

Electrocatalytic properties of spray-drying-synthesized cobalt or nickel phosphonate-derived materials

<u>Aurelio Cabeza</u>^a, Álvaro Vílchez-Cózar^a, Rosario M. P. Colodrero^a, Montse Bazaga-García^a, Fernando Cañamero^a, and Pascual Olivera-Pastor^a

^a Dpto de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga (Spain) E-mail: <u>aurelio@uma.es</u>

As a class of coordination polymers (CPs), metal phosphonates (MPs) are constructed by coordination bonds connecting metal sites and phosphonate (RPO₃²⁻) ligands, where the metal sites are dispersed uniformly at the atomic level. This feature facilitates the construction of OER/HER transition metal phosphide (TMP) pre-catalysts, making them very attractive precursors of Non-Precious Metal Electrocatalysts (NPMCs) [1, 2]

In this work, we report the synthesis and crystal structures of several transition-metal phosphonates derived from the phosphonopropionic acid (PPA), [Fe_xM_{1-x}(HO₃PCH₂CH₂COO)₂(H₂O)₂; M=Co²⁺ or Ni²⁺; x= 0, 0.2]. These solids have been prepared for the first time by spray-drying synthesis directly on carbon paper (CP) (scheme 1). Pyrolysis of spray-dried materials in 5%-H₂/Ar led to TMP-based energy-conversion electrocatalysts. As compared with other conventional procedures, this synthetic methodology allowed to improve the water-splitting activity.

Scheme 1. Synthetic route of the TMP-based energy-conversion electrocatalysts.

References

 Wu, J.; Wang, D.; Wan, S.; Liu, H.; Wang, C.; Wang, X. "An Efficient Cobalt Phosphide Electrocatalyst Derived from Cobalt Phosphonate Complex for All-pH Hydrogen Evolution Reaction and Overall Water Splitting in Alkaline Solution" *Small* **2020**, *16*, 1900550.
Zhang, R.; El-Rafaei, S.M.; Russo, P.A.; Pinna, N. "Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions" *J. Nanoparticle Res.* **2018**, *20*, 146.