had to select a target stimulus from nine possible stimuli 

(including E1-know, C4-unknown, in which the non-target stimuli were invisible to the 

user). The accuracy (%) corresponds to the percentage of correct selections divided by 

the total number of selections made. The accuracy was calculated for the online task of 

each condition. The Wilcoxon signed-rank test, a non-parametric test for the compari-

son of two related samples, was used to compare between the conditions. All these 

analyses were carried out using SPSS software [25]. 

3 Results and discussion 

In this experiment, in addition to single-trial classification, two factors were evaluated: 

(i) the stimulus type (faces versus radar planes), using visible non-targets; and (ii) the 

knowledge of the location of the stimulus to attend to before it appears (known versus 

unknown), using the radar plane stimulus type and invisible non-target stimuli (Table 

1). In general, the results obtained (between 60% and 80% accuracy depending on the 

condition) are below those usually employed by other ERP-BCI applications that are 

not based on the single-trial classification approach (which can easily exceed 90% ac-

curacy in applications such as virtual keyboards [26]). These results were expected 

since indeed the reason for using several presentations of the target stimulus is to in-

crease the performance. Therefore, the results obtained highlight the challenge of de-

tecting the target stimulus after a single presentation of it. The following results for the 

two visual factors studied—the type of stimulus and the knowledge of the place of ap-

pearance of the target stimulus—are detailed next. First, the C1-faces and C2-planes 

conditions were compared (64.81 ± 34.73 %, and 69.45 ± 30.98 %, respectively). The 

Wilcoxon signed-rank test showed that there was no significant difference between the 

conditions (Z = 0.406; p = 0.684). Therefore, it seems that type of stimulus does not 

have a significant impact on performance. Second, to test the effect of prior knowledge 

of the stimulus location, the C3-known and C4-unknown accuracies were compared 

(75 ± 25.1 %, and 76.67 ± 15.06 %, respectively). The Wilcoxon signed-rank test 

showed that knowing the location of the stimulus beforehand did not affect accuracy (Z 

= 0.378; p = 0.705). Therefore, these results showed that knowing where to attend to 

the incoming target did not affect performance. 

Table 1. Mean ± standard deviation accuracy (%) for each user in the online task. 

User C1-faces C2-planes C3-known C4-unknown 

P01 100 88.89 90 80 
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P02 100 94.44 100 80 

P03 88.89 88.89 60 80 

P04 33.33 66.67 100 100 

P05 33.33 66.67 60 60 

P06 33.33 11.11 40 60 

Mean 64.81 ± 34.72 69.45 ± 30.98 75 ± 25.1 76.67 ± 15.06 

 

There are two important aspects related to performance that can be discussed: (i) the 

impact of the type of stimulus used and (ii) the effect of the size of the appearance 

surface of the target stimulus. Regarding the type of stimulus used, there was no signif-

icant effect on the performance of the system when using an ERP-BCI under the SCP 

(faces vs. radar planes), which is consistent with previous research that did not find that 

face stimuli offered significantly better performance than alternative stimuli [33,34]. 

Therefore, using radar planes as visual stimuli could be appropriate in the use of an 

ATC system managed through an ERP-BCI. On the other hand, not knowing the exact 

place of appearance of the target stimulus has not led to a decrease in the performance 

of the ERP-BCI when detecting these stimuli. This evidence could indicate that in ap-

plications such as an ATC it should not be, initially, a problem to lack knowledge of 

the place of appearance of the target stimulus. However, it should be considered that in 

the current experiment the interface where the stimulus appeared had no distracting 

elements, which could be interesting to study in future studies and would be closer to a 

real use of these applications. Some examples of factors that could make the task more 

difficult in a real ATC could be the presence of multiple moving planes on the screen, 

a smaller size of the target stimuli or a map on the background with additional infor-

mation. 

The accuracy results have been very heterogeneous, from participants who have 

even obtained 100% to others with a lower accuracy than 50%. It is worth emphasizing 

that most of the participants in the study had no previous experience in the control of 

an ERP-BCI. Indeed, users P01 and P02, the only participants with previous experience 

in the use of ERP-BCI systems, were the only ones who presented an accuracy of at 

least 80% in all the conditions, even reaching 100% in C1-faces. Therefore, we cannot 

exclude the possibility that through extended training in the use of the system, the per-

formance may be better, which would allow the use of single-trial classification to ac-

curately detect the target stimuli. 

4 Conclusions 

The present work has been a preliminary study on the use of an ERP-BCI under the 

single-trial classification approach and its future application to an air traffic controller. 

Specifically, it has been shown that (i) it is possible to achieve an adequate performance 

under the single-trial classification approach, (ii) radar plane stimuli may be suitable 

for use as visual stimuli in an ERP-BCI visual, and (iii) not knowing the location of 
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occurrence may not have a significant effect on their performance. As we said, these 

results can be applied to the use of an ERP-BCI in the control of an ATC. However, the 

accuracy shown confirms that the use single-trial classification is a challenge in the BCI 

domain and the user experience could be an important factor. As the combination of an 

ATC and a BCI is a relatively novel area, there is considerable scope for future pro-

posals. For instance, the results are promising to be implemented in a real ATC sce-

nario; it would be interesting to test these findings in a real ATC, where, for example, 

there are other distractor stimuli or the size of the area in which the target stimulus 

could appear is specifically studied. Also, future studies should focus on improving the 

performance of the visual ERP-BCI systems by considering what has been previously 

studied in other types of BCI devices, such as spellers which are the most studied ERP-

BCI applications [26]. Possible areas of improvement include those related to human 

factors [27] and different signal processing and classification techniques [28]. While 

BCI systems have been used previously in the field of ATC to assess the cognitive state 

of users (assessment of mental workload [11] or the presence of microsleep states [12]), 

it would be interesting to use them with the dual purpose of measuring the cognitive 

state of the user (passive BCIs) and supporting the correct perception of stimuli at the 

interface (active BCIs). Overall, the use of an ERP-BCI for stimulus detection in an 

ATC is an interesting area that could be further explored, as the present work has shown 

that the presentation of a radar plane under a black background produces an ERP wave-

form that can be discriminated by a BCI system, even when the location of the stimulus 

is previously unknown to the user. 
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