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Mantoani, L. M.a, Pérez-del-Pulgar, C. J.a,∗, Luque, G.b

aUniversidad de Málaga, Department of Systems Engineering and Automation, Space Robotics Laboratory, Málaga, Spain
bUniversidad de Málaga, ITIS Software, Málaga, Spain

Abstract

Hoy en dı́a se están investigando robots de exploración terrestre y espacial más rápidos en respuesta a la creciente demanda de ca-
pacidades de exploración e investigación más rápidas, eficaces y rentables. Para estas plataformas móviles rápidas la identificación
y evasión de obstáculos lejanos son crı́ticas, ya que su alta velocidad implica la necesidad de tener en cuenta el mayor número
posible de obstáculos cercanos y lejanos para el cálculo de la trayectoria global, evitando cualquier posible accidente debido a su
velocidad y al tiempo de cálculo de los algoritmos de replanificación. Debido a su distancia, los obstáculos lejanos no se incluyen
en los mapas locales, que están limitados por el alcance de las cámaras de profundidad. Por estas razones, este artı́culo propone
el uso de técnicas de Inteligencia Artificial para detectarlos a partir de imágenes y estimar sus tamaños y posiciones con un cierto
grado de incertidumbre. Los obstáculos detectados se incluirán posteriormente en los mapas globales, corrigiendo la trayectoria
global en caso de colisionar con ellos.

Keywords: Sistemas robóticos autónomos, Guiado navegación y control, Robótica inteligente, Robots móviles, Percepción y
detección.

1. Introduction

Planetary exploration missions are becoming more and
more important since space exploration encourages interna-
tional cooperation and innovation, bringing us closer to know
whether there is life on another planet and satisfying the hu-
man desire to explore the universe and to understand the world
around us. Furthermore, the exploration of other planets and
especially of the moon is particularly important, since it allows
us to gain scientific knowledge about the formation of the solar
system, as long as the evolution of the planets and of the moon
itself.

On the other hand, terrestrial mobile robots allow us to ex-
plore and investigate areas on Earth that are difficult or danger-
ous for humans to access. These robots are becoming increas-
ingly important in a wide range of fields, including manufactur-
ing, logistics, healthcare, agriculture and exploration. They are
designed to move on land, either autonomously or under human
control, and can perform a variety of tasks that are difficult or
dangerous for humans to do.

Autonomous navigation is essential to succeed in future
planetary exploration missions with rovers (space exploration
robots) to extend the traversed distance and maximize the num-
ber of places visited during the mission, taking into account that
real-time communication between Earth and other planets such
as Mars is quite impossible (Bajracharya et al., 2008). Auton-
omy is very important for terrestrial mobile robots too, since it

enables them to operate independently in a variety of environ-
ments, such as hazardous or inaccessible areas where human
intervention may not be possible or safe. Due to the importance
of autonomous navigation, both in space and terrestrial applica-
tions, the implementation of a Guidance, Navigation and Con-
trol (GNC) architecture is essential (Azkarate et al., 2020). The
Guidance component is the one in charge of planning a path
for the mobile robot to follow, ensuring a safe traverse, avoid-
ing any possible obstacle that can be found on its way. The
Navigation component is responsible for the perception of pos-
sible obstacles that can affect the mobile robot traverse, and the
robot localisation, using GNSS on Earth and visual odometry or
SLAM techniques on remote planets. Finally, the control com-
ponent is the one in charge of ensuring the robot is correctly fol-
lowing the generated path, providing actuator commands based
on the mobile robot kinematics (Mantoani et al., 2022).

Taking into consideration that most of the mobile robots
should perform their tasks in a limited time and traversing the
longest distances possible, their velocity is key, allowing to
reach further places in less time. For this reason there is an
increased interest in developing faster mobile platforms.For ex-
ample, VIPER is a rapid lunar rover designed by NASA to
search ice and other potential resources on the lunar surface
(Colaprete et al., 2019). Nevertheless most of the currently ex-
isting mobile platforms are not very fast: planetary exploration
rovers, for example, are usually moving at less than 10 cm/s,
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e.g. the Perseverance rover from NASA, which moves on the
martian surface around 4.2 cm/s. This is due to mechanical and
security problems, as long as several issues related to the local
level of autonomy, since the mobile robot should be able to gen-
erate and follow a path, and rapidly detect and avoid as many
obstacles as possible. In the case of fast robots, this is not a
trivial task, therefore, autonomy needs to be improved through
advancing the GNC system.

In the case of the Navigation subsystem, apart from the local
obstacles that can be detected in a local 3D map generated from
the exteroceptive sensors, i.e. LIDAR, stereocameras, depth
cameras, etc. (Jaspers et al., 2017), it is crucial to take into con-
sideration further obstacles when the rover is moving faster, i.e.
the ones that are not visible in the local 3D map but that are
present in the images taken by the robot cameras. These types
of obstacles can be considered as far obstacles, since they do
not require to perform an urgent avoidance manoeuvre.

Therefore, this paper proposes a modification in the GNC
architecture to take into consideration far obstacles. For this
purpose, the navigation component has been extended to detect
obstacles on monocular images using AI. Later on, these ob-
stacle are fed to the guidance component to be taken into con-
sideration during the path planning process. The proposed path
planner is based on the Fast Marching Method (FMM) (Sethian,
1999), which is a numerical algorithm that is able to generate
the optimal and smooth path based on a cost map. The method
to place these far obstacles into the cost map is the key contri-
bution of this paper. It uses certain parameters from the vision
system and the information provided by the obstacle detection
AI based algorithm.

2. Methodology

The limited range of the traditional depth cameras implies
the inability to include distant obstacles within local 3D maps,
limiting the performance of autonomous detection and naviga-
tion systems. However, thanks to Artificial Intelligence tech-
niques it is possible to analyze complex images and extract rel-
evant features to identify distant obstacles, even if the uncer-
tainty related to visual information poses an additional chal-
lenge, since it is difficult to define the exact position of a dis-
tant obstacle from a single image. Given the two-dimensional
nature of images, the depth and three-dimensional location of
objects can be difficult to determine, but taking into account the
size of the local 3D maps and the intrinsic parameters of the
depth cameras it is possible to identify a region in which the
obstacle is likely to be found, estimating its size taking into ac-
count a certain degree of uncertainty. The detection of this type
of obstacles is very important, since the faster the robot is, the
safer should be the path, and the sooner should any possible
obstacle been taken into account: waiting for the robot to get
nearer to the obstacle in order to have it included in the local
map could be too late to avoid it.

The purpose of this work is to use Artificial intelligence
techniques to detect distant obstacles in the images, investigat-
ing how to obtain a first approximation of their size, represent-
ing them by means of triangles whose apex would be located at

the furthest valid point of the local map, in the same direction
as the relative far obstacle. The apex location has been chosen
taking into account that the only information available on the
rocks is that they are outside of the map, but not their distance
from its limits, and taking into account a certain degree of un-
certainty. These obstacles will be added to the global maps,
correcting the global path in case it collides with them.

The main responsible of the guidance component is the Path
Planner (Sánchez-Ibánez et al., 2019), that generates a path to
reach a final pose based on a global cost map. Firstly a map of
the scenario in form of a global Digital Elevation Map (DEM) is
required, and it is analyzed at the beginning of the planning al-
gorithm to check its quality. After analyzing it, the robot initial
position and the goal position are required to start the algorithm.
Then, the global DEM is processed, in order to differentiate be-
tween safe and obstacle areas. Hence, a traversability map 1 is
generated, that, based on the information provided by the DEM,
assigns a value to each map node in order to classify them into
different areas, taking into account their morphological charac-
teristics.

Figure 1: Example of global traversability map

In Figure 1 the green areas are the valid nodes, that can be
safely traversed by the rover. The red areas are the obstacles,
that are dilated (yellow nodes) according to the rover size and
a safe distance, ensuring the rover will not enter on this area.
Grey areas are the isolated nodes, valid nodes that cannot be
reached by the rover since they are surrounded by obstacles. Fi-
nally, light green areas are unknown, since they are not clearly
visible, and for this reason they are classified as DEM holes,
and are also dilated for the robot security (magenta areas).

From the previous traversability map, a cost map is com-
puted, as can be seen in Figure 2.
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Figure 2: Example of global cost map

The cost map is generated by assigning a cost to each map
node representing the amount of effort, i.e. time or resources
required to move through it. The costs go from 1, that are the
safer nodes, to 5, the most dangerous nodes, while the obsta-
cles and the unknown areas are set to infinity, meaning that they
should be avoided in order to ensure the robot safety. In Figure
2 the white nodes are the safer ones, with a cost of 1, while the
black nodes are the risky areas that shouldn’t be traversed, hav-
ing a cost set to infinity. Obviously the higher values are set to
the nodes that are closer to the forbidden areas, and these values
decrease while getting closer to the valid nodes, gradually, from
infinity to 1: this transition is represented with different shades
of orange.

The cost map is used by path planning algorithms to de-
termine the optimal path between two points, considering the
cost of traversing different areas. Normally the nodes chosen
by the path planning algorithm to compute a safe trajectory are
the ones whose cost map value is closer to 1.0, or with the lower
possible value.

Once the cost map has been obtained, a global path is cal-
culated taking into account the global cost map computed, the
goal position and the robot initial position. The trajectory is ob-
tained by means of the Fast Marching Method (FMM) (Gómez
et al., 2019), a numerical scheme that is used to calculate the
solution to non-linear equations called Eikonal, and that can be
applied to path planning algorithms to expand a wave over the
cost map in order to extract a trajectory from it. The FMM is
also used to check the safety of the previously computed global
path each time a local DEM is obtained from a camera, correct-
ing it in case it collides with obstacles (Sánchez-Ibánez et al.,
2019).

Each time a new path is provided, it is sent to the Control
component (Gerdes et al., 2020), which generates linear and
angular velocity commands that are later translated to wheels
speeds commands, to be understandable by the robot.

Several images and DEMs have been collected to imple-
ment the proposed far obstacles detection and avoidance, in-
cluding several rocks at different distances from the robot. All
the images are later processed using the YOLOv5 Neural Net-
work, which has been able to recognize all the rocks within the

images, providing information regarding the perception success
rate and the coordinates of the bounding box surrounding the
detected rocks, which is later used to estimate the far obstacles
position. The X coordinate of the central pixel of each bound-
ing box is used to compute the angle between the far obstacle
and the camera pose (that is the current robot pose) taking into
account the camera intrinsic parameters, such as its Horizontal
Field of View (HFOV) and its width (1):

α = (2xp − cw)(
c f

2cw
), (1)

where α is the horizontal angle between the far obstacle and the
camera, xp the X coordinate of the central pixel of the bound-
ing box provided by the neural network, cw the camera width
in pixels and c f the horizontal field of view of the camera in
degrees.

After obtaining the angles for each detected rock, the local
validity map is used to identify the furthest valid point of the
map in the direction of each rock, in order to obtain its coordi-
nates and use them as the apex of the triangle that will be drawn
to simulate the relative obstacle. It is important to remark that
all detected rocks will be taken into account and processed, the
near and the far ones, since it is not possible to correctly clas-
sify which ones are near obstacles and which are the far ones,
and in terms of security it is better to consider all of them, in-
stead of possibly discarding the wrong ones. When finally all
the obstacles have been correctly identified, the coordinates of
their apex, their success rate and their angle are used to estimate
their shape for the global maps.

The rocks are represented in the global DEM as triangular
obstacles, due to the camera cone of vision, also known as the
visual field: it is the portion of the environment that a camera
can see at any given moment, which shape is similar to that of
an isosceles triangle, with the apex of the cone located at the
lens and the base extending outward into the environment. The
reason for choosing a triangular shape is simple: when viewing
an object in perspective, the size of the object for the camera
depends on both its actual size and its distance from the lens.
Objects that are closer will appear larger to the lens than objects
that are farther away, even if they are actually the same size.
This means that if a camera sees an object at a given distance
with the same shape and size as another object that is further
away, the furthest one is the biggest, since if it is moved at the
same distance as the nearest one it would be bigger. Therefore,
for the same shape and size, the further an object is, the bigger
it is.

The base of each triangle (b) is proportional to the width
of the bounding box (m) provided by the YOLOv5 Neural Net-
work, b = kpmm, where kpm is the conversion factor to translate
the width of the bounding box from pixels to metres, while the
height of the triangle (h) is equal to the maximum distance the
system can detect a far obstacles (r), h = r.

A function has been codified in order to identify all the
points within the triangles: its inputs are the apex coordinates,
the height, the base and the angle defining the obstacle direc-
tion. The first step is the computation of the position of the

4



base vertices (2) (3):

v1(x, y) = (cos(α)(x−k)+sen(α) j,−sen(α)(x−k)+cos(α) j) (2)

v2(x, y) = (cos(α)(x+k)+sen(α) j,−sen(α)(x+k)+cos(α) j) (3)

where v1 and v2 are the triangle base vertices, α is the horizontal
angle previously computed, x is the X coordinate of the triangle
apex, k = b

2 , half of the triangle base, and j = y + h, sum of the
Y coordinate of the triangle apex and the height of the triangle.

Once the position of the base vertices is computed, all
the points of the triangle sizes are identified, and all the
nodes included between these sizes are collected. Hence,
the relative global traversability map nodes are classified as
FAR OBSTACLE, a new traversability classification created
for these specific types of obstacles.

After including these new obstacles in the global
traversability map, the global cost map is also updated. In this
case the success rate of the detected obstacle is required to de-
fine the cost of each triangle node: the higher the success rate,
the higher the probability of having an obstacle, and therefore
the higher the cost of that obstacle, to prevent the robot from
approaching it. Obstacles with a success rate lower than 50%
have been discarded, since such low values may result in a high
number of false positives or unreliable results. An algorithm
has been codified, that, taking into account the success rate of
each obstacle detected, assigns to the relative triangle a propor-
tional value going from 1, the lower value of the cost map (if
the success rate is lower than 60%), to infinity (if it is 100%).

After having updated the global cost map, the Fast Match-
ing Method is executed again, and the resulting path will take
into account all new obstacles. Since the best trajectory is cho-
sen taking into account the cost of the nodes, the ones free of
any obstacles and with the lower cost will be chosen, being the
best candidates. In the unlikely case there is no available path to
connect the robot and the goal through completely safe nodes,
the FMM would provide the path with the lowest cost, even if
some of its nodes have a cost higher than 1.

Several experiments have been carried out to test the pro-
posed algorithm, and they will be explained in the following
section.

3. Results

In this section some of the experiments to test the proposed
algorithm will be illustrated, starting from the software and
hardware technologies employed to carry them out.

3.1. Experimental setup

This algorithm has been integrated into an already devel-
oped GNC architecture for ROS2. It is able to generate an op-
timal path to reach a goal position based on a global map, and
repairing it each time a new obstacle is detected within the local

DEMs, as long as to generate the robot commands, i.e. transla-
tional and rotational speeds, to be able to follow the generated
path.

After updating the Guidance component, the far obstacles
algorithm proposed in this paper has been integrated, adding
new functions and topics as long as creating a new ROS2 node
to read all the information provided by the YOLOv5 neural net-
work. To execute and test the proposed algorithm, the Cop-
peliaSim simulator has been used, and a Lua file has been codi-
fied to subscribe and publish into several ROS2 topics, in order
to connect to the simulator the Docker container with the Guid-
ance component and the far obstacles algorithms.

To perform the tests real images were needed, showing near
and far rocks in front of the robot. For this reason several im-
ages and DEMs have been collected using the OpenUMARov1,
a small rover that has been built through the years at the Space
Robotics Lab at the University of Malaga. It’s an open-source,
low-cost mobile robotic platform that is usually used to test al-
gorithms and acquire images and video. This rover has been
equipped with an Intel RealSense Depth Camera D435i, an ac-
tive stereoscopic depth camera that has been used to acquire
images and local DEMs, with a range (r) of up to 10 meters,
a horizontal field of view (c f ) of 87 degrees and a width (cw)
of 1280 pixels. The collected dataset can be found in Zenodo 2

public repository.
In the following section the performed experiments will be

illustrated.

3.2. Algorithm execution
Several experiments have been carried out in order to test

the proposed algorithm. This section focuses on one of them
since it is considered the most relevant and representative of
the system functioning.

(a) Image 1 (b) Image 2

(c) Image 3 (d) Image 4

Figure 3: YOLOv5 processed images

Given a global DEM, the first step is the computation of
a global traversability and cost map from it, as long as a first

1https://github.com/spaceuma/OPEN-UMA-Rover
2https://doi.org/10.5281/zenodo.7890632
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global path computed taking into account obstacles and safe
areas. While the robot is moving local images and maps (pre-
viously collected using the RealSense camera) are periodically
sent through ROS2 topics. These images are classified by the
YOLOv5 neural network as shown in Figure 3, where several
possible obstacles, including far and near rocks, have been cor-
rectly identified.

An example of a local DEM related to these images can be
seen in Figure 4, where the red stars represent all the far obsta-
cles detected.

Figure 4: Example of the fourth image.

Once the algorithm has been executed and the far obstacles
position has been correctly estimated, the global traversability
map is updated, as long as the global cost map, where the global
path is corrected in order to avoid the detected far obstacles.

While the rover is following the global trajectory previ-
ously corrected, new images and local maps are periodically
sent through the ROS2 topics: each time a new detection is re-
ceived the algorithm is executed, and all the maps are updated
with the new far obstacles estimated, while the global path is
also corrected to avoid them. A video3 was published, showing
a test carried out in simulation.

Figure 5 shows the cost maps from four algorithm execu-
tions. The path has been corrected 4 times: each time new far
obstacles are identified the path is updated, making it safer for
the robot to follow. The first cost map computed 5(a) shows
the only valid far obstacle detected in Figure 3(a), since obsta-
cles with a success rate lower than 50% have been discarded
to avoid unreliable results, as was previously explained. The
second cost map computed 5(b) shows how the trajectory is up-
dated again taking into account the new far obstacles detected
in Figure 3(b), that are represented with triangles with similar
shades of orange, having quite similar success rates. The ob-
stacles detected in Figure 3(c) can be seen in the third cost map
computed 5(c), where the FMM chooses a path very close to the
far obstacles, being the best candidate in terms of speed and se-
curity. Finally, the cost map is updated again 5(d) with the last

far obstacles detected from Figure 3(d): in this case the trian-
gles can be better identified, having different shades of orange
due to their divergent success rates.

All these tests have been carried out in simulation, and it
has been demonstrated that the robot is correctly able to fol-
low each new updated path, the local ones as long as the global
ones, reaching the final goal with no errors and with the correct
position and orientation.

3.3. Processing times
Processing times are critical for fast mobile platforms, since

they influence their ability to make quick and efficient decisions
while moving fast. These times depend on the algorithm effi-
ciency as long as on the hardware employed. The computer
used to perform all the experiments has 3.40GHz Intel Core i7-
6700 CPU, based on the x86 64 architecture and with 8 cores,
as well as an Nvidia GeForce GTX 1070 TI graphics card with
8GB of dedicated memory and a RAM of 32GB.

Figure 6: Covered distance depending on the robot’s speed

To estimate the whole computation time firstly it is neces-
sary to compute the image processing time, which is divided
into the image acquisition (8.5 ms), the image pre-processing
(1.2 ms), the image inference (31.6 ms) and the image post-
processing (1.3 ms), with a total image processing time of about
42.6 ms. The second step is the computation of the time re-
quired for the far obstacles algorithm, which includes the local
maps processing (184.129 ms) and the global maps and path
update (164.488 ms), giving a total computation time for the
algorithm of 348.617 ms. The sum of these values gives an av-
erage processing time of 391.217 ms, less than 400 ms. Figure
6 shows the distance covered by a mobile platform during these
computation steps depending on its speed, considering a total
processing time of 400 ms. Obviously, the faster the robot, the
higher the covered distance, and the lower the robot security.
Even at the highest speed of 1 m/s, the covered distance is quite
small, giving to any fast robot enough time to carry out all nec-
essary avoidance manoeuvre, with no risk of collision.

4. Conclusions

The aim of this work was to provide safer trajectories for
rapid mobile platforms, applying the Fast Marching Method for

3https://youtu.be/7W-Xz7ach8c
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(a) Planning of the first image (b) Planning of the second image

(c) Planning of the third image (d) Planning of the fourth image

Figure 5: Cost maps showing the algorithm execution
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fast robots, using Artificial Intelligence techniques to detect far
obstacles from images and estimating their shape and position,
in order to update the global maps with this new information
and to correct the global path in case it collides with them.

The inclusion of both nearer and further obstacles in the
detection and mapping process significantly increases the secu-
rity of the robot, ensuring that mobile platforms are not only
aware of immediate obstacles but also of potential risks in the
distance. This consideration is particularly important for rapid
robots, since they need enough time to react and to correct their
path in case it is necessary. Extending their awareness to distant
obstacles brings them to plan their trajectories avoiding poten-
tially hazardous situations, increasing their safety.
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