Performance analysis of isostructural Cu-CHA-zeolites in NSR-SCR Hybrid DeNO_x Technology for Diesel Engines

S. Molina-Ramírez^{1*}, M. Cortés-Reyes¹, C. Herrera¹, M.A. Larrubia¹, L.J. Alemany^{1*}

¹Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, Málaga, España <u>*smolina@uma.es</u>; <u>luijo@uma.es</u>

Keywords: DeNO_x hybrid technology, NSR-SCR, Cu-CHA-zeolites, SAPO-34, SSZ-13

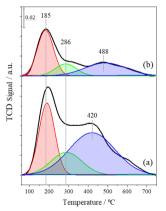
Introduction.

Road-transpor sector is still the major air pollution contributor of harmful NO_x emissions in Europe. The new Euro 7 regulation declared the importance of the development of DeNO_x technologies, based on the combination of the current technologies and knowledge of all relevant pollutants control systems. Two catalytic technologies are widely used for this purpose are NO_x Storage and Reduction (NSR) and Selective Catalytic Reduction (SCR) in diesel engines. The coupling between a NO_x-Trap followed by a NH₃-SCR catalyst leads to an improved N₂-selectivity, by the storage and reaction of the undesired NH₃ produced in the NSR catalyst in the downstream SCR system. This contribution is focused on the synthesis of two isostructural CHA-zeolites with Cu integrated in their structure, SAPO-34 and SSZ-13, and the combination and analysis of the behavior in NO_x abatement activity in the NSR-SCR hybrid system.

Experimental/methodology.

For the NSR system, a model catalyst (Pt-Ba-K/Al₂O₃) was used [1]. As SCR catalysts, Cu-CHA-zeolites precursor gel phase was synthesized containing 2 wt.% of Cu by an ultrasound-assisted hydrothermal method and the calcined materials were identified as 2Cu-SAPO-34 and 2Cu-SSZ-13. Cu-zeolites were well-characterized. DeNO_x activity of the NSR+SCR system was evaluated in a fixed-bed tubular reactor in isothermal and transient regime using a MultiGas MKS 2030 FTIR analyzer and the QMS200 Mass Spectrometer for online monitoring the outlet product distribution. Cyclic alternating lean (3%O₂) and rich (1%H₂) fuel conditions were used maintaining the concentration of NO (600 ppm), CO₂ (0.3%) and H₂O (1.5%) He-balanced, GHSV=30000h⁻¹ and the T-range of 200-350°C.

Results and discussion.


In NH₃-TPD profiles (Fig. 1) a low-temperature (185°C) signal related to Brønsted acid sites was observed, a medium-temperature signal (286°C) due to NH₃-adsorbed on strong Lewis acidic sites, associated with isolated Cu²⁺ sites, was identified for both Cu-zeolites but more evident for Cu-SAPO-34. The existence of different Cu-species (confirmed by FTIR analysis with probe molecules) causes the shift to the T-max desorption signal of the Brønsted sites and influences the deNO_x activity.

Acknowledgments

SMR acknowledges the Economy and Competitiveness Spanish Ministry for the Ph.D. grant (PRE-2018-086107). Authors want to thank the financial support of CTQ 2017-87909-R.

References

[1] M. Cortés-Reyes et al. Catalysis Today 2022, 383, 287-298.

Figure 1. NH₃-TPD profiles for Cu-CHAzeolites: (a)2Cu-SAPO-34 and (b) 2Cu-SSZ-13

	Table 1. DeNO _x activity results at 250 °C				
_	Configuration	X _{NOx} (%)	S _{N2} (%)	S _{NH3} (%)	S _{N20} (%)
	NSR	52.3	69.6	21.6	8.8
	NSR+2Cu-SAPO-34	63.7	89.4	0.02	9.6
	NSR+2Cu-SSZ-13	58.8	94.1	0.00	5.8