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A B S T R A C T   

Laser texturing is increasingly gaining attention in the field of metal alloys due to its ability to improve surface 
properties, particularly in steel alloys. However, the input parameters of the technology must be carefully 
controlled to achieve the desired surface roughness. Roughness is critical to the activation of the surface before 
further bonding operations, and it is often assessed using several parameters such as Ra, Rt, Rz, and Rv. This 
surface activation affects the properties of the metal alloy in terms of wettability, which has been evaluated by 
the deposition of ethylene glycol droplets through a contact angle. This allowed a direct relationship to be 
established between the final roughness, the wettability of the surface and the texturing parameters of the alloy. 

This raises the interest of being able to predict the behaviour in terms of roughness and wettability for future 
applications in improving the behaviour of metallic alloys. In this research, a comparative analysis between 
Response Surface Models (RSM) and predictive models based on Artificial Neural Networks (ANN) has been 
conducted. The model based on neural networks was able to predict all the output variables with a fit greater 
than 90%., improving that obtained by RSM. The model obtained by ANN allows a greater adaptability to the 
variation of results obtained, reaching deviations close to 0.2 µm. The influence of input parameters, in particular 
power and scanning speed, on the achieved roughness and surface wettability has been figured out by contact 
angle measurements. This increases its surface activation in terms of wettability. Superhydrophilic surfaces were 
achieved by setting the power to 20 W and scanning speed to ten mm/s. In contrast, a power of 5 W and a 
scanning speed of 100 mm/s reduced the roughness values.   

1. Introduction 

Laser Surface Texturing (LST) is a technique that has gained interest 
recently due to its numerous applications in improving the surface 
properties of materials [1]. This technique is based on the generation of 
micro and nanostructures on the surface of the material using a high -
energy laser beam [2]. 

Current lines of research in laser texturing of metal alloys are focused 
on controlling the roughness obtained by generating micro-geometrical 
patterns or textures [3]. This can be achieved using new laser process-
ing techniques that allow greater control over texture formation [4,5]. In 
addition, new metal alloys are being developed, which can be textured by 
LST to improve their surface properties[6]. Some authors [7], indicate that 
surface pre-treatment and laser texturing can improve the strength of 
joints between aluminium alloys and polymers in friction lap welding. 

Another research area is the integration of LST with other material 
processing techniques, such as thin film deposition or heat treatment. 
The results obtained in [8] conclude that the hardness of 5A06 
aluminium alloy can be improved through LST, with scanning speed 
being the most significant parameter [9]. Combining these techniques 
can further improve the surface properties of materials and enable the 
creation of surfaces with multifunctional characteristics [7]. 

The main parameters of laser texturing are laser wavelength, Power, 
pulse repetition frequency, scanning speed, and beam spot size [10]. 
Thus, laser energy is one of the most critical parameters in laser 
texturing as it directly affects the quality of the created surface [11]. If 
the energy is too low, the microstructures may not be well defined, and 
the surface quality may be poor. If the energy is too high, the micro-
structures may melt, and the surface may show irregularities and 
excessive porosity. In [12], the authors found that well defined textured 
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surfaces are obtained with low laser power (1% of the maximum 
working power of 30 W) and medium scanning speeds (500 mm/s). On 
the other hand, too high -speed, upper than 500 mm/s, can result in a 
surface with excessive irregularities and roughness, while too low speed, 
close to 100 mm/s, can result in a surface with less defined micro-
structures and poor surface quality. 

The choice of these parameters depends on the properties of the 
material to be processed and the type of surface texture desired [13]. For 
example, a higher beam intensity can generate a deeper texture on the 
surface of the material, while a lower scanning speed can generate a 
finer and more uniform texture [14]. However, according to the 
roughness results, the laser texturing frequency parameter has less effect 
on surface texture compared to other parameters such as average power 
and scanning speed [15]. 

Surface activation is a process by which the surface properties of a 
material are modified or enhanced to promote specific interactions or 
reactions with other substances. The purpose of surface activation is to 
increase the surface energy or reactivity of a material, thereby 
improving its adhesion, wetting or bonding properties [8]. In general, an 
increase in the roughness after laser surface texturing can improve the 
surface activation of the surface as they all supply a larger contact area 
for adhesion [16]. However, an excessive increase in roughness can have 
negative effects on surface strength and durability. Therefore, it is 
important to find a balance between roughness and mechanical strength 
to obtain best surface activation [17]. 

Roughness is one of the key factors in laser texturing as it is related to 
surface activation [17]. A rough surface increases the contact area be-
tween the material and other elements, which improves the bonding 
ability and adhesion of coatings and paints [18]. On the other hand, 
hydrophilic surfaces have a high affinity for water, while hydrophobic 
surfaces have a low affinity [19]. Laser texturing is used to create hy-
drophobic surfaces by creating micro textures that prevent water from 
adhering to the surface. In the research developed in [20], the authors 
discuss the use of LST for creating super-hydrophobic surfaces and their 
potential applications. 

The influence of the laser texturing parameters on the roughness 
parameters Ra, Rt, Rz, and Rv is highly significative for the quality of the 
resulting surface [21,22]. The Ra value refers to the average roughness 
of the surface. The Rt value refers to the maximum height of the irreg-
ularity on the evaluated profile, while the Rz value refers to the height of 
the irregularities in each of the evaluation length of the measured pro-
file. Finally, the Rv value refers to the depth of the rough surface. In 
general, increasing the beam intensity and decreasing the scanning 
speed, the surface roughness values can be reduced [23,24]. However, 
these roughness values can vary depending on the type of metal alloy to 
be processed. 

S275 carbon steel is a type of structural steel used in a wide variety of 
applications, from construction to machine and tool making. Laser 
texturing has proven to be an effective technique for improving the 
adhesion and corrosion resistance of this type of steel, which can 
improve its durability and its ability to withstand loads and stresses. 
Laser texturing can generate micro texture patterns that improve the 
adhesion of paints and coatings on the surface of S275 carbon steel, 
which in turn improves its corrosion resistance [25]. In this way, laser 
texturing has proven to be effective in increasing corrosion resistance in 
aggressive environments, such as in the maritime or petrochemical in-
dustry [26–28]. It has been shown that laser texturing can increase the 
hydrophobicity of the steel surface, making it suitable for applications 
where high corrosion resistance is needed [28,29]. 

Although LST has been successfully applied on various materials, 
there are some limitations in its application on metallic alloys. Due to 
the thermal processing of the laser beam, porosity formation and 
cracking are common problems in laser texturing of metallic alloys, 
which limit the quality of texture and lifetime of the material. It can also 
present limitations in terms of the shape and depth of texture that can be 
generated [29]. For example, the texture may be limited to certain 

geometric patterns, and the depth of the texture may be limited by the 
laser energy and scanning speed. 

The use of predictive models reduces the number of experimental 
tests and material costs. This is of great benefit to the industry as it al-
lows predicting micro and macro geometric defects based on input 
parameter values and finding areas of sufficient quality without addi-
tional testing. In laser texturing, Response Surface Methodology (RSM) 
is used as a model to predict the results of the process. This statistical 
approach involves creating a mathematical model that relates the input 
parameters (laser texturing parameters) to the output variables (such as 
roughness, hydrophobicity, and surface activation) [30]. 

Using RSM, the best results in terms of roughness and surface acti-
vation can be achieved by optimising the input parameters. Although 
RSM is a useful tool for predicting laser texturing results, its accuracy is 
limited for complex and nonlinear processes. It depends on the quality of 
the experimental data used to train the model [31,32]. 

Usually, machining regression models are focused on the prediction 
of a single output variable, and there are few models capable of 
involving several output variables simultaneously, given the complexity 
of the machining processes [33]. Nevertheless, the great evolution that 
computational techniques have undergone recently makes it possible to 
develop automatic learning algorithms capable of autonomously 
adjusting the machining parameters to achieve a specific objective [36]. 
The use of these algorithms is part of what is called “intelligent 
machining”, which includes the development of interactions with 
different systems (machine tools, sensors, controllers, simulation-based 
designs, big data, and cloud computing systems) [34]. In this regard, 
Artificial Neural Networks (ANN) are one of the most used algorithms to 
model machining operations [35,36]. 

Neural networks are a potentially more correct, flexible, and faster 
alternative to response surface methodologies for predicting laser 
texturing results. The learning capability of neural networks and their 
flexibility to manage nonlinear and non-Gaussian data make them ideal 
for modelling complex, nonlinear processes [37]. 

The outcome prediction using an application of neural networks 
offers advantages over response surface methodology in laser texturing 
[38,39]. Neural networks are capable of handling substantial amounts of 
data, which allow for greater accuracy in predicting results. In addition, 
neural networks can detect complex patterns and relationships in data 
that are not detectable using RSM [40]. Neural networks can learn from 
large data sets and discover patterns not clear in the input data. In 
comparison, RSM techniques often require a mathematical function that 
can be fitted to the experimental data, which can limit their ability to 
discover complex patterns. 

Among metal alloys, laser texturing of steels has generated a steady 
scientific production with increasing trend in the last ten years [41,42]. 
There is also a recent interest in the prediction of results in the last ten 
years, mainly based on RSM techniques and more recently through the 
application of ANN techniques. 

This study aimed to evaluate the relationship between surface 
roughness and wettability in laser-textured patterns of S275 carbon 
steel. The study shows that energy density, scanning speed, and fre-
quency significantly affect surface roughness, which in turn affects 
wettability. The input parameters considered were power, frequency, 
and scanning speed, while the output parameters were Ra, Rt, Rz, and Rv 
for roughness and contact angle in wetting tests. The control of the 
obtained roughness and the relationship between the input parameters 
and surface activation, in terms of wettability, is essential to improve the 
quality of materials in hybrid structures, such as S275, used for joining 
dissimilar materials [43,44]. These structures combine the structural 
properties of carbon steel with the mechanical performance/density 
ratio of composite materials. This makes them strategic materials for the 
automotive and construction sectors [45,46]. The proper control of 
surface roughness and activation through laser texturing techniques can 
improve the quality of material bonding [47,48]. 

The roughness generated on metallic surfaces after texturing 
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treatments is a key area for subsequent operations [49]. In this research, 
a complete characterisation of the generated roughness and its wetta-
bility was obtained for different combinations of laser texturing. The 
influence of the input parameters on the generated roughness and the 
relationship between the generated roughness, the wettability in terms 
of contact angle and the energy density of the laser beam for different 
scanning speeds has been established. 

Furthermore, in this research, the comparison between two methods 
for predicting results has been deepened by establishing a comparison 
between models widely used in nonconventional technologies based on 
the response surface and a prediction based on neural networks. The aim 
is to obtain a methodology capable of predicting all the studied pa-
rameters that characterise the behaviour of the surface obtained after a 
texturing operation, thus achieving the best possible adaptation. 

Predictive models using response surface and neural networks have 
been developed to predict surface roughness and wettability as a func-
tion of texturing parameters. Response surface methodology (RSM) is 
particularly suitable for unconventional machining processes due to the 
variety of input parameters. However, neural network models have been 
used to supply higher accuracy and better fit for a broad range of output 
variables compared to response surface models, which can only predict a 
single output variable. This has been confirmed by the results of this 
study, as well as a correlation between roughness and surface activation 
after laser texturing tests. 

2. Methodology 

Specimens of S275 carbon steel with an area of 10x10 mm2 and 
thickness of 3 mm were used to evaluate the influence of laser texturing 
treatments. Mechanical properties and composition (% mass) of steel 
specimens are shown in Table 1. 

The experimental design consisted of a combination of different 
levels of power, frequency, and scanning speed, as shown in Table 2. A 
Rofin Easymark F20 Ytterbium laser equipment was used in the 
texturing study (Fig. 1.a). 

All tests were performed with a wavelength of 1062 nm and focal 

length of 185 mm, resulting in a spot diameter of 60 μm and a distance 
between lines of 50 μm. The texturing area was 10x10 mm2, and all 
samples were generated supporting a bidirectional shading distribution 
with a laser beam overlapping in a pattern of straight parallel lines 
(Fig. 2). 

After the texturing trials, surface quality was evaluated in terms of 
Average Roughness (Ra), Maximum peak to valley height (Rt), Mean 
roughness depth (Rz), and maximum profile valley depth (Rv). The 
equipment used was a Mahr Perthometer PGK 120 roughness mea-
surement station (Fig. 1.b). ISO 4287 standard was followed, and three 
measurements were taken perpendicular to the texturing pattern. 

The aim of this work is to achieve surface activation of the steel alloy 
by laser texturing. Surface activation refers to the ability to modify the 
properties of the metallic alloy and improve its adhesion or liquid ab-
sorption capacity. 

This surface activation is directly related to the roughness created on 
the surface and its wettability (Fig. 3.a). The surface roughness of the 
substrate must be capable of allowing the adhesive to flow freely over 
the substrate during application, ensuring that it covers all voids created 
in the surface itself. Thus, wettability can be defined as “the ability of a 
liquid to spread on that surface under equilibrium conditions, without 
chemical interactions between the liquid and the solid”. 

In parallel, the wettability of obtained surfaces was evaluated by 
depositing drops of 5 µl of ethylene glycol. This allowed the evaluation 

Table 1 
S275 carbon steel alloy composition and principal mechanical properties.  

Fe %Mn %C Si %S %P 

98.01 1.60 0.25 0.05 0.05 0.04  

Yield Strength (MPa) Tensile Strength (MPa) 

275 450  

Table 2 
Levels set for input parameters in laser texturing.  

Power-P (W) Frequency-F (kHz) Scanning speed-SS (mm/s) 

5–10–20 20–80 10–100–250  

Fig. 1. A) Laser texturing of s275 carbon steel; b) evaluation of the roughness obtained in laser texturing using a roughness meter.  

Fig. 2. Texturing pattern established in the experimental design and main 
characteristics of the laser equipment. 
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of the contact angle parameter through image analysis. This angle is 
defined by the surface of a liquid in contact with the substrate surface in 
a state of equilibrium. Depending on the surface modification previously 
applied to the substrate and the ratio of the adhesive forces between the 
liquid and the solid and the cohesive forces of the liquid, the value of the 

angle obtained will vary between 0◦ and 90◦. A phase contact angle 
measurement system consisted of a high-resolution CCD camera posi-
tioned on the axis that crosses the drop, while a back illumination points 
supplied contrast to capture the geometry (Fig. 3.b). Three contact angle 
measurements have been obtained to generate a mean value with 

Fig. 3. A) Visual schematic of the relationship between metal surface roughness and wettability in terms of contact angle; b) scheme and set-up for wettability 
assessment; c) contact angle assessment by image processing. 

Fig. 4. (a) Typical structure of a shallow ANN; (b) ANN scheme used to perform the regression task.  

Fig. 5. ANN structure for predicting (a) one output variable (Ra, Rt, Rz or Rv) and (b) four output variables simultaneously (Ra, Rt, Rz or Rv) as a function of three 
input variables (P, F and SS). 
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deviations close to 0.1◦ (Fig. 3.c). After laser treatment, the sample 
surfaces were characterized using scanning electron microscopy (SEM) 
using a Hitachi VP-SEM SU1510 equipment. 

Once the experimental results were obtained, a statistical analysis 

was conducted. First, an approximation of the results obtained to pre-
dictive models based on response surfaces was performed. The use of 
response surface methodology (RSM) sets up an empirical model based 
on multiple linear regression [50,51]. Using this methodology, an 

Fig. 6. Experimental results obtained in the evaluation of roughness profiles in laser texturing tests.  
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ANOVA analysis was carried out to obtain a series of contour plots or 
response surfaces. A second order polynomial equation was used to 
obtain these response surfaces, as described in equation (1). This type of 
mathematical model is widely used in the study of nonconventional 
machining processes to relate the defects studied to the machining pa-
rameters selected [31,52]. 

Y = C0 +
∑k

i=1
Cixi +

∑k

i=1
Ciix2

i +
∑k

i<j
Cijxixj + ε (1) 

Y corresponds to the expected response, in this case the mean surface 
roughness (Ra); xi are the parameters used in the study; C0, Ci, Cii, Cij, the 
regression coefficients; and ε the random error of the model. On the 
other hand, a supervised shallow Artificial Neural Network (ANN) was 
used to obtain a regression model of the experimental data. Fig. 4.a 
shows the typical structure of this ANN, characterised by using only one 
hidden layer [36]. In this work, a feedforward ANN with three input 
variables (P, F and SS) and four output variables (Ra, Rt, Rz and Rv) was 
used. For this purpose, the Matlab Neural Network Toolbox library and 
the Simulink virtual programming environments have been used. Fig. 4. 
b shows the two-layer feedforward network with sigmoid hidden neu-
rons and linear output neurons used to perform the regression task. The 
Levenberg-Marquardt algorithm was used for training the ANN because 
it is suitable for fast training in small data sets. The 80% of the dataset 
were used in the training step. The remaining 20% was used to prove 
that the network is generalising and to stop training before overfitting. 

First, an analysis of the best number of neurons (N) for the design of 
the ANN was carried out, to avoid underfitting and overfitting. This 
analysis was performed individually for each of the output variables (Ra, 
Rt, Rz and Rv), using an ANN with three input variables and only one 
output variable (Fig. 5.a). This ANN was tested for N = 1 to twenty. The 
Root Mean Square Error (RMSE) and the Mean Squared Error (MSE) 
were used as ANN performance parameter (Equation (2)). In Equation 
(3), ŷt are the predicted values, yt the experimental values and T the 
number of observations. The optimal number of neurons (Nopt) selected 
was the one that resulted in a minor RMSE of the four output variables, 
individually considered. The final ANN, considering all the output var-
iables simultaneously was trained for several hidden layers equal to Nopt 
(Fig. 5.b). Since the used variables are at different scales, a normaliza-
tion of their values (from 0 to 1) has been performed in this second step, 
to achieve a better ANN behaviour (Equation (2)). In Equation (3), Ynorm 
is the normalized value (from 0 to 1) of the variable Y (Ra, Rt, Rz and 
Rv); max(Y) and min(Y) are the maximum and minimum value of Y in 
the data set, respectively. 

RMSE =
̅̅̅̅̅̅̅̅̅̅
MSE

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑T

t=1(ŷt − yt)
2

T

√

(2)  

Ynorm =
Y − min(Y)

max(Y) − min(Y)
(3)  

3. Results 

Results corresponding to the evaluation of the roughness generated 
in the different laser texturing tests are shown in Fig. 6. The graph shows 
the mean value obtained for each bar for the four study parameters (Ra, 
Rt, Rz and Rv). For each parameter, the whisker diagram expresses the 
standard deviation of the results obtained. In parallel, the experimental 
results obtained in terms of surface quality are shown in Table 3. 

Note that the trends seen in the four study parameters are similar, 
suggesting homogeneity in the surface obtained with minor variation in 
texture. This observation is confirmed by the deviations found in the 
surface quality results, with maximum deviations of 0.2 µm for Ra, 3.9 
µm for Rt, 2.0 µm for Rz, and 1.1 µm for Rv. 

On the other hand, a general decreasing trend has been observed in 
the increase of SS parameter for most of the results obtained in the four 
study parameters. The maximum values were obtained with a scanning 
speed of ten mm/s, which corresponds to a longer exposure time of the 
metallic alloy surface to the laser beam [53,54]. As this parameter in-
creases, i.e., the exposure decreases, the laser’s penetration ability 
produces less rough texture. This is especially noticeable in the Rv 
parameter [21]. For the three established powers (5 W, 10 W and 20 W), 
the valley value obtained on the evaluated surface decreases from 9.35 
µm to 4.33 µm, from 13.15 µm to 5.33 µm, and from 13.54 µm to 6.28 
µm, respectively, when increasing the SS parameter from ten mm/s to 
250 mm/s for a fixed frequency of 20 kHz. Increasing the frequency to 
80 kHz reduces the surface roughness obtained. However, at 80 kHz the 
roughness trends are not as defined, possibly indicating that the energy 
density is not sufficient to produce a homogeneous texture. This may 
result in poorly defined surfaces, particularly at high scanning speeds, 
which would reduce the final roughness [55]. 

Similarly, higher laser beam power increases its penetration ability, 
allowing for a larger volume of material to be locally melted [56]. This 
generates a more melted material removal for the three levels of scan 
speed, producing a more defined pattern, as is shown in Fig. 7.a. For the 
same power (20 W) and frequency (20 kHz), the effect of speed on the 
type of surface obtained can be seen. This can be better seen by the 
energy density parameter (Ed), which expresses the energy deposited 
per unit area and can be related to the ratio between the head 

Table 3 
Experimental results corresponding to the roughness evaluation for the experimental design.  

Power (W) Frequency (kHz) Ed 
(J/cm2) 

Sweep Speed (mm/s) Ra 
(µm) 

Deviation Rt 
(µm) 

Deviation Rz 
(µm) 

Deviation Rv 
(µm) 

Deviation 

5 20  8.84 10  2.70  0.13  24.72  3.18  19.25  0.97  9.35  1.09 
5 20  8.84 100  1.90  0.10  17.34  2.81  12.94  0.69  6.10  0.27 
5 20  8.84 250  1.19  0.09  11.85  1.87  8.48  0.50  4.33  0.20 
5 80  2.21 10  1.87  0.18  21.39  3.94  13.33  1.37  5.60  0.67 
5 80  2.21 100  1.53  0.05  13.05  0.82  10.24  0.60  5.68  0.36 
5 80  2.21 250  1.34  0.09  12.25  0.78  9.11  0.55  4.79  0.13 
10 20  17.68 10  4.45  0.18  31.88  1.50  26.89  0.57  13.15  0.72 
10 20  17.68 100  2.36  0.03  19.87  1.17  16.14  0.25  8.23  0.34 
10 20  17.68 250  1.58  0.17  21.94  0.70  10.72  1.33  5.33  0.46 
10 80  4.42 10  3.92  0.20  27.95  1.19  23.41  0.73  11.10  0.46 
10 80  4.42 100  3.71  0.02  27.37  1.14  23.21  0.40  10.61  0.33 
10 80  4.42 250  2.24  0.07  18.56  1.52  14.76  0.20  7.43  0.39 
20 20  35.37 10  4.58  0.04  31.73  0.63  26.77  0.49  13.54  0.62 
20 20  35.37 100  4.36  0.13  30.28  0.36  28.24  2.01  12.19  0.35 
20 20  35.37 250  3.64  0.18  18.05  2.34  13.43  0.77  6.28  0.30 
20 80  8.84 10  4.22  0.07  22.28  1.67  16.74  0.53  7.50  0.07 
20 80  8.84 100  3.84  0.04  18.22  0.40  16.88  0.65  7.19  0.32 
20 80  8.84 250  3.02  0.03  14.53  0.23  12.16  0.75  5.14  0.26  
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Fig. 7. Visual evaluation by SEM microscopy of the surfaces obtained by laser texturing and their corresponding roughness profile for a power of 20 W and a 
frequency of 20 kHz and a scanning speed of: a ten mm/s; b) 100 mm/s; c) 250 mm/s. 
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Fig. 8. Evolution of roughness as a function of four output variables (Ra, Rt, Rz, Rv) and their relationship with the energy density applied in each texturing test and 
the type of wettability generated on the modified surface. 

Fig. 9. Influence of the scanning speed parameter on the wettability obtained by contact angle evaluation for different laser beam energy densities.  
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displacement speed and the type of texture obtained [57]. However, the 
evaluation of roughness was related to the texturing parameters and not 
to the Ed parameter, because different power and frequency values can 
produce the same energy density value. In this study, the direct rela-
tionship between laser processing parameters, power and frequency, 
and the resulting texture geometry has been chosen over the Ed 

commonly used in laser studies. The focus is on understanding the in-
dividual influence of these parameters. Nevertheless, the energy per unit 
area, Ed, stays as a useful parameter to justify effects such as ablation or 
fusion, as mentioned earlier. 

In Fig. 7 it can be observed that the ratio between energy density and 
SS parameter decreases, minimising the amount of energy deposited on 
the surface in an instant of time. This produces a reduction in laser 
penetration and in the volume of evaporated material, resulting in a 
decrease in the four roughness parameters, in good agreement with 
[58]. 

This is of great interest for the generation of hydrophobic surfaces 
[59]. By reducing the ratio between Ed and SS, a surface modification of 
the metal can be seen, generating a less rough and homogeneous surface, 
which may indicate a reduction in its surface activation, allowing a 
hydrophobic character to be achieved [60]. 

Fig. 8 shows the study parameters and their relationship with the Ed/ 
SS ratio. The results obtained are in good agreement with what was 
previously shown, where a high ratio indicates a lower displacement 
speed for a fixed energy density, stabilising the final roughness obtained 
in the texture. Instead, extremely low ratios produce large variations in 
the roughness of the obtained texture [61]. 

For a fixed energy density, decreasing the exposure time to the laser 
beam by increasing the displacement speed modifies the type of texture 
obtained, as can be seen in the roughness profiles obtained in Fig. 8. For 
example, for a power of 20 W and a frequency of 20 kHz, equivalent to 
an energy density of 35.37 J/cm2, similar roughness profiles were ob-
tained for a speed of ten mm/s (Fig. 7.a) and a speed of 100 mm/s 
(Fig. 7.b). This can also be observed in Fig. 4.d, where the trends for the 
Rv parameter are very similar when increasing the SS parameter from 
ten mm/s to 100 mm/s, regardless of the established power and 
frequency. 

Fig. 10. Relationship between the roughness results obtained in terms of Ra and the wettability of carbon steel in terms of contact angle.  

Table 4 
ANOVA analysis conducted on the four evaluated roughness parameters.  

Source DF Adj SS Adj MS F-Value P-Value 

Ra      
Power (W)  1.00  14.32  14.32  47.01 0.00 
Frequency (kHz)  1.00  0.06  0.06  0.18 0.68 
Scanning Speed (mm/s)  1.00  6.16  6.16  20.23 0.00 
Error  9.00  2.74  0.30   
Total  17.00  24.03    
Rt      
Power (W)  1.00  97.08  97.08  8.97 0.02 
Frequency (kHz)  1.00  63.62  63.62  5.88 0.04 
Scanning Speed (mm/s)  1.00  325.57  325.57  30.07 0.00 
Error  9.00  97.43  10.83   
Total  17.00  725.94    
Rz      
Power (W)  1.00  135.30  135.30  10.80 0.01 
Frequency (kHz)  1.00  29.67  29.67  2.37 0.16 
Scanning Speed (mm/s)  1.00  277.89  277.89  22.19 0.00 
Error  9.00  112.73  12.53   
Total  17.00  695.90    
Rv      
Power (W)  1.00  20.02  20.02  10.21 0,01 
Frequency (kHz)  1.00  10.02  10.02  5.11 0.05 
Scanning Speed (mm/s)  1.00  61.97  61.97  31.61 0.00 
Error  9.00  17.64  1.96   
Total  17.00  151.14     
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Fig. 11. Overlay contour plots obtained from the four responses surface models to find common regions.  

Fig. 12. RMSE as a function of N, for (a) Ra, (b) Rt, (c) Rz and (d) Rv.  
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On the contrary, when increasing the speed to 250 mm/s (Fig. 7.c), 
the amount of energy developed for texturing is minimal for the same 
time interval, obtaining the minimum roughness values in the four study 
parameters. 

Stabilisation is seen in all four study parameters from an approxi-
mate ratio of 1.5 (Ed/SS). This suggests that, for fixed power and fre-
quency, reducing the speed does not increase roughness, which could 
mean that the laser does not have enough energy to remove more ma-
terial and create deeper and more defined channels [12]. 

To obtain a more pronounced texture, a higher energy density would 
be needed. Regarding the type of surface obtained, it could be said that 
ratios greater than 1.5 between energy density and head speed produce 
superhydrophilic surfaces (Contact angles close to 0◦, [62]), while ratios 
that tend to zero generate hydrophilic surfaces (Contac angles less than 
90◦) with lower surface activation [63,64]. Wetting tests with ethylene 
glycol have confirmed this relationship, as the contact angle has varied 
significantly depending on the ratio between energy density and 
displacement speed (Fig. 9). This agrees with the results obtained in 
[65]. In their study, they perform wettability tests by depositing drops of 
water and ethylene glycol. The authors establish a relationship between 
roughness and wettability. Varying the roughness by surface treatment 
increases the surface free energy. This implies a significant variation in 
the contact angles for both liquids. 

The relationship between energy density (Ed) and scan speed (SS) is a 
key factor in the wettability of the obtained surface. It has been seen that 
a higher SS parameter increases the contact angle, regardless of the 
applied energy density. This effect is due to less energy being deposited 
in an instant, which is related to a reduction in the obtained roughness 
and, therefore, a minimisation of surface activation [66,67]. Similar 
contact angle values were obtained for ethylene glycols in the study 
carried out at [68]. The influence of surface treatment by increasing the 
roughness of the test material reduces the contact angle values from 49◦

to 8◦. 
On the other hand, a higher energy density applied produces a higher 

roughness on the surface. This implies that the liquid can expand more 
easily and impregnate a larger area, resulting in a reduction in the 
contact angle. 

Values of Ed between eight J/cm2 and thirty-five J/cm2 lead to an 
increase in the contact angle, especially for values between ten and 100 
mm/s. In contrast, lower values of energy density only change the sur-
face at scan speeds below 100 mm/s. Above these values, the laser beam 
hardly changes the surface, or the roughness obtained, resulting in the 
same type of hydrophilic surface. This occurs similarly to the previously 
exposed roughness obtained [3]. 

In addition, it has been seen that superhydrophilic surfaces can be 
obtained by minimising the scan speed. This is also due to the reduction 
of the laser beam frequency, which increases the energy density for 
texturing. In contrast, high scan speeds, and an increase in frequency, 
result in minimal laser interaction with the surface. This generates a 
reduction in roughness and produces a reduction in the surface activa-
tion of steel, increasing the contact angle. 

According to the Wenzel’s theory, the contact area of rough surface 
was expanded promoting the spreading of liquid on the solid surface and 
the absolute wetting state was thus achieved. When a given liquid was 
dropped on a rough surface, the apparent contact angle θ was defined as 
follows: cosθf = rcosθs, wheres θs was the intrinsic contact angle, and r 

was the ratio of actual one to the projection area. The increase of surface 
roughness would make the hydrophobic surface become more hydro-
philic. A similar behaviour was observed in the results obtained in [69]. 
To evaluate the wettability of the surface obtained after laser texturing, 
drops of water and ethylene glycol were deposited. Both liquids showed 
a reduction in their contact angles, increasing the roughness of the 
texture obtained and the surface free energy. This is shown in Fig. 10. It 
shows the relationship between the results obtained for the roughness 
parameter Ra and the wettability in terms of contact angles for the 
ethylene glycol droplets. A decreasing behaviour of the contact angle is 
confirmed with increasing roughness values, thus improving the 
wettability of the surface obtained after laser texturing. 

To verify the influence of input parameters on output variables (Ra, 
Rz, Rt, Rv), an ANOVA analysis (Table 4) was carried out, confirming 
previous results. In general, for all four studied parameters, the SS and P 
parameters were found to be statistically more influential, with p-values 
below 0.05, showing their statistical significance [14]. However, for the 
Ra parameter, the displacement speed was found to be the most influ-
ential parameter with higher F value. This is consistent with the previ-
ously described relationship between the ratio of energy density and 
displacement speed and the type of surface generated. 

Based on these results, a first predictive model was developed based 
on a response surface. This model allows experimental results to be 
approximated to a second order polynomial with factor interaction. 
Fig. 11 shows the superposition of contour diagrams related to the four 
outputs variables for the two most relevant parameters (P and SS). 

To observe the common regions in both output variables in relation 
to the experimental results and the type of surface to be obtained (hy-
drophilic or superhydrophilic), the relationship between surface acti-
vation and controlled roughness in a metallic alloy is confirmed. The 
obtained models allow to set up a common region that minimises the 
results of the four study variables. Hydrophilic surfaces with low 
roughness values can be achieved with a power of 5 W and a speed of 
250 mm/s, regardless of the established pulse rate. In contrast, by 
increasing the energy density ratio in relation to speed, through an in-
crease in power and a speed of 10 mm/s, the highest roughness values 
and a superhydrophilic surface are obtained. 

It is important to highlight the crucial role of the SS parameter, 
especially in relation to the Rt and Rv parameters. These parameters are 
related to the depth of the channels generated in texturing, which allows 
the total expansion of the deposited liquid. 

It can be seen that the maximum values of these parameters can be 
reached in a range of 10 W to 20 W as long as the speed is at a minimum 
of ten mm/s. This guarantees maximum interaction of the laser beam 
with the metal surface and eliminates the largest amount of material per 
pass, reaching a stable maximum regardless of the power. 

An alternative to outcome prediction is the use of predictive models 
based on neural networks to achieve a better fit. The correct selection of 
neurons to optimise the final result and establish a score prediction is 
shown below [70]. 

Fig. 12 shows the root mean square error (RMSE) as a function of the 
number of neurons considered in the hidden layer, for the training and 
validation phases, according to the ANN scheme shown in Fig. 12.a. 

As it can be seen in Fig. 12, the RMSE stabilizes between N = 6 and N 
= 10 for all output variables. Table 5 shows the number of neurons in the 
hidden layer (N) that give rise to a minimum value of the sum of RMSE in 
the training and validation phases. For Ra and Rt, the minimum value 
was obtained for N = 10. Although the best N for Rz and Rv was reached 
for N = 6, the RMSE for N = 10 was remarkably close. Therefore, the best 
value selected to test the global ANN, considering the four outputs 
simultaneously (Fig. 12.b), was Nopt = 10. 

Fig. 13 shows the regression results of the ANN (N = 10) for every 
output variable, individually considered (as shown in Fig. 5.a), for the 
data used in the training and validation phase, as well as for the full set 
of data. Table 6 shows the results for the adjusted R2 for the training and 
validation phase, and for the full set of data. 

Table 5 
Minimum values of RMSE in the training and validation phases.  

Output 
variable 

N RMSE- training phase 
[µm] 

RMSE- validation phase 
[µm] 

Ra 10  0.12  0.15 
Rt 10  1.87  1.60 
Rz 6  0.99  0.56 
Rv 6  0.52  0.43  
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The ANN shown in Fig. 5.b, which includes the four output variables 
(Ra, Rt, Rz and Rv) simultaneously, was tested for N = 10. Fig. 14.a 
shows the results for the ANN training performance. The number of it-
erations (epochs) performed was fifteen. The MSE was progressively 

reduced, both in the training and the validation phases. The best vali-
dation performance was obtained for the epoch nine, with a MSE close to 
7⋅10− 3. 

Fig. 14.b shows the ANN error histogram. Most of the results (around 

Fig. 13. ANN regression results (N = 10) for the training and validation phase, and considering all data (for every output variable).  
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85%) have shown an error value of less than ± 5%. Only the 4% of the 
dataset has shown an error between 15% and 27%. 

Table 7 shows the RMSE for the training and validation phases, for all 
data sets and for every input variable. The RMSE has been calculated for 
the normalised data (from 0 to 1). The dataset shows a reasonable value 
for the RMSE, between 3.1% (Rz, training phase) and 13% (Rt, valida-
tion phase). 

Fig. 15 shows the ANN regression results for the training and vali-
dation phases and for all data set. Table 8 shows the results for the 

adjusted R2 for the training and validation phase, and for the full set of 
data (N = 10, normalised data). 

Finally, the error of the results obtained is shown in Fig. 16. In 
general, the use of neural networks as a predictive model offers a smaller 
difference between the predicted and obtained results. Both the RSM 
and ANN models give close predictions with good fits. It should be noted 
that for the Ra parameter, the differences obtained by ANN are less than 
0.3 μm. Neural network prediction models results in better results, with 
the advantage that the model predicts the behaviour of all four variables 
studied. The RSM method, on the other hand, can only produce an in-
dividual model for each variable without proving a relationship with the 
other output variables. In summary, the use of neural networks as a 
predictive model has proven to be more correct and efficient than RSM, 
allowing a better understanding and prediction of the relationship be-
tween input parameters and output responses [71,72]. 

ANN models have proven to be highly efficient in empirical model-
ling and prediction, especially for non-linear systems. Their predictive 
capabilities far exceed those of RSM models. Unlike RSM models, which 
are limited to modelling quadratic relationships between input and 

Table 6 
Adjusted R2 for every output variable individually considered.  

Output variable training validation All RSM 

Ra  0.987  0.986  0.988  0.8859 
Rt  0.905  0.810  0.899  0.8658 
Rz  0.974  0.962  0.975  0.8380 
Rv  0.966  0.962  0.968  0.8833  

Fig. 14. (a) ANN training performance; (b) ANN error histogram.  

Table 7 
RMSE in the training and validation phases (N = 10, normalised values).   

RMSE (Training) RMSE (Validation) 

All data set  0.046  0.088 
Ra  0.035  0.037 
Rt  0.066  0.130 
Rz  0.031  0.075 
Rv  0.045  0.083  

Fig. 15. ANN regression results (N = 10, normalised data).  
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output variables, ANN models excel at handling complex and non-linear 
relationships. Furthermore, ANN models could learn from large data sets 
and generalise effectively to new data, whereas RSM models require 
numerous experiments to achieve accurate predictions. In addition, 
ANN are better at dealing with missing and noisy data than RSM models 
[73]. This is corroborated in the results obtained, where the fit obtained 
by response surface model prediction is lower than that obtained by 
neural network prediction. This is reflected in greater variations with 
respect to the real value to be obtained. 

4. Conclusions 

This study investigated the effects of scanning speed (SS), Power (P), 
frequency (F) and energy density (Ed) as laser texturing parameters on 

the surface properties of a S275 carbon steel, for roughness parameters 
(Ra, Rt, Rz and Rv) and hydrophobicity. The results show that slower 
scanning speeds lead to increased roughness and higher asperity values. 
This increases its surface activation in terms of wettability. 

The relationship between energy density and scanning speed was 
found to affect the hydrophobicity of the surface, with superhydrophilic 
surfaces obtained at Ed/SS ratios greater than 1.5 and hydrophilic sur-
faces obtained when this ratio approached zero. This confirms the direct 
relationship between texturing parameters, generated roughness, and 
wettability in terms of contact angle. The correct choice of texturing 
parameters makes it possible to reach a superhydrophilic state with 
angles close to 0◦ as the roughness is increased. This relationship be-
tween roughness and wettability is linear. Thus, an increase in rough-
ness reduces the value of the contact angle. 

Increasing the scanning speed reduced surface activation and 
roughness, which in turn increased the contact angle. In contrast, 
increasing the energy density resulted in increased roughness and 
decreased contact angle. This allows greater interaction between the 
laser beam and the surface being textured, increasing the volume of 
material evaporated and achieving greater precision in the texturing 
pattern. 

This research has investigated the effectiveness of response surface 

Fig. 16. Differences in absolute values between the results obtained by the predictive response surface models and neural networks with respect to the experimental 
results for the variables: a) Ra; b) Rt; c) Rz; d) Rv. 

Table 8 
Adjusted R2 for every output variable.  

Output variable Training Validation All RSM 

Ra  0.988  0.937  0.987  0.8859 
Rt  0.937  0.733  0.907  0.8658 
Rz  0.986  0.915  0.974  0.8380 
Rv  0.959  0.922  0.958  0.8833  
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methodology (RSM) and artificial neural network (ANN) modelling 
techniques in the prediction of surface roughness. Both approaches 
produced models with high levels of accuracy (over 85%). However, 
ANN models consistently outperformed RSM models, achieving high 
levels of accuracy more than 90% in the majority of cases. In addition, 
the ANN model is able to respond to multiple output responses simul-
taneously. In addition, a model was obtained using ANN that included 
all four surface parameters, allowing correct predictions with less than 
0.3 µm difference in Ra compared to RSM models that could only predict 
a single variable with a higher fitting error. 

In conclusion, the results prove the importance of considering both 
scanning speed and energy density in controlling surface properties, 
with slower scanning speeds and higher energy densities leading to 
increased roughness and decreased hydrophilicity. It is possible to 
modify the behaviour of a carbon steel for future applications, such as 
the use of adhesives, increasing the wettability of the steel by increasing 
the roughness of the texture. 

Furthermore, ANN modelling techniques appear to be more effective 
than RSM in predicting surface properties, particularly when multiple 
variables are considered simultaneously. These findings could have 
significant implications for a range of applications, including engi-
neering materials and surface modification for biomaterials, among 
others. 
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