
The Journal of Systems & Software 204 (2023) 111770

p
A
p
t
v
c
f
o
c
c

m
h
N
N

b
s

l

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Transforming Numerical FeatureModels into Propositional Formulas
and the Universal Variability Language✩

Daniel-Jesus Munoz a,∗, Mónica Pinto a, Lidia Fuentes a, Don Batory b

a ITIS Software, Universidad de Malaga, Andalucia Tech, Bulevar Louis Pasteur 35, 29010, Malaga, Spain
b Department of Computer Science, University of Texas at Austin, TX 78712, USA

a r t i c l e i n f o

Article history:
Received 3 December 2022
Received in revised form 8 April 2023
Accepted 29 May 2023
Available online 3 June 2023

Keywords:
Feature model
Bit-blasting
Propositional formula
Numerical features
Model counting
Universal variability language

a b s t r a c t

Real-world Software Product Lines (SPLs) need Numerical Feature Models (NFMs) whose features have
not only boolean values that satisfy boolean constraints but also have numeric attributes that satisfy
arithmetic constraints. An essential operation on NFMs finds near-optimal performing products, which
requires counting the number of SPL products. Typical constraint satisfaction solvers perform poorly
on counting and sampling.

Nemo (Numbers, features, models) is a tool that supports NFMs by bit-blasting, the technique that
encodes arithmetic expressions as boolean clauses. The newest version, Nemo2, translates NFMs to
propositional formulas and the Universal Variability Language (UVL). By doing so, products can be
counted efficiently by #SAT and Binary Decision Tree solvers, enabling finding near-optimal products.
This article evaluates Nemo2 with a large set of synthetic and colossal real-world NFMs, including
complex arithmetic constraints and counting and sampling experiments. We empirically demonstrate
the viability of Nemo2 when counting and sampling large and complex SPLs.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
n

1. Introduction

Software Product Line(SPL) engineering is a key reuse ap-
roach to build highly-configurable systems (Agh et al., 2022).
n SPL reduces the overall engineering effort to produce similar
roducts by capitalizing on their commonalities and managing
heir configurations. A classical Feature Model(FM) defines SPL
ariability by boolean-valued features and boolean constraints,
alled propositional formulas(PFs). A PF is a relationship among
eatures where the presence or absence of some features requires
r precludes other features. A valid combination of features is a
onfiguration (Apel et al., 2016; Batory, 2021). The set of all legal
onfigurations is the SPL’s product space.
Real-world SPLs need Numerical Feature Models(NFMs). One of

any examples is the SPL of Linux repositories where packages
ave different versions and other numerical attributes, called
umerical Features(NFs) (Oh et al., 2019). Relationships among
Fs are arithmetic constraints. In effect, NFMs are FMs with NFs.
SAT solvers efficiently find configurations of classical FMs,

ecause FMs can be translated to PFs, and SAT efficiently finds PF
olutions (ie., configurations). Unfortunately, SAT performs poorly

✩ Editor: Laurence Duchien.
∗ Corresponding author.

E-mail addresses: dm@uma.es (D.-J. Munoz), mpinto@uma.es (M. Pinto),
fuentes@uma.es (L. Fuentes), batory@cs.utexas.edu (D. Batory).
ttps://doi.org/10.1016/j.jss.2023.111770
164-1212/© 2023 The Authors. Published by Elsevier Inc. This is an open access art
on counting as it enumerates products, which is infeasible for
large SPL product spaces, ≥ 106 products (Pett et al., 2019).

Why is counting important? Because counting products en-
ables unbiased random samples on large product spaces (Liang
et al., 2015; Oh et al., 2017). This enables near-optimal config-
urations to be located in an SPL product space with statistical
guarantees (eg., x% from optimal with y% confidence), given a
defined workload (Oh et al., 2017; Sundermann et al., 2021c; Oh
et al., 2024).

Only a handful of automated solvers support NFMs, namely
Satisfiability Modulo Theories(SMT) (Barrett and Tinelli, 2018) and
Constraint Programming(CP) (Rossi et al., 2006) solvers. Unfor-
tunately, SMT and CP solvers perform brute-force enumeration
to count (Munoz et al., 2022). In contrast, #SAT solvers ex-
tend SAT solvers to count the number of solutions of a PF ef-
ficiently without enumeration (Biere et al., 2009). #SAT solvers
out-perform SMT and CP solvers on counting. Likewise, Binary
Decision Tree(BDD) solvers outperformed other solvers when uni-
formly random sampling product spaces of any size (Heradio
et al., 2022).

We use techniques to translate NFMs into PFs (Munoz et al.,
2019a). Concretely, bit-blasting (Bryant et al., 2007) encodes nu-
merical values into bits and arithmetic constraints into PFs.

This article is an invited extension of Munoz et al. (2022),
where we presented Nemo(Numbers, features, models), a tool that
atively supports NFMs and efficient SAT operations to find NFM

products (satisfying boolean and arithmetic constraints) as well
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2023.111770
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111770&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:dm@uma.es
mailto:mpinto@uma.es
mailto:lfuentes@uma.es
mailto:batory@cs.utexas.edu
https://doi.org/10.1016/j.jss.2023.111770
http://creativecommons.org/licenses/by/4.0/

D.-J. Munoz, M. Pinto, L. Fuentes et al. The Journal of Systems & Software 204 (2023) 111770

a
a
o
m
s
t
N
r
G
m
B
a

N

2

2

w
l
I
P
c
a
s
2
c

2
i

2

s
S

f
p
c
c
c
i

i
b
c
f
r
a
b

a
t

f

m

2

f
v
s
e
f
n

a

t

s #SAT counting NFM products. In this work, we present Nemo2,
n extension with more functionality, such as new input and
utput formats like Universal Variability Language(UVL) (Sunder-
ann et al., 2021s) models that are compatible with different
tate-of-the-art solvers like BDDs. Additionally, Nemo2 now ex-
ends/composes already modeled FMs with new NFs. Nemo2’s
FM grammar is simple; it supports constant, enumerated, and
ange variables, along with boolean and arithmetic constraints.
iven an NFM, Nemo2 generates two types of PFs or an UVL
odel, as they are standard formats for many tools like SAT or
DD-based ones. At this point, we can invoke SAT, #SAT or BDD
utomated reasoners.
The novel contributions of our paper are:

• Explaining how Nemo2 automatically translates and opti-
mizes the encoding of arithmetic operations (as complex as
multiplication, division, and modulo) and arithmetic con-
straints on NFs into classical PFs, Tseitin CNF PFs and UVL
models;

• Experimentally testing the viability of Nemo2 with a large
set of synthetic and 12 colossal real-world NFMs up to a
configuration space size of ∼ 5.66 × 101953.

• Experimentally testing the viability of Nemo2 with com-
plex arithmetic constraints and space sizes when count-
ing and sampling with the current state-of-the-art solvers
Glucose3, sharpSAT, FlamaPY BDD and BDDSampler.

emo2 is open-source and available in GitHub and Zenodo. 1

. Bit-blasting background and overview

.1. Propositional formulas of feature models

A classical feature model defines every feature of an SPL, along
ith constraints. Features are notoriously dependent. That is, se-

ecting one feature may preclude or require many other features.
t is well-known we can translate classical feature models into a
F φ, where features are boolean variables, and constraints are
lauses. This enables off-the-shelf SAT and #SAT technologies to
nalyze feature models, such as finding dead code and performing
afe composition (Apel et al., 2016; Batory, 2021; Benavides et al.,
007; Czarnecki and Pietroszek, 2006). State-of-the-art tools that
onvert feature models into PFs are
FeatureIDE (Thüm et al., 2014) and Glencoe (Schmitt et al.,

015); both translate a graphically drawn feature model into a PF
n Conjunctive Normal Form(CNF).

.2. Finding near-optimal configurations

If an SPL has f binary features without constraints, its product
pace C is of size |C|=2 f . When f =80, which is small for many
PLs, 280 equals 1024, the estimated number of stars in the

universe.
A core problem in SPL usage is to find a near-optimal config-

uration in an SPL product space. Searching configuration spaces
by enumeration is possible only for minuscule C. Using uni-
orm random sampling (where each configuration has the same
robability of being selected), we can quickly search in colossal
onfiguration spaces (exceeding 101440 in size) for near-optimal
onfigurations. The entire approach to uniformly random sample
onfigurations is based on counting the number of configurations
n a product space.

1 Nemo2 can be downloaded from:
•https://github.com/danieljmg/Nemo2_tool
• https://doi.org/10.5281/zenodo.7780854
 i

2

Given a random integer j in [1..|C|], the trick is to convert j
nto the jth configuration in C. This is done by a binary search
y choosing a feature f and counting the size of the space of
onfigurations with f . If j ≤ |φ ∧ fi|, the jth configuration has
eature f , recurse on the space (φ ∧ f), otherwise the jth configu-
ation has feature ¬f and recurse on (φ ∧ ¬f). At each iteration,
new feature is chosen, counting is performed, and the features
elonging to the jth configuration is eventually found.
The algorithm returns the best-performing configuration ¢ in

sample of size n, requiring in n · f calls to a counting (#SAT)
ool. Configuration ¢ is on average 100

n+1 percentiles away from the
best-performing configuration in C with 100

n+1 percentiles standard
deviation. So, if 99 uniformly random samples are taken, the best-
performing configuration out of the 99 is an average 1%±1% away
from the best configuration in C. This holds for arbitrary-large
configuration space. Details are in Oh et al. (2017, 2024).

2.3. Numerical features

However, real-world SPLs use NFMs that contain both binary
eatures and NFs (Henard et al., 2015). An NF has a name N , a
type (ie., domain), and range (eg., N ∈ [1, 2, . . . , 128]). NFMs add
arithmetic constraints to the set of propositional connectives. Fur-
ther, arithmetic constraints can negate or assert boolean feature
values and vice-versa.

Two examples of NFMs are: (1) the HADAS eco-assistant
(Munoz et al., 2019) where energy parameters are coded by
NFs in an integer domain, and propositional connectives and
inequalities arise in cross-tree constraints (eg., AEScrypto ⇒

keySize > 128) and (2) WeaFQAs (Horcas et al., 2018) has integer
and float attributes with propositional connectives and interval
constraints (ie., numerical value ranges).

2.4. Bit-blasting

Bit-blasting , also called flattening , is the transformation of a
bit-vector arithmetic formula into a PF (Barrett, 2013). Vari-
ables are bit-vectors, and arithmetic operations are proposi-
tional clauses that reference bits. The resulting PF is satisfiable
whenever the original arithmetic formula is. Our work focuses
on basic arithmetic relations and operations and counting. We
present operations in order of their usage frequency in real-world
NFMs (Munoz et al., 2019a): equality (=), inequalities (=/, >, >),
addition (+), subtraction (-), multiplication (*), division (/), and
odulo (%).

.5. Bit-blasting basic arithmetic operations

The main property of bit-vectors is their width which de-
ines: (a) the minimum and maximum value limits of numerical
ariables, and (b) whether the vector is unsigned (ie., binary
ign-magnitude encoding) or signed (ie., binary two’s complement
ncoding).2 We use the Big-Endian representation3 where the
irst bit of the bit-vector encodes the sign as positive (0) or
egative (1).
Table 1 has examples of two’s complement bit-blasting PFs for

rithmetic relations on Big-Endian signed integers with a value

2 Two’s complement negative integer encoding is the binary complement of
he positive encoding plus one bit.
3 Big-Endian: An order of bits in which the ‘Big end’ (most significant value

n the sequence) is first in the sequence.

https://github.com/danieljmg/Nemo2_tool
https://doi.org/10.5281/zenodo.7780854

D.-J. Munoz, M. Pinto, L. Fuentes et al. The Journal of Systems & Software 204 (2023) 111770

a
w

n

w
a
o
t

a

Table 1
Propositional Formulas for 3-bit Two’s Complement Signed Integers The sign bits are a1 and b1 meaning that a value of 1 represents a negative
number.
Row Operation Bit-Blasted model Propositional formula

1 (NFa == NFb) (a1 == b1) ∧ (a2 == b2) ∧ (a3 == b3) (a1 ⇔ b1) ∧ (a2 ⇔ b2) ∧ (a3 ⇔ b3)

2 (NFa ̸= NFb) (a1 ̸= b1) ∨ (a2 ̸= b2) ∨ (a3 ̸= b3) (a1 ⊕ b1) ∨ (a2 ⊕ b2) ∨ (a3 ⊕ b3)

3 (NFa > NFb) (a1 < b1) ∨ ((a1 == b1) ∧ (a2 > b2)) ∨

((a1 == b1) ∧ (a2 == b2) ∧ (a3 > b3))
(¬a1 ∧ b1) ∨ ((a1 ⇔ b1) ∧ (a2 ∧ ¬b2)) ∨

((a1 ⇔ b1) ∧ (a2 ⇔ b2) ∧ (a3 ∧ ¬b3))

4 (NFa ≥ NFb) (a1 < b1) ∨ ((a1 == b1) ∧ (a2 ≥ b2)) ∨

((a1 == b1) ∧ (a2 == b2) ∧ (a3 ≥ b3))
(¬a1 ∧ b1) ∨ ((a1 ⇔ b1) ∧ (b2 ⇒ a2)) ∨

((a1 ⇔ b1) ∧ (a2 ⇔ b2) ∧ (b3 ⇒ a3))

5 (NFa + NFb) S4
1 ≡ [C1, (a1 ⊕ b1) ⊕ C2,

(a2 ⊕ b2) ⊕ C3, (a3 ⊕ b3) ⊕ C4]

S3
1 ≡ (ai ∧ bi) ∨ (Ci+1 ∧ (ai ⊕ bi))

S4 ≡ False

[(a1 ∧ b1) ∨ (((a2 ∧ b2) ∨ ((a3 ∧ b3) ∧ (a2 ⊕

b2))) ⊕ (a1 ⊕ b1)),
(a1 ⊕ b1)⊕ ((a2 ∧ b2)∨ ((a3 ∧ b3)∧ (a2 ⊕ b2))),
(a2 ⊕ b2) ⊕ (a3 ∧ b3),
(a3 ⊕ b3)]

6 (NFa − NFb) S4
1 ≡ [C1, (a1 ⊕ b1) ⊕ C2,

(a2 ⊕ b2) ⊕ C3, (a3 ⊕ b3) ⊕ C4]

S3
1 ≡ (ai ∧ bi) ∨ (Ci+1 ∧ (ai ⊕ bi))

S4 ≡ True

[(a1 ∧ b1) ∨ (((a2 ∧ b2) ∨ ((a3 ∧ b3) ∨ (a3 ⊕

b3)∧ (a2 ⊕ b2)))⊕ (a1 ⊕ b1)), (a1 ⊕ b1)⊕ ((a2 ∧

b2) ∨ ((a3 ∧ b3) ∨ (a3 ⊕ b3))) ∧ (a2 ⊕ b2), (a2 ⊕

b2) ⊕ ((a3 ∧ b3) ∨ (a3 ⊕ b3)), ¬(a3 ⊕ b3)]

7 (NFa ∗ NFb) M ≡ NFa + NFa . . . + NFa
|NFb| times
m6 ≡ a1 ⊕ b1

Replace additions by 5th row |NFb| times

8 (NFa/NFb) |NFa| − |NFb| − |NFb| . . . − |NFb|
D ≡ #times penultimate negative value
d3 ≡ a1 ⊕ b1

Replace subtractions by 6th row D times

9 (NFa%NFb) |NFa| − |NFb| − |NFb| . . . − |NFb|
MOD ≡ penultimate negative value
mod3 ≡

Replace subtractions by 6th row D (8th row)
times
range of [−4,3] (ie., n=3 bits) with bit-1 is the sign bit4:

, b = ⟨a1, a2, . . . , an⟩, ⟨b1, b2, . . . , bn⟩
here ai, bi ∈ {0, 1}; 1 ≤ i ≤ n

Of course, we could have used larger widths in Table 1, but
=3 is sufficient to grasp the encoding patterns. Equality (==) is

the conjunction of bitwise equivalences (row 1, col PF). Inequality
(=/) is a bit-by-bit disjunction of XORs (⊕) (row 2, col PF). After
the numerical sign comparison (first clause of col PF in rows 3
and 4), there are bit-by-bit equivalences until the last bit of the
series, which involves an implication in case of > (row 4, col 3),
or a disjunction of opposites in case of > (row 3, col 3).

Encoding arithmetic expressions is more complex. We use the
term n-signed bits to mean an integer with n−1 bits for a value
(ie., 0..2n-1−1), plus a sign bit. Addition and multiplication of
bit-vectors can produce a result outside the domain range. For
example, for 3 signed bits, if we perform ‘3+1’, the result is ‘4’,
hich requires 4 signed bits. The extra bit is the carry bit . Then,
binary addition requires two data inputs and produces two
utputs, the sum S of the equation and a carry bit C as shown in
he operation 5 of Table 1. The 6th operation is subtraction, which
is a two’s complement encoding of addition with an opposite sign
bit (ie., C0 = True). The multiplication pattern is row 7 of Table 1,
which is a sign bit calculation plus a sequence of additions with
a double bit-width. Division in row 8 is the times of the last but
one subtraction of the second operand until the result is below
zero. The modulo operation in row 9 is what is left after the
division (ie., until we cannot subtract anymore, keeping above
zero). For multiplication and division, the sign is the XOR of the
most significant bit of both operands (a1 and b1). The sign bit of

4 We updated addition and subtraction in Table 1 to an easier to debug
lternative compared to the Munoz et al. (2022) version.
3

the resulting modulo operation is always 0 (ie., modulo always
returns a positive number).

The majority of SAT solvers primarily work with PFs in CNF
(Biere et al., 2009). Originally, Nemo applied the Tseitin’s CNF
transformation with Skolemization (Tseitin, 1983), the fastest
known encoding to transform PFs into a CNF formula while main-
taining model equivalence and model count (ie., not altering the
total number of solutions). And now, Nemo2 supports other CNF
encodings that theoretically can produce formulas that are faster
to analyze at the cost of increased transformation times (Kuiter
et al., 2023)

3. Nemo2

Manually applying bit-blasting to arithmetic requiring large
bit-widths will take too much time. Therefore, we automated
the process by developing Nemo2. Compared to the ICSR version
Nemo (Munoz et al., 2022), this new version Nemo2 supports
new input and output model formats from different state-of-the-
art solvers. Additionally, Nemo2 now allows to extend/compose
already modeled FMs with new NFs.

3.1. Tool overview

Fig. 1 presents an overview of Nemo2, in which a modeling
expert defines a NFM for a given SPL. The new functionalities
are tagged as such within red hexagons. Nemo2 provides a simple
language to express boolean and numerical variables and mixed
constraints NFMs, concretely:

• Features of domain Boolean, Integer and Natural (by default);
• Constant and Enumerated features, and Ranges of values;
• Cardinality-based, Mandatory and Optional (by default) fea-

tures;

D.-J. Munoz, M. Pinto, L. Fuentes et al. The Journal of Systems & Software 204 (2023) 111770

N
f
o

t

b

f
d

Fig. 1. Overview of the current version of the Nemo2 Tool.
1

1

1

1

1

• Propositional Logic: equivalences, implications, negations,
conjunctions, disjunctions, parenthetical expressions, etc.;

• Inequalities: equal, not equal, greater (or equal), lower (or
equal); and

• Arithmetic: addition, subtraction, multiplication, division,
and modulo.

The default input to Nemo2 is a .txt file containing a complete
FM definition. Further, we can now extend an FM with new
eatures and constraints by including them as a second file in one
f the following formats:

• A .txt file if we are extending a PF.
• A .uvl file if we are extending a NFM in the Universal

Variability Language (UVL) format.
• A .dimacs file if we are extending a NFM as a DIMACS.

For clarity purposes, we detail the default Nemo2 transforma-
ion procedure in Algorithm 1.

We also implemented three different output formats for the
it-blasted NFM:

• A .txt file of an equivalent classical PF, a standard com-
patible with the state-of-the-art SAT solvers.

• A .uvl file of an equivalent UVL FM, a standard compatible
with the state-of-the-art #SAT solvers.

• A .dimacs file of an equivalent DIMACS CNF FM, a standard
compatible with the state-of-the-art BDD solvers.

As the grammar of each resulting format is different, a dif-
erent set of state-of-the-art reasoners supports them. The main
ifferences are:

• DIMACS is a set of clauses in CNF, while the classical PF
and the UVL model can contain implications, equivalences,
nested clauses, and parenthesis.

• UVL model is a textual variability tree with a Root feature
and the respective hierarchical constraints among features
(ie., father and children) followed by independent cross-
tree constraint clauses. On the other hand, the classical
4

Algorithm 1: Nemo2 Process (blue lines of Fig. 1)
Input: i) The NFM completely

1 defined in a .txt file
ii) The output format: PF, UVL or DIMACS Parse features
names;

2 Calculate features types;
3 Adjust NFs bit-widths;
4 Optimize data-types, domains, widths, and constraints;
5 Register the declared and calculated constraints;
6 Bit-blast the NFs and inequality equations;
7 Transform the bit-blasted NFM into a set of formulas;
8 if (PF or DIMACS) then
9 Transform the formulas into a PF;
0 if DIMACS then
1 Transform the PF into its Tseitin CNF form;
2 Transform the Tseitin CNF PF into DIMACS;
3 else if UVL then
4 Transform the formulas into an UVL model;
Result: i) DIMACS, UVL or PF of the bit-blasted NFM

ii) A .txt file matching NFs with bit-vectors

PF is a single ‘‘all-in-one’’ clause that includes hierarchical
constraints, and a Root variable is not needed.

Consequently, a simple switch of the file extension will not
make them cross-compatible.

In all of our three encodings, we identify each bit-vector
with its original name plus the sequence of bits (Big Endian);
In contrast, boolean features are identified as name plus Boolean
keyword. We embed this information in the resulting bit-blasted
NFM, but it is purely informative and hence not considered by the
automated reasoners. This information is placed as comments in
the first lines of the classical PF and the DIMACS files and along-
side their occurrence in the hierarchy of the textual variability
tree in the UVL model.

We now detail the structure of each supported format.

D.-J. Munoz, M. Pinto, L. Fuentes et al. The Journal of Systems & Software 204 (2023) 111770

p
t
i
t

e

p
t
e

3

p
i
r
a

t
a
S
f
U
r
2
r
m
t
m
s
f
t
!

w

3

s
a
p
t
a
w

t
T
b
a
t
t

3

(
w
e
w
t

Table 2
DIMACS example for ‘‘A and (B or not C) and (B or D)’’.
Code Description

c 1 variable A (variables first)
c 2 variable B
c 3 variable C
c 4 variable D
p cnf 4 3 header,CNF format, 4 variables, and 3 clauses
1 0 A (clauses last)
2 −3 0 and (B or not C)
2 4 0 and (B or D)

3.1.1. Bit-blasted NFM as a PF in Nemo2
Mannion was the first to connect propositional formulas to

roduct lines Mannion (2002). Time after, Batory formally defined
he mapping between FMs and PFs (Batory, 2005). In short, a PF
s a set of boolean variables and a propositional logic predicate
hat constrains the values of these variables. Nemo2’s PF output
returns a single predicate nesting between parenthesis the dif-
ferent features by relating them with the standard And and Or
connectives, the implication and equivalence operations, and the
negation, in the forms of (,),&, |, =>, <=>, ! respectively. For
xample, Listing 1 presents Nemo2’s PF output for a bit-blasted
NFM with one feature and two bounded NFs and the arithmetic
constraint ‘‘C implies (A != B)’’ is:

Vectorized Features:
v1 A_1
v2 A_2
v3 B_1
v4 B_2
C Boolean
Formula:

!(!((v1 | !v2))) &
!(!((v2 | v1))) &
!(!((v3 | !v4))) &
(!(C) | !(!((v1 <=> v3 | !v2 <=> v4))))

Listing 1: Nemo2 PF output for: A ∈ [-1,0]; B ∈ [-1,1];
C Boolean in "C requires (A != B)"

As shown by gold arrows in Fig. 1, the generated PF is sup-
orted by SAT solvers to create products or enumerate configura-
ions, useful for fast probabilistic sampling and learning (Heradio
t al., 2022).

.1.2. Bit-blasted NFM as an UVL FM in Nemo2
The first formal proposal and partial definition of the UVL was

ublished by Sundermann et al. (2021s). Its adoption is rapidly
ncreasing, with tool support by state-of-the-art modeling and
easoning tools such as Feature IDE (Sundermann et al., 2021b)
nd Pure::variants (Romano et al., 2022).
The main idea behind UVL is to be a common input between

he different variability modeling tools currently in use. Addition-
lly, it incorporates most of the modeling requirements from the
PL community (Berger and Collet, 2019), such as being human-
riendly and having a soft learning curve. While the current
VL version covers FMs with feature-wise attributes, compatible
easoning tools support only classical FMs (Sundermann et al.,
021b). Nevertheless, this includes all sorts of cardinality and
elated definitions and abstract features that can be referenced
ultiple times (ie., clones). Its textual representation, similar

o an FM tree graph, follows an indented approach with pri-
ary keywords that divide each section such as features, con-
traints, import, etc. Listing 2 presents Nemo2’s UVL output
or a bit-blasted NFM with the same example of one feature and
wo bounded NFs and the arithmetic constraint ‘‘C implies (A
= B)’’.
5

features
Root

optional
v1 # A_1
v2 # A_2
v3 # B_1
v4 # B_2
C # Boolean

constraints
!(!((v1 | !v2)))
!(!((v2 | v1)))
!(!((v3 | !v4)))
(!(C) | !(!((v1 <=> v3 | !v2 <=> v4))))

Listing 2: Nemo2 UVL output for: A ∈ [-1,0]; B ∈ [-1,1];
C Boolean in "C requires (A != B)"

As shown with the purple arrows in Fig. 1, we can use the
resulting UVL file to generate products or count configurations
ith state-of-the-art BDD solvers (Heradio et al., 2022).

.1.3. Bit-blasted NFM as a DIMACS CNF in Nemo2
DIMACS dates back to 1993 and is the de-facto input format

tandard for SAT solvers.5 A DIMACS CNF file has three parts:
n optional comment section with the prefix c, a mandatory
roblem line with the prefix p, and the clauses section following
he mentioned Tseitin-CNF PF format. 0 is a reserved keyword for
clause delimiter. DIMACS format identifies features sequentially
ith a unique numerical index. Table 2 illustrates a DIMACS file:
In this output case, we need to consider that a CNF Tseitin

ransformation of a bit-blasted NFM generates extra variables.
able 3 continues with a bit-blasted example in DIMACS of a
it-blasted NFM with one feature and two bounded NFs and the
rithmetic constraint ‘‘C implies (A != B)’’. As shown with
he green arrows in Fig. 1, the generated DIMACS file can be used
o count configurations with a #SAT solver efficiently.

.2. Numerical Feature Modeling in Nemo2

Most feature modeling languages today are tool-specific
Raatikainen et al., 2019), eg., Clafer (Ba̧k et al., 2010). For Nemo2,
e abstract NFMs to only two entities (Munoz et al., 2021; Horcas
t al., 2020): generic variables and constraints. Our motivation
as to reduce Nemo2’s learning curve. Consequently, we present
he cheat sheet in Table 4.

Listing 3 illustrates most of the types of supported clauses:

def A bool 0 # 0 means new feature
def B bool B # named in adjunt FM as B
def C bool 0
def D_unsigned [0:1]
def E_unsigned [0:3]
def F_signed [-1:1]
def G_enum_signed [-9, -3, 0, 3]
def H_constant [-2]
ct C -> B
ct A -> (G = 0)
ct A or B
ct (G_enum_signed*H_constant) ≤ E_unsigned

Listing 3: Example of extending with Nemo2 an FM with
new boolean and numerical features and constraints

Sequentially, Listing 3 keywords mean:

5 DIMACS: http://archive.dimacs.rutgers.edu/pub/challenge/satisfiability

http://archive.dimacs.rutgers.edu/pub/challenge/satisfiability

D.-J. Munoz, M. Pinto, L. Fuentes et al. The Journal of Systems & Software 204 (2023) 111770

a
t
c
B

Table 3
Nemo2 DIMACS output for: A ∈ [−1,0]; B ∈ [−1,1]; C Boolean in‘‘C
requires (A != B)’’.
Code Description

c 1 Abit1
c 2 Abit2
c 3 Bbit1
c 4 Bbit2
c 5 Tseitin1
c 6 Tseitin2
c 7 Tseitin3
c 8 Tseitin4
c 9 Tseitin5
c 10 Tseitin6
c 11 C Boolean
p cnf 11 24 header, cnf format, 11 variables, and 24 clauses
−1 5 0 (not Abit1 or not Tseitin1)
2 5 0 and (Abit2 or Tseitin1)
1 −2 -5 0 and (Abit1 or not Abit2 or not Tseitin1)
5 0 and Tseitin1
−2 6 0 and (not Abit2 or Tseitin2)
1 6 0 and (Abit1 or Tseitin2)
2 −1 -6 0 and (Abit2 or not Abit1 or not Tseitin2)
6 0 and Tseitin2
7 −3 0 and (Tseitin3 or not Bbit1)
4 7 0 and (Bbit2 or Tseitin3)
3 −4 -7 0 and (Bbit1 or not Bbit1 or not Tseitin3)
7 0 and Tseitin3
−2 -4 −8 0 and (not Abit2 or not Bbit2 or not Tseitin4)
2 4 −8 0 and (Abit2 or Bbit2 or not Tseitin4)
2 −4 8 0 and (Abit2 or not Bbit2 or Tseitin4)
−2 4 8 0 and (not Abit2 or Bbit2 or Tseitin4)
−1 -3 −9 0 and (not Abit1 or not Bbit1 or not Tseitin5)
1 3 −9 0 and (Abit1 or Bbit1 or not Tseitin5)
1 −3 9 0 and (Abit1 or not Bbit1 or Tseitin5)
−1 3 9 0 and (not Abit1 or Bbit1 or Tseitin5)
−9 10 0 and (not Tseitin5 or Tseitin6)
−8 10 0 and (not Tseitin4 or Tseitin6)
8 9 −10 0 and (Tseitin4 or Tseitin5 or not Tseitin6)
−11 10 0 and (not C or Tseitin6)

Table 4
Cheat Sheet of NFM Modeling with Nemo2.
Keyword Description

def Name Domain Defines a feature by its name and
domain (eg., range of values)

[X] Indicates a NF with a constant value X
[X:Y] Indicates a range between X and Y

inclusive
[X,Y,Z] Indicates an enumerated type with

values X, Y or Z
ct Indicates the start of a definition of a

single constraint
and/or Are conjunctions and disjunctions
<->/->/neg Are equivalences, implications and

negations
=/>/</>=/<=/!= Are the equalities/inequalities
+/-/*///% Are the numerical operators

1. A bool and C bool 0: boolean features, newly defined as
tagged by zero (0) identifier. This is necessary if we are
extending or composing models, 0 means that they have
not been included in the FM tree yet;

2. B_bool B: a boolean feature defined in the attached FM

that we are extending where B is its exact name in that
model. In Fig. 2 we graphically summarize the inputs that
are needed for this concrete extension of a previously
modeled FM;

3. D_unsigned: a natural NF with inclusive values 0 to 1
in two’s complement encoding;

4. E_unsigned: another natural NF with inclusive values 0
to 3 in two’s complement encoding;
6

Fig. 2. Extending with Nemo2 an FM with Listing 3 NFM.

5. F_signed: an integer NF with inclusive values −1 to 1
in two’s complement encoding;

6. G_enum_signed: an enumerated integer NF with ex-
actly 4 values in two’s complement encoding;

7. H_constant: a constant integer NF with a value of −2;
8. C -> B: A propositional logic requirement;
9. A -> (G = 0): A propositional logic requirement with an

arithmetic equality;
10. A or B: A propositional logic disjunction;
11. (G_enum_signed * H_constant) ≤ E_unsigned:

An arithmetic constraint.

We have two tags for the objects: def are feature declarations
nd ct are their constraints. The format is flexible, allowing any
ag at any line. As a formal definition, we present in Listing 4 the
omplete Nemo2’s modeling context-free grammar in an extended
ackus–Naur form notation:

NumericalFeatureModel = Features? Constraints?

Features = (BoolFeature | NumFeature)+\n
<BoolFeature > = FeatureSpec <’bool’> Name
NumFeature = FeatureSpec
<’[’>(Number|Range|Enumeration)<’]’>

<FeatureSpec > = <’def’> Name
Range = (Number? <’:’> Number?)
<Enum> = (Number <’,’?>)+

Constraints = <’ct’> (Formula)+\n
<Formula> = Predicate|Equation
Predicate = <’(’>?BoolFormula|IneqEquation <’)’>?
(Connective <’(’>BoolFormula|IneqEquation <’)’>)*

<BoolFormula > = not? BoolFeature
(Connective not? BoolFeature)*

Connective = <’and’>|<’or’>|<’->’>|<’=>’>
<IneqEquation > = <’(’>?NumEquation <’)’>?
(Ineq <’(’>NumEquation <’)’>)*

Ineq = <’=’>|<’>’>|<’<’>|<’>=’>|<’<=’>|<’!=’>
<NumEquation > = NumFeature (Arith NumFeature)*
Arith = <’+’>|<’-’>|<’*’>|<’/’>|<’%’>

<Name> = #’[a-zA-Z_0-9]+’
<Number> = #’[-]?[0-9]+’

Listing 4: Nemo2’s context-free grammar in a Backus–Naur form

D.-J. Munoz, M. Pinto, L. Fuentes et al. The Journal of Systems & Software 204 (2023) 111770

3

x
d
b
e

i
t
w
o
w
t
s

o
i

p
c
r
n
m
t
f
c

s
f
n
a

m

4

t
t
i

s
i
o
a
m
L

s

f
A
p
s
i
(
s

e
r

.3. Automatic calculation of minimal bit-widths

Nemo2 is a cross-platform tool developed in Python 3.11.0
86_64. It posed several engineering challenges. First, Nemo2
ynamically sets a feature as a natural or an integer, as the
it-blasted encoding of some operations are different (ie., in-
qualities, division, and modulo).6 If any value of a NF is negative,

it is considered an integer.
Second, Nemo2 dynamically calculates the minimum bit-width

of each NF to generate the shortest PF. The process is based
on the possible values of each NF (eg., range, enumeration) and
the domain; natural NFs and constraints produce smaller PFs.
For example, the optimal encoding for an enumerated feature
with just two values (eg., −1 and 9), and that is not involved in
arithmetic expressions, is a single bit natural NF.

Third, Nemo2 readjusts the previous computed widths based
on NFM constraints. Leaving aside boolean features, every NF
nvolved in operations with another NFs must have the same
ype and bit-width in order to apply bit-blasting. Our solution
as to recursively search for the NF with the highest bit-width
f each set of NFs involved in a constraint, and set that bit-
idth to the rest of the features sharing a constraint. For example,
ransforming a natural into an integer NF adds one bit for the
ign.
Fourth, Nemo2 readjusts bit-widths in case of mathematical

perations that can produce extra carry-bits. The most efficient
s to define the highest from:

• Addition: Extending one bit for the first addition, followed
by extra bits per sets of two extra additions. For example,
‘‘A +B +C +D = E’’ needs two extra carry bits. Note that
natural numerical ranges are up to
2bit−width

− 1.
• Multiplication: The extended bit-width is the original mul-

tiplied by the number of multiplication operands plus 1. For
instance, ‘‘A * B * C = D’’ implies that
bit − widthupdated = (bit − widthcurrent × 3) + 1.

3.4. Nemo2 Optimizations by Pre-Processing the NFM

Bit-blasting and Tseitin transformations create different size
CNF PFs depending on the equation. Nemo2 pre-process the in-
ut NFM to reduce or replace the NFs domains and arithmetic
onstraints to produce smaller bit-blasted models. This not only
educes the number of lines of the resulting file, but also the
umber of features and the size of the clauses of the resulting
odel independently of the output. This causes a reduction of

he feature space size and complexity, and consequently the per-
ormance and scalability of automated reasoning like decreasing
ounting time (Shih and Cheng, 2005).
First of all, Nemo2 removes duplicated constraints when pos-

ible. For example, in case of the constraints A<1 and A<2 the
irst one is redundant. Additionally, Nemo2 dynamically prioritizes
atural NFs, as unsigned operations need smaller bit-widths
nd produce smaller PFs due to removing sign-bits. For example,

if 1 integer and 9 natural NFs are present in a integer
addition operation, we need 10 sign-bits, as the operation and all
of its operands must have a compatible domain (i.e., integer). In
the case of the DIMACS output we also consider which operations
are creating more Tseitin artificial features, and hence replace
those ones by their more optimal alternatives. Concretely:

1. >/</+/- do not create extra variables;

6 Besides inequalities, division, and modulo, arithmetic operations do not
ake unsigned/signed distinction due to the Two’s complement encoding.
 i

7

2. >/< create (bit-width−1) Tseitin variables in the NFs in-
volved;

3. = creates (bit-width) Tseitin variables in the NFs involved;
4. =/ creates (bit-width+1) Tseitin variables in the NFs in-

volved;
5. / creates (3 × 2bit-width-1) Tseitin variables in the NFs

involved;
6. % creates (14 × 2bit-width-1) Tseitin variables in the NFs

involved; and
7. * creates (6bit-width-1) Tseitin variables in the NFs in-

volved.

The only two operations naturally replaceable by an alterna-
tive with a shorter PF encoding are {>,<} by {>,<} respectively.
(eg., A>1 and A<2 are equivalent to A>0 and A<3).

. Evaluation

The following research questions evaluate Nemo2, including
he complete set of arithmetic and its three different transforma-
ions Tseitin CNF DIMACS, classical PF and UVL model as detailed
n Section 3.

RQ1: How do the three different transformations of Nemo2 scale
for different bit-widths and constraints?

RQ2: How do the three different transformations of Nemo2 scale
for real-world NFMs?

RQ3: How well do bit-blasted NFMs generated by Nemo2 per-
form on model counting with the state-of-the-art solvers
for different arithmetic constraints?

RQ4: How well do bit-blasted NFMs generated by Nemo2 per-
form on random sampling with the state-of-the-art solvers
for real-world NFMs?

In short, RQ1-2 evaluate Nemo2’s scalability on transforming
ynthetic and real-world models, and RQ3-4 evaluate the scalabil-
ty of the state-of-the-art solvers on counting and sampling those
utputs (ie., bit-blasted NFMs). Every test has been carried out on
n Intel(R) Core i7-4790 CPU@3.60 GHz processor with 16 GB of
emory RAM and an SSD running an up-to-date Lubuntu 22.04
TS X86_64.
RQ1: How do the three different transformations of Nemo2

cale for different bit-widths and constraints?
In this RQ, we evaluate Nemo2’s general runtime when trans-

orming all sorts of NFs with boolean and arithmetic constraints.
ll tests are performed for comparison purposes for the three out-
uts detailed in Section 3: PF, UVL and Tseitin CNF DIMACS. We
tart by transforming the most complex types of NFM operations,
e., arithmetic. Additionally, we add the least complex inequality
i.e., =), which allows us to focus on arithmetic equalities. For
imilar reasons, we opted for natural instead of integer NFs.
The analyzed the first set of 5 NFM constraints defined by:

1. (A + B) = C
2. (A - B) = C
3. (A ∗ B) = C
4. (A / B) = C
5. (A % B) = C

Formulas with different bit widths (#b) from 2 up to 16 bits
step 2 were generated. Remember that the operations that create
more carry-bits produce the maximum bit-width.

Fig. 3 shows the first set of results. Regarding the different
outputs, we can visualize that the Tseitin CNF DIMACS transfor-
mation is the slowest, closely followed by UVL and then PF. The
xplanation is calculating a PF is the final step to generate its
espective file or when generating the UVL model. Still, it is an

ntermediate step when computing any CNF formula.

D.-J. Munoz, M. Pinto, L. Fuentes et al. The Journal of Systems & Software 204 (2023) 111770

s
t
t
b
s
e
s
w

w
O
h
c
g
c

a
m
i
t
t
a

e
t
n
c

e
m

Fig. 3. Nemo2 runtime in seconds of arithmetic operations and equations sets.
Fig. 4. Nemo2 runtime in seconds of arithmetic operations and equations sets.
m
w
l
n
c

s

l

f
c

Regarding constraints, Nemo finishes instantly for addition and
ubtraction operations. However, the runtime is slightly exponen-
ial for division and modulo and truly exponential for multiplica-
ion due to the carry bits of the operations. Nevertheless, all 16
it-width transformations finished in under 40 min. A possible
olution to reduce the transformation time of multiplication op-
rations is to discretize the possible values of the NFs. A common
olution would be considering only the pair or odd values, which
ill decrease the bit-width needed by half.
As the number of NF variables is proportional to the bit-

idth, the Tseitin’s transformation guarantees a linear increase
(3n+1) (Tseitin, 1983). Hence, they cannot be the reason be-
ind the scalability differences between the operations. The issue
omes from the carry-bits, as multiplying two bit-vectors could
enerate a double-width one (eg., 23

∗ 23
= 26). Those are many

arry-bits compared to additions which create a maximum of one.
Further, to evaluate all types of constraints’ size and casuistic

nd test their performance behavior, we analyze logic and arith-
etic mixed nested constraints and up to four conjuncted numer-

cal constraints. Following the previous procedure, we prioritize
he less demanding operations (ie., =, +, ⇒) to reduce interac-
ions for more precise insights. The second set of 4 constraints
nalyzed are:

1. ((A + B) = C) ⇒ D
2. (A + B) = C
3. (A + B) = C ∧ (D + E) = F
4. ((A + B) = C) ∧ ((D + E) = F) ∧((G + H) = I) ∧ ((J

+ K) = L)

Fig. 4 shows the second set of results. Regarding the differ-
nt outputs, they are similar to those of Fig. 3, meaning that
he Tseitin CNF DIMACS transformation is the slowest due to
eeding extra computational steps. Regarding nested and stacked
onstraints, processing all equalities takes a maximum of 85 s.
Conclusion: Nemo2 NFs are unbounded by default, but their

ncoding scales up to 16 bit-width per number with transfor-
ation times of approximately one minute. The exception is
8

ultiplication, which takes 40 min to bit-blast for a 16 bit-
idth. Mixing, nesting, and conjuncting operations produce a

inear increase in transformation time. Additionally, there are
o big differences between the different output formats, the
lassical PF being the fastest transformation.
RQ2: How do the three different transformations of Nemo2

cale for real-world NFMs?
This RQ evaluates Nemo2’s specific runtime when transforming

arge real-world NFMs. Again, all tests are performed for the PF,
UVL and Tseitin CNF DIMACS transformations.

We evaluate a total of 12 real-world NFMs. We obtained
Dune, HSMGP, HiPAcc, and Trimesh from (Oh et al., 2019); MO-
TIV from (Galindo et al., 2014); axTLS, Fiasco, and uClibc-ng
from (Siegmund et al., 2015); and Busybox 1.18.5, Busybox 1.28
and Linux 2.6.33.3 from (Sundermann and Feichtinger, 2021)
and extended with their respective NFs and constraints defined
in Catenazzi (2022). When the NF domain was not properly
defined, we restricted them to the minimum necessary based
on its contextual definition; for example, restricting a NF delay
in seconds to a maximum of 7 days instead of years (Catenazzi,
2022). Table 5 lists and summarizes these NFMs, where each sys-
tem has a different number of NFs and/or different configuration
space size. They are ordered first by source and then by space size,
reaching up to NFM with a space size of approximately 5.66 ×

101953.7 All the input NFMs and the three Nemo2 different output
formats for each NFM are uploaded to GitHub and Zenodo. 8

As we can visualize in Table 6, the larger the NFM, the more
time that Nemo2 needs to bit-blast it. Nevertheless, the scalability
is linear, as most models are transformed in less than 10 s, and
a colossal one, like Linux, takes approximately 45 min. Regarding

7 Linux 2.6.33.3 NFM space size of 5.66 × 101953 is estimated with the tool
rom Horcas et al. (2022b) due to not existing tools that can yet accurately
ount such colossal FMs
8 Nemo2 data-set can be downloaded from:
• https://github.com/danieljmg/Nemo2_tool
• https://doi.org/10.5281/zenodo.7781025

https://github.com/danieljmg/Nemo2_tool
https://doi.org/10.5281/zenodo.7781025

D.-J. Munoz, M. Pinto, L. Fuentes et al. The Journal of Systems & Software 204 (2023) 111770

f
f

m
r

Table 5
List of the Real-World Numerical Feature Models analyzed in RQ2 and RQ4.
Source NFM Description #F #NFs #Configs

FSE2015(Siegmund et al., 2015)

Dune Multi-grid solver 11 3 2,304
HSMGP Stencil-grid solver 14 3 3,456
HiPAcc Image processing 33 2 13,485
Trimesh Triangle mesh library 13 4 239,360

ISSTA14 (Galindo et al., 2014) MOTIV Mobile Video Sequence 8 13 3.52 × 1030

UMA18 (Horcas, 2018) WeaFQAs Quality Attributes Weaver 240 5 1.38 × 1040

KConfig(Foundation, 2018; Sundermann and Feichtinger, 2021)

Fiasco Real-time microkernel 234 5 3.06 × 1012

axTLS Client–server library 94 9 4.96 × 1038

uClibc-ng C Language library 269 6 8.20 × 1045

Busybox 1.18.5 Embedded Linux 631 12 1.34 × 10191

Busybox 1.28 Embedded Linux 1100 12 1.53 × 10248

Linux 2.6.33.3 Operating System Kernel 6467 55 ∼ 5.66 × 101953
Table 6
Nemo2’s runtime in seconds when bit-blasting real-world NFMs in three different formats (ie., Tseitin CNF DIMACS, classic PF and UVL model).
seconds Dune HSMGP HiPAcc Trimesh MOTIV WeaFQAs Fiasco axTLS uClibc-ng Busybox 1.1 Busybox 1.2 Linux 2.6

DIMACS 4.77 4.25 7.01 10.33 9.06 8.99 8.67 97 190 589 598 2713
PF 4.23 3.88 5.45 8.76 9 8.21 7.79 86 169 489 505 2108
UVL 4.53 4 6.77 9.79 9.03 8.63 8.08 93 178 547 555 2545
Table 7
Counting time in seconds of synthetic NFMs of a bit-width of 12 transformed
with Nemo2.
Counting Time (bit-width 12) Glucose3 sharpSAT Flamapy BDD BDDSampler

(A + B) = C Time-out 0.1 s Time-out 1.17 s
(A - B) = C Time-out 0.1 s Time-out 1.17 s
(A * B) = C Time-out 0.7 s Time-out 4.49 s
(A / B) = C Time-out 32.15 s Time-out 8.88 s
(A % B) = C Time-out 51.85 s Time-out 8.79 s
((A + B) = C) ⇒ D Time-out 26.1 s Time-out 2.1 s
(A + B) = C (2) Time-out 16.35 s Time-out 2.3 s
(A + B) = C (4) Time-out 37.22 s Time-out 4 s

Table 8
Sampling time of Nemo2’s synthetic NFMs with bit-width 12.
Sampling time (bit-width 12) Flamapy BDD BDDSampler
(A + B) = C Time-out 6.56 s
(A - B) = C Time-out 6.54 s
(A * B) = C Time-out 34.05 s
(A / B) = C Time-out 98.06 s
(A % B) = C Time-out 96 s
((A + B) = C) ⇒ D Time-out 12.06 s
(A + B) = C (2) Time-out 12.01 s
(A + B) = C (4) Time-out 22.22 s

the differences between the three output formats, again, the clas-
sical PF is the fastest, and UVL and Tseitin CNF DIMACS increase
those times by an average of 10% and 15% respectively. As we
can see by comparing with RQ1, RQ2 runtimes seem much more
scalable. The reason is that most of the NF constraints present
in real-world SPLs are numerical inequalities, or if arithmetic is
involved, the bit-width tends to be small.

Conclusion: Nemo2 linearly scales when transforming large
real-world NFMs in any of its three output formats, as its run-
times are kept below 45 min even for a colossal NFMs. UVL and
Tseitin CNF DIMACS transformations takes 10% and 15% more
time than the equivalent PF.

RQ3: How well bit-blasting NFMs generated by Nemo2 per-
orm when model counting with the state-of-the-art solvers
or different arithmetic constraints?

In this RQ, we evaluate the performance of the same arith-
etic constraints of RQ1 when model counting and uniform

andom sampling with different state-of-the-art tools. In our
9

previous publication (Munoz et al., 2022), we selected three au-
tomated solvers, each of them from another type – sharp-
SAT (Thurley, 2006) as a #SAT solver, Z39 as an SMT solver,
and Clafer10 as a CP solver. However, Z3 and clafer did not
properly scale, as counting could take hours in those solvers
compared to 0.1 s in sharpSAT. Part of the reason that we
discovered is that solvers that natively support NFs are currently
less polished and hence less efficient reasoners. Therefore, for this
work, we replaced Clafer and Z3 with three additional solvers:
Glucose3 (Audemard and Simon, 2018) as an SAT solver, and
Flamapy BDD (Horcas et al., 2022a) and BDDSampler (Heradio
et al., 2022) BDD solvers.

Those three solvers are all integrated into the Flamapy tool.
FLAMA acts as a format proxy by providing PF and UVL model
input support to those three solvers. Hence, we do not need
to generate tool-specific models for those solvers. With them,
alongside sharpSAT, we can perform an efficient model counting,
and with the BDDs we can achieve efficient uniform random
sampling. From now on, if the counting or sampling surpasses 72
hours, we consider it a time-out. due to a high probability of never
finishing.

Counting results are presented in Table 7. To be consistent
with RQ1 conclusions, the NFs are restricted to bit-widths of 12
(ie., inclusive range [−2048, 2047]). As we can see, half of the
state-of-the-art tools cannot count NFMs with complex arithmetic
and nested operations for bitou-widths of 12. On the other hand,
while multiplication was the most costly to bit-blast by Nemo2
as seen in RQ1, it is not by far the most complex to count. On
the other hand, division and specially modulo are very slow to
count compared to the rest of the operations, with increments
of 320% and 530%, respectively. Additionally, nesting increments
counting a 260%, which is almost the double of duplicating
constraints. In general, adding new constraints does not create
n-wise influences on performance. Regarding the differences be-
tween the solvers, Glucose and Flamapy BDD time-out in all cases.
On the other hand, while sharpSat tends to be 100% faster
than BDDSampler for lower complexities, it is the opposite for
the more complex ones. Consequently, BDDSampler scalability is
higher than that of sharpSat.

9 Z3py: https://github.com/Z3Prover/z3
10 Clafer: https://www.clafer.org/

https://github.com/Z3Prover/z3
https://www.clafer.org/

D.-J. Munoz, M. Pinto, L. Fuentes et al. The Journal of Systems & Software 204 (2023) 111770

d

t
c
F
t
a
a
B
9
o
c
t

f
f

i
s

s
t

r

Table 9
Model counting time of synthetic NFMs transformed with Nemo2.
Counting time Glucose3 sharpSAT Flamapy BDD BDDSampler
Dune 0.37 s 0.01 s 0.03 s 0.44 s
HSMGP 69.43 s 0.01 s 0.03 s 0.51 s
HiPAcc 37.08 s 0.01 s 0.05 s 0.6 s
Trimesh 180.98 s 0.01 s 0.05 s 0.71 s
MOTIV Time-out 0.01 s Time-out 3.15 s
WeaFQAs Time-out 0.01 s Time-out 2.9 s
Fiasco Time-out 0.01 s Time-out 1.11 s
axTLS Time-out 0.01 s Time-out 2.45 s
uClibc-ng Time-out 0.01 s Time-out 4.95 s
Busybox 1.1 Time-out 4.3 h Time-out Time-out
Busybox 1.2 Time-out 5 h Time-out Time-out
Linux 2.6 Time-out Time-out Time-out Time-out

Table 10
Sampling time of real-world NFMs transformed with Nemo2.
Sampling time Flamapy BDD BDDSampler
Dune 2.79 s 3 s
HSMGP 2.41 s 3 s
HiPAcc 5.5 s 3 s
Trimesh 5.57 s 3.1 s
MOTIV Time-out 4.61 s
WeaFQAs Time-out 3.68 s
Fiasco Time-out 3.2 s
axTLS Time-out 8.13 s
uClibc-ng Time-out 9.73 s
Busybox 1.1 Time-out Time-out
Busybox 1.2 Time-out Time-out
Linux 2.6 Time-out Time-out

Sampling results are presented in Table 8. Sample sizes are
ynamically calculated by the Slovin’s formula:

#Samples =
Size

(1 + Size ∗ Error2)

Again, Flamapy BDD time-out for all cases and the trends
discussed for each operation in counting are similar for sampling.
Concretely, division and modulo are the slowest and equally slow,
and nesting is equally complex than adding new constraints.

Conclusion: NFMs with complex constraints and large bit-
widths bit-blasted with Nemo2 are compatible with state-of-
he-art solvers for counting and sampling. Unfortunately, the
omplexity that arithmetic adds is a time-out for Glucose3 and
lamapy BDD. Regarding counting, sharpSat is 100% faster
han BDD Sampler for less complex operations like addition
nd multiplication, being the opposite for more complex oper-
tions like division, modulo, and nesting. Regarding sampling,
DDSampler performed all the constraints between 6 and under
8 s, with times increasing proportionally to the complexity
f the operation. Finally, there is no relationship between the
omputational cost of bit-blasting a NFM and the analyses of
hose models
RQ4: How well bit-blasting NFMs generated by Nemo2 per-

orm when random sampling with the state-of-the-art solvers
or real-world NFMs?

In this RQ, we perform the same reasoning operations that
n RQ3 but for the real-world NFMs of Table 5. The number of
amples and time-outs are consistent with RQ3.
The model counting results are shown in Table 9. When vi-

ualizing them, we can obtain several conclusions. The size of
he NFM affects the tool’s scalability, but the number and com-
plexity of the NFs can greatly affect too. An example of this is
the counting times of WeaFQAs and MOTIV — while WeaFQAs
has a considerably larger space size, it is faster to count than
MOTIV, which has more NFMs. Additionally, we can conclude that

egular SAT solvers like Glucose3 should not be considered for

10
NFM analyses. BBD solvers are very fast, but there is a point
where the construction of the BDD requires so many resources
(eg., memory RAM) that the system crashes. On the other hand,
sharpSat was generally the fastest and, most importantly, could
count even colossal space sizes with a special mention to Busybox
1.2 in just 5 h. However, it is necessary to mention that we
needed to increase the virtual memory of our testing computer
to 1 Terabyte, as otherwise, the system would crash. Presented
time-outs are not reduced by increasing the virtual memory in
the rest of the solvers, and likewise if increasing it further than 1
Terabyte for sharpSat.

The uniform random sampling results are shown in Table 10.
In this case, colossal spaces such as Busybox and Linux time-out
in all contexts. Flamapy can neither sample large NFMs, but tends
to be a bit faster than BDDSampler. Nevertheless, BDDSampler
scaled up to the colossal SPL uClibc-ng in under 10 s. If we
did not apply the pre-processing of Section 3.4, we can expect
an increase in the number of time-outs. Approximate counting
and sampling techniques could reduce the time-outs, but those
are configuration space reasoning techniques that are out of the
scope of this work.

Conclusion: large real-world NFMs bit-blasted with Nemo2
are compatible with state-of-the-art solvers for counting and
sampling. textttsharpSat is the best performant solver for count-
ing, with an analysis time of 0.01 s for many NFMs, and just 5 h
for Busybox 1.2 SPL. Regarding sampling, BDDSampler presents
runtimes between 3 and 10 s, scaling up to space sizes of 8.20×

1045 (ie., uClibc-ng).

5. Threats to validity

Internal validity. To control randomness, we conducted 97 ex-
periments and averaged the results for a confidence level of 95%
with a 10% margin of error (Systems, 2012). For RQ3-4, we used
the counting methods and default options that the developers
of each solver propose. We prepared a variety of synthetic con-
straints to test the limitations of Nemo2 and, respectively, its
outputs in the state-of-the-art solvers. Enumerated NF domains
with very distant values were encoded as the minimal number
of alternatives in a single NF to reduce the performance noise
that those kinds of domains could create. For example, an integer
ranger of just 4 enumerated values ‘‘[0, 1, 10, 512]’’ is defined
as a bit-vector of width 3 instead of directly with width 10.
This reduces the resulting bit-blasted FM size and complexity,
meaning fewer bits and Tseitin features.
External validity. We used the 12 real-world SPLs of Table 5,
which have different numbers of features, domains, constraints,
and space sizes, including colossal NFMs. For complex constraints,
we evaluated synthetic models. While we are aware that our
results may not generalize to all SPLs, their trends are identical
in different cases. Similarly, although currently state-of-the-art,
the selected solvers could be superseded by faster alternatives
in the future. Additionally, a manual bit-blasting approach for
NFs and basic operations was successfully applied for counting-
based optimizations of SPLs (Munoz et al., 2019a). This was
extended for the complete arithmetic set and automated with
Nemo in Munoz et al. (2022). Nemo2 extends that version by
supporting new input and output model formats from different
state-of-the-art solvers: Tseitin CNF DIMACS, regular PFs and UVL
models. This allows state-of-the-art solvers for classical FMs like
BDD algorithms to support NFMs. Additionally, Nemo2 now allows

to extend/compose already modeled FMs with new NFMs.

D.-J. Munoz, M. Pinto, L. Fuentes et al. The Journal of Systems & Software 204 (2023) 111770

6

o
r
d
a
a
d
s

r
e
p
2
(
v
i
s
f
B
a
a
T
(
i
D
s
s

e
s
N
t
r
a
a
t

7

w

m
N
a
e

a
f

. Related work

Work tackling NFMs is rare (Marchezan et al., 2022). Some
considered NFs as classical features with just present/absent
states (Berger et al., 2013; Oh et al., 2019; Döller and Karagiannis,
2021). Some encoded NFs as alternative features, where each
value of a NF was considered a distinct feature (Kästner et al.,
2011). Shi (Shi, 2017) used a single type of feature called ‘pseudo-
boolean’ with only Successor (+1) and Predecessor (−1)
perations. In Benavides et al. (2010), each boolean feature had
elated attributes – a set of variables in the form (name, value,
omain). However, attributes and NFs are essentially different:
ttributes are not nodes of the variability tree, and as opposed to
NF, a change in the value of an attribute does not result in a
ifferent configuration (Munoz et al., 2018). Hence, counting the
ize of a product space will return a lower-than-expected value.
SMT and CP solvers natively support the representation and

easoning of NFMs. However, #CP or #SMT solvers, counting gen-
ralizations of CP and SMT, are nonexistent. This is to be ex-
ected, as CP and SMT theories are unbounded by default (Phan,
015), being unaware of allocated memory or domain definitions
eg., undefined maximum of x in x ≥ 1). In SAT theory, all
ariables are bounded (ie., boolean). Consequently, SMT approx-
mation counting has been proposed (Chistikov et al., 2017). STP
olver (Ganesh and Dill, 2006) implements a bit-vector approach
or counting. It performs array optimizations, arithmetic, and
oolean simplifications before bit-blasting to MiniSat Sorensson
nd Een (2005). While it works to test satisfiability by counting
t least one, it does not preserve counting or model equivalence.
his aligns with the most recent model counting competition
2020), where they tested 34 versions of the 8 fastest count-
ng solvers. Model counting is more commonly found in Binary
ecision Diagrams (Bryant, 2018) and SAT-based (Thurley, 2006)
olvers. The results indicate that while fast, even so-called ‘exact
olvers’ count a close but inexact number of configurations.
Simplification of NFMs usually reduces reasoning time. How-

ver, those beyond the ones implemented in Nemo do not pre-
erve counting or model equivalence (Chakraborty et al., 2021).
evertheless, the bit-width bottleneck is shared even in solutions
hat perform approximate counting. An example is Boolector
easoner (Brummayer and Biere, 2009), which lazily instantiates
rray axioms and macros. Even Z3 (Moura and Bjørner, 2008)
pplies bit-blasting to every operation besides equality, which is
hen handled by specific algorithms.

. Conclusions and future work

The size of an SPL configuration space grows exponentially
ith an increasing number of features. Compared to classical FMs,

NFMs have more complex relationships due to larger domains
(natural and integer) and more complex types of constraints
(ie., arithmetic). That makes techniques of statistical reasoning
and learning more important to understand and to provide sup-
port to. Key reasoning operations are model counting and sam-
pling. Unfortunately, while automated solvers can analyze FMs,
they were not developed with the objective of counting or sam-
pling NFMs. Again, counting configurations is key to finding near-
optimal SPL configurations (eg., find one of the top configurations
minimizing the run-time of a given benchmark (Munoz et al.,
2019a; Oh et al., 2017; Heradio et al., 2022)).

We developed Nemo2, a prototype that automatically opti-
mally pre-process and transforms NFMs to three different for-
ats: a Tseitin CNF DIMACS file, a classical PF, and a UVL model.
emo2 represents NFs as bit-vectors through bit-blasting, while
rithmetic constraints are encoded as propositional clauses. We
valuated Nemo2 by transforming different synthetic and large
11
real-world NFMs as bit-blasted FMs. We used existing SAT-based,
nd BDD approaches to count and uniform random sample con-
igurations. We have shown that Nemo2 can:

• model, extend, automatically optimize, and transform
NFMs into the most common formats of FMs by using the
Nemo2 language defined in Listing 4;

• use bit-blasting to encode common types of numerical fea-
tures and arithmetic constraints;

• represent complex formulas up to 12 bit-width of accuracy
without overhead for almost every combination of boolean
and arithmetical operations;

• represent real-world NFMs up to colossal sizes without over-
head for almost every combination of boolean and arith-
metic operations in under 15 min;

• use BDD solver from (Heradio et al., 2022) to uniform ran-
dom sample configurations up to 1045 products in under
10 s; and

• use sharpSAT to count the number of configurations up to
10250 products in under 5 h.

We are confident our work can support statistical and learning
techniques that analyze NFMs of real-world SPLs. Our research
also suggests future explorations:

• bit-blast more features of other domains and with new
types of relationships (eg., strings with concatenation and
sub-string operations);

• apply expert knowledge to reduce the bit-widths, reduc-
ing further the respective NFM space size. While generally
speaking, we would not need the accuracy of thoroughly
analyzing the domain of certain NFs (eg., amount of virtual
cache (Catenazzi, 2022)), it is not trivial to uncover the
exceptions (eg., number of cores (Catenazzi, 2022)). Addi-
tionally, it is, again, not trivial how to do it — should we
only focus on the domain’s lower or upper range? Should
we analyze even or odd numbers? We plan to define this in
future works.

• run Nemo2 in an ecosystem with different solvers with ex-
tended support (eg., attributes, graphical interface); and

• beautify Nemo2’s language to be a more human-friendly
modeling language.

CRediT authorship contribution statement

Daniel-Jesus Munoz: Conceptualization, Methodology, Soft-
ware, Validation, Formal analysis, Investigation, Data curation,
Writing – original draft, Writing – review & editing. Mónica
Pinto: Conceptualization, Investigation, Writing – review & edit-
ing, Visualization, Supervision, Funding acquisition. Lidia Fuentes:
Conceptualization, Methodology, Investigation, Resources, Writ-
ing – review & editing, Visualization, Supervision, Project ad-
ministration, Funding acquisition. Don Batory: Conceptualization,
Methodology, Validation, Formal analysis, Investigation, Writ-
ing – original draft, Writing – review & editing, Visualization,
Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request

D.-J. Munoz, M. Pinto, L. Fuentes et al. The Journal of Systems & Software 204 (2023) 111770

A

U
a
b
1
t
c
f

R

A

A

A

B

B

B

B

B
B

B

B

B

B

B

B

B

C
C
C

C

D

F

G

G

H

H

H

H

cknowledgments

Munoz, Pinto and Fuentes work is supported by the European
nion’s H2020 research and innovation programme under grant
greement DAEMON 101017109, by the projects co-financed
y FEDER, Spain funds LEIA UMA18-FEDERJA-15, IRIS PID2021-
22812OB-I00 (MCI/AEI), and the PRE2019-087496 grant from
he Ministerio de Ciencia e Innovación. Funding for open access
harge: Universidad de Málaga / CBUA. Batory is retired, writing
ree textbooks (Batory, 2021), and is walking dogs for wages.

eferences

gh, H., García, F., Piattini, M., 2022. A checklist for the evaluation of software
process line approaches. Inf. Softw. Technol. 146 (1).

pel, S., Batory, D., Kästner, C., Saake, G., 2016. Feature-Oriented Software
Product Lines. Springer, NY, USA.

udemard, G., Simon, L., 2018. On the glucose SAT solver. Int. J. Artif. Intell.
Tools 27 (01), 1840001.

a̧k, K., Czarnecki, K., Wa̧sowski, A., 2010. Feature and Meta-models in Clafer:
Mixed, Specialized, and Coupled. In: SLE. pp. 2–9.

arrett, C., 2013. Decision Procedures: An Algorithmic Point of View,
Springer-Verlag, 2008. J. Automat. Reason. 51 (4).

arrett, C., Tinelli, C., 2018. Satisfiability Modulo Theories. In: Handbook of Model
Checking. Springer, NY, USA, pp. 1–2.

atory, D., 2005. Feature Models, Grammars, and Propositional Formulas. In:
SPLC. pp. 2–8.

atory, D., 2021. Automated Software Design, Vol. 1. Lulu.com.
enavides, D., Segura, S., Ruiz-Cortés, A., 2010. Automated Analysis of Feature

Models 20 Years Later: A Literature Review. Inf. Syst. 35 (6).
enavides, D., Trinidad, P., Cortés, A., 2007. Automated Reasoning on Feature

Models. In: CAISE.
erger, T., Collet, P., 2019. Usage scenarios for a common feature modeling

language. In: Proceedings of the 23rd International Systems and Software
Product Line Conference - Volume B. SPLC ’19, Association for Computing
Machinery, New York, NY, USA, ISBN: 9781450366687, pp. 174–181. http:
//dx.doi.org/10.1145/3307630.3342403.

erger, T., She, S., Lotufo, R., Wa̧sowski, A., Czarnecki, K., 2013. A Study of
Variability Models and Languages in the Systems Software Domain. IEEE TSE
39 (12).

iere, A., Heule, M., van Maaren, H., 2009. Handbook of Satisfiability. IOS Press,
IEEE.

rummayer, R., Biere, A., 2009. Boolector: An Efficient SMT Solver for Bit-vectors
and Arrays. In: TACAS. Springer, NY, USA, pp. 1–4.

ryant, R., 2018. Binary Decision Diagrams. In: Clarke, E., Henzinger, T., Veith, H.,
Bloem, R. (Eds.), Handbook of Model Checking. Springer, pp. 1–2.

ryant, R., et al., 2007. Deciding Bit-vector Arithmetic with Abstraction. In:
TACAS. Springer, NY, USA, pp. 5–13.

atenazzi, G., 2022. LKDDb: Linux kernel driver DataBase. https://cateee.net.
hakraborty, S., et al., 2021. Approximate model counting. FRONTIERS.
histikov, D., Dimitrova, R., Majumdar, R., 2017. Approximate Counting in SMT

and Value Estimation for Probabilistic Programs. Acta Inform. 54 (8).
zarnecki, K., Pietroszek, K., 2006. Verifying Feature-based Model Templates

Against Well-formedness OCL Constraints. In: GPCE.
öller, V., Karagiannis, D., 2021. Formalizing Conceptual Modeling Methods

with MetaMorph. In: Enterprise, Business-Process and Information Systems
Modeling. Springer, Springer, pp. 4–14.

oundation, T., 2018. Kconfig Tool Specification. https://www.kernel.org/doc/
Documentation/kbuild/kconfig.txt.

alindo, J.A., Alférez, M., Acher, M., Baudry, B., Benavides, D., 2014. A variability-
based testing approach for synthesizing video sequences. In: Proceedings
of the 2014 International Symposium on Software Testing and Analysis. In:
ISSTA 2014, Association for Computing Machinery, New York, NY, USA, ISBN:
9781450326452, pp. 293–303. http://dx.doi.org/10.1145/2610384.2610411.

anesh, V., Dill, D., 2006. The Simple Theorem Prover (STP) solver. https:
//stp.github.io/.

enard, C., Papadakis, M., Harman, M., Traon, Y.L., 2015. Combining Multi-
objective Search and Constraint Solving for Configuring Large Software
Product Lines. In: SPLC. IEEE Press, NJ, USA, pp. 3–8.

eradio, R., Fernandez-Amoros, D., Galindo, J., Benavides, D., Batory, D., 2022.
Uniform and Scalable Sampling of Highly Configurable Systems. Empirical
Softw. Eng..

orcas, J.M., 2018. WeaFQAs: A software product line approach for customizing
and weaving efficient functional quality attributes. phdthesis. Universidad de
málaga.

orcas, J.M., Galindo, J.A., Benavides, D., 2022a. Flamapy: Python-based AAFM
framework. https://github.com/flamapy/core.
12
Horcas, J.M., Galindo, J.A., Pinto, M., Fuentes, L., Benavides, D., 2022b. FM
fact label: A configurable and interactive visualization of feature model
characterizations. In: Proceedings of the 26th ACM International Systems
and Software Product Line Conference - Volume B. SPLC ’22, Association for
Computing Machinery, New York, NY, USA, ISBN: 9781450392068, pp. 42–45.
http://dx.doi.org/10.1145/3503229.3547025.

Horcas, J., Pinto, M., Fuentes, L., 2018. Variability Models for Generating Efficient
Configurations of Functional Quality Attributes. IST J. 95.

Horcas, J., Pinto, M., Fuentes, L., 2020. Extensible and modular abstract syntax
for feature modeling based on language constructs. In: SPLC. ACM, pp. 1–7.

Kästner, C., et al., 2011. Variability-aware Parsing in the Presence of Lexical
Macros and Conditional Compilation. In: OOPSLA, vol. 46. IEEE/ACM, NJ, USA,
pp. 5–18.

Kuiter, E., Krieter, S., Sundermann, C., Thüm, T., Saake, G., 2023. Tseitin or
not Tseitin? The impact of CNF transformations on feature-model anal-
yses. In: Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering. In: ASE ’22, Association for Computing
Machinery, New York, NY, USA, ISBN: 9781450394758, http://dx.doi.org/10.
1145/3551349.3556938.

Liang, J., Ganesh, V., Czarnecki, K., Raman, V., 2015. SAT-based Analysis of Large
Real-world Feature Models Is Easy. In: SPLC. IEEE/ACM, NJ, USA, pp. 2–8.

Mannion, M., 2002. Using first-order logic for product line model validation. In:
International Conference on Software Product Lines. Springer, pp. 176–187.

Marchezan, L., Rodrigues, E., Assunção, W.K.G., Bernardino, M., Basso, F.P.,
Carbonell, J., 2022. Software product line scoping: A systematic literature
review. J. Syst. Softw. 186.

Moura, L.D., Bjørner, N., 2008. Z3: An Efficient SMT Solver. In: TACAS. Springer,
NY, USA, pp. 1–4.

Munoz, D., Oh, J., Pinto, M., Fuentes, L., Batory, D., 2019a. Uniform Random
Sampling Product Configurations of Feature Models That Have Numerical
Features. In: SPLC. pp. 1–13.

Munoz, D.-J., Oh, J., Pinto, M., Fuentes, L., Batory, D., 2022. A tool to transform
feature models with numerical features and arithmetic constraints. In: Per-
rouin, G., Moha, N., Seriai, A.-D. (Eds.), Reuse and Software Quality. Springer
International Publishing, Cham, ISBN: 978-3-031-08129-3, pp. 59–75.

Munoz, D.-J., Pinto, M., Fuentes, L., 2018. Finding correlations of features affecting
energy consumption and performance of web servers using the HADAS
eco-assistant. Computing 100 (11), 1155–1173.

Munoz, D., Pinto, M., Fuentes, L., 2019. HADAS: Analysing Quality Attributes of
Software Configurations. In: SPLC. SPLC ’19, ACM, pp. 1–4.

Munoz, D., et al., 2021. Category Theory Framework for Variability Models with
Non-functional Requirements. In: CAiSE. Springer International Publishing,
pp. 6–12.

Oh, J., Batory, D., Heradio, R., 2024. Finding near-optimal configurations in
colossal spaces with statistical guarantees. ACM TOSEM.

Oh, J., Batory, D., Myers, M., Siegmund, N., 2017. Finding Near-optimal
Configurations in Product Lines by Random Sampling. In: ESEC/FSE. pp. 3–9.

Oh, J., Gazillo, P., Batory, D., Heule, M., Myers, M., 2019. Uniform Sampling from
Kconfig Feature Models. Tech. Rep. TR-19-02, University of Texas at Austin,
Department of Computer Science.

Pett, T., Thüm, T., Runge, T., Krieter, S., Lochau, M., Schaefer, I., 2019. Product
Sampling for Product Lines: The Scalability Challenge. In: SPLC. SPLC ’19,
Association for Computing Machinery, pp. 3–5.

Phan, Q., 2015. Model Counting Modulo Theories (Ph.D. thesis). Queen Mary
University of London.

Raatikainen, M., Tiihonen, J., Mannisto, T., 2019. Software Product Lines and
Variability Modeling: A Tertiary Study. J. Syst. Softw. 149.

Romano, D., Feichtinger, K., Beuche, D., Ryssel, U., Rabiser, R., 2022. Bridg-
ing the gap between academia and industry: Transforming the universal
variability language to pure::Variants and back. In: Proceedings of the
26th ACM International Systems and Software Product Line Conference -
Volume B. Association for Computing Machinery, New York, NY, USA, ISBN:
9781450392068, pp. 123–131.

Rossi, F., Beek, P.V., Walsh, T., 2006. Handbook of Constraint Programming.
Elsevier.

Schmitt, A., Wiersch, S., Weis, S., 2015. Glencoe-a Visualization Prototyping
Framework. In: ICCE. pp. 177–180.

Shi, K., 2017. Combining Evolutionary Algorithms with Constraint Solving for
Configuration Optimization. In: ICSME. IEEE/ACM, pp. 3–4.

Shih, F.Y., Cheng, S., 2005. Improved feature reduction in input and feature
spaces. Pattern Recognit. (ISSN: 0031-3203) 38 (5), 651–659. http://dx.doi.
org/10.1016/j.patcog.2004.10.004.

Siegmund, N., Grebhahn, A., Apel, S., Kästner, C., 2015. Performance-influence
Models for Highly Configurable Systems. In: FSE. ACM, New York, NY, USA,
pp. 2–10.

Sorensson, N., Een, N., 2005. Minisat V1. 13-a Sat Solver with Conflict-clause
Minimization. SAT 2005 (53).

Sundermann, C., Feichtinger, K., 2021. Universal-Variability-Language/uvl-
models: SPLC’21 Publication. http://dx.doi.org/10.5281/zenodo.5031829.

http://refhub.elsevier.com/S0164-1212(23)00165-6/sb1
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb1
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb1
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb2
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb2
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb2
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb3
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb3
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb3
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb4
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb4
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb4
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb5
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb5
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb5
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb6
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb6
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb6
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb7
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb7
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb7
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb8
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb9
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb9
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb9
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb10
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb10
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb10
http://dx.doi.org/10.1145/3307630.3342403
http://dx.doi.org/10.1145/3307630.3342403
http://dx.doi.org/10.1145/3307630.3342403
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb12
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb12
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb12
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb12
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb12
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb13
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb13
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb13
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb14
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb14
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb14
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb15
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb15
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb15
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb16
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb16
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb16
https://cateee.net
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb18
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb19
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb19
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb19
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb20
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb20
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb20
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb21
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb21
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb21
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb21
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb21
https://www.kernel.org/doc/Documentation/kbuild/kconfig.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig.txt
http://dx.doi.org/10.1145/2610384.2610411
https://stp.github.io/
https://stp.github.io/
https://stp.github.io/
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb25
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb25
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb25
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb25
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb25
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb26
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb26
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb26
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb26
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb26
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb27
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb27
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb27
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb27
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb27
https://github.com/flamapy/core
http://dx.doi.org/10.1145/3503229.3547025
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb30
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb30
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb30
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb31
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb31
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb31
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb32
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb32
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb32
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb32
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb32
http://dx.doi.org/10.1145/3551349.3556938
http://dx.doi.org/10.1145/3551349.3556938
http://dx.doi.org/10.1145/3551349.3556938
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb34
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb34
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb34
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb35
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb35
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb35
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb36
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb36
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb36
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb36
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb36
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb37
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb37
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb37
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb38
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb38
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb38
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb38
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb38
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb39
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb39
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb39
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb39
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb39
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb39
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb39
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb40
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb40
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb40
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb40
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb40
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb41
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb41
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb41
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb42
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb42
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb42
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb42
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb42
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb43
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb43
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb43
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb44
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb44
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb44
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb45
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb45
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb45
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb45
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb45
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb46
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb46
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb46
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb46
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb46
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb47
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb47
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb47
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb48
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb48
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb48
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb49
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb49
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb49
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb49
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb49
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb49
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb49
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb49
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb49
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb49
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb49
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb50
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb50
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb50
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb51
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb51
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb51
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb52
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb52
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb52
http://dx.doi.org/10.1016/j.patcog.2004.10.004
http://dx.doi.org/10.1016/j.patcog.2004.10.004
http://dx.doi.org/10.1016/j.patcog.2004.10.004
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb54
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb54
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb54
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb54
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb54
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb55
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb55
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb55
http://dx.doi.org/10.5281/zenodo.5031829

D.-J. Munoz, M. Pinto, L. Fuentes et al. The Journal of Systems & Software 204 (2023) 111770

S

S

S

S
T

T

T

D
f
A
(
D
g
(
c
R

undermann, C., Feichtinger, K., Engelhardt, D., Rabiser, R., Thüm, T., 2021s.
Yet another textual variability language? A community effort towards a
unified language. In: Proceedings of the 25th ACM International Systems
and Software Product Line Conference - Volume a. SPLC ’21, Association
for Computing Machinery, New York, NY, USA, ISBN: 9781450384698, pp.
136–147. http://dx.doi.org/10.1145/3461001.3471145.

undermann, C., Heß, T., Engelhardt, D., Arens, R., Herschel, J., Jedelhauser, K.,
Jutz, B., Krieter, S., Schaefer, I., 2021b. Integration of UVL in FeatureIDE. In:
Proceedings of the 25th ACM International Systems and Software Product
Line Conference - Volume B. SPLC ’21, Association for Computing Machinery,
New York, NY, USA, ISBN: 9781450384704, pp. 73–79. http://dx.doi.org/10.
1145/3461002.3473940.

undermann, C., Nieke, M., Bittner, P.M., Heß, T., Thüm, T., Schaefer, I., 2021c.
Applications of #SAT Solvers on Feature Models. In: VaMoS. ACM, NY, USA,
pp. 3–8.

ystems, C., 2012. Sample Size Calc. https://www.surveysystem.com/sscalc.htm.
hüm, T., et al., 2014. FeatureIDE: An Extensible Framework for Feature-oriented

Software Development. Sci. Comput. Programm. 79.
hurley, M., 2006. SharpSAT–counting Models with Advanced Component

Caching and Implicit BCP. In: SAT. Springer Berlin Heidelberg, pp. 2–5.
seitin, G., 1983. On the Complexity of Derivation in Propositional Calculus.

In: Siekmann, J., Wrightson, G. (Eds.), Automation of Reasoning: 2: Classical
Papers on Computational Logic 1967–1970. Springer Berlin Heidelberg, pp.
1–2.

aniel-Jesus Munoz received his M.Sc. Degree in Computer Science Engineering
rom the University of Málaga (Spain) in 2015, and his M.SC. Degree in
stronomy and Astrophysics in 2017 from the Valencian International University
Spain). He is a Ph.D. . Student since 2016 and a lecturer since 2021 at the
epartment of Computer Science of the University of Malaga. He is a former
uest Researcher at the University of Bristol (UK), University of Texas at Austin
USA) and the KTH Royal Institute of Technology in Stockholm (Sweden). His
urrent areas of expertise are Software Product Lines, Variability, Automated
easoning, Energy Efficiency, Optimization, Category Theory, and Blockchain.
13
Mónica Pinto is an Associate Professor in the Languages and Computer Science
Department at the University of Málaga (Spain). She received the M.Sc. degree in
Computer Science in 1998 from the University of Málaga, and her Ph.D. in 2004
from the same University. Her main research areas are Energy-Aware Software
Development, Component-based Software Engineering, Aspect-oriented Software
Development, Architecture Description Languages, Model-Driven Development
and Context-aware Mobile Middlewares.

Lidia Fuentes received her M.Sc. degree in Computer Science from the University
of Málaga (Spain) in 1992 and her Ph.D. in Computer Science in 1998 from
the same University. She is a Full Professor at the Department of Computer
Science of the University of Málaga since 2011 (previously, Lecturer and
Associate Professor from 1993). Currently, she is the head of the CAOSD research
group. Her main research areas are Energy-Aware Software Development,
Aspect-Oriented Software Development, Model-Driven Development, Software
Product Lines, Agent- Oriented Software Engineering, Self-adaptive middleware
platforms, Architecture Description Languages and Domain Specific Languages.

Don Batory is a Professor Emeritus in the Department of Computer Science
at The University of Texas at Austin. He received a B.S. (1975) and M.Sc.
(1977) degrees from Case Institute of Technology, and a Ph.D. (1980) from the
University of Toronto. He was a faculty member at the University of Florida in
1981 before he joined the University of Texas in 1983. He was Associate Editor of
IEEE Transactions on Software Engineering (1999–2002), Associate Editor of ACM
Transactions on Database Systems (1986–1992), member of the ACM Software
Systems Award Committee (1989–1993; Committee Chairman in 1992), Program
Co-Chair for the 2002 Generative Programming and Component Engineering
Conference. He is a proponent of Feature Oriented Software Development (FOSD)
and with colleagues (and former students) has recently authored a textbook on
the topic. Since 1993, he and his students have written 11 Award Papers for their
work in automated program development. He and Lance Tokuda were awarded
the Automated Software Engineering 2013 Most Influential Paper Award on their
work on program refactorings.

http://dx.doi.org/10.1145/3461001.3471145
http://dx.doi.org/10.1145/3461002.3473940
http://dx.doi.org/10.1145/3461002.3473940
http://dx.doi.org/10.1145/3461002.3473940
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb59
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb59
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb59
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb59
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb59
https://www.surveysystem.com/sscalc.htm
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb61
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb61
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb61
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb62
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb62
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb62
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb63
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb63
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb63
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb63
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb63
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb63
http://refhub.elsevier.com/S0164-1212(23)00165-6/sb63

	Transforming Numerical Feature Models into Propositional Formulas and the Universal Variability Language
	Introduction
	Bit-Blasting Background and Overview
	Propositional Formulas of Feature Models
	 Finding Near-Optimal Configurations
	 Numerical Features
	Bit-Blasting
	Bit-Blasting Basic Arithmetic Operations

	Nemo2
	Tool Overview
	Bit-blasted NFM as a PF in Nemo2
	Bit-blasted NFM as an UVL FM in Nemo2
	Bit-blasted NFM as a DIMACS CNF in Nemo2

	Numerical Feature Modeling in Nemo2
	 Automatic Calculation of Minimal Bit-Widths
	Nemo2 Optimizations by Pre-Processing the NFM

	Evaluation
	Threats to Validity
	Related Work
	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

